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Studies on the Structures of Density Stratified Flows

By Shinji EcasHira and Kazuo AsHIDA
(Manuscript received December 27, 1979)

Abstract

Density stratified flows are classified into three classes such as upper, middle and under layer
flows. In this study, the time averaged mean profiles of velocity, density and temperature are
discussed in stably stratified media, and also the theories of turbulent diffusion coefficients for
momentum, mass and heat are developed.

We consider the mixing length [, at a density interface and assume a linear distribution of
the mixing length in main flow region, and then theories of velocity profiles are established.
Those of density and temperature profiles are also developed, assuming the distributions of mixing
lengths for mass and heat respectively. The effects of density stratification in these profiles are eval-
uated by the changes of the distributions of the mixing lengths for momentum, mass and heat
from the distributions in neutral stability.

Turbulent diffusion coefficients for mass and heat are discussed directly on the basis of mixing
length theory and predictive methods on them are presented.

The theories developed in this paper show good agreement with the experiments,

1. Introduction

In analysis of transport phenomena, there are two requests as follows. One is
the case that it is enough for us to know the cross-sectional mean of a given hydraulic
quantity. The other is that we must analyze the distributions of velocity, density,
temperature, turbidity and so on in the whole flow region.

Fig. 1 shows two methods to treat the transport phenomena relating to density
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Fig. 1. A flow chart to solve the transport phenomena of density stratified flows.
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stratified flows. Along A in the figure, one dimensional governing equations are
applied to solve the phenomena, and it is important how to formulate the mass and
momentum transports around a flow boundary such as a density interface. The
method of direction B is the one in which the profiles of hydraulic quantities are
discussed with two or three dimensional basic equations. We usually get the solution
under some approximations like boundary layer assumption because the governing
equations are very rarely directly integrated.

Lets introduce parts of the investigations concerning the later case except nu-
meric methods. On turbulent shear flow and the relating phenomena very near
the atmospheric surface, many field experiments have been carried since Monin-
Obukhov similarity theory? (1954) was presented, and log-linear law has been appli-
cable to wind velocity, air temperature and moisture in the region except strong
stability range (McVehill?), 1964; Webb®, 1970). On the other hand, few analytical
procedures have been carried concerning the phenomena inner and over the misci-
ble density interface formed by the abrupt changes of temperature and solute con-
centration because it is very difficult to decide the transfer condition at an interface
and the distribution of transport coefficients in a flow region. Recently, theories of
the profiles of velocity and water density distributions in 2 two dimensional definite
region were presented by the authors#~® (1977-1979) and Hino? (1979). The
difference between these theories is in the assumptions which are introduced to
analyze the flow near an interface.

Transport coefficients for momentum, heat and some solutions for stratified
shear flows had been studied for a long time, and many empirical and theoretical
relations had been presented. The formula presented by Munk-Anderson®) (1948)
is very well known and applied to analyze the phenomena nowadays. Ellison?
(1957) and Ellision-Turner'® (1960) obtained the formula using the governing equa-
tions of turbulence. But the diffusion term for pressure fluctuation was omitted
in the theoretical procedure. On the other hand, Launder!® (1975) presented a
theory for transport coefficient, considering the pressure term. When one compares
the transport coefficients calculated by these formulae including the preceding simi-
larity theory, it will be found that the characteristic of each formula is different
from each other. The differences will become remarkable if one investigates how
to change the ratio of transport coeflicients with the stability parameter such as
gradient Richardson number. One of the reasons of this discrepancy between
these formulae will be because of each formula developed different stratified systems.

As mentioned above, there are a number of unsolved problems regarding the
velocity profile and other quantities in stably stratified shear flows. The purpose
of the present study is to reveal the velocity, density and temperature profiles and
the transport coefficients in density stratified shearing flows which will be formed
in man-made reservoirs and estuaries. At first, the relation between turbulent
entrainment coefficient and eddy diffusivity for mass and heat is described by use
of the mass conservation equations in discrete and continuous stratified systesms
Laws of profiles of time-averaged mean quantities are derived from the mixing length
theory under the assumption of constant flux layer. Transport coefficients are dis-
cussed by the distributions of mixing lengths obtained here. Lastly, the theories
presented will be compared with experiments of upper and middle layer flows.
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2. Relation between Turbulent Entrainment Coefficient and Eddy Diffusion
Coefficient for Mass and Heat

An upper layer flow is shown schematically, and profiles of velocity and water
density in two layer and continuous stratified systerns are described respectively in
Fig. 2. For a two layer model, a mass conservation equation can be written as
follows.
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Fig. 2. Two layered and continuous density stratified systemns.
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where p; is water density in the upper layer, 4p: pz—p; (p2: water density in the under
layer), Uy: mean velocity in cross section, 4;: water depth in the upper layer and
W,: entrainment velocity.

Mass conservation for a continuous system of two dimensions is written by a
convected diffusion equation as

0p 0 _ 0 dp 7] 0o
B +ax<"“>+m<"w>*a—x(%ﬁ)+ E(EPZW : ©

Where ¢ is time, ¥ and z: coordinate system as shown in Fig. 2, p: time mean water
density, u and w: time mean velocity in x and z components respectively, ¢,, and
€,.: ¥ and z components of eddy diffusion coefficient for mass respectively. The
first term of the right hand side of equation (2) is usually negligibly small, and can
be cancelled. Asto p and % in the first and the second terms of the left, the following
procedure is taken up. These quantities can be written in terms of the cross sec-
tional mean and the variation from them.

0=0,+0" ]
u=U,+n"

3

Integrating equation (2) from surface (z=0) to interface (z=d;) using equation
(3), one can obtained the following relation.
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Where p(dy, t), u(dy, t) and w(dy, t) are time averaged quantities at the interface,
respectively. w(d,, t) and the first term of equation (4) can be described in terms of
entrainment velocity as follows.

d
w(dy, =25 1+ u(a, n5h -, (5)
_0d 0
Wa—Tzl“Fg;(Uldl) (6)

Water density p(dy, t) at the interface will be well approximated by

o(dy, )=(p,+0,)/2. )

Assuming mass or heat transfer is negligible at the free surface, which can be written
as ¢,,0p/0zl,-0=0, and rearranging equation (4) by use of equations (5), (6) and (7),
the new expression for eddy diffusion coefficient at an interface is derived as follows.

pz(dla t)= WW (= 5,”) (82)
where (9p/3z), and ¢,, are density gradient and eddy diffusion coefficient at an
interface, respectively. In case that z-axis is selected upward from the interface,

- 4p

€= ~ 5(90/97), w,. (8b)

Thus the relation between eddy diffusion coefficient for mass and entrainment

velocity has been obtained. Concerning the relation between eddy diffusion coeffi-

cient for heat and entrainment velocity, an equation as well as (8a) or (8b) could be

led through the same procedure as mentioned above. Here we would like to show
the results only:

-_I-T
Eygi=— (a T/az)’ W (9)
where ¢, is eddy diffusion coefficient for heat at the interface, (87/6z),: temperature
gradient at the interface, 77 and T,: cross sectional means of temperature in upper
and under layers respectively. Comparing equations (8a) with (9), it could be found
that eddy diffusion coefficients are the same as in the linear range of heat expansion
coefficient of water.

The hydraulic characteristic of equation (8a) will become clear if we consider
the hydraulic variables of the entrainment velocity and the density gradient at an
interface. The discussion as to density gradient will be taken up in the next chapter.
Let us relate the entrainment velocity briefly. The term is usually written by use
of the entrainment coefficient E as follows.

W,=EU, (10

Many experimental investigations have been done as to entrainment coefficients.
According to these studies (Kato-Phillips'®, 1967; Moore-Long!®, 1971; Ashida-
Egashiral¥), 1977) and to much data of other experiments (Lofquist!®, 1960), it was
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found that the coefficient was proportional to the inverse of the overall Richardson
number.

E=K/R, 11

where K is the coeflicient to be decided by experiment and R,,: overall Richardson
number defined by

Ru=Fi*=4L gd,/U} . a2
In Fig. 3, data obtained by Ellison-Terner’®) (1959), Lofquist, Kato-Phillips and

VO — T | T T T | T 7 T 7
| @ ElYions & Turner surface jet(salt water) B
& o 0] o plume ( » )
. %OW © Lofquist density under. -
o0 00 flow
% ©Kato & PhilTips  flow induced by, ,
o shear plate
T o roo o o Ashida & Egashira  uppur Jayer flow(fresh water)
o ° 4 (Exp.4-1 4-6)
o » u ( N )
IO-?_ (Exp.6-1 6-5) —
_ 0000 e » " ( . )
° o (Exp.8-1 8-5) T
3 4
N
=
1 — -
bl
-3
| O — —
-4
10— ]
1 7
L]
e
-5
O —== | | T T T ] T ——
_I 2
10 | .8Paa 1O 10

PU?

Fig. 3. Turbulent entrainment coefficient and overall Richardson niumber.
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Ashida-Egashira are shown. The entrainment coefficient would be considered to
be well defined by equation (11), and most data could be represented by the factor

of
K=0.0015. (13)

Rearranging equation (8a) by use of equation (11), eddy diffusion coefficient
at the density interface is written as below.

S = 2(00/02); Rix

This equation shows that the eddy diffusion coefficient becomes large with the in-
crease of turbulent entrainment.

40 KU, 14

3. Velocity Profiles of Density Stratified Flows

3.1 Velocity Profiles

(1) Upper Layer Flow

Filling water with homogeneous density into a prismatic channel to the level
of a weir top, an upper layer flow can be formed easily if one constantly supplies the
water of lower density at the upstream end and has the water overflow the weir.
Using two fluids of which temperature only is different, the upper layer flow formed
by the method mentioned above is shown, and its velocity and temperature profiles
are also shown schematically in Fig. 4. Although the density interface lowers with
time, the profiles remain unchanged.

Concerning the upper layer flow as shown in Fig. 4, we would like to discuss
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Fig. 4. The schematic diagram for an upper layer flow and the distributions of mixing lengths for

momentum and mass density.
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its velocity profile on the basis of Prandtl mixing length theory for momentum. We
suppose the mixing length in main flow region as below (Ashida-Egashiral?), 1975).
l=l,+kz (15)

where [, is the mixing length at the interface (z=0) and r: Kirman constant. The
velocity gradient can be described as

du _ uyx Ly
dzs " l,+xz d(B+2z/d) (16)

, where u, is the shear velocity and 8: nondimensional mixing length at the interface.
B=ly/d, a7

Integrating equation (16) under constant flux layer leads to

u(c)=ui+%1n%, (0<z<d, or 0<C<1) (18)

, where { is defined by z/d;. The velocity u, at the interface can be obtained from
the condition of continuity as below.

u,=dL1—u*<ﬁ:;mlnB;'{ -%) (19)

where g¢: discharge in unit width. The velocity profile of the main flow region
having been described, we would Like to discuss the velocity in the lower region be-
tween interface and channel bed. A kind of circulating flow will be formed due to
the definite flow field, which currents in the same direction of the main flow near
the interface and in the opposite near the bed.  Although it is very difficult for us to
discuss the velocity distribution in such a circulating flow, but the curve of a quad-
ratic equation as shown below will give a good approximation to it except near the
upstream and downstream regions.

u=a,{"+al' +a;, (('=—z/d,) (20)

where d, is the lower layer depth. g, 45 and a3 in equation (20) will be decided by
the following conditions.

=0, u=un, (21)
¢'=1, u=0 (22)
S:udC’=0 (23)

Using the factors decided by equation (21) to (23), one can get the velocity profile in
the under layer:

u(@)=(3"—4"+Du;, (—d,<z<0 or 0<L'<1). (24)

This equation indicates that =0 at {’=1/3, and the maximum inverse flow occurs
at {'=2/3 as u=—u,/3.
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(2) Middle Layer Flow

Here we will define a middle layer flow in a two dimensional definite region as
follows. The main flow region is formed between two density interfaces, and weak
circulating currents are formed in the upper layer over the first interface and in the
lower layer between the second interface and the channel bed. Such kind of density
stratified flow is schematically shown in Fig. 5. In the case of middle layer flow, we
will be able to discuss its velocity distribution by the foregoing method.

As shown in Fig. 5, we select y-axis downwards from the first interface and
z-axis upwards from the second interfaces, and suppose that the distributions of
mixing length for momentum are put as follows.
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Fig. 5. The schematic diagram for a middle layer flow and the distributions of mixing lengths for
momentum and smass density.

Up=low+koy (24)
W2)=ly +Ky2 (25)
Where /y, and [, are the mixing lengths at the first and the second interfaces respec-

tively, x, and x,: Kirméan constants. Using equations (24) and (25), the velocity
gradients can be described below, respectively.

du _  Uxy (26)
d}’ lDU+’CUy du(lgv""'cuy/du)
du _  uxy Uxy (27)

dz lDL+'£LZ d_L(ﬁL‘FfCLZ/dL)

Where u,, and u,, are shear velocities, d, and d,: the depths from each interface
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to the point of maximum velocity, 3, and 8,: the dimensionless mixing lengths at two
interfaces defined below.

By=1low/dy (28)
Br=1lo/d; (29)

By integrating equations (26) and (27) under the condition of constant flux layer,
the velocity profiles of main flow region are obtained respectively as follows.

= _Uxy | Byt Ky 30
u(g):um“_mlnm (31)

KL Brt+e.l

Where p=y/d,, {=2z/d,, and u,,,: the maximum velocity. From the condition of
continuity,

{ 1
dof utndn+ dif u@at=g (32)
, the maximum velocity can be obtained:
—9 vl Byutry )ég
Umaz dz + ,‘C[ZJ <NU ﬁU In BU dZ
ar (g m Brdia)dr 33
+ IC% KL BL n BL dZ ( )

Where g is discharge in unit width, and d, (=d; +4d,): the depth of main flow region.
Using friction coefficients defined by f; =2(14,/Uz)? and f,,=2(u,/U,)?* where U,
is the mean velocity of main flow, and supposing the linearity of shear stress, the
depth ratios in equation (33) become the following.

dy/dy=fw/(fiv+fir) (34)
d;/d, :fiL(fiU +fiL) (35)

Concerning the velocity profiles in both sides of a main flow region, those will
be discussed in the same manner as in the upper layer flow. In the layer ranging
from y=—d, to y=0, the coefficients of a quadratic equation can be decided by the
next three conditions.

y=—d, (free surface), du/dy=0 (36)

y=0 (the first interface), u=u;y 37
0

(" way=o (38)
—dy

In the layer ranging from z= —d; to z=0, those conditions are as follows.
z=—d; (channel bed), u=0 (39)
z=0 (the second interface), u=u;; (40)

g" wdz=0 (41)
—dg



174 §. EGASHIRA and K. ASHIDA

By using equations from (36) to (41), the velocity profiles in each layer can be obtained
as follows.

u(y)=(3/29" =37+ Duy, (—d;<y<0or0<y7'<1) (42)
u(@)=3¢" -4+ Vuy, (—d;<z<00r 0<'L1) (43)
Where 5’ and {’ are defined as y'=—y/d; and {'=—z/d; respectively. Velocities

at the two interfaces are obtained from equations (30) and (31) as below.

= _uxy |y Buthy
Uy = Umax Ky In Bl/’ (44)

K
uiLzumax_uT*LL— lnﬁL’;-TL (45)

Concerning density stratified flows in stable stratification, the velocity profiles
in upper and middle layer types have been discussed. Shear velocities, nondimen-
sional mixing lengths at interfaces and Karman constants play an important role in
these theories. We would like to take up the latter two in other sections. In order
to predict the shear velocity at an interface, one usually employs the equation of
shear stress coefficient. Although many relations on it have been presented, there
are too few to be able to use universally. Here we would like to introduce the only
result developed theoretically by Egashira-Ashida® (1979). In the upper layer
flow,

fi=% +0.00207F,2+0.0015}L1f1 (46)
, where f, is the shear stress coefficient defined by f,=2(u,/U})? R.: Reynolds
number, F,: internal Froude number shown in equation (12), H and d): shown in
Fig. 4. Although 4 in equation (46) can be led to the factor of 1.86 theoretically
in two dimensional flow, 4=15 is obtained from data fitting. The discrepancy
between these factors is considered due to the side effects of channels.

Equation (46) will be able to extend easily to the case of middle layer flow as
follows.

Fiy=A/R,+0.00207F% +0.0015d,/(d, + d,) (47
Fir=A/R, +0.00207F?% +0.0015d,/(d, + dy) (48)

Where Fy; and F,, are the internal Froude number defined by the quantities between
the main flow region and the other ones, 4y, 4, and dy: shown in Fig. 5.

3.2 Nondimensional Mixing Length at Interface

The interface will exhibit a strong stability due to the density gradient. Webb®
(1970) indicated that the velocity gradient was evaluated by the following equation
as the limit of the log-linear law.

du _auy
dz  kyL (49)

where ¢, is Karman’s universal constant (0.4), #: an empirical constant to be decided,
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and L: Monin-Obukhov length. Egquation (49) means the velocity field is con-
trolled only by momentum and heat or mass flux. In this condition, which is called
self-regulated state (Turner!®), 1973), the velocity changes linearly. The linearity
of a velocity profile could be found in the interface regions of inclined plume carried
out by Ellison-Turnerl® (1959), turbidity current by Ashida-Egashiral? (1975) and
surface jet by Komatsu!® (1978). These experimental facts say that the flows near a
density interface are in the condition of a self-regulated state. Rewriting the above
expression according to Turner’® (1973), equation (49) becomes

Ou/0z=k, go'w'/ous . (50)

Where k; is the empirical constant to be decided. p’w’, which is turbulent mass flux
in vertical direction, can be written as

W= —¢,,(00/02),. (51)

By substituting ¢,, for equation (14), the above relation is transformed into
o’w =1/2-K4pU,/R s . (52)
From equation (16), the velocity gradient at an interface can be described as follows.
du/dz=uy/l, (53)

From equations (50), (52) and (53), nondimensional mixing length at interface is
obtained:

B=1ly/dy=71.(Uy/us)™? (54)

, where 7, is the constant to be decided experimentally and can be written by K and
k, as follows.
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Fig. 6. The relation between velocity coefficient and nondimensional mixing length at a density
interface for momentum.



176 S. EGASHIRA and K. ASHIDA

r1=2(k,K)7! (55)

In Fig. 6, the relation is shown between equation (54) and much data obtained from
channel experiments (Lofquist!®), 1960; Egashira-Ashida®, 1979). It will be found
that the trend of these data is represented well by equation (54), and most data lies
in the range of

120<7,<300. (56)

Concerning an upper layer flow, the nondimensional mixing length for mo-
mentum has been discussed. We can easily extend equation (54) or the relation
shown in Fig. 6 to the case of middle layer flow. That is, by using U, u4y and u,,
instead of U; and u, the nondimensional mixing lengths defined by g, and §, at the
first and the second interfaces are shown below.

Bu=711(Us/vsp)™® (57)
Br=11(Us/usr)™? (58)

3.3 K4rmién Constant in Stably Stratified Flows

The influence of density stratification on the log-linear law for the wind velocity
is evaluated by the Monin-Obukhov function. For the density stratified flows
taken up here, we would like to discuss the change of K4rman constant, that is, the
change of the mixing length in the main flow region by use of the acceleration balance
equation proposed by Kao? (1959). Kao’s equation for the case of the upper
layer flow shown in Fig. 4, can be transformed into

z(%)z :zN(fi—’:)Z + B%z,,% (59)

, where [, is the mixing length for mass and B: a proportional constant. By using
equations (52) and (68) which express the mass flux and the density gradient respec-
tively, equation (59) can be written as

du\? _; /duN?_ 1 , 1 U
l( dz) ‘ZN<E) T BKE R -, (60)

, where g'=4p/p-g. The acceleration balance equation having been obtained, we
will investigate the change of Karman constant in accordance with Hino’s method?D
(1963) concerning the two phase flow.

Putting the velocity gradient as

du/dz=uy/l=uy/lyV, (¥=1y/0) (61)

, and substituting equation (61) for du/dz in equation (60), the acceleration balance
equation becomes

uby_ubye lpp,s 1 Uy
Ve = yry- ] BKg : (62)

If we fix our object in the region where [;+x2z is nearly equal to £z, the mixing length
ratio will be
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_ l_gN +ICNZ _ IC_N
v = ly+rz k& (63)
» where suffix-y means neutral stability. The above relation indicates that 4 is
independent of z. By integrating equation (62) from the interface (z=0) to the
surface (z=d,), the quadratic equation with respect to +Jr is obtained as follows.

1 B KU 'd
2 a2 1 801 _
VY B Rypuy al =° (64)

, where

B = L In M =const.
En N
Putting £y =0.4 and supposing that g, is the same order as g, B’ becomes about one.

Rewriting B/B’ as B including B’ consequently, one can get the solution of equation
(64):

I 2
®x  1+V1+2BK(U;/ug)

(65)

Applying equation (46) to Uy/uy, we can find an interesting feature. With a large
Reynolds Number, the Kirman constant will be regulated by an internal Froude
number only. It will approach its neutral condition as the mixing action gets large
with increase of Froude number.

1.0
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Exp.12-I~12-4
B=l
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Fig. 7. The relation between the velocity coefficient and the ratio of KArmén constants. Where &
is Kdrmén constant in stably stratified media and x4(=0.4) is the one in neutral stability
concerning the mixing length for momentum.

Fig. 7 shows the relation between the curve calculated by equation (65) with
B=1] and K=0.0015 and the experimental values for upper layer flows (Egashira-
Ashida®, 1979). The experimental ones, which are obtained from «,=0.4, are
plotted in the figure. It will be found that the theory elucidates the data well.
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Therefore, the change of Karmén constant would be calculated from equation
(65) with B=1, K=0.0015 and xy=0.4 in stratified shear flows.

The foregoing theory could be applied to middle layer flows by using the velocity
coefficient of middle layer type.

4. Density and Temperature Profiles of Density Stratified Flows

4.1 Density and Temperature Profiles

(1) Upper Layer Flows

Concerning water density and temperature, the profiles can be discussed by the
same method as was the velocity one, using the mixing length theory. But the mixing
lengths for mass and heat are not the same as that of momentum because of the
difference of buoyancy effect between scalar and vector quantities. Generally,
the mass or the heat mixing length will be influenced and decreased by density
stratification more than will the momentum one.

Let’s discuss the vertical distribution of density and temperature in an upper
layer flow as shown in Fig. 4. In the figure, the distribution of mixing length for
mass density is shown. Its distribution is supposed to be

lp=lop+mpz. (66)

Where /y,: mixing length at interface for mass and x,: Kidrman constant for mass
but not the universal one. As for heat,

ZH=lOH+KHz (67)

where /i is the mixing length at the interface for heat and «,: KArman constant

for heat. With the turbulent flux for mass (—pw’) and heat (— T"w"), the deunsity
and temperature gradients are shown respectively as follows.

do _ ~pw
dz Iy, tE,z)ux : (68)
dT_ - Tw (69)

E—(ZDH'FEHZ)U*

Where p: the mass density and T: water temperature, which are averaged in time,
respectively.  In the condition of constant flux layer, the turbulent flux term can
be written by equations (8b), (9) and (11), as follows.

— oW =—1/2-KdoU,/Rx (70)
— T’ =1/2.K4TU,/R,4 (71)

Where dp=p;—p and 4T=T,—T, Substituting equations (70) and (71) for
turbulent flux terms of equations (68) and (69), and integrating them under con-
stant flux layer, we can get the laws of density and temperature profiles in the main
flow region of the upper layer flow:

p(():pi_dTpR_E_ﬂLlnM (72)

ik Ux K, P
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AT K U, 1, Bu+ksl
B Ry ur n Y By (%)

T(C) = Ti +

Where { is the same as the preceding chapter. 8, and g, are the nondimensional
mixing lengths at the interface for mass and heat, which are defined by

szlop/dl (74)
and
Bu=lou/d; (75)

respectively. p, and 7, are the density and temperature at an interface and nearly
equal to

0,=(01+0,)/2 (76)
and
Ti=(Tl+T2)/2 (77)

, respectively (Ashida-Egashira®)).

(2) Middle Layer Flows

We will be able to obtain the profiles in the case of middle layer flow, supposing
the distribution of the mixing lengths for mass and heat as shown in Fig. 5 and the
constant flux layer. Here we would like to show the results only.

In the region from the second interface to maximum velocity point, we get

0@ =p;y— 0L X T2 Ly ———B";f“c, (0<€<1) (78)
P

and

_ 4T, K U, 1 Burt+ruil
T&=T;, + 2 Ry Uay Fng lnT, (0<L<1) (79)
, where { is defined by z/d,, dp, and 4T, are the density and temperature differ-
ences between middle and lower layers, respectively, R,,: the overall Richardson
number defined by 4p,, d; and U,, uy,: the shear velocity at the second interface,
#o,and kg, : Karmén constants for mass and heat. §,, and g, are the nondimension-
al mixing lengths at the second interface for mass and heat respectively, and these
are defined as {ollows.

BpL:ZOpL/dL (80)
Bur=lwyr/d; (81)
Where d, is the layer depth from the second interface to the maximum velocity point,

lor, and [y, : mixing lengths at the second interface for mass and heat respectively.
In the region from the maximum velocity point to the first interface,

p(ﬂ)szl_d_g_U_ K U, 1 mM (82)

Rixy usxy £,y Byt
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and

4T, K U 1 Byy+k
T =T, + 4Ty 2 in Bautfyy 83
(1) L% Ry usw kg Bru+Emum @3

, where p;; and T, are the quantities at the maximum velocity point and obtained
from equations (78) and (79) with {=1, »: y/dy, dpy and 4T,: the density and
temperature differences in cross mean between middle and upper layers, respec-
tively, R, : the overall Richardson number defined by 4p,, d, and U,, and wuyy:
the shear velocity at the first interface. 8,, and 8, are the nondimensional mixing
lengths at the first interface for mass and heat respectively, and are defined as
follows.

BpU = low/du (84)
Bray=1lony/dy (85)

Where ly,p and lyy, are mixing lengths at the first interface for mass and heat, and
dy is the layer depth from the maximum velocity point to the first interface.

The profile laws have been described in the main flow region of the upper and
the middie layer flows. If the nondimensional mixing lengths and Karmén con-
stants are known, theories for the profiles will become complete. We would like to
discuss these unknown quantities in other sections.

4.2 The Nondimensional Mixing Lengths at Interface for Mass and Heat

As mentioned in the preceding chapter, a strong stability region will be formed
near the density interface. Therefore, the same manner as the one employed in
section 3.2 could be used. Webb?® also showed that the air temperature was de-
scribed as

d6/dz=aTy/kxL (86)

in the limit of log-linear law. Where 6 is the potential temperature, x,: Kérman’s
universal constant (0.4), L: Monin-Obukhov length and T ,: the quantity which
has the dimension of temperature:

Ty=H/0,Cpux (87)

, where H is the heat flux, p,: mass density of air and C,: specific heat at constant
pressure. The above expression means that the temperature or density field is con-
trolled by momentum and heat or mass flux only, and temperature or density profile
becomes linear. The fact can be inferred from turbulent energy equations and has
been shown by experiments.

According to Turner!®), the feature mentioned above can be written by

do _ _ o ,,(g0"w'/0)*
dz ‘gsz (38)

, where &, is the proportional constant to be decided. If one uses equation (70) as
to mass flux, the following expression can be obtained.
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4o _£<sz )2(ﬂ)“<ﬂ>2

dz - I:4 2 U dl ’ (89)
Also, the density gradient can be shown by using equation (68) and (70) as follows.

do__to K (UL

dz - 2 .R,-* U x l0p (90)

From equations (89) and (90), the mixing length and its nondimensional one at
the interface for mass can be obtained as

l0p=72(U1/u*)_3d1 (91)
and

B,=72(U1/ux)? (92)
respectively. Where 7, is the empirical constant and shown as

T2 =2/(k}K) . (93)

It is clear from equation (92) that the function of 8, is the same as the one for the
momentum mixing length.

We can discuss the one for heat in the same manner. In the range where the
heat expansion ratio is considered to be constant, the mixing length and the nondi-
mensional one at an interface for heat is the same as the one for mass. The results are

lOH = lOp (94')
and
Bu=8, (95)

respectively.
Fig. 8 shows the relation between equation (92) and the data obtained from

Author
Exp.12~1~12-4

8, riUvue

I %= 40

K,;j/& 10

1073

10 20 40 U/us

Fig. 8. The relation between the velocity coefficient and the nondimensional mixing length at a
density interface for mass transfer.
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the channel experiments® for the upper layer flow. As clear from the figure, the
data being proportional to the inverse of the third power of velocity coefficient,
the foregoing theory will be considered appropriate. The coefficient 7, of equation
{92) lies in the range,

10<7,<40. (96)

When one compares the results shown in Fig. 6 and Fig. 8, it is found that g, is
smaller than g, and about a tenth of the momentum mixing length. It is considered
that the buoyancy effect exerts influence on the mass and heat transfer more than
on the momentum one.

Mixing lengths at the density interface for mass and heat having been discussed
as to an upper layer flow, we can also obtain the ones for the middle layer flow.
The results only are shown as follows.

ﬁpU=BHU=Tz(Uz/u*U>_3 97)
ﬁpL=BHL:Tz(Uz/u*L)_3 (98)

4.3 Kéirmin Constants for Mass and Heat Mixing Lengths

The laws of mass density and temperature profiles have been obtained as equa-
tions (72) and (73), respectively. By integrating these formulae from the interface to
water surface with respect to z, Kdrman constants for mass and heat will be given
automatically. That is, the structure of profiles are regulated by the cross sectional
mean quantities.

Rearranging the relations obtained by the above method, we can get the fol-
lowing equations with respect to x, and g, in the upper layer flow.

U, 8,1+« B,+k
= 21 Zp p T %0
x,=KF} s E, Pln( 8, 1) (99)
U, By+k (ﬁ’ +K
— 2 H+Ey H kg
ky=KF? _LU* . In 3 1) (100)

In the preceding section, it is realized that g, is equal to f,. Therefore, the
following relation will be sure if one compares equation (99) with (100).

EP:KH

This has led to the fact that the mixing length for mass is the same as the one for
the heat, in other words, eddy diffusion coefficients for mass, heat and some solute
are equal to one another. Such a fact has been recognized by channel experiments
and field observations.

Let us investigate the relation between equation (99) and experiments. We
can obtain the theoretical curve for Karman constant of mass mixing length, apply-
ing equations (46) and (92) to U;/u, and B, respectively. In Fig. 9, the families
of curves, which can be calculated with &,,=0.4, K=0.0015, A=15, (H—d,)/H
0.5 and y3=10, are shown, and experimental values by Egashira-Ashida® are also
plotted. &,/k,» increases with internal Froude number in theory and experiments,
because the stability effects decrease as F, becomes large. Influences of Reynolds
number on x,/x,y appear remarkable in the range less than R,=10%, and becomes
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Fig. 9. The relation between internal Froude number and the ratio of Kirmén constants
concerning the mixing length for mass with Reynolds number as a parameter, where
£,n=04.

negligible as its value goes beyond 105. The experimental values in the range of
Reynolds number larger than 104 not being obtained, we cannot compare the theory
and experiment in its wide range. It will be found that the families of curves agree
well with experiments as far as the experimental values exist. Then, Karmén con-
stant for mass and heat mixing lengths will be predicted by equation (99) or (100).
We can easily obtain Karman constants defined as «,, and «,, in the same manner,
concerning 2 middle layer flow.

5. Eddy Diffusion Coefficient for Mass and Heat in Density Stratified Flow

Let us discuss the distribution of the vertical component only. We select the
coordinate system as shown in Fig. 4, and then can write the eddy diffusion coeffi-
cient of gradient type for mass and heat by the use of mixing length and shear velocity,
as follows.

€P1=ZPU*:(ZOP+KPZ)U¢* (101)

where [, is the mixing length for mass and equal to that for heat. Consequently,
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€, =8, (102)

where ¢y, is the one for heat. Then, that for mass will be only related below. Now
then, substituting equation (91) for /y,u, in equation (101), and using the continuity
as shown by ¢=U,d), one can obtain the following relation.

e () 2l (2) s oo

where { is defined by z/d, as previously mentioned.
The first term is the eddy diffusion coefficient at interface, and it is shown as

e,:=12(Ur/uy)*q (104)

The above formula can also be obtained from equations (14), (90) and (91). By sub-
stituting equation (46) for U,/u,, equation (104} is transformed into

€po; _ T2 A H—d,\?
- _TZ{R, +o.oozo7F,2+KTl} (105)
In Fig. 10, the families of curves which can be obtained from equation (105) with
72=10, K=0.0015, (H—d,)/H=0.5 and A=1.86 and 4=15, are shown. It will
be clear from the figure that the eddy diffusion coefficient normalized by unit width
discharge is influenced by Froude number only as far as Reynolds number is large
and the depth ratio keeps constant. On the other hand, the coefficient approaches
the molecular one as the Reynolds number becomes small. We cannot discuss
the characteristics of equation (105) in the molecular range because the theory is in
the turbulent region as made clear in the description of the preceding chapters,

Let us focus on equation (103) again. As clear in Fig. 9 and Fig. 10, K4rman
constant and the inverse of velocity coefficient increase with Froude number. Con-
sequently, the eddy diffusion coefficient indicated by equation (103) increases in
the main flow region in accordance with increase of Froude number. The coefficient
becomes large linearly as the position under consideration goes further away from
the interface, and is maximum at the free surface. But the theory could not be
applied in the region near surface because it was established under constant flux
layer, that is, the assumption of constant flux layer is not relevant there.

The eddy diffusion coefficient in a cross sectional mean can be obtained by
integrating equation (103) as follows.

U, 3?1 U\t
o= {1 () () s (106)
where ¢,,, is the cross sectional mean of the eddy diffusion coefficient.

Eddy diffusion coefficient for mass and heat has been discussed on the basis of
the distribution of the mixing length realized in the preceding chapter. In the
same manner, that for the momentum can be obtained as follows.

()l

U x

where ¢; is the eddy diffusion coefficient for momentum. If one compares the result
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Fig. 10. Eddy diffusion coefficient at a density interface for mass and heat. The coefficient is
normalized by the discharge in unit width. Molecular diffusion coefficient shown
on the figure is the value at 20°C in water temperature.

shown in Fig. 7 with the one in Fig. 9, and 7, with p,, that is, if one compares equa-
tion (107) with (103), it will be found that ¢ is greater than ¢,;. Consequently,
turbulent Prandtl number which is defined as P, =e;/¢,; will be much larger than the
factor of one in the density stratified flow. Therefore, the heat transfer in the vertical
direction can be suppressed extremely. Then, the formation of the layer, 2 kind of
heat boundary layer, which we call “Thermal Boundary Layer® here, is restrained
as a result, and on the other hand the shear layer for momentum extends to the free
surface at a short distance from the upstream end. If we want to know the diffusion
coefficient for heat or some solute where the thermal boundary layer is not formed
yet, we had better use the following formula obtained from substituting « for «,.

epr={ra(L) et (L) (108)

Uy Uy

Concerning the middle layer flow, we can easily discuss the eddy diffusion
coefficient by the same manner as before. The result only is shown below.
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epnz{n(i{; )—3 -{-/cPUv;}(%)_lq%% (109)
ep;={n ul*‘z)—s +mpLC}<uLizL->—lq% (110)

where the coordinate systems are the same as the preceding chapter. On the other
hand, in the region where the thermal boundary layer is not formed, the above
relations become

_ U, )‘3 } U, \', du 111
6”_{7’2<u*u ot (u*u> 7 d, ain

and

€t ={72<E%)_3 ”LC}(zZZL >_19 isz (112)

respectively.

6. Relation between Theory and Experiment

6.1 Velocity and Temperature Profiles

(1) Upper Layer Flows

The experimental flume which is 23 meters in length, 38.5 centimeters in width
and 70 centimeters in depth is used. The channel floor is sloped 1.0 percent. Ex-
periments were carried out by the following method. Filling the channel with water
to the level of the weir which is attached to the downstream end, we have the heated
water flow into the flume from the upstream end at constant discharge and have it
overflow at the downstream end. An upper layer flow can be formed by such a
method. As soon as overflow begins from the weir at the downstream end, inflow
and overflow water temperature, and the profiles of velocity and temperature at
two cross sections are measured. The profile of water temperature was measured
by thermista probes at two sections which were situated 5.5 and 12.8 meters from the
downstream end. Velocity profiles were measured by the hydrogen bubble method
at two sections 4.3 and 11.5 meters from the downstream end, respectively.

Experimental results and the theoretical curves are shown in Fig. 11(a), (b),
(c) and (d) of which discharges in unit width are 22.86, 39.74, 49.09 and 76.62 cm?/
sec in that order. U in the figure means the results at the sections 12.8 meters for
temperature and 4.3 meters for velocity, and D means the ones 5.5 meters for tem-
perature and 4.3 meters for velocity, respectively. The theoretical curves are
obtained from equations (18) and (24) for velocity profile and (79) for temperature,
together with equations (19), (54), (65), (73) and (100) which are employed to
calculate u,, 8, ¢, By and rg.

It is clear from the figure that the theories accord fairly well with the experi-
ments in spite of the ones under the assumption of constant flux layer. But the
following problems may exist: As to velocity profiles, the theory gives the shape
flatter than that of the experiment as shown in Fig. 11{a) of which discharge is the
least of the four cases and its Reynolds number is about 2700. We think that the
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Fig. 11 (a), (b), (¢), (d). Comparison between theory and experiment concerning the velocity and
temperature profiles in upper layer flows.
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discrepancy is caused for the following reasons: One is consider to be experimental
error because the discharges calculated from the profiles at two sections are different
from each other. The other is for the applicability of theory because it may be
possible or not for us to treat the turbulent shear flow such a flow of small Reynolds
number. Concerning the temperature profiles, it is an important problem whether
a thermal boundary layer will be formed at the free surface or not. The larger are
Prandtl and Reynolds numbers, the more the layer i1s suppressed. The thermal
boundary layer is also suppressed for the sake of secondary flow caused by the small
aspect ratio. Concentrating our attention on these problems, and looking at the
results in Fig. 11(d), we will find that the law of water temperature represents
the result of experiment at the downstream section (Section-D) much better than at
Section-U.

(2) Middle Layer Flows

A middle layer flow can be formed by the following method, using the same
flume as mentioned above. At first, filling the channel with water to a given level,
and heating the water electrically or by natural solar radiation, we quietly supply
water of temperature lower than the heated one to any level from the lowest

Velocity t(cm/s)
=1 o) | 2 3
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32

Exp.it=-1l1
pL_

36 2
20 24 28 32 36 20 24 28 32 36

Temperature  (°C)
Fig. 12(a)
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o

intake work attached to the downstream end. In this manner, some kind of tem-
perature stratification can be formed in the experimental flume. Then, we have
the water, which temperature is lower than that of the surface and higher than
that of the lower region, inflow into the flume, and it outflow from the intake work
at the middle depth of the downstream end, and then get a middle layer flow. After
such a flow is obtained, hydraulic quantities of various kinds as mentioned in the
preceding upper layer flow are measured.

The relation between theory and experiment concerning the velocity and
temperature profiles is shown in Fig. 12(a), (b) and (c) of which discharges are 40.0,
51.94 and 67.01 cm?[sec, respectively. Theoretical curves in the figures are ob-
tained completely from the laws of profiles and supplementary equations as shown in
the foregoing chapters, using the same coefficients as in the case of upper layer flow,
that 1s, y; =120, y,=10, A=15, K=0.0015 and B=1.

When one compares the results in the figure, it will be found that the theories are
well applied to the experiments concerning the velocity profiles in both section-U and
section-D. It seems to say so as well for the temperature profiles, but actually it
appears that the theories represent the experiments better in the section-D than in the
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Fig. 12(a), (b), (c). Comparison between theory and experiment concerning the velocity and
temperature profiles in middle layer flows.

section-U, because the thermal boundary layer is developed in the downstream more
than in the upstream.

The relation between theory and experiment concerning the upper and middle
layer flows has been discussed as described above. ~Although some problems on the
limit of application of theory and on the thermal boundary layer may exist, the
degree of the discrepancy between the theoretical and experimental values will be

considered practically permissible.

6.2 Eddy Diffusion Coeflicient

The experimental flume is the same as before and data is obtained from a tracer
method as follows. A solution of potassium permanganate is injected into the
stratified flows continuously at a given level in depth from a dynamic pressure
Pitot tube, and the tracer is photographed at two second intervals by the interval
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camera from the channel side. Simultaneously, velocity and temperature profiles
are measured by the foregoing procedures.

Three cases of experiments for the upper layer flow and two cases for the
middle layer flow were carried, respectively. An example of the diffusion of the
tracer is shown in Photo. 1. If one evaluate the diffusion width of the envelope of

Photo. . An example of diffusion of tracer in an upper layer flow. The time interval between
the two photographs is two seconds.

the tracer, \/?-, the eddy diffusion coefficient can be calculated by the following
formula,

by =y T2 (113)
where ¢,,,: z-component of diffusion coefficient of tracer. The above relation is
used in order to calculate the diffusion coefficient in the flow of homogeneous and
isotropic turbulence. On the other hand, the flow under consideration is that of a
turbulent shear flow. Consequently, it should be noticed that equation (113)
gives only an approximate value for the shear flow.

In Fig. 13(a), (b) and (¢), the experimental values obtained from equation (113)
and the theoretical ones predicted by the formulae in chapter 5 are shown, and pro-
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Fig. 13(a), (b), (c). Theoretical lines and experimental values of eddy diffusion coefficient for tracer
concerning upper layer flows, Here, the eddy diffusion coefficient for tracer is thought to be
equal to the one for mass and heat.

files of velocity and temperature are also shown. Fig. 13(a) is an example of the
measured points inside the thermal boundary layer (TBL), and then the theoretical
line is calculated from equation (103). The measured points which are situated
outside TBL are shown in Fig. 13(b), and in the figure the theoretical one is calcu-
lated by equation (108). Fig. 13(c) shows an example: One of the measuring
points is outside TBL and the others inside it.

Referring to the results shown on the lefthand side of these figures concerning
the temperature profiles predicted and measured, one will find that the measured
values inside TBL can be predicted well by equation (103) and the ones outside it
by equation (108), respectively.

In Fig. 14, an example concerning the middle layer flow is shown. One
measured point is inside TBL and the other is outside it. The predicted lines are
calculated by equations (109) and (111) respectively in the figure. The experi-
mental value in the figure which is measured outside TBL, where the temperature
gradient is nearly zero and consequently the buoyancy effect may be very little,
can also well be represented by the equation (111), which is introduced by using
ry instead of x, in equation (109).

We would like to investigate the relation between all data inside and outside
TBL and theory. The relations between the data and theory as to upper layer
flows are shown in Fig. 15(a) and (b), and those of middle layer flows are compared
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to the one for mass and heat.
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for mass and heat(=tracer) in upper layer flows.

in Fig. 16(a) and (b), respectively. It will be clear from the figures that the theories
developed in the regions of inside and ouiside TBL show good agreement with the
experimental values for the diffusion coefficients.
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Fig. 16(a), (b). Comparison between theoretical and experimental values of eddy diffusion coefficient
for mass and heat(=tracer) in middle layer flows.

7. Conclusion

We have discussed the velocity, density and temperature profiles and eddy
diffusion coefficients in density stratified shear flows, and have obtained many inter-
esting results from theoretical and experimental considerations, as follows.

(1) The relation between turbulent (eddy) diffusion coefficient at a density inter-
face and turbulent entrainment one has been obtained, using the mass conservation
equation expressed by convected diffusion terms in a continuous model and the one
expressed by entrainment in a discrete model. The formula plays an important
role in the discussions taken up in the latter chapters because the transfer conditions
at an interface for mass and heat can be decided by the refation.

(2) We put the momentum mixing length /, to a density interface and assume the
linear distribution of mixing length in main flow region, the profile laws of velocity
and temperature have been obtained under conditions of constant flux layer. These
profile laws are characterized by nondimensional mixing length at an interface and
Kérman constant. The functional relationship of nondimensional mixing length
is discussed with the result (1) and the condition of self-regulated state, and it is
realized. In order to discuss KArman constant, the new acceleration balance
equation is introduced according to Kao, and its constant is clarified.

(3) The density and temperature profiles are also discussed on the basis of mixing
length theory for mass and heat by assuming the distribution of mixing lengths as like
the one for momentum. The functional relationship of nondimensional mixing
length at interface is obtained in the same manner as the one for momentum. Con-
cerning Karmén constants for mass and heat mixing lengths, the integral method is
used in order to realize them.

(4) The distribution of eddy diffusion coefficients for mass and heat are discussed,
using the distribution of mixing length clarified aiready and the shear velocity.
The functional relationships are clarified in the main flow region covered by the
thermal boundary layer. In the experiment carried out usually TBL is not de-
veloped enough because channel length is definite and turbulent Prandtl number is
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large. In order to predict the diffusion coefficient in such a region, alternative formu-
lae are proposed.
(5) Theories presented in this study have been evaluated by experiments.

Many interesting features of density stratified shear flows have been clarified.
But the problems to be solved are left to future investigation. Especially, we must
make efforts in order to clear up the applicability of these theories and the formation

of a thermal boundary layer.
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