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      Studies on the Structures of Density Stratified Flows 
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                       (Manuscript received December 27, 1979) 

                             Abstract 

     Density stratified flows are classified into three classes such as upper, middle and under layer 
 flows. In this study, the time averaged mean profiles of velocity, density and temperature are 

 discussed in stably stratified media, and also the theories of turbulent diffusion coefficients for 
 momentum, mass and heat are developed. 

    We consider the mixing length  1, at a density interface and assume a linear  distribution of 
 the mixing length in main flow region, and then theories of velocity profiles are established. 

 Those of density and temperature profiles are also developed, assuming the distributions of mixing 
 lengths for mass and heat respectively. The effects of density stratification in these profiles are eval-

 uated by the changes of the distributions of the mixing lengths for momentum, mass and heat 
 from the distributions in neutral stability. 

    Turbulent diffusion coefficients for mass and heat are discussed directly on the basis of mixing 
 length theory and predictive methods on them are presented. 

     The theories developed in this paper show good agreement with the experiments. 

1. Introduction 

   In analysis of transport phenomena, there are two requests as follows. One is 
the case that it is enough for us to know the cross-sectional mean of a given hydraulic 

quantity. The other is that we must analyze the distributions of velocity, density, 
temperature, turbidity and so on in the whole flow region. 

   Fig. 1 shows two methods to treat the transport phenomena relating to density 
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        Fig.  I. A flow chart to solve the transport phenomena of density stratified flows.
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        stratified flows. Along A in the figure, one dimensional governing equations are 
        applied to solve the phenomena, and it is important how to formulate the mass and 

        momentum transports around a flow boundary such as a density interface. The 
        method of direction B is the one in which the profiles of hydraulic quantities are 
        discussed with two or three dimensional basic equations. We usually get the solution 

        under some approximations like boundary layer assumption because the governing 
        equations are very rarely directly integrated. 

           Lets introduce parts of the investigations concerning the later case except nu-
        meric methods. On turbulent shear flow and the relating phenomena very near 

        the atmospheric surface, many field experiments have been carried since  Monin• 
       Obukhov similarity  theory' (1954) was presented, and log-linear law has been  appli-

       cable to wind velocity, air temperature and moisture in the region except strong 
       stability range (McVehill2), 1964;  Webb3), 1970). On the other hand, few analytical 

        procedures have been carried concerning the phenomena inner and over the misci-
       ble density interface formed by the abrupt changes of temperature and solute con-

        centration because it is very difficult to decide the transfer condition at an interface 
        and the distribution of transport coefficients in a flow region. Recently, theories of 

        the profiles of velocity and water density distributions in a two dimensional definite 
        region were presented by the  authors4)-6) (1977-1979) and  Hinon (1979). The 

        difference between these theories is in the assumptions which are introduced to 
        analyze the flow near an interface. 

            Transport coefficients for momentum, heat and some solutions for stratified 
        shear flows had been studied for a long time, and many empirical and theoretical 

        relations had been presented. The formula presented by  Munk  Andersons) (1948) 
        is very well known and applied to analyze the phenomena nowadays.  Ellison9) 

       (1957) and  Ellision•Turnerw) (1960) obtained the formula using the governing equa-
        tions of turbulence. But the diffusion term for pressure fluctuation was omitted 

        in the theoretical procedure. On the other hand,  Launder"") (1975) presented a 
        theory for transport coefficient, considering the pressure term. When one compares 

        the transport coefficients calculated by these formulae including the preceding simi-
        larity theory, it will be found that the characteristic of each formula is different 

       from each other. The differences will become remarkable if one investigates how 
        to change the ratio of transport coefficients with the stability parameter such as 

       gradient Richardson number. One of the reasons of this discrepancy between 
        these formulae will be because of each formula developed different stratified systems. 
           As mentioned above, there are a number of unsolved problems regarding the 

        velocity profile and other quantities in stably stratified shear flows. The purpose 
        of the present study is to reveal the velocity, density and temperature profiles and 

        the transport coefficients in density stratified shearing flows which will be formed 
        in man-made reservoirs and estuaries. At first, the relation between turbulent 

        entrainment  coefficient and eddy diffusivity for mass and heat is described by use 
        of the mass conservation equations in discrete and continuous stratified systesms 

        Laws of profiles of time-averaged mean quantities are derived from the mixing length 
        theory under the assumption of constant flux layer. Transport coefficients are dis-

        cussed by the distributions of mixing lengths obtained here. Lastly, the theories 

        presented will be compared with experiments of upper and middle layer flows.
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2. Relation between Turbulent Entrainment Coefficient and Eddy Diffusion 

   Coefficient for Mass and Heat 

   An upper layer  flow is shown schematically, and profiles of velocity and water 

density in two layer and continuous stratified systems are described respectively in 

Fig. 2. For a two layer model, a mass conservation equation can be written as 

follows. 

 1  a  X 

                     o 

                                   P             I.1 

              Fig. 2. Two layered and continuous density stratified systems. 

       Dpi  ± uOp _  dp                                          (1) 
 atx di • 

where  pi is water density in the upper layer,  p:  pa—pt (pa: water density in the under 
layer), mean velocity in cross section,  d1: water depth in the upper layer and 

    entrainment velocity. 
   Mass conservation for a continuous system of two dimensions is written by a 

convected diffusion equation as 

       Op       —+u)_(pu,)(Eap)+(Op\                                         (2)       ataxazaxax)azk P. 0 Z 

Where t is time, x and z: coordinate system as shown in Fig. 2, p: time mean water 
density,  ti and  zu: time mean velocity in x and z components respectively,  Spy and  

: x and  z components of eddy diffusion coefficient for mass respectively. The 
first term of the right hand side of equation (2) is usually negligibly small, and can 
be cancelled. As  to  p and u in the first and the second terms of the left, the following 

procedure is taken up. These quantities can be written in terms of the cross sec-
tional mean and the variation from them. 

 a  =  al  +a" 

  =U1+ u"(3) 

Integrating equation (2) from surface  (z  =0) to interface  (z=d1) using equation 

(3), one can obtained the following relation. 

       ia di+a (U1d1)1+ dCP1+Ul aP1)+ pi(di, t){ di    atatxOt 

 +  u(di, t)0d1 —w(di,t)}=s,(dt)-4                                           e(0, t)P           0xz  2=diP2Z1  2=0 
                                        (4)
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Where  p(di,  t),  u(di,  0 and  w(di,  t) are time averaged quantities at the interface, 
respectively.  w(db t) and the first term of equation (4) can be described in terms of 
entrainment velocity as follows. 

             8d  w(d
i,0=-1±u(di,d' —(5)        ata, 

    Tr=8(11- +(Ud) (6)        aet
x11 

Water density  p(di,  t) at the interface will be well approximated by 

 P(di,  =  (Pi+  Pz)/2  • (7) 

Assuming mass or heat transfer is negligible at the free surface, which can be written 
as  cosdp/azi„0-0, and rearranging equation (4) by use of equations (5), (6) and (7), 
the new expression for eddy diffusion coefficient at an interface is derived as follows. 

                   p 
      „(d 1, t),2(0p/0 z)iW  (=  sp1) (8a) 

where  (apiaz), and  so, are density gradient and eddy diffusion coefficient at an 
interface, respectively. In case that z-axis is selected upward from the interface, 

              jp     e
pi —        2(0p/0  z)iT(8b) 

   Thus the relation between eddy diffusion coefficient for mass and entrainment 
velocity has been obtained. Concerning the relation between eddy diffusion  coeffi-
cient for heat and entrainment velocity, an equation as  well as  (8a) or (8b) could be 
led through the same procedure as mentioned above. Here we would like to show 
the results only: 

  8T     2 W(9)         ;11—(0 T/0 z); 

where  eff, is eddy diffusion coefficient for heat at the interface,  (a  T  7,14,, temperature 

gradient at the interface,  T1 and  T2: cross sectional means of temperature in upper 
and under layers respectively. Comparing equations  (8a) with (9), it could be found 
that eddy diffusion coefficients are the same as in the linear range of heat expansion 
coefficient of water. 

   The hydraulic characteristic of equation  (8a) will become clear if we consider 
the hydraulic variables of the entrainment velocity and the density gradient at an 
interface. The discussion as to density gradient will be taken up in the next chapter. 
Let us relate the entrainment velocity briefly. The term is usually written by use 
of the entrainment  coefficient E as follows. 

 We=  EU, . (10) 

Many experimental investigations have been done as to entrainment  coefficients. 
According to these studies  (Kato•Phillips12), 1967;  Moore•Long12), 1971;  Ashida• 

 Egashira10, 1977) and to much data of other experiments  (Lofquist15), 1960), it was
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found that the coefficient was proportional to the inverse of the overall Richardson 
number. 

 E=K/R,* (11) 

where K is the coefficient to be decided by experiment and  R,,,.: overall Richardson 
number defined by 

• 

    Rit=Fi-2=-4P gdi/Uf. (12) 
               P 

In Fig. 3, data obtained by  Ellison•Terner16) (1959), Lofquist,  Kato•Phillips and 
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 Ashida-Egashira are shown. The entrainment coefficient would be considered to 
be well defined by equation (11), and most data could be represented by the factor 
of 

 K=0.0015. (13) 

   Rearranging equation (8a) by use of equation  (II), eddy diffusion coefficient 
at the density interface is written as below. 

 do  KUt(14) 
 2(ap/Oz);  R1* 

This equation shows that the eddy diffusion coefficient becomes large with the in-
crease of turbulent entrainment. 

3. Velocity Profiles of Density Stratified Flows 

3.1 Velocity Profiles 

   (1) Upper Layer Flow 
   Filling water with homogeneous density into a prismatic channel to the level 

of a weir top, an upper layer flow can be formed easily if one constantly supplies the 
water of lower density at the upstream end and has the water overflow the weir. 
Using two fluids of which temperature only is different, the upper layer flow formed 
by the method mentioned above is shown, and its velocity and temperature profiles 
are also shown schematically in Fig. 4. Although the density interface lowers with 
time, the profiles remain unchanged. 

   Concerning the upper layer flow as shown in Fig. 4, we would like to discuss 

    Eni .4 +KZ fop K PZ 
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 Fig. 4. The schematic diagram for an upper layer flow and the distributions of mixing lengths for 

        momentum and mass density.
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its velocity profile on the basis of Prandtl mixing length theory for momentum. We 
suppose the mixing length in main flow region as below  (Ashida.Egashirarn, 1975). 

 1=-10-Exz (15) 

where  la is the mixing length at the interface  (z=ü) and  ,r:  Karman constant. The 
velocity gradient can be described as 

 du  u*   _   u*                                            (16) 
        dz  10-Exz  d1(8+  z/  di)  

, where  u, is the shear velocity and nondimensional mixing length at the interface. 

 fi  =  1,/  di (17) 

Integrating equation (16) under constant flux layer leads to 

 u(C)=ui+  14* In 49±gKC,  (ü<  z<  di or  O<C<l) (18)  

, where C is defined by  z/d1. The velocity  us at the interface can be obtained from 
the condition of continuity as below. 

      q(R±gIn 
fi_1)(19)             di  ui= — u* K2 

                      ) where q: discharge in unit width. The velocity profile of the main flow region 
having been described, we would like to discuss the velocity in the lower region be-
tween interface and channel bed. A kind of circulating flow will be formed due to 
the definite flow field, which currents in the same direction of the main flow near 
the interface and in the opposite near the bed. Although it is very difficult for us to 
discuss the velocity distribution in such a circulating flow, but the curve of a quad-
ratic equation as shown below will give a good approximation to it except near the 
upstream and downstream regions. 

 u  =a1C"-Fa2C'lLa3,  (C'=  —r/d2) (20) 

where d3 is the lower layer depth.  a1, a2 and a3 in equation (20) will be decided by 
the following conditions. 

 Ct=  0,  u  =  ui (21) 

 C'=1,  u=0 (22) 

       ci   iur/C1=0 (23) 

            o Using the factors decided by equation (21) to (23), one can get the velocity profile in 
the under layer: 

 u(C')  =  (X"  —  4C'  +1)u (—  d2�  z  SO or  0  �C'  �1). (24) 

This equation indicates that u=0 at  C1=1/3, and the maximum inverse flow occurs 
at C=2/3 as  u=  —u13.
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   (2) Middle Layer Flow 
   Here we will define a middle layer flow in a two dimensional definite region as 

follows. The main flow region is formed between two density interfaces, and weak 
circulating currents are formed in the upper layer over the first interface and in the 
lower layer between the second interface and the channel bed. Such kind of density 
stratified flow is schematically shown in Fig.  5. In the case of middle layer flow, we 
will be able to discuss its velocity distribution by the foregoing method. 

    As shown in Fig. 5, we select y-axis downwards from the first interface and 
z-axis upwards from the second interfaces, and suppose that the distributions of 
mixing length for momentum are put as follows. 
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 Fig. 5. The schematic diagram for a middle layer flow and the distributions of mixing lengths for 

        momentum and mass density. 

 /(Y)=-/GU-EXUY (24) 

 1(z)=1oL-1-KLz (25) 

Where  iou and  10, are the mixing lengths at the first and the second interfaces respec-
tively,  K  u and  K  L:  Karman constants. Using equations (24) and (25), the velocity 

gradients can be described below, respectively. 

       du  _   u*uu*u                                            (26) 
        dy lou+xuy—  du(fiu+Icu  y/  du) 

 du  _   un— a  *L                                            (27) 
        dz 10L+rcLz di,(fiL+IcLz/dL) 

Where  U*u and  un are shear velocities,  4 and  4: the depths from each interface
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         to the point of maximum velocity,  Su and  St: the dimensionless mixing lengths at two  
• interfaces defined below . 

 au=lou/du  (28) 

 8L,  =  ioL/A. (29) 

         By integrating equations (26) and (27) under the condition of constant flux layer, 
         the velocity profiles of main flow region are obtained respectively as follows. 

 u(v)=  u„,„x  u*u In   19U+  ICU (30)  K
u  au  ± 

          u(()= u„,az u*L  In  8L  KL (31)  X
L  L+  X  LC 

         Where  )2=y14,  C=z/4, and  u„az: the maximum velocity. From the condition of 
          continuity, 

           du1ou(v)dv+ di,ou(C)dC =q (32) 
 , the maximum velocity can be obtained: 

                 Uma,q+u2*u (Ku — flub PU+ )du 
 d2 Ku  RU /  d2 

                                         a/.+KL)C1L,           ±I-P.2k(Xin(33) 
                                      az d2• 

         Where q is discharge in unit width, and d2  (=c1,-Hcli,): the depth of main flow region. 
         Using friction coefficients defined by  fu=2(u*u/  C12)2  and  f,L=2(u*L/  U2)2 where U2 

         is the mean velocity of main flow, and supposing the linearity of shear stress, the 
         depth ratios in equation (33) become the following. 

 du/  d2=fitiAfiu+fiL) (34) 
 dilds=f  a.(f  iu  +f  iL) (35) 

            Concerning the velocity profiles in both sides of a main flow region, those will 
          be discussed in the same manner as in the upper layer flow. In the layer ranging 

 from  y=  —di  to  y=0, the coefficients of a quadratic equation can be decided by the 
          next three conditions. 

 y=— d1 (free surface),  du/dy=  0 (36) 
              y=0 (the first interface), u =  u  iu (37) 

 udy=  0 (38) 

          In the layer ranging from  z=  —d3 to  z=0, those conditions are as follows. 

 z=  —  d3 (channel bed),  it  =0 (39) 
               z = 0 (the second interface),  it =  u  a (40) 

 s0    udz=0 (41) 
                            43
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By using equations from (36) to (41), the velocity profiles in each layer can be obtained 
as follows. 

 u(v')  =  (3/2e  —  377'  +  1)u  tu,  (  —  di  5  y50 or  0  �v'  �1) (42) 
 u((')=(3C1—  4C  +1)11a,  (  —  ds�z�o  or  0  �C'  51) (43) 

Where  p' and  C' are defined as  if  =  —y/  di and  C'=  —z/d2 respectively. Velocities 
at the two interfaces are obtained from equations (30) and (31) as below. 

       u*u ingu+Ku(44)           =Liu=lifIl2X XUSU 

    uiLum„U*LInPL+KL (45)  SL  flz 

   Concerning density stratified flows in stable stratification, the velocity profiles 
in upper and middle layer types have been discussed. Shear velocities, nondimen-
sional mixing lengths at interfaces and  Karman constants play an important role in 
these theories. We would like to take up the latter two in other sections. In order 
to predict the shear velocity at an interface, one usually employs the equation of 
shear stress coefficient. Although many relations on it have been presented, there 
are too few to be able to use universally. Here we would like to introduce the only 
result developed theoretically by  Egashira•Ashidas) (1979). In the upper layer 
flow, 

          A        f
;=+0.00207P-7+0.0015H—Hcii.(46)             R a  

, where  ft is the shear stress coefficient defined by  tf  =2(us/U1)2, Reynolds 
number,  F,: internal Froude number shown in equation (12), H and d1: shown in 
Fig. 4. Although A in equation (46) can be led to the factor of 1.86 theoretically 
in two dimensional flow,  A*15 is obtained from data fitting. The discrepancy 
between these factors is considered due to the side effects of channels. 

   Equation (46) will be able to extend easily to the case of middle layer flow as 
follows. 

 fw="1/119+  0.0020717u  +  0.0015  diA  +  d2) (47) 
 fLE  =  AIR,+  0.00207  Fh+  0.0015  d3/(d2+  d3) (48) 

Where  F,„ and  Ft, are the internal  Fronde number defined by the quantities between 
the main flow region and the other ones,  d1, d2 and d3: shown in Fig. 5. 

3.2 Nondimensional  Mixing Length at Interface 
   The interface will exhibit a strong stability due to the density gradient.  Webb31 

(1970) indicated that the velocity gradient was evaluated by the following equation 
as the limit of the log-linear law. 

 du   _au*   (49) 
        dz  KNL 

where  s„, is Karman's universal constant (0.4), a; an empirical constant to be decided,
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and L:  Moni•Obukhov length. Equation (49) means the velocity field is con-
trolled only by momentum and heat or mass flux. In this condition, which is called 
self-regulated state  (Turner18), 1973), the velocity changes linearly. The linearity 
of a velocity profile could be found in the interface regions of inclined plume carried 
out by  Elliso•Turner1.6) (1959), turbidity current by  Ashid•Egashira.17) (1975) and 
surface jet by  KomatsM9) (1978). These experimental facts say that the flows near a 
density interface are in the condition of a self-regulated state. Rewriting the above 
expression according to  Turner18) (1973), equation (49) becomes 

 0  u/8  z=  ktgp'w'/pui,  . (50) 

Where  Icl is the empirical constant to be decided. p'u )1 , which is turbulent mass flux 
in vertical direction, can be written as 

 p'141=  —  epi(Op/O  z)i. (51) 

By substituting  epi for equation (14), the above relation is transformed into 

 p'id  =  1/2.  KJ  pUIR,-*  . (52) 

From equation (16), the velocity gradient at an interface can be described as follows. 

 Ou  /0  z=  u*/1, (53) 

From equations (50), (52) and (53), nondimensional mixing length at interface is 
obtained: 

 fi=io/d1=Ti(U://t*)-3 (54)  

, where  n is the constant to be decided experimentally and can be written by K and 
 Ict as follows.  
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  Fig. 6. The relation between velocity coefficient and nondimensional mixing length at a density 

          interface for momentum.



176 S. EGASHIRA and K. ASHIDA 

 r,=2(kiK)-1 (55) 

In Fig. 6, the relation is shown between equation (54) and much data obtained from 
channel experiments  (LofquisP5), 1960;  Egashira•Ashida6), 1979). It will be found 
that the trend of these data is represented well by equation (54), and most data lies 
in the range of 

 120  �Ti  <300  . (56) 

   Concerning an upper layer flow, the  nondimensional mixing length for mo-
mentum has been discussed. We can easily extend equation (54) or the relation 
shown in Fig. 6 to the case of middle layer flow. That is, by using U2,  11,212 and  un 
instead of  U, and  us, the nondimensional mixing lengths defined by  gr, and  gL, at the 
first and the second interfaces are shown below. 

    flu = 7.1( U2/140-3 (57) 

    L= 1.(U 2/ IlicL)-3  (58) 

3.3  Kfirmin Constant in Stably Stratified Flows 

   The influence of density stratification on the log-linear law for the wind velocity 
is evaluated by the  Moni•Obukhov function. For the density stratified flows 
taken up here, we would like to discuss the change of  Karmân constant, that is, the 
change of the mixing length in the main flow region by use of the acceleration balance 
equation proposed by  Kaoz® (1959). Kao's equation for the case of the upper 
layer flow shown  in Fig.4,canbe transformed into 

       1(d\dzuy=.1(duN\dz)pygPdBdp                                         (59) 

                                       z 

 , where  1N is the mixing length for mass and B: a proportional constant. By using 
equations (52) and (68) which express the mass flux and the density gradient respec-
tively, equation (59) can  he written as 

  1(  du  Y=1 idaY1 BKg'1 U,(60)  \ d z  )dz) 2Bit us 

 , where  g'  =41  p.g. The acceleration balance equation having been obtained, we 
will investigate the change of  Karman constant in accordance with Hino's  method20 
(1963) concerning the two phase flow. 

   Putting the velocity gradient as 

 du/  dz=  us/1=us/lN•Alf,(#=IN/1) (61)  

, and substituting equation (61) for  du/dz in equation (60), the acceleration balance 
equation becomes 

 =  *2_  1  BKg'  1  Ui  (62)  I
N  IN  2  R,s 

If we fix our object in the region where  lo±avz is nearly equal to  ,vz, the mixing length 
ratio will be
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           —ION NNZ  NN                                         (63) 
 10+  xz 

 , where suffix-N means neutral stability. The above relation indicates that  4r is 
independent of z. By integrating equation (62) from the interface  (z=0) to the 
surface  (z=d1), the quadratic equation with respect to is obtained as follows. 

             1 B K U'  *2 —— 
2 B' Ri*ul g*4di —0  (64) 

, where 

         B'— 1 ht jNri‘r =coast. 
 XN $N 

Putting  ,eN=0.4 and supposing that  fit, is the same order as  p, B' becomes about one. 
Rewriting B/B' as B including B' consequently, one can get the solution of equation 

 (64): 

    2  
 NN—1 +,11.2BK(Udu*)3(65) 

Applying equation (46) to  Ulu,,„ we can find an interesting feature. With a large 
Reynolds Number, the  Kerman constant will be regulated by an internal Froude 
number only. It will approach its neutral condition as the mixing action gets large 
with increase of Froude number. 
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                                                Author 
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 N.0 .5                          • • 
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 Fig. 7. The relation between the velocity coefficient and the ratio of  '<Armin constants . Where  r 

        is  Karrnan constant in stably stratified media and  orN(=0.4) is the one in neutral stability 
        concerning the mixing length for momentum. 

 Fig. 7 shows the relation between the curve calculated by equation (65) with 
 B=1 and  K=0.0015 and the experimental values for upper layer flows  (Egashira• 

 Ashida6), 1979). The experimental ones, which are obtained from  rA,  =0.4, are 

plotted in the figure. It will be found that the theory elucidates the data well.
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Therefore, the change of  KArrnfin constant would be calculated from equation 

(65) with  B=  I,  K=0.0015 and  KN=0.4 in stratified shear flows. 
   The foregoing theory could be applied to middle layer flows by using the velocity 

coefficient of middle layer type. 

4. Density and Temperature Profiles of Density Stratified  Flows 

4.1 Density and Temperature Profiles 

   (1) Upper Layer Flows 
   Concerning water density and temperature, the profiles can be discussed by the 

same method as was the velocity one, using the mixing length theory. But the mixing 
lengths for mass and heat are not the same as that of momentum because of the 
difference of buoyancy effect between scalar and vector quantities. Generally, 
the mass or the heat mixing length will be influenced and decreased by density 
stratification more than will the momentum one. 

   Let's discuss the vertical distribution of density and temperature in an upper 
layer flow as shown in Fig. 4. In the figure, the distribution of mixing length for 
mass density is shown. Its distribution is supposed to be 

 1,,=-10p-I-tcpz (66) 

Where  /op: mixing length at interface for mass and  IC,:  Kffinin constant for mass 
but not the universal one. As for heat, 

 1H=10H-FKHz (67) 

where  6, is the mixing length at the interface for heat and  KH:  KaIrman constant 
for heat. With the turbulent flux for mass  (  —  prw') and heat  (—  T'w1), the density 
and temperature gradients are shown respectively as follows. 

 tip  —   —p'w'  (68) 
         dz  (10,,±x,z)u* 

 dT   —  T'il  
   dz (10H+KHz)u*(69) 

Where p: the mass density and T: water temperature, which are averaged in time, 
respectively. In the condition of constant flux layer, the turbulent flux term can 
be written by equations  (8b), (9) and  (11), as follows. 

 —p'w'=  —1/2•KilgUIRi* (70) 

    —  T'w'=1/2•KtITUIR,* (71) 

Where  Apr-p2—pi and  dT  =T1—  T2. Substituting equations (70) and (71) for 
turbulent flux terms of equations (68) and (69), and integrating them under con-
stant flux layer, we can get the laws of density and temperature profiles in the main 
flow region of the upper layer flow: 

 dp  K U21 $  +X  C  P(C)=0,— In 9(72)                2li
nku*Kp  Qp
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          4TK  1H+   T(C) T
i+In (73)                  2R

„,  u* KirPH 

Where  C is the same as the preceding chapter. and  PH are the nondimensional 
mixing lengths at the interface for mass and heat, which are defined by 

 p=  lop/  di (74) 

and 

 fill=  loll/  di (75) 

respectively.  p, and  T, are the density and temperature at an interface and nearly 
equal to 

 P,=(Pi+P2)/2 (76) 

and 

 Ti—(711.+  T2)/2 (77)  

, respectively  (Ashida•Egashira0). 
   (2) Middle Layer Flows 

   We will be able to obtain the profiles in the case of middle layer flow, supposing 
the distribution of the mixing lengths for mass and heat as shown in Fig. 5 and the 
constant flux layer. Here we would like to show the results only. 

    In the region from the second interface to maximumvelocitypoint, we get 

             dPlK  U21SL+C  P(C)=P ,L— In XeL,(0�C�.1) (78)                   2  R
,*y  u*yIcpyRpc 

and 

 7-(0=  Tra  +Li  TL K   U2 1  in 191/Ln+gHLC.  (0  1) (79)           2 R 
H L NHL 

                                              , where  C is defined by  zldr,  dp,, and  4T, are the density and temperature differ-
ences between middle and lower layers, respectively,  Rif: the overall Richardson 
number defined by  dpi, d2 and U2,  tin: the shear velocity at the second interface, 

 5, and  x„,„:  Kalman constants for mass and heat.  type and  PHI are the nondimension-
al mixing lengths at the second interface for mass and heat respectively, and these 
are defined as follows. 

 iipt  =124/di. (80) 

 ern=  loll  d (81) 

Where  d, is the layer depth from the second interface to the maximum velocity point, 
 1029 and  lo„,: mixing lengths at the second interface for mass and heat respectively. 

   In the region from the maximum velocity point to the first interface, 

            dpu K  U21UpU     P(V)=PL,—In P  2 R
ow*u pupu +502 (82)
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and 

 T(t7) =  Li  +  —4  Tu K  U2  1                                     In  a HU+  2 R
,*u u*ua HU+1-1U                       -1C HITICHLIV(83)  

, where  pit and  Tit are the quantities at the maximum velocity point and obtained 
from equations (78) and (79) with  C=1,  >2:  3/4,  alpu and  tIT„: the density and 
temperature differences in cross mean between middle and upper layers, respec-
tively,  Ri*,: the overall Richardson number defined by  dpu,  dy and U2, and  u*„: 
the shear velocity at the first interface.  19,„ and  /3„u are the nondimensional mixing 
lengths at the first interface for mass and heat respectively, and are defined as 
follows. 

   apU  10  pid  dU (84) 

 fillu=10Hui  du (85) 

Where  lop, and  Am, are mixing lengths at the first interface for mass and heat, and 

 4 is the layer depth from the maximum velocity point to the first interface. 
   The profile laws have been described in the main flow region of the upper and 

the middle layer flows. If the nondimensional mixing lengths and  Karman con-
stants are known, theories for the profiles will become complete. We would like to 
discuss these unknown quantities in other sections. 

4.2 The  Nondimensional Mixing Lengths at Interface for Mass and Heat 

   As mentioned in the preceding chapter, a strong stability region will be  formed 
near the density interface. Therefore, the same manner as the one employed in 
section 3.2 could be used.  Webb3) also showed that the air temperature was de-
scribed as 

 dO/dz=aT*/KNL (86) 

in the limit of log-linear law. Where  0 is the potential temperature,  ,„:  'Carman's 
universal constant (0.4), L:  Monin.Obukhov length and  Ty: the quantity which 
has the dimension of temperature: 

 T*=H/paCpu* (87)  

, where H is the heat flux,  pc,: mass density of air and C,: specific heat at constant 
pressure. The above expression means that the temperature or density field is con-
trolled by momentum and heat or mass flux only, and temperature or density profile 
becomes linear. The fact can be inferred from turbulent energy equations and has 
been shown by experiments. 

    According to  Turner's), the feature mentioned above can be written by 

        dp   =p(gP'w? /02     ki (88) 
   dzu*  

, where k2 is the proportional constant to be decided. If one uses equation (70) as 
to mass flux, the following expression can be obtained.
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      dzpk2K y( U,\4( Uiy    clzg\2a*\(89) 

Also, the density gradient can be shown by using equation (68) and (70) as follows. 

 dp  _ K   (   U1)   1 (90) 
        dz 2  Rotku*/  lop 

From equations (89) and (90), the mixing length and its nondimensional one at 
the interface for mass can be obtained as 

 10p=r2(U,/  u*)-3  dl (91) 

and 

   isp= 72(Ui/u*)-3 (92) 

respectively. Where 12  is the empirical constant and shown as 

 y2  =2/(kiK). (93) 

It is clear from equation (92) that the function of  pi, is the same as the one for the 
momentum mixing length. 

   We can discuss the one for heat in the same manner. In the range where the 
heat expansion ratio is considered to be constant, the mixing length and the nondi-
mensional one at an interface for heat is the same as the one for mass. The results are 

 lox  =lop (94) 

and 

 611=8, (95) 

respectively. 
   Fig. 8 shows the relation between equation (92) and the data obtained from 
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the channel  experiments6) for the upper layer flow. As clear from the figure, the 
data being proportional to the inverse of the third power of velocity coefficient, 
the foregoing theory will be considered appropriate. The coefficient 12 of equation 

(92) lies in the range, 

 10<r2<40 (96) 

When one compares the results shown in Fig. 6 and Fig. 8, it is found that  A, is 
smaller than  p, and about a tenth of the momentum mixing length. It is considered 
that the buoyancy effect exerts influence on the mass and heat transfer more than 
on the momentum one. 

   Mixing lengths at the density interface for mass and heat having been discussed 
as to an upper layer flow, we can also obtain the ones for the middle layer flow. 
The results only are shown as follows. 

 g  ST=  SHU=  r2(u2/u*u)-3 (97) 

     apt.= gI IL=r2(uilun.)-3 (98) 

4.3  lisirnian Constants for Mass and Heat Mixing Lengths 

   The laws of mass density and temperature profiles have been obtained as equa-
tions (72) and (73), respectively. By integrating these formulae from the interface to 
water surface with respect to z,  'Carman constants for mass and heat will be given 
automatically. That is, the structure of profiles are regulated by the cross sectional 
mean quantities. 

   Rearranging the relations obtained by the above method, we can get the fol-
lowing equations with respect to  Kp and  Kx in the upper layer flow. 

      =KFf U1 BP-ExPln(S,+5-1) (99) 
         u* KpPp 

 KH=KFFILL  8H+ICH ln(a±g11—1) (100)  us  KRSH 

In the preceding section, it is realized that  tip is equal to  ,9,,. Therefore, the 
following relation will be sure if one compares equation (99) with (100). 

 Xp= 

This has led to the fact that the mixing length for mass is the same as the one for 
the heat, in other words, eddy diffusion coefficients for mass, heat and some solute 
are equal to one another. Such a fact has been recognized by channel experiments 
and field observations. 

   Let us investigate the relation between equation (99) and experiments. We 
can obtain the theoretical curve for  Karman constant of mass mixing length, apply-
ing equations (46) and (92) to  Ulu, and  $,, respectively. In Fig. 9, the families 
of curves, which can be calculated with  up,=0.4,  K=0.0015,  A=I5,  (H—C/H 
0.5 and 12=10, are shown, and experimental values by  Egashira•Ashida6) are also 

plotted. increases with internal Froude number in theory and experiments, 
because the stability effects decrease as  F, becomes large. Influences of Reynolds 
number on  zp/up„, appear remarkable in the range less than  R,=104, and becomes
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   Fig. 9. The relation between internal  Froude number and the ratio of  Kirmin constants 

          concerning the mixing length for mass with Reynolds number as a parameter, where 
 ',AT=  0.4. 

negligible as its value goes beyond  105. The experimental values in the range of 
Reynolds number larger than  104 not being obtained, we cannot compare the theory 
and experiment in its wide range. It will be found that the families of curves agree 
well with experiments as far as the experimental values exist. Then,  KArman con-
stant for mass and heat mixing lengths will be predicted by equation (99) or (100). 
We can easily obtain  Karman constants defined as  IT  pu and  ICL in the same manner, 
concerning a middle layer flow. 

5. Eddy Diffusion Coefficient for Mass and Heat in Density Stratified Flow 

   Let us discuss the distribution of the vertical component only. We select the 
coordinate system as shown in Fig. 4, and then can write the eddy diffusion coeffi-
cient of gradient type for mass and heat by the use of mixing length and shear velocity, 
as follows. 

 =Ipu*=(10,±5z)a* (101) 

where  I, is the mixing length for mass and equal to that for heat. Consequently,
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 Epz=6Hz (102) 

where  sit, is the one for heat. Then, that for mass will be  only related below. Now 
then, substituting equation (91) for  10„u, in equation (101), and using the continuity 
as shown by q—Uidi, onecan obtain thefollowing relation. 

      SPir2(—Litsis+',C1(uUi                                              (103) 

where  C is defined by  zldi as previously mentioned. 
    The first term is the eddy diffusion coefficient at interface, and it is shown as 

 epi=72(U1/14)-4q (104) 

The above formula can also be obtained from equations (14), (90) and (91). By sub-
stituting equation (46) for  Ui/u*, equation (104) is transformed into 

  72  SP' —{ A +0.00207/7+KitHdir(105) 
 q4Re 

In Fig. 10, the families of curves which can be obtained from equation (105) with 

 T2=10,  K=0.0015,  (H—cli)/  H=0.5 and A=1.86 and A=15, are shown. It will 
be clear from the figure that the eddy diffusion coefficient normalized by unit width 
discharge is influenced by Froude number only as far as Reynolds number is large 
and the depth ratio keeps constant. On the other hand, the coefficient approaches 
the molecular one as the Reynolds number becomes small. We cannot discuss 
the characteristics of equation (105) in the molecular range because the theory is in 
the turbulent region as made clear in the description of the preceding chapters. 

   Let us focus on equation (103) again. As clear in Fig. 9 and Fig. 10,  Kerman 
constant and the inverse of velocity coefficient increase with Froude number. Con-
sequently, the eddy diffusion coefficient indicated by equation (103) increases in 
the main flow region in accordance with increase of Froude number. The coefficient 
becomes large linearly as the position under consideration goes further away from 
the interface, and is maximum at the free surface. But the theory could not be 
applied in the region near surface because it was established under constant flux 
layer, that is, the assumption of constant flux layer is not relevant there. 

   The eddy diffusion coefficient in a cross sectional mean can be obtained by 
integrating equation  (103) as follows. 

         = ir_( u*Ul±2KPvUlyq                                            (106)                         J\u
*) 

where  ei,„, is the cross sectional mean of the eddy diffusion coefficient. 
   Eddy diffusion coefficient for mass and heat has been discussed on the basis of 

the distribution of the mixing length realized in the preceding chapter. In the 
same manner, that for the momentum can be obtained as follows. 

 et  = In(—Luls+KcKELyiq (107) 
 u*u* 

where  et is the eddy diffusion coefficient for momentum. If one compares the result
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   Fig. 10. Eddy diffusion coefficient at a density interface for mass and heat. The coefficient is 
          normalized by the discharge in unit width. Molecular diffusion coefficient shown 

           on the figure is the value at  20°C in water temperature. 

shown in Fig. 7 with the one in Fig. 9, and  n with  T2, that is, if one compares equa-
tion (107) with (103), it will be found that  ar is greater than  En. Consequently, 
turbulent  Prandtl number which is defined as  Pr=etlept will be much larger than the 
factor of one in the density stratified flow. Therefore, the heat transfer in the vertical 
direction can be suppressed extremely. Then, the formation of the layer, a kind of 
heat boundary layer, which we call "Thermal Boundary Layer" here, is restrained 
as a result, and on the other hand the shear layer for momentum extends to the free 
surface at a short distance from the upstream end. If we want to know the diffusion 
coefficient for heat or some solute where the thermal boundary layer is not formed 

yet, we had better use the following formula obtained from substituting  x for  xi,. 

     en= {r 2(u1)3 ±<}(111 rig (108) 
 u* u* 

   Concerning the middle layer flow, we can easily discuss the eddy diffusion 
coefficient by the same manner as before. The result only is shown below.



186 S.EGASHIRAandASHIDA 

      Ean=ir2( u2+tCpErliU*Z)q  (109)                    uu 
                             -ITd2      ep ={7-2( u*LL d2)3+LC1(2q (110) 

where the coordinate systems are the same as the preceding chapter. On the other 
hand, in the region where the thermal boundary layer is not formed, the above 
relations become 

  eU2du(111)        n_ir( U2 y              2u*u±lcu"71(u*uq dz 
and 

      ept=ir.,(  U2  y+1c1c1(  U2 yi n                                              (112)         U*L U*L d  2 

respectively. 

6. Relation between Theory and Experiment 

6.1 Velocity and Temperature Profiles 

   (1) Upper Layer Flows 
    The experimental flume which is 23 meters in length, 38.5 centimeters in width 

and 70 centimeters in depth is used. The channel floor is sloped 1.0 percent. Ex-

periments were carried out by the following method. Filling the channel with water 
to the level of the weir which is attached to the downstream end, we have the heated 
water flow into the flume from the upstream end at constant discharge and have it 
overflow at the downstream end. An upper layer flow can be formed by such a 
method. As soon as overflow begins from the weir at the downstream end, inflow 
and overflow water temperature, and the profiles of velocity and temperature at 
two cross sections are measured. The profile of water temperature was measured 
by thermista probes at two sections which were situated 5.5 and 12.8 meters from the 
downstream end. Velocity profiles were measured by the hydrogen bubble method 
at two sections 4.3 and 11.5 meters from the downstream end, respectively. 

   Experimental results and the theoretical curves are shown in Fig.  11(a), (b), 

(c) and (d) of which discharges in unit width are 22.86, 39.74, 49.09 and 76.62 cm2/ 
 sec in that order. U in the figure means the results at the sections 12.8 meters for 

temperature and 4.3 meters for velocity, and D means the ones 5.5 meters for tem-

perature and 4.3 meters for velocity, respectively. The theoretical curves are 
obtained from equations (18) and (24) for velocity profile and (79) for temperature, 
together with equations (19), (54), (65), (73) and (100) which are employed to 
calculate  u*,  p,  r, PH and  CH. 

   It is clear from the figure that the theories accord fairly well with the experi-
ments in spite of the ones under the assumption of constant flux layer. But the 
following problems may exist: As to velocity profiles, the theory gives the shape 
flatter than that of the experiment as shown in Fig. 11(a) of which discharge is the 
least of the four cases and its Reynolds number  is about 2700. We think that the



                   Studies on the Structures of  Density  Stratified Flows 187 

                            Velocity  (cm/s) 

 02  ,  0 2  4  0 2  4 024r0 2 4      Ur"(D  :7-, U 5D 

                      o 

          t=16.91eb _t=16.9  A  t•21.7   • /t=21.7 4•-, 
     •,8•A 

           II           ,0•,, 
                   id            •Vz  •11• 8 •• : I        , - 

 • 

 12  o —o• o•o_  9 o o  oII 
16  o_ 0     0   

o.  e° o o ° 

           I 

 •
0 20o   

 Velocity 7 r o_ 

           I 

  • measured?I)  24 —calculated0  —1--.° —PI 
     Temperature 

 I 

 o measured 28o _     _0_ 
 calculatedI 

 I 

 ?  Exp .I2  -1°  
i I   32

16 20 24  28  20 24  28  20 24  28  20 24 28 

                          Temperature  (•C) 

                              Velocity (cm/s) 

 szv  0 2  4  0 2  4  0 2  *i.0 2 4                                    U (11.• D9•LII• 0 

4   ' 

           t =17.31  ;•t=17.3/Do•t=24.5 gitt=24.5  ea 

                          • 

    .
01 to ••                                $ i 

  $ 

                         co  

 8   •l)•           111- . • 

                                               , 

                                                   .'                     • 

     ....x •   •i• , 12  ,• E
• r 

 o 0 0• o• 
0fil o' x              •I• 
 .c  16  •^ ao 0 0o1 
 tv 
 020  0   o   o   o  0  0  o  ^ 

 o  o   0 
  24 

 O  ‘ 

 \   o         \   o 
  28  o   o  

 o  o 

 32Exp.12- 4 
         11I_  

    16 20 24  28  20 24  28  20 24  28  20 24 28 

                           Temperature  (•) 
                           Fig.  11  (a), (b)



188 S.  EGASHIRA and K. ASHIDA 

                               Velocity  (cm/s) 

  -2—V0 2  4  0 2  4  0 2  4  0 2 4  U 41 0U 4 D111 

 4 

    t•12,31  :t=12.3 •cl  •20.1 1tt•20 1*• 

                           . 

                                                     ,
••-S                                         b•          ,:                           b'  8  

/- 
     0•I- -.-'                        ,..1 

               i• 
-  2•••         .•  

tt • „      • .  

`16 no •  o   .c  .....  o 
a00 • I illir I 

 0 

 20  

 O            I 

 0 00 

      oIi  0 I  24—o^____E ^_±. 
28000    —0- 01^—o 

                                            oI  ° Exp.12 - 2r I^32  
    16 20 24  28  20 24  28  20 24  28  20 24 28 

     (c) Temperature  (°e) 

                                Velocity  (cm/s) 
 -2 v 0  2  4   0 2  4  0 2  4  0 2 4 6 

 0_1  U I ' D o: •  U D oi• 
    ,0 1••01 

 t=18.3 1• t=18.3  of  • t=25.3' t=25,3 01 •  4   
o•• i0-1•      of o: 

 o: •  01 
               c; •°I  8 of 

   •,                               P• 
                                                      cil •        ,: • 4 c: . : 

          

, •       S;4:I  4- •  12  I—• 

 , 

     0• u12, E t,  •^r         4.,          /0C5                                                /0 

                                          / .c I  6  k-es tE -•IDel ,—                                                         , •  '6. ,,,, I . pe : I ,'• •so                                                                       il• •

• rn 20  /•Io " 1 
                 •._. 

                             •     o' o  • 

  oI:o 
     o•Io 

 24  —o-  •          ol 

          0 

    ooioo^  28 --°--\o_ 

 o 

                  Exp. 12-3^ 
  32 

    16 20 24  28  20 24  28  20 24  28  20 24 28 32 

    (d) Temperature (t) 
Fig.  11  (a), (b), (c), (d). Comparison between theory and experiment concerning the velocity and 
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discrepancy is caused for the following reasons: One is consider to be experimental 
error because the discharges calculated from the profiles at two sections are different 
from each other. The other is for the applicability of theory because it may be 
possible or not for us to treat the turbulent shear flow such a flow of small Reynolds 
number. Concerning the temperature profiles, it is an important problem whether 
a thermal boundary layer will be formed at the free surface or not. The larger are 
Prandtl and Reynolds numbers, the more the layer is suppressed. The thermal 
boundary layer is also suppressed for the sake of secondary flow caused by the small 
aspect ratio. Concentrating our attention on these problems, and looking at the 
results in Fig.  11(d)  , we will find that the law of water temperature represents 
the result of experiment at the downstream section (Section-D) much better than at 
Section-U. 

   (2) Middle Layer Flows 
   A middle layer flow can be formed by the following method, using the same 

flume as mentioned above. At first, filling the channel with water to a given level, 
and heating the water electrically or by natural solar radiation, we quietly supply 
water of temperature lower than the heated one to any level from the lowest 
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intake work attached to the downstream end. In this manner, some kind of tem-
perature stratification can be formed in the experimental flume. Then, we have 
the water, which temperature is lower than that of the surface and higher than 
that of the lower region, inflow into the flume, and it outflow from the intake work 
at the middle depth of the downstream end, and then get a middle layer flow. After 
such a flow is obtained, hydraulic quantities of various kinds as mentioned in the 
preceding upper layer flow are measured. 

   The relation between theory and experiment concerning the velocity and 
temperature profiles is shown in Fig. 12(a), (b) and (c) of which discharges are 40.0, 
51.94 and 67.01 cm2/sec, respectively. Theoretical curves in the figures are ob-
tained completely from the laws of profiles and supplementary equations as shown in 
the foregoing chapters, using the same coefficients as in the case of upper layer flow, 
that is,  n  —120, 12=10,  A  =15,  .K=0.0015 and  B  =1. 

   When one compares the results in the figure, it will be found that the theories are 
well applied to the experiments concerning the velocity profiles in both section-U and 
section-D. It seems to say so as well for the temperature profiles, but actually it 
appears that the theories represent the experiments better in the section-D than in the
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   Fig.  12(a). (b), (c). Comparison between theory and experiment concerning the velocity and 
        temperature profiles in middle layer flows. 

section-U, because the thermal boundary layer is developed in the downstream more 
than in the upstream. 

   The relation between theory and experiment concerning the upper and middle 
layer flows has been discussed as described above. Although some problems on the 
limit of application of theory and on the thermal boundary layer may exist, the 
degree of the discrepancy between the theoretical and experimental values will be 
considered practically permissible. 

6.2 Eddy Diffusion Coefficient 

   The experimental flume is the same as before and data is obtained from a tracer 
method as follows. A solution of potassium permanganate is injected into the 
stratified flows continuously at a given level in depth from a dynamic pressure 
Pitot tube, and the tracer is photographed at two second intervals by the interval
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camera from the channel side. Simultaneously, velocity and temperature profiles 

are measured by the foregoing procedures. 

   Three cases of experiments for the upper layer flow and two cases for the 

middle layer flow were carried, respectively. An example of the diffusion of the 

tracer is shown in Photo. 1. If one evaluate the diffusion width of the envelope of 
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 Photo. 1. An example of diffusion of tracer in an upper layer flow. The time interval between 
          the two photographs is two seconds. 

the tracer,  V7, the eddy diffusion coefficient can be calculated by the following 
formula. 

            1  d172  en  2  d
t(113) 

where  e„,  :  z-component of diffusion coefficient of tracer. The above relation is 
used in order to calculate the diffusion coefficient in the flow of homogeneous and 
isotropic turbulence. On the other hand, the flow under consideration is that of a 
turbulent shear flow. Consequently, it should be noticed that equation (113) 

gives only an approximate value for the shear flow. 
   In Fig. 13(a), (b) and (c), the experimental values obtained from equation (113) 

and the theoretical ones predicted by the formulae in chapter 5 are shown, and pro-
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Fig.  I3(a), (b), (c). Theoretical lines and experimental values of eddy diffusion coefficient for tracer 
      concerning upper layer  flows. Here,  the eddy diffusion coefficient for tracer is thought to be 

      equal to the one for mass and heat. 

files of velocity and temperature are also shown. Fig. 13(a) is an example of the 
measured points inside the thermal boundary layer (TBL), and then the theoretical 
line is calculated from equation (103). The measured points which are situated 
outside TBL are shown in Fig. 13(b), and in the figure the theoretical one is calcu-
lated by equation (108). Fig. 13(c) shows an example: One of the measuring 

points is outside TBL and the others inside it. 
   Referring to the results shown on the lefthand side of these figures concerning 

the temperature profiles predicted and measured, one will find that the measured 
values inside TBL can be predicted well by equation (103) and the ones outside it 
by equation (108), respectively. 

   In Fig. 14, an example concerning the middle layer flow is shown. One 
measured point is inside TBL and the other is outside it. The predicted lines are 
calculated by equations (109) and  (1  1  I) respectively in the figure. The experi-
mental value in the figure which is measured outside TBL, where the temperature 

gradient is nearly zero and consequently the buoyancy effect may be very little, 
can also well be represented by the equation (111), which is introduced by using 

 ic• instead of  sp in equation (109). 
   We would like to investigate the relation between all data inside and outside 

TBL and theory. The relations between the data and theory as to upper layer 
flows are shown in  Fig. 15(a) and (b), and those of middle layer flows are compared



                    Studies on the Structures of  Density  Stratified Flows 195 

       (°C)  (cm/s) (cm2/s) 

    020  24  ,  28 32-2 0 2 4  0 0.04 0.08 0.12 0)4  .= 

 O 

 4   0      O "'Elk 
 8   ••..._._ 

 •. 

12    •             • 1-htc 
E•,,,....,           NVN1)•T L 

 16  2° •              —7--a0                         _IGU 
E. a 
a.>, _i 

   0         020. .0         -a a  1     c  7 

 0 

 za) 
24   c                                         o                                           co                                                                    a) 

 oim 
 0 5 0 28   

E  E  o 
 5- o 

w  x 
 .c 

32  -)   1— 
 0 

   36 I Temperature Velocity Diffusion Coef.       9 
 Fig. 14. Theoretical lines and experimental values of eddy diffusion coefficient for tracer in the 

         middle layer  flow. Here, the eddy diffusion coefficient for tracer is thought to  be equal 
         to the one for mass and heat. 

  o      Surface Layer FlowIII       (Thermal Boundary Layer)1 a   
           -a 

6 0  

 L 

     -a                             e
i= 

     a   

 9 IA
_. C—l'  4 0 0 Sr-0   —,  I  0-1 7.-r)0  0  /  

i   
    to                                       2> 3am 03 °I3C71      

r   QE0 0.0, 2 0  
 0 .  2

kif0,_0ir, 

 0 

 MT
/7 00  0 (Homogeneous Layer) 

                                              q  ofaSurface Layer Flow 
         °uI  

I 0-210   0           1 1  
 10-2  KT' I 101 / Cr I 2 4  6  a  I 

 EH (cm2/s) Predicted  EN (cm2/s) Predicted 
Fig.  I5(a), (b). Comparison between theoretical and experimental values of eddy diffusion coefficient 

      for mass and  heat(=  tracer) in upper layer flows. 

in Fig. 16(a) and (b), respectively. It will be clear from the figures that the theories 
developed in the regions of inside and outside  TBL show good agreement with the 
experimental values for the diffusion coefficients.
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 Fig.  16(a), (b). Comparison between theoretical and experimental values of eddy diffusion coefficient 
        for mass and  heat(=  tracer) in middle layer flows. 

 7. Conclusion 

     We have discussed the velocity, density and temperature profiles and eddy 
 diffusion coefficients in density stratified shear flows, and have obtained many inter-

 esting results from theoretical and experimental considerations, as follows. 

 (1) The relation between turbulent (eddy) diffusion coefficient at a density inter-
 face and turbulent entrainment one has been obtained, using the mass conservation 

 equation expressed by convected diffusion terms in a continuous model and the one 
 expressed by entrainment in a discrete model. The formula plays an important 

 role in the discussions taken up in the latter chapters because the transfer conditions 
 at an interface for mass and heat can be decided by the relation. 

 (2) We put the momentum mixing length  to to a density interface and assume the 
 linear distribution of mixing length in main flow region, the profile laws of velocity 

 and temperature have been obtained under conditions of constant flux layer. These 

 profile laws are characterized by nondimensional mixing length at an interface and 
 Karman constant. The functional relationship of nondimensional mixing length 

 is discussed with the result (1) and the condition of self-regulated state, and it is 
 realized. In order to discuss  Jarman constant, the new acceleration balance 

 equation is introduced according to Kao, and its constant is clarified. 

 (3) The density and temperature profiles are also discussed on the basis of mixing 
 length theory for mass and heat by assuming the distribution of mixing lengths as like 

 the one for momentum. The functional relationship of nondimensional mixing 
 length at interface is obtained in the same manner as the one for momentum. Con-

 cerning  Karman constants for mass and heat mixing lengths, the integral method is 
 used in order to realize them. 

 (4) The distribution of eddy diffusion coefficients for mass and heat are discussed, 
 using the distribution of mixing length clarified already and the shear velocity. 
 The functional relationships are clarified in the main flow region covered by the 

 thermal boundary layer. In the experiment carried out usually TBL is not de-
 veloped enough because channel length is definite and turbulent Prandtl number is
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large. In order to predict the diffusion coefficient in such a region, alternative formu-
lae are proposed. 

(5) Theories presented in this study have been evaluated by experiments. 
    Many interesting features of density stratified shear flows have been clarified. 

But the problems to be solved are left to future investigation. Especially, we must 
make efforts in order to clear up the applicability of these theories and the formation 
of a thermal boundary layer. 
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