
Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 31, Part 4, No. 284, December, 1981 211

Effects of Local Inhomogeneities on Tidal Strain Measurements

By Shuzo TAKEMOTO

(Manuscript received September 18, 1981)

Abstract

   Using continuous records obtained from four extensometers with laser  interferometer systems 
at Amagase, Kyoto Prefecture, we analyzed tidal strains by the least squares method. The result 
shows that there exist remarkable discrepancies between observed values and theoretically predicted 
ones for a laterally homogeneous earth model. 

   Amplitude enhancements of tidal strains observed with the horizontal and vertical components 
in normal directions to the axis of the tunnel are well explained by the cavity effects calculated by 
two-dimensional finite element techniques for the actual cross-section of the tunnel. 

   After eliminating the cavity effects, observed values were compared with theoretically predicted 
ones containing the topographic corrections calculated by three-dimensional finite element tech-
niques. As a result, differences of phases between observed and theoretically predicted values are 
within  5° in any case. Amplitudes of observed tidal strains in the direction along the tunnel are 
about  15% smaller than predicted values but these differences are comparable to errors inherent in 
calculations. On the contrary, amplitudes of observed values in the direction across the tunnel are 

 33,-.52% larger than the predicted ones. As the most possible source of these differences, we con-
sider the hydrological perturbation caused by fluctuations of the ground-water level around the 
observation tunnel.

 I. Introduction

    We have been carrying on ground-strain measurements using four extensometers 
with laser interferometer systems since 1978 at the Amagase Crustal Movement 
Observatory  (Takemotol), hereafter referred to as Paper  I). The development of 
extensometers with laser interferometer systems (e.g. Berger and Lovberg2), Levine 
and  Ha113), Goulty et al.4)) has increased the reliability of measurements of tidal 
strains, secular strains and low frequency seismic waves.  However, for instance in 
tidal strain measurements, observational results obtained from these instruments are 

generally inconsistent with theoretically predicted values for a laterally homogeneous 
earth model. 

   As possible reasons for these discrepancies, effects of local inhomogeneities, i.e. 
cavity, topographic and geological inhomogeneities around the observation site, 
have been discussed by several authors. At first, concerning the effect of a cavity 
in which instruments are installed, King and Bilham5) mentioned that underground 
cavities are deformed by the stress in the earth and that in particular, a cylindrical 
cavity is deformed by the horizontal compressive stress into an ellipsoidal cavity with 
the major axis of its cross-section aligned vertically. Itsueli et al.6) confirmed this 
aspect from the tidal strain measurements at the Queensbury Observatory. Accord-
ing to their results, horizontal and vertical extensometers installed in the cross-
section normal to the axis of the long tunnel showed large amplitudes as compared 
with the horizontal extensometers installed along the axis of the tunnel, and there
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existed a good agreement between the predicted effect of a cylindrical cavity and the 
observed data. Similar observational results of tidal strain enhancements in other 
observatories have been reported by  Ozawa7) with the horizontal extensometer 
across the Osakayama tunnel and by  Melchior et  al.8) with the vertical extensometer 
in the underground gallery at the Walferdange Observatory.  Harrison) approxi-
mated the effects of cavities of more complicated shapes using analytical solutions for 
an ellipsoidal cavity and numerical calculations by two-dimensional finite element 
techniques for irregular shaped cavities. As a special case,  Blairm estimated the 
"cavity effect" on the core hole strainmeter which was  installed in a core hole drilled 

horizontally into surrounding rocks from an ellipsoidal cavity. In this case, he has 
noted that the local strain in the rock at a distance equal to the horizontal diameter 
of the cavity is reduced to a factor of one-half. 

   Secondly, the earth's surface cannot be assumed to be flat in the vicinity of the 
observation site. And the regional strain field, which is uniform in large scale, may 
be deformed by the local topography. Harrison9) calculated effects of four different 
models of local topography by two-dimensional finite element techniques. He has 
found that the values of strains are large in the valley and small on the ground at the 
valley margins.  Blairm,u) also calculated the effect of the gorge structure near the 
Cooney Observatory by two-dimensional finite element techniques and confirmed 
this result using model experiments with a thin steel plate and strain gauges. Effects 
of more detailed topographic structures around the Cooney Observatory were esti-
mated by Tanaka and  Sydenham12) by two-dimensional finite element techniques. 
Other approaches to estimating topographic effects using two-dimensional models 
were made by Emter  et al.13) for the Schiltach Observatory and by Ooe and  Sato14) 
for the Esashi Observatory. On the other hand, Levin and  Harrison19) and Berger 
and  Beaumont16) extended these calculations to include fully three-dimensional 
models. The former estimated the topographic effect for the Poorman Mine Ob-
servatory by three-dimensional finite element techniques and the latter similarly 
estimated those for six other observatories in the United States of America. Such an 
attempt of three-dimensional calculations was also made by Hashida and  Shigetomim 
for the Osakayama Observatory. 

   Thirdly, lateral inhomogeneities of elastic parameters caused by geological 
structures of various scales may also distort the regional homogeneous strain field. 

 Latyninam pointed out that linear strains observed within a block bounded by deep 
fractures are extremely attenuated and on the contrary, those observed at the frac-
tured boundary zone are strongly amplified. This assumption was confirmed by her 
and her co-workers from tidal strain observations carried on at the Kondarinsky 
fault zone and other fractured zones in the USSR (Latynina and  Rizaeva19), Latynina 
and  Shishkina20, Latynina21)). Some possibilities of effects of small scale inhomo-

geneities around the observation tunnel were discussed by King22), and King and 
Bilham23). In this respect, strong scatters of tidal strain amplitudes were observed 
with arrays of extensometers along axes of tunnels at the Queensbury Observatory 
and other temporal stations in Great Britain. These scatters were explained to be 
caused by variations of bulk and shear moduli along the arrays (Bilham et  al.240, 
Evans et al.25)). 

   Many authors, previously referred to, have included geological inhomogeneities 
in their calculations of finite element models. However, as mentioned by Berger and
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Beaumont16), it is difficult to estimate geological effects by finite element techniques 
because the fine structure of the local geology is in general not well known. On the 
other hand, topographic and cavity effects are amenable to finite element techniques 
because the local topography and the shape of the cavity are available in perspicuous 
models. 
   The aim of this paper is to investigate the effects of local inhomogeneities on 

ground-strain measurements at the Amagase Observatory where four extensometers 
with laser interferometer systems were installed in a disused race tunnel having a 
length of 1830 m and thus quantitative measurements of ground-strains have been 
carried on (Paper  I). 

   Using continuous records obtained from these extensometers for a period of 
390 days, we analyzed tidal strains by the least squares method. The result shows 
that there exist remarkable discrepancies between observed and theoretically pre-
dicted amplitudes of tidal strains. In order to investigate these discrepancies, we 
calculated the effects of local inhomogeneities using two- and three-dimensional 
finite element techniques and compared these with observed values. 

2. The Observational Results of Tidal Strains 

   Four extensometers with laser interferometer systems have been operating in the 
Amagase tunnel since 1978. The designs of these extensometers were described in 
detail in Paper I, therefore, only their general features are mentioned here. 

   The installation of instruments is shown in Fig.  1, together with the topographic 
map around the Amagase Observatory. EL—I and EL—V components are super-
invar bar extensometers with laser interferometer systems, each of which consists of 
a simple (unstabilized) laser source, the Michelson interferometer and a photo-
detecting equipment with an image-sensor.  L-1 and L-2 components are laser 
extensometers with a frequency-stabilized laser source and mutually perpendicular 
evacuated light paths.  EL-1 and L-1 components are orientated along the axis of 
the tunnel and the L-2 component is across the tunnel. The EL—V is a vertical 
component. Resolving powers and other numerical constants of these instruments 
are given in Table 1. Examples of ground-strain records for a period of a fortnight 
are shown in Fig. 2, together with barometric and thermometric records. In this 
figure, tidal strain amplitudes obtained from L-2 and EL—V are extremely larger 
than those obtained from  L-1 and  EL-1. This can be considered to be due to the 
cavity effect. We will discuss this respect in the following section. 

            Table  1. Constants of laser extensometers at the  Amagase Observatory 
                  (34°53 'N,  135°50'E). 

        Mark Azimuth Span Resolving Power 

 L-1  N72.5°W 15.8 m  1.0  x  10-9 strain 
      L-2 N17.5°E 3.2  a 5.0 

 EL-1 N72.5°W  40.0 0.25 
       EL-V Vertical 6.4  a * 1.5 

           * total length containing standard bar and concrete base.
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      Fig. 1. Topographic map around the Amagase Observatory (upper) and installation of 
             instruments (lower).
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   Tidal strains were analyzed using continuous records of these four extensometers 
for the period from March 06 1979 to March  31  1980. At first, drifts were eliminated 
by applying the Pertzev's filter, then, amplitudes and phase lags of 12 major tidal 
constituents were determined by applying the least squares method to the drift-
eliminated data for the sampled time interval of 8856 hours (369 days). The 20 
times analyses were successively repeated by shifting the time interval every 24 hours. 
Mean values of amplitudes and phase lags obtained from these analyses are given in 
Table 2, together with mean squares errors. 

   Comparing amplitudes of 12 constituents obtained from  EL-1 and  L-1 ex-
tensometers installed in the parallel direction at adjacent positions, there are system-
atic discrepancies between them; results obtained from the former are about 30% 
smaller than those obtained from the latter. It may be caused by frictional forces 
between the super-invar bar and its supporting rollers (Paper I). L-1 and L-2 
components are free from these  frictional forces because "length standards of solid 
materials" such as super-invar bars are not used in their systems but evacuated light 

paths are used as length standards. The EL—V component is also free from frictional 
forces because the length standard of super-invar bar in this system is not supported 
by any intermediate fittings. Therefore, in following discussions only  L-1, L-2 and 
EL—V components are used. 

 Ex I. 
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    Fig. 2. Examples of records obtained from laser extensometers, together with thermometric 

           and barometric records for a period of a fortnight.
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     Table 2. Amplitudes and phase lags of 12 major constituents obtained by least squares 
               method. 

 EL-1  L-1 L-2 EL-V 

      Amplitude Phase lag Amplitude Phase lag Amplitude Phase lag Amplitude Phase lag 
      (x  10-9) (degree) (x  10-9) (degree)  ( x  10-9) (degree)  ( x  10-9) (degree) 

 Qi 0.631 15.66 0.764 15.69 2.577 -47.14 1.244 138.93 
 +0.001  +0.34  +0.002  10.34  +0.007  10.25  +0.005  +0.35 
 01 3.043 12.30 4.211 11.55 15.225 -16.24 7.467 169.52 
 10.002  +0.06  10.002  +0.04  10.015  10.05  +0.007  +0.04 
 M1 0.364 -13.53 0.402 -16.55 0.814 -148.09 0.431 71.20 
 +0.001  +0.42  +0.002  10.21  10.007  +0.64  +0.004  +0.86 

 P, 1.426 20.08 2.330 27.70 17.011 -42.45 7.778 142.87 

 10.001  +0.08  10.004  +0.01  10.012  10.16  10.005  +0.15 
        1.100 173.53  0.716 114.66 7.551  -39.21 4.883 146.15 
 10.002  10.08  +0.004  +0.13  10.049  +0.04  10.021  10.06 
 K1 3.313 20.00 4.901 21.49 28.695 -10.33 14.433 174.39 
 10.002  10.02  10.004  10.03  10.032  +0.07  +0.017  10.06 
 J1  0.288 16.99 0.253 41.71 3.102  -51.17 1.397 127.58 
 10.001  +0.21  +0.001  10.44  +0.013  +0.10  +0.011  10.14 

  N2 0.730  -7.82 1.036 -11.22 6.392 8.78 3.043 -167.19 
 10.001  10.14  +0.001  10.21  10.007  10.15  10.007  +0.14 

  M2 3.558  -2.80 5.052  -3.93 35.562 7.15 16.312 -169.98 
 10.002  10.03  10.003  +0.04  10.014  ±0.03  10.009  +0.03 

  S2 1.034  -62.52 1.781 3.19 16.678 -13.72 9.733 175.34 
 ±0.001  10.09  10.005  +0.04  +0.008  10.03  +0.004  +0.04 
  K2 0.241  -3.66 0.460 4.81 3.549 13.11 1.586 -158.54 

 10.001  10.40  10.005  +0.08  +0.009  +0.10  10.002  10.20 

 Sa 0.223 -132.94 0.044 -108.01 1.263 80.37 0.740 -132.67 
 +0.001  +0.28  10.002  +3.66  10.002  10.15  +0.002  ±0.20 

3. Elimination of the Cavity Effect from Observational Results 

3.1 Cavity Effect around a Cylindrical Cavity 

   For the first approximation, we consider strain changes around the cylindrical 
cavity in an infinite homogeneous isotropic elastic medium in which the strain would 
be uniform in the absence of the cavity. We shall use a rectangular coordinate sys-
tem in which x and y axes are in the horizontal plane and the z axis is normal to this 

plane. We assume that the cavity has an equal cross-section in the x direction. 
   The three dimensional state of stress is defined by specifying the magnitudes of 

the three components of normal stresses  (az,  ay,  oz) and the three components of 
shearing stresses  (7.,,  rvz,  2-2x). Among them,  a.,  Zyz and  7-2r should vanish if the 
condition of the free surface can be applied. The depth at which our instruments 
are buried is much less than the wavelengths of tidal strains. Major et  al.26) show 
that tidal strains observed at this approximate depth do not differ significantly from
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those observed at the earth's surface. This condition is perturbed by the topographic 
effect. But as shown in the following section, the normal stress  az induced by the 
topographic effect is negligibly small (less than 4%). We thus adopt the condition 
of free surface, 

 6z  =  0,  ry,  =  r„  =  O. (1) 

   According to Panek27), the shearing stress which acts parallel to the axis of the 
cavity has negligible influence on the strain change in the cross-section of the cavity. 
Therefore, 

 rxy =  O. (2) 

   Consequently, strain changes around the cavity is a function only of  as and  cv. 
The stresses and strains are the same in any slice of unit thickness normal to the axis 
of the cavity. We use the notation  (qx,  q,,,  4) for linear strains which should be 
observed in the absence of the cavity and  (e.cxx,  el„,  e;,) for those around the cavity. 

   General equations of stress-strain relations in the absence of the cavity can be 
written as follows, 

 e?,„=(1/E)  (6,—  v6  y)  , (3) 
 e.?,y=(1/E)  (6  3,—  v6„), (4) 
 eL.=(—v/E)  (6  x+  6*  y), (5) 

where E is the Young's modulus and  v is the Poisson's ratio. Equations (4) and (5) 
can be rewritten as  follows, 

      ey°y=al—v2)/E16 y—Fv/E](ax—vay), (6) 
 e°„=E  -  v(1+  v)/E16  y—Fv/E1(6  x—  v6  y). (7) 

In these equations ((6), (7)), the first terms of the right side are strain changes due to 
the normal stress  ay under the plane strain condition  (e2s  =0) and the second terms 
are additional strains induced by the strain  e.L along the axis of the cavity. Sub-
stituting Eq. (3) into Eqs. (6) and (7), we obtain the following reduced forms, 

   e(y3,1=a6 y—ve?,,, (8) 
 e?z=b6  y—ve.L, (9) 

where  a=[(1-1,2)/E] and  b=[—v(1+v)f.E]. 
   Similarly,  4, and  egz can be expressed as follows, 

 e;y=cif(T  y—ve„, (10) 
 ez=b16y—  ves. (11) 

The strain component along the axis of the cavity is not affected by the existence of 
the cavity. Then, 

  efcx=e'lx.(12) 

Coefficients a' and b' in Eqs. (10) and (11) are analytically determined if the shape 
of the cavity is a simple form. For circular (cylindrical) cavity,  Sokolnikoff28)
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gives the solution for the radial displacement U due to a stress  c, under the condition 
of the plane  strain: 

 U=  [(I  —  v2)R/E](1  +2  cos  20)6y  , (13) 

where R is the radius of the circular cavity and  0 is the angle with respect toy measured 
in y—z plane. Using this result, a' and b' are expressed as follows, 

 a'  =  3  X1(1  —  v2)/E1  , 

 b'  =  —1  x  [(1  —  v2)/E]  . 

Putting  A=a'  la and  B=b'  fa, and referring to Eq. (12),  ely and  ecz, are expressed as 
functions of  e2x and  qv as follows, 

 ecyy=A(ey°y+ve?„)—vel'x, (14) 

 eezz=  B(e),°y+  veclx)—  vex%  . (15) 

For the case of the circular cavity, substituting  A=3.0 and  B=  —1.0, Eqs. (14) and 

(15) can be expressed as follows, 

            ec=3.-eo     u+2.0ve°(16) 
      YYY Yxx 

 ez=  —(ecivi-2.0vex°,;). (17) 

   A  
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              Fig. 3. Finite element grid used for calculations of cavity effects. 

3.2 Cavity Effect Calculated by the Two-Dimensional Finite Element 

    Method 

    The cross-section of real tunnel at Amagase is not a circular but a horseshoe 
shape and it is difficult to obtain analytical solutions for its deformations. There-

fore, finite element calculations were made to illustrate the strain change around the 

actual cavity. Procedures of computations were referred to Zeinkiewicz29) and the 

plane strain condition was postulated. 
   As shown in Fig. 3, a large square plate ABCD has a cavity at its center. The 

dimension of the plate is about 7 times that of the cavity. Uniform pressures, 

which would produce uniform strains in the absence of the cavity, are applied to the
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faces AD and BC. Faces AB and CD are free. The mirror image symmetry is 
assumed about the line EF, so that calculations are made only for the half-plate 
EBCF, which is divided into 161 elements with 104 nodes. Along the line EF, nodal 
displacements of the y direction are fixed to be zero. 

   In order to evaluate the accuracy of calculations, we initially calculated nodal 
displacements around the circular cavity and compared the values of A and B, de-
fined in the previous subsection, with those obtained analytically. As a result, the 
values of A calculated with the finite element method varied between 2.88 and 2.96 
and that of B varied between —0.97 and  —1.02. Comparing these values with 
analytical ones (A=3.0 and  B=  —1.0), deviations are within the 4%. Then, we 
calculated the values of A and B for the actual cross-section of the Amagase tunnel. 
Results with a Poisson's ratio of 0.25 are shown in Fig. 4. At the place where the 
instruments were installed, the values of A and B are obtained to be 2.44 and —0.92, 
respectively. Relations between  (4,,  e:8) and  (e2x,  4,) in this case are expressed as 
follows, 

     e.;y= 2.44ey°y+1.44veL , (18) 
     ez= —(0.92e(j),y+1.92.veL). (19) 

 cv  o1I                                                          tO N N IC)  0  0  0  0)  
0  0)  a)  al  CO 
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  A  -  3.01  

 Fig. 4. Cavity effects obtained from finite element techniques for two cases of the circular profile 
        (left) and the actual tunnel profile (right). 

   Equations (14) and (15) are expressions connecting strain components  around 
the cavity  (el,„ and  e:z) with those in the absence of the cavity  (e2, and  eh) using 
coefficients A and B. These coefficients are not determined  explicitly from these 
equations because the amount of  egy is unknown. Using Eq. (12),  we  rewrite  Eqs. 

(14) and (15) as follows, 

• 

      e;,+ve ,„="1(e(5),y+vel),,), (20) 
 ec„  ve.„=B(ey+velx). (21)
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From these equations, we obtain, 

 (e;),H-vex)/(ez+ve,c,x)=  A/B. (22) 

This equation does not involve the unknown  e,9„, so we can thus determine the ratio 
of A and B by substituting the observed values of  4,z,  e;, and  e:z into Eq. (22). 

   Now, tidal strains are periodic functions and so we can use the following ex-

pressions instead of Eqs. (20) and  (21); 

     e.;y+ ve„=All ccos D, (23) 
    eezz 1131k  cos  (D-6). (24) 

Substituting observed values of tidal strains obtained from  L-1, L-2 and EL—V com-

ponents into Eqs. (23) and (24), the values of  IAI/IBI and  3 were determined. The 
Poisson's ratio was assumed to be 0.279 with velocities of P and SV waves  (172,= 

 4.46 km/sec and  V8=2.58  km/sec30)). Results are shown in Table 3. Values of 

 1,41/1BI and  a for M2, K1,  01,  131, N2,  Qi, K2 and  Ji constituents are within the 
range of  2.2-2.5 and  172°-190°, respectively. For S2,  Si, M1 and S3 constituents, 
values of  1A1/1B1 are fairly small. Deviations existing in cases of S2 and S1 con-
stituents may be influenced by atmospheric and thermometric perturbations in the 
tunnel. In cases of M1 and S3 constituents, we cannot discuss the results in detail 
because their amplitudes are extremely small. 

                Table 3.  1AI/1BI and phase lag  ö defined by equations 
                      (23) and (24). 

                    Constituent                                                 Phase lag                                                (degree) 

 ME 2.473 184.60 
 K1 2.258 180.62 
                        2.548  I  79.86 
 P1 2.292 178.78 

 S, 1.857 188.15 
 N, 2.397 187.32 

 Qi 2.350 172.98 
 5, 1.458 183.49 
 K, 2.513 190.09 
                           1.655 —161.69 

 J, 2.208 174.56 
 sz 1.665  147.27 

   The theoretical value of  AFB is —3.0 for the circular cavity and —2.65 for the 
actual horseshoe shaped cavity. The  latter gives fairly good agreement with ob-
served values of  —2.2--  —2.5. 

   Substituting the value of A into Eq. (20) or B into Eq. (21), the value of  egy 
can be determined by observed values of  4x,  e;, and  e:,. Here we use the notation 

 egy(1) for the value of  egy obtained from Eq. (20) and  egy  (2) for that obtained from 
Eq.  (21). Values of  eg,(1) and  a,  (2) ought to be the same, but as shown in Table 4,



                 Effects of Local  Inhomogeneities on Tidal Strain Measurements 221 

the former is in some degree smaller than the latter in any case of 12 constituents. 
The most possible reason for this significant  difference can be considered to be that 
our estimation of the "effective length" of the vertical extensometer is not suitable, 
i.e. we have so far considered that the "effective length" of the vertical extensometer 
at the  Amagase tunnel is consistent with the total height measured from the bottom 
of the concrete base to the ceiling of the tunnel at which the upper end of the super-
invar bar is fixed. However, it may be true that the "effective length" of the vertical 
extensometer, which is installed in the horizontal tunnel, is to some extent larger than 
the total height measured from the floor to the ceiling of the tunnel.  Melchior et 
al.8) adopted the "effective length" of 3.4 m for the vertical extensometer installed 
in the gallery of the total height of 3 m at the Walferdange Observatory. In our case, 
if the value of the "effective length" of the EL-V component is 10% larger than that 
of the total height (given in Table  1)  ,  4),(2) becomes approximately consistent with 

 ef,„(1). In this respect, more detailed  discussions will be made in the future. At 
the present time, we use only  4,(1) as the strain component  di, of the y direction 
in the absence of the cavity. 

           Table 4. Tidal strains in they direction eliminated for the cavity effect. 

 e:v(1);  obtained  from  Eq. (20), 

 45(2);  obtained  from  Eq. (21). 

 e4(1)  gy(2) 
          Constituent                    Amplitude Phase lag Amplitude Phase lag 

                   (x  10-') (degree) (x  10-9) (degree) 

 M2 13.756 7.82 14.882  . 12.76 
 K1 11.080 -12.54 13.203 -11.28 

 01 5.634  -19.54 5.908  -19.47 
 P1 6.851 -45.48 7.971 -46.02 
      S2 6.554  -14.47 9.549  -5.51 
      N2 2.459 10.14 2.766 17.92 

 Q, 1.005  -53.56 1.169  -59.70 
 Si 3.201 -40.14 5.669 -36.06 
      K2 1.379 13.57 1.468 24.47 

       M1 0.381 204.41 0.532 225.03 
 J, 1.274  -53.05 1.536  -57.93 

 S3 0.525 80.25 0.828 48.07 

          Table 5. Observed tidal strains normalized with nodal parameters of the moon. 

                      M2 constituent 01 constituent 

                    Amplitude Phase lag Amplitude Phase lag 
 ( x  10-9) (degree)  ( x  10-9) (degree) 

 ex= 4.88 -3.9  5.11 11.6 

      eiliv 13.29 7.8 6.84  -19.5 

           Values for  e:v are previously corrected with the cavity effect.
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  For M2 and  01 constituents,  dz and  ef,'„ are compared with theoretically expected 
values at the Amagase Observatory. The values of  e2z and  e,9, normalized with 
nodal parameters of the moon (f and u) are given in Table 5. 

4. Theoretically Expected Tidal Strains at Amagase 

4.1 Bodily Tide 

The tide generating potential W2 of second order at the earth's surface can be ex-

pressed as follows for M2 and  0, constituents, respectively; 

 TV2(M2)=  DC,  sine 0 cos  (2  T+  u), (25) 

 tV2(01)= DC2 sin 20 cos  ( T' + (26) 

where D is the tidal constant of Doodson,  C1 and C2 are factors containing the decli-
nation of the moon and 0 is the colatitude of the observation site. The numerical 
value of D is referred to  Melchior31) as follows, 

 D= 2.627723  m2/sec  2  . 

 C1 and C2 are expressed in terms of the eccentricity e of the lunar orbit and the incli-
nation I of the lunar orbit on the equator (Nakano32)), 

 C1=  (1  —5/2  X  e2)  cos4  (1/2)  , 

 C2  =  (  1  —  5/2  x  e2) sin  I  cost  (I/2)  . 

Owing to the slow revolution of the nodes of the lunar orbit,  C1 and C2 vary slowly 

(one cycle per 18.61 years) and as the result we prefer in practice to introduce  C", 
and  C2 instead of  C1 and  C2.  Where  C1 and C2 are mean values of C1 and C2, respec-
tively; 

 C1=  (1—  5/2  x  e2)  [cos4  (I/2)]  [cos  11]=0.9085, 

 C2  =  (1—  5/2  x  e2)  [sin  1  cost  (I/2)]  [cos  u']=  0.3771. 

The procedure for these numerical constants is described in detail by Nakano32). 
Substituting these values into Eqs. (25) and (26), we obtain the following expressions 
for W2  (  M2  ) and W2  (01). 

 W2(M2)=  2.3873  x  sine  8 cos  (2  T  +  u)  , (27) 

 Fr72(01)  0.9910 x sin 20 cos  (  T'-+  a')  . (28) 

   Three independent components of tidal strains at the surface of the earth can be 
expressed in terms of W2 in the spherical coordinate system with the colatitude 0 and 
the longitude 2 measured in the east direction from  Greenwich; 

               2 W2 h  
        eee= 

gr 002 gr "  2  , 
            1  82w-1  1                    2  ±cos° W2 +h W2(29)         ex'=gr sine 0 0 22gr sin 000gr
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              21 02W-2  _   21   cot  08W2          „          e= 
           gr sin  8 0002 gr sin 0 01  ' 

where g is the local acceleration of gravity, r is the radius of the earth, h and 1 are 
Love and Shida numbers, respectively. Numerical values at present used are, 

 g=  9.797  m/sec2 
 r  =6.371  x  108  m 

        h  =0  .6114 (referred to  Farrell")) 

     l  =0.0832 (  11 ) 

 8 =55°07' 

         2  =135°50'  . 

Substituting these values into Eqs. (29), the following expressions can  be obtained; 
for the M2 constituent, 

 e"=  3.825  x  10-8 (h  sin20  +  2/ cos 20) cos  (2  T  +  u)  , 

 e„=  3.825  x  10-8  {h  sine  0  —2/(1  +sin2  0)} cos  (2  T  +  u)  , (30) 

 ee,=  3.825  x  10-8  (-4l cos 0) sin  (2  T  +  u)  , 

 e"=  13.53  x  10-9 cos  (2  T+  u)  , 

 e„=  5.09  x  10-9  cos  (2  T  +  u)  , (30)' 

 ee,= —7.27 x  10-9 sin  (2T+  u), 

for the  01 constituent, 

 e"=  1.588 x 10-8(h  —  41) sin 20 cos  ( T' +  u')  , 

 e„=  1.588 x  10-8(h-21) sin  28 cos  (  T'+  u')  , (31) 

 e„=  1.558 x  10_8(4l sin 0) sin  (  T'+  u')  , 

 e"=  4.16  x  10-9 cos  ( T'  +  u')  , 

 e„= 6.63 x  10-9 cos  ( T' +  u')  , (31)' 

 ee,=  4.33 x  10-9 sin  (  T'  +  u')  . 

Eqs.  (30)  ' and  (31)  ' are transformed into the rectangular coordinate system with 
the directions x along the tunnel (N107.5°E) and y across the tunnel  (N17.5°E). In 
the following discussions, we use the definition of  exy=1/2 x  (aviax+au/ay) instead of 

 ex,=(avlax+aufay) for convenience of expressing strain components with a tensor. 
For the M2 constituent, we obtain, 

 exx  =6.21  x  10-9 cos  {(2T+  u)+19.61, 

 eyy=  12.94  x  10-9  cos  1(2  T  +  u)  —9.31, (32) 

 exy=  3.84  x  10-9 cos  {(2  T  +  u)  —  129.2°}, 

and for the  01 constituent, 

 exx  =  6.53  x  10-9 cos  {(r  +  u!)-11.01,
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 e  ),),=  4.56 x  10-9  cos  {(T'  +  u')+ (33) 

 exy=  1.91 x  10-9 cos  {(  T'  u')+  68.2°}. 

4.2 Loading Effects of Ocean Tides 

   The loading effects of ocean tides can be calculated by convolving the complex 
amplitude of the ocean tide with the Green's function. The convolution integral 
can be written in the form, 

 e(r)=-  p  g  S  S  H(e)G(r  ri)dA  , (34) 
 oceans 

where p is the density of the sea water, g is the acceleration of gravity, r and r' are 
vectors describing the positions of the observation site and the water mass load, 
respectively. The green's functions (G) for surface mass loadings were obtained by 

 Farrell33) for three gravitating and radially stratified earth models. Among them, 
values of G for the Gutenberg-Bullen A earth model were employed in our calcu-
lations. 

    In both cases of M2 and  Oi constituents, the complex amplitudes of ocean tides 
were determined with the co-tidal and co-range charts given by Ogura34) for local 
tides in the seas adjacent to Japan and with charts of ocean tides given in the  ATAAC 

 OKEAH0B35),36) for global tides in the rest of the world oceans. To perform calcu-
lations, seas and oceans were divided into a number of meshes surrounded by lati-
tudes and longitudes. Their dimensions were  0.1° x  0.1°-1° x  1° in regions within 

 25°-55°N and  120°-145°E, and  5°  x  5°-10°  x 10° in the rest of the world oceans. 
We assumed that the height and phase of ocean tide were constant everywhere in 
each mesh and the distributed load in this element was substituted by a concentrated 
load at its center. Land areas were assigned a zero height. The total loading effect 
was approximated by summing up all of contributions from each element using a 
linear interpolation from the Farrell's table of the Green's function. Results are 
shown in Table 6. 

   The reliability of these estimations of loading effects is considered to depend 
mainly on the accuracy of assumed height and phase of the ocean tide. In order to 
examine this point, we compared our results for the M2 constituent with those ob-
tained independently by Tanaka and Hashida (personal  communications). They 
used the tidal chart of Hendershott37) for modelling complex amplitudes of global 
tides. For local tides in the seas adjacent to Japan, they also used the tidal chart 

given by Ogura34) but were different in manners of dividing oceans and seas into 
grid elements. In Fig. 5, our results are shown with the mark  0, and those of 
Tanaka and Hashida are shown with marks  rg) and  ®, respectively. There are 
fairly good agreements between three independent calculations and differences are 
within 0.7 x  10-9 in amplitude and 14° in phase. 

   The sum of bodily tides (i.e. theoretical tidal strains for a solid earth (E)) and 
contributions from loading effects of ocean tides (L) were defined as the homogeneous 
tidal strains (H) by Beaumont and Berger38). Values of E, L and H expected for 
M2 and  01 constituents at the Amagase Observatory are given in Table 6. Values 
in the x direction were previously reported in Paper I (p. 78, Table 1), but they 
contained some calculation errors. Therefore, we show corrected values in Table 6.
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      Table 6. Theoretical tidal strain expected at the Amagase Observatory. 

                  M2 constituent  01 constituent 

               Amplitude Phase lag Amplitude Phase lag 
               (x  10-9) (degree) (x  10-9) (degree) 

  x-direction 

 (N72.5°W) 
 E 6.21 —19.6 6.53 11.0 

 L 1.90 64.6 0.52 77.8 
 H 6.67  —3.2 6.75 15.0 

 y-direction 
 (N17.5°E) 

 E 12.94 9.3 4.56 —15.8 
 L 2.81  —153.4 0.29  —  84.5 

 H 10.29 4.6 4.67 —19.1 

 E  : Theoretical tidal strain for the Gutenberg-Bullen A earth model. 
 L  : Contribution from the ocean tide loading. 

H: Homogeneous tidal strain (=E+L). 
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   Fig. 5. Comparison of loading effects L calculated for Amagase using different tidal 
           charts of oceans, 
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          Comparing  e2.x and  eV, shown in Table 5 with homogeneous tidal strains (H), 
       there exist systematic discrepancies between them; e12 is smaller than H and  eV, is 

       larger than H in each case of M2 and 01 constituents. We will examine in the 
       following sections whether these discrepancies can be explained by the effect of local 

       topography around the observatory. 

       5. Topographic Effects 

           At the stress-free surface of a half-space, there are only three independent strain 
        components of  ei=exz,  e2=ez„ and  es=e„„. We assume that the regional homogene-

       ous strain  e, is transformed into  el due to the effect of local topography. This trans-
       formation can be written as follows similar to that of Berger and  Beaumont16), 

 ef  =1  Tule; (35) 

       where  [Tii] is the transformation matrix of the topographic effect. For instance, 
 T11 is the term multiplying an applied strain  el in the x direction to obtain the per-

       turbed strain  et]. in the same direction. Similarly, T21 and T31 are those to obtain the 
• induced shear strain  4 and linear strain  4 . Each term of  [Tii] is estimated by the 

       three-dimensional finite element technique, the procedure of which is referred to 
 Zeinkiewicz29). 

           In finite element calculations, a continuous medium is replaced by a finite 
       number of elements which are interconnected only at a finite number of nodal 

       points. Basic unknowns of the system are the nodal point displacements  lal under 
      applied forces  ifl on the nodal points. The  lal and  {f} are linked by the stiffness 

       matrix [K] as follows, 

 if  =  a  } (36) 

       In each element, we assume the displacement function such that internal continuity 
       and compatibility between adjacent elements across common boundaries are as-

       sured. Based on this assumption, the strain and stress distributions in the element 
       can be expressed implicitly as functions of nodal point displacements  {a}. The 

       element stiffness matrix  [k] is formed by integrating the matrix product BTDB over 
        the element volume. Here B and D are the strain-displacement and stress-strain 

        matrices, respectively. That is, 

 BTDBdV. (37) 

       The stiffness matrix  [K] of the complete structure can be formed by systematic 
       additions of [k] of all elements. Then, unknown displacements of nodal points are 

       determined by solving the stiffness equation  (36). 
          Practically, the number of elements is limited by the capacity of the available 

       computer. In our calculation using FACOM  M-160AD, 484 elements are used. 
       The model of continuous structure is divided into four layers, each of which is sub-
       divided into 121 (11 x 11) elements in the  x-y plane where grids are rectangular and 
        increase in size toward the perimeter of the model. The topography is represented 

       by specifying the height of each nodal point at the free surface. With increasing
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depth into the model, the relative heights of nodal points are progressively smoothed. 
   As shown in Fig. 6, a typical element is an inclined hexahedron having eight 

nodes, each of which has three degrees of freedom  (u.,  uy,  14). Here we introduce 
the local skew coordinate system  (e,  )7,  C), instead of the global rectangular coordinate 
system (x, y,  z). There exists one-to-one correspondence between (x, y, z) and 

 (e,  77,  C). Values  of  e are normalized to be  —1 and  +1 on the plane faces of 1, 2, 5, 6 
and 3, 4, 7, 8, respectively. Similar normalizations are made for  77 and  C on cor-
responding plane faces shown in Fig. 6  (upper). In this normalized coordinate 
system, the simplest expression of the displacement function for an eight-noded 
hexahedron can  he given as follows, 

 u,  =a,  +a2E+ao+a4C+asev+aeg+a7Ce+a8evC (38) 

and similarly for  u,, and  u.. The number of terms in series of Eq. (38) are chosen 
to be equal to the total number of nodal points and the coefficients  a1—a8 can be 
expressed in terms of eight nodal displacements  (uxi—ux.). Element strains are de-
fined as appropriate derivatives of assumed displacement functions in the global 
coordinate (x, y,  z). Therefore, it is necessary to transform these from (x, y,  z) 
into  (e,  )2,  C). Transformations are made by using the jacobian matrix [J] expressed 
as the following form, 

 0 0  
     Oe 0 x 

       a9=EJi 0ay (39) 

 a  0  
    aCaz 

    - • 

It is also necessary to transform the integrand of Eq. (37) into the e,  72,  C coordinate 
system. Then, 

         r1+15+1  [k]  = BTDB IJIc/$ di? (40)                        -)-1-1 

where I  JI is the jacobian determinant. 
    In our calculations, the integration was carried out numerically using the gaus-

sian quadrature formula of the order one (n=2) and the displacements of nodal 

points were approximated. 
   In the hexahedral element where the displacement function is defined as Eq. 

(38), the strain distribution is not assumed to be constant because the first derivative 
of  ux with  e contains not only the invariant term but also variant terms corresponding 
to  )7 and  C. Therefore, we divided this hexahedral element into five tetrahedrons in 
two different ways as shown in Fig. 6 (lower). In a tetrahedral element, the dis-

placement function can be expressed as follows, 

 uz=ai+a2x+a3Y+a4z, (41) 

where constant strains are implicitly assured. Then, strain components in the 
hexahedron are approximated by obtaining the mean value of ten calculations of 
constant strains in ten tetrahedrons involved in the hexahedron.
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                hedron (upper) and two ways of dividing a hexahedron into five 

                  tetrahedrons (lower). 

   Before calculating  [  Tii] for the actual topography around the Amagase Ob-
servatory, the method and program were tested with four topographic models of  sim-

ple structures as shown in Fig. 7. Models (1) and (2) are the hill and valley structures 
having a uniform cross-section in the y direction and models (3) and (4) are the 
three dimensional hill and valley structures where the topographic heights are 
smoothly varied toward x and y directions. Three independent loads were applied 
to these models; in the absence of topographic effects the first would have produced 
a uniform uniaxial strain  el in the x direction, the second a uniform shear strain e2 
with the principal axis at  45° to x  and  y axes, and the third a uniform uniaxial strain 
e3 in they direction. These boundary conditions are satisfied by specifying the nodal 

point displacements on the base and side boundaries of the structure. Poisson's 
ratio was assumed to be 0.25 for all elements. 

   Contour plots of  T11 representing the response to the applied uniaxial strain 
 el at the ground surface are shown in Fig. 7. These results indicate that the strains 

observed on the ground at the center of the valley may be two times larger than the 
applied uniaxial strain and those observed on the top of the hill may be smaller than 
a factor of 0.2. At the valley margin, the strains are smaller than a factor of  I.Q. 
On the contrary, at the foot of the hill, those are larger than a factor of 1.0. 

   Fig. 8 shows comparisons between values of  Tu. obtained from three-dimen-
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       Fig. 7. Three-dimensional finite element models and contour  plots of T11 for cor-

               responding models. 

sional calculations for models (1) and (2) in the  x-z cross-section at  y=0 (the right 
hand) and those obtained from two-dimensional calculations using triangular ele-
ments for the same profiles (the left hand). The values for a quadrilateral on the 
right hand is in any case nearly equal to the mean value for two triangles on the 
left hand corresponding to the quadrilateral. Based on these results, calculations 
of topographic effects for the actual structure around the Amagase Observatory 
were carried out using three-dimensional finite element techniques. 

   As shown in Fig.  I. (upper), the topography of this area is characterized by the
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     Fig. 8. Comparisons of two- and three-dimensional calculations for model (1) (upper) 

          and model (2) (lower). 

Uji-river which flows through highlands on the right hand into lowlands on the 
left hand of this figure. The observatory is located in the highland of Palaeozoic 
formations consisting of shale, clay-slate, chert and sand-stone (Ueji39)). The 
region of 8 km x 8 km in the  x-y plane and about 3 km in the z direction was divided 
into 484 (11 x 11  x  4) elements having the same material properties  (2=2.18 x  1010 

 N/m2,  p==1.73 x  1010  Ning,  E-4.49 x  1010  N/m2 and  v=0.279). According to the 

procedure mentioned previously, values of  [Ti.,] for this model were calculated. In 
Fig. 9, contour plots of  Tn., T22 and  T33 at the ground surface are shown, together 
with the three-dimensional finite element model. These  plots reflect well character-
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istics of local topography around the observatory. The dimension of the central 
element in the uppermost layer is 200 m x 200 m x 200 m. Values of  T„ are ob-
tained for this element, in which our instruments are placed, as follows, 

                   0.915  —0.028  —0.039 

 iTii1= —0.030 0.944 —0.006 (42) 
                —0.006 0.002 0.973 

                                       As a result, the topographic effect expected for the Amagase Observatory is not so 
much distinct as those expected for other  observatories15),16).17). Theoretically 

predicted tidal strains corrected with  [T„] are shown in Table 7. 
   If the surface is locally sloped, the normal stress  0-„ which should vanish at the 

       Table 7. Theoretically expected tidal strains containing the topographic correction. 

 /142 constituent  0, constituent 

                   Amplitude Phase lag Amplitude Phase lag 
 ( x  10-9) (degree)  ( x  10-9) (degree) 

   x-direction 5.69  —4.0 6.03 16.9 
   y-direction 9.97 4.6 4.50 —19.4 
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flat surface, is no longer assumed to be zero. We now estimate the values of  az in-
duced by the topographic effect at the observation site. Strains and stresses applied 
at the boundary and those obtained from finite element calculations at the observation 
site are given in Table 8 under three independent boundary conditions; I.  az=1-7,z= 

 r$,=-0,  exx  =unit strain,  ezy=ey,=0, II.  az=ryz=7,x=0,  ezz=0,  ex,  =unit strain, 
 en,  =0,  III.  cr  =1-..„=1-2.z=  0,  ezz=ez,  =0,  ey,  =unit strain. Values of  az calculated for 

the observation site are 4.0, 1.1 and 0.4% of  I for conditions I,  II and III, respec-
tively. Where  I is the total stress  (=ax+a,  +az) which would produce the uniaxial 
unit strain in the principal direction in the absence of the topographic effect. In 
any case, the normal stress  a, induced by the topographic effect does not exceed 4% 
of the applied stress. It is thus reasonable to neglect  az in treatment of cavity effects 
mentioned in section 3. 

     Table 8. Strains and stresses applied at the boundary and those obtained from finite 
              element calculations for the observation site. 

              eve ez,axav az (41* 

 (x10-')  (x10  N/m2) 

     Condition I. 
     A 1.0 0.0 -0.387 4.80 1.34 0.0 

 B 0.915  -0.006  -0.308 4.48 1.29 0.247 0.040 
     Condition II. 

    A 0.0 0.0 0.0 0.0 0.0 0.0 
 B  -0.028 0.002 0.022  -0.11  -0.00 0.065 0.011 

     Condition III. 
     A 0.0 1.0  -0.387  1.34 4.80 0.0 

 B -0.039 0.973 -0.366 1.10 4.61 0.027 0.004 

     A: Strains and stresses applied at the boundary. 
     B: Strains and stresses obtained from finite element calculations for the observation 

          site. 
     *  E  =4 .80+1.34=6.14 

6. Geological Effects 

    In previous sections, cavity and topographic effects on tidal strain measure-
ments have been approximated using finite element techniques. In addition to 
those, the lateral variations of elastic parameters caused by local geology may also 
deform the regional strain fields. 

    In regard to the lateral inhomogeneities, we have made electro-optical distance 
measurements of three base-lines aligned along the Amagase  tunne140). As shown 
in Fig. 10, strain accumulations obtained from these measurements exhibited the 
rates of (-2.6+0.9), (-1.5+0.5) and  (-1.6+0.2)  x  10-6/year for base-lines having 
lengths of 0.4, 0.9 and 1.7 km, respectively. And the strain accumulation obtained 
from continuous records of the  E-1 extensometer installed in the same direction 
exhibited the rate of -1.9 x  10-6/year. Both results are consistent within the ob-
servational errors. As a result, lateral inhomogeneities of the strain along the tunnel 
in our observatory are considered to be small and we do not attempt at present time
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   Fig. 10. Comparison of secular ground-strains obtained from electro-optical distance measure-
           ments of three base-lines in the Amagase tunnel and from the super-invar bar ex-

            tensometer along the same direction. 

to evaluate the geological effect using finite element techniques. 

7. Comparison between Observed and Theoretically Predicted Tidal 
   Strains 

   Taking the cavity and topographic effects into consideration, we compare the 
observed and theoretically predicted tidal strains of  M2 and 01 constituents in both 
x  and  y directions (along and across the tunnel,  respectively). Observed values 
eliminated the cavity effect and normalized with nodal parameters of the moon are 
shown as the mark  0 in Fig. 11, together with theoretically predicted tidal strains 
for a solid earth E, contributions from ocean tide loadings L and topographic effects 
T. Here we consider the sum of E, L and T to be theoretically expected tidal strains 
S at the Amagase Observatory. Comparing  0 and S, differences of phases between 
them are smaller than  5° in any case, but there still exist systematic differences be-
tween their  amplitudes; the ratios  oflOI and  1SI in the x direction are  4.88/5.69=0.86 
for the M2 constituent and 5.11/6.03=0.85 for the  01 constituent and those in  they 
direction are  13.29/9.97=1.33 and  6.84/4.50=1.52 for M2 and  01 constituents, 
respectively. 
   Then, we estimate errors inherent in each term. At first, estimations of E are 
considered to be accurate to within  2% in amplitude even if the assumed value of 
Love number varies from 0.6114 to 0.60. Secondly, as mentioned in section 4, 
values of L, which were calculated for the M2 constituent using three independent 
sets of data of ocean tides, showed differences in their amplitudes of up to 0.7 x  10-9. 
This may cause the error of about 10% in estimating the values of S. For the  Oi
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constituent, the error may be smaller than that for the M2 constituent because the 
value of L in this case is one order smaller than that of the M2 constituent. Thirdly, 
in order to check the accuracy of the topographic matrix {  T„], we have repeated 
the finite element calculation for an another model of the topography around the 
Amagase Observatory using the same procedure described in section 5. This model 
has a dimension of 5 km x 5 km x 3 km and it is divided into 484 elements. The 
smallest element at the center of the uppermost layer has a dimension of 100 m x 
100 m x 200 m. Comparing results calculated for this model with those obtained 

previously for the model having the dimension of 8 km x 8 km x 3 km, the difference 
is within 6%. Finally, the error of S  (=E±L±T) is estimated to be about 12%. 
In addition to it, the error caused by the calculation of cavity effects must be added 
for components of they direction. Taking these errors into consideration, differences 
of amplitudes between  0 and S obtained for the x direction are comparable to the 
error but those obtained for the y direction is far larger than the error. It may be 
explained by the geological effect which has not been discussed in detail in this paper. 
But as the most possible source of these differences, we consider fluctuations of the 
level of the ground-water caused by meteorological changes and water level changes 
of the Amagase Reservoir existing near the observatory. This aspect we will discuss 
in a subsequent paper. 

        N72.5°W(along the tunnel) 

 T Phase lag   M
2  01  o 

         - 
ThLocal Potent 

 N17. 5°E( across the  tunnel  ) 

 M2  E  _____  —  -"  01 
                                   r 

 x10-9  0  1  2  3  4  5 

                   Fig. 11. Vector diagrams of M5 and  01 constituents. 

 E  : Theoretically predicted value for the Gutenberg-Bullen A earth model. 
 L  : Contribution from the ocean tide loading. 

 T  : Topographic effect. 
 O: Observed tide. 

8. Conclusion 

   Based on the tidal strain data obtained from extensometers with laser inter-

ferometer systems, effects of local inhomogeneities on tidal strain measurements have 

been investigated. 

   Tidal strain enhancements observed with the horizontal component across the
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tunnel and the vertical component are explained well with the cavity effect calculated 
by two-dimensional finite element techniques for the actual cross-section of the 
horseshoe shaped tunnel. 

   After eliminating the cavity effect from the observed data, we have compared 
these values of M2 and  Oi constituents with homogeneous tidal strains expected at 
Amagase. As a result, there remain systematic differences in their amplitudes. 
Then, we have investigated whether these differences can be explained by the topo-

graphic effect or not. Calculations have been made by three-dimensional finite 
element techniques in which the region of 8 km x 8 km x 3 km is expressed as an 
assembly of 484 hexahedral elements. Comparing the observed tidal strains with 
theoretically predicted ones containing the topographic correction, differences be-
tween their phases are within 5° in any case, and ratios of amplitudes are within 

 0.85-0.86 for the x direction (along the tunnel) and  1.33-1.52 for  the  y direction 

(across the tunnel). In the x direction, observed amplitudes are about 15% smaller 
than theoretically predicted ones but these differences are comparable to errors 
inherent in calculations. On the other hand, observed amplitudes in  they direction 
are  33-52% larger than theoretically predicted ones. These differences pre-
dominantly exceed error levels. As the most possible source of these differences, we 
consider the hydrological perturbation caused by fluctuations of the ground-water 
level around the observation tunnel. Effects of the hydrological perturbation on 

ground-strain measurements, especially those related to changes of the water level 
of the Amagase Reservoir will be discussed in detail in a subsequent paper. 

                        Acknowledgements 

   The author wishes to express his thanks to Prof. Michio Takada and Dr. 
Tamotsu Furuzawa for their encouragement and helpful suggestions during the 
course of this work. The author is also grateful to Dr. Torao Tanaka for critically 
reading the manuscript to improve the present paper and for generous permission to 
make use of his computational results of loading effects of ocean tides. Thanks are 
also due to Mr. Masaru Yamada and Mr. Akio Hirono for their help in maintenance 
of instruments and to Mr. Masakuni Hashida for  kindly offering his computational 
results of loading effects of ocean tides. 

   The computations involved were made partly with a FACOM M-140 at the 
Information Data Processing Center for Disaster Prevention Research, of the Dis-
aster Prevention Research Institute, Kyoto University, and partly with a FACOM 

 M-160AD at the Computing Center of the Institute for Chemical Research, Kyoto 
University. 

                              References 

 1)  Takemoto, S.: Laser interferometer systems for precise measurements of ground-strains, Bull. 
    Disas. Prey. Res. Inst., Kyoto Univ., Vol. 29, Part 2, No. 262, 1979, pp. 65-81. 

 2) Berger, J. and R. H. Lovberg: A laser earth strain meter, Rev. Scient. Instr., Vol. 40, No. 12, 
    1969, pp. 1569-1575. 

 3) Levine, J. and J. L. Hall: Design and operation of a methane absorption stabilized laser strain-
     meter, J. Geophys. Res., Vol. 77, No. 14, 1972, pp.  2595-2609. 

 4) Goulty, N. R., G. C. P. King and A. J. Wallard: Iodine stabilized laser strainmeter, Geophys.



236 S. TAKEMOTO 

    J. R. astr. Soc., Vol. 39, 1974, pp. 269-282. 
5) King, G. C. P. and R. G.  Bilham: Tidal tilt  measurement  in Europe, Nature, Vol. 243, 

    1973, pp. 74-75. 
6) Itsueli,  U.  J., R. G. Bilham, N. R. Goulty and G. C. P. King: Tidal strain enhancement 

    observed across a tunnel,  Geophys. J. R. astr. Soc., Vol. 42, 1975, pp. 555-564. 
 7) Ozawa, I.: Observations of tidal strains at Osakayama Observatory, Part II. Annuals 

    Disas. Prey. Res. Inst., Kyoto Univ., No.  10A, 1967, pp. 63-75 (in Japanese). 
 8) Melchior, P., B. Ducarme, J. M. Van Gils, J. Flick and C. Denis: Preliminary results obtained 

    with a vertical strainmeter at the underground laboratory of geodynamics at Walferdange (Grand-
    duchy of Luxembourg), Phys. Earth and Planetary Interiors,  Vol. 9, 1974, pp. 97-100. 

 9) Harrison, J. C.: Cavity and topographic effects in tilt and strain measurement, J. Geophys. 
    Res., Vol. 81, No. 2, 1976, pp. 319-328. 

10) Blair, D.: Topographic, geologic and cavity effects on the harmonic content of tidal strain, 
    Geophys. J. R. astr. Soc. Vol. 48, 1977, pp. 393-405. 

11) Blair, D.: Topographic effects on the tidal strain tensor, Geophys. J. R. astr. Soc., Vol. 46, 
    1976, pp.  127-140. 

12) Tanaka, T. and P. Sydenham: The  Ma earth tides at Cooney Geophysical Observatory in 
    Armidale, Eastern Australia, Proceedings of the 8th International Symposium on Earth Tides. 

    1977, pp. 510-529. 
13) Emter, D., A, Jensch and H.  Kiesel: Finite element estimates of elastic effects on tidal tilt 

    and strain with special respect to results from the  Schiltach Observatory, Proceedings of the 
    8th International Symposium on Earth Tides, 1977, pp. 434-450. 

14) Ooe, M. and T.  Sato: On the topographic and cavity effects on the observation of the earth 
    tides, Abstract of the 54th General Meeting of the Geodetic Society of Japan, 1980, pp. 14-15 

    (in Japanese). 
15) Levine, J. and J. C. Harrison: Earth tide strain measurements in the Poorman mine near 

    Boulder, Colorado, J. Geophys. Res., Vol. 81, No. 14, 1976, pp. 2543-2555. 
16) Berger, J. and C. Beaumont: An analysis of tidal strain observations from the United States 

    of America, II. The inhomogeneous tide, Bull. Seism. Soc. Amer., Vol. 66, No. 6, 1976, 

    pp. 1821-1846. 
17) Hashida, M. and K. Shigetomi: Topographic effects on the earth tidal strains at Osakayama, 

    J. Geodetic Soc. Japan, Vol. 27, No. 1, 1981, pp. 11-21 (in Japanese). 
18) Latynina, L. A.: On possibility of studies of fault in the Earth's crust from the process of tide 

    deformation, lzv. Acad. Sc. USSR, Earth Phys., No. 3, 1975, pp. 16-26 (in Russian). 
19) Latynina, L. A. and S. D.  Rizaeva: About variations of tidal deformations before earthquakes, 

    Izv. Acad. Sc. USSR, Earth Phys., No. 9, 1975, pp. 84-87 (in Russian). 
20) Latynina, L. A. and T. P. Shishkina: About intensity of tidal and tectonic motions in the 

    zone of the Surhob fault, Izv. Acad. Sc. USSR, Earth Phys., 1978, No. 6, pp. 87-93 (in Russian). 
21) Latynina, L. A.: About tidal deformations at the Chusal station, Tadzhikskaya SSR, Study 

    of Earth Tides, Nauka, Moscow, 1980, pp.  207-214 (in Russian). 
22) King, G. C. P.: The siting of strainmeters for teleseismic and tidal studies. Recent Crustal 

     Movements, R. Soc. N. Z. Bull., Vol. 9, 1971, pp. 239-247. 
23) King, G. C. P. and R. G. Bilham: Strain measurement instrumentation and technique, Phil. 

    Trans. R. Soc. Lond. A, Vol. 274, 1973, pp. 209-217. 

24) Bilham, R. G., G. C. P. King and D. P. McKenzie:  Inhomogeneous tidal strains in Queensbury 
    tunnel, Yorkshire,  Geophys.  J. R. astr. Soc., Vol. 37, 1974, pp. 217-226. 

25) Evans, R., J. Beavan, R. G. Bilham and G. C. P. King: A survey of earth strain tides in Great 
    Britain, Geophys. J. R. astr. Soc., Vol.  57, 1979, pp. 119-135. 

26) Major, M. W., G. H. Sutton, J. Oliver and R. Metsger: On elastic strain of the earth in the 

    period range 5 seconds to 100 hours, Bull. Seism. Soc. Amer., Vol. 54, 1964, pp. 295-346. 
27) Panek, L. A.: Calculation of the average ground-stress components from measurements of



                  Effects of Local Inhomogeneities on Tidal Strain Measurements 237 

    the diametral deformation of a drill hole, Testing Techniques for Rock Mechanics, ASTM 

    STP 402, Am. Soc. Testing Mats.,  1966, pp. 106-132. 
28) Sokolnikoff, I. S.: Mathematical theory of elasticity, McGraw-Hill Book Co., New York, 

    1965. 
29) Zeinkiewicz,  0. C.: The finite element method in engineering science, McGraw-Hill Book 

    Co.,  1971. 
30) Akamatsu, J., T. Furuzawa and K. Irikura: On natures of S waves from local small earth-

    quakes observed at Amagase Crustal Movement Observatory, Annuals Disas. Prey. Res. Inst., 
    No. 18 B, 1975, pp. 11-21 (in Japanese). 

31) Melchior, P.: The tides of the planet earth, Pergamon Press, 1978. 
32) Nakano, M.: Choseki-gaku (Harmonic analysis and prediction of tides), Kokin-shoten, 

    Tokyo, 1940 (in  Japanese). 
33) Farrell, W.  E.: Deformation of the earth by surface loads, Rev. Geophys. and Space Phys., 

    Vol. 10, No. 3, 1972, pp.  761-797. 
34) Ogura, S.: The tides in the seas adjacent to Japan, Bull. Hydrograph. Dep., Vol. 7, 1933, 

    pp. 1-189. 
35) Navy, Ministry of Defence, USSR:  AT  AAC OKEAHOB, Pacific Ocean, 1974 (in Russian). 
36) Navy, Ministry of Defence, USSR:  AT  AAC OKEAHOB, Atlantic and Indian Oceans, 1977 

    (in Russian). 
37) Hendershott, M. C.: The effects of solid earth deformation on global ocean tides, Geophys. 

    J. R. astr. Soc. Vol. 29, 1972, pp. 389-402. 
38) Beaumont, C. and J. Berger: An analysis of tidal strain observations from the United States 

    of America, I. The laterally homogeneous tide, Bull. Seism. Soc. Amer., Vol. 65, No. 6, 1975, 
    1613-1629. 

39) Ueji, T.:  KyOto  kinbO chishitsu-shi (Geological history in and around Kyoto),  Chikashigen-
    kenkyasho, Kyoto, 1961 (in Japanese). 

40) Fukuzawa, T., S. Takemoto and K.  Onoue: Electro-optical distance measurements in Kiniki, 
    Chugoku and Shikoku districts (1974-1978), J. Geodetic Soc. Japan, Vol. 24, No. 3, 1978, pp. 

    132-140 (in  Japanese)  .


