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Abstract

   The elastic-plastic behavior of pin-ended reinforced concrete slender columns subjected to bi-
axially eccentric loads is investigated experimentally and theoretically. The ultimate loads, longi-
tudinal and transverse deformations and the behavior up to failure of the columns are examined 
in detail. 

   A total of 36 column specimens with rectangular cross sections including square sections were 
tested. The ratios of column length to minimum depth ranged from 6 to 26. Loads were applied 
monotonically at each column end with equal eccentricities at various angles from an axis of sym-
metry. The ultimate load carrying capacity of a slender column is reduced by additional eccentri-
city due to lateral deflection even in a column having a length to depth ratio of 15. The numeri-
cal analysis to solve the load-deformation response of the column predicts the test behavior very 

 well. In the case of square columns, there is not much difference in the ultimate loads of the col-
umns in spite of variation of the angle of eccentricity of the applied load. However, the remark-
able effects of biaxial bending on the elastic-plastic behavior occurs with the rectangular columns. 
When the rectangular columns are subjected to biaxially eccentric load to cause bending about the 
near-strong axis, the ultimate loads and the deformation behavior are significantly affected by the 
bending about the weak axis of the section.

1. Introduction

   Columns in building are designed conventionally on the basis of a structural anal-

ysis of frames in the planes in which the principal axes of columns are constructed. 
However, since almost all columns are subjected to biaxial bending, the effects of bi-

axial bending on the behavior of columns should be investigated. A number of 

experiments and analyses have been done to investigate the ultimate strength of short 

reinforced concrete columns under biaxially eccentric loading, and many strength 

formulations have been proposed for their design. 

   Investigations on instability problems of relatively slender concrete columns have 

been extensively carried out in the area of no fear of strong earthquakes, while the 

shear resistance of short columns has been more investigated in Japan. In AIJ  Stand-

ard1), slender reinforced concrete columns are regulated by the following limitations 

of Art.  15.7; 
 The ratio of the minimum depth or diameter of a member to the distance between 

 the main supporting points shall be not less than 1/15 and 1/10 in case of using 
 ordinary concrete and light weight concrete, respectively. These limitations,  how-

 ever, are not applied when the structural safety of the column is certified by struc-
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 tural calculation considering the effective slenderness ratio. 

In recent years, as the material strengths of concrete and steel increase more and 

more, the cross sections are able to be designed to compact and the members be-

come to be slender. Moreover the reinforced concrete braces with slender propor-

tions are sometimes used in a frame to resist earthquake forces. Therefore, clarifica-

tion of the elastic-plastic behavior of slender reinforced concrete columns is very im-

portant. 
   The column behavior under biaxial loading becomes further complex due to the 

slenderness effects. There is very little available experimental information of the sta-

bility of slender columns. In this paper, fundamental data from biaxially eccentric 

loading tests of slender columns with square and rectagular cross  sections2).3) are re-

ported. The objective of this study is to investigate the slenderness effects under 
biaxial bending on the ultimate strength and the deformation behavior up to the fail-

ure of reinforced concrete columns. 

2. Outline of Experimental Work 
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               Table 1 Mix proportion of concrete and material properties 
 (unit  : 1  Vein'  =0.098  kN/mm2). 

     Test Series  C  B A 

       Mixing Ratios by Weight 
         Water  0.  67  0.  65  0.  66  0.  62 

    Cement 1 1 1 1 
       Sand  1.97  1.91  1.91  1.90 
         Gravel  2.  74  2.  76  2.  76  2.  75 

       Specific Gravities 

         Cement  3.  16  3.  16  3.  16  3.  16 
        Sand  2.  61  2.  62  2.  45  2.  48 
         Gravel  2.  58  2.60  2.  50  2.54 

         Concrete 
        Compressive Strength  Fc (kg/cm2) 275 281 311 316 

         Strain at 
           Compressive StrengthEP(19-3) 2.59 2.30 2.41  2.  43 

         Splitting Tensile Strength (kg/cm2) - 30. 1  26.  2  28.  9 

        Reinforcement 
        Upper Yield Strength (t/cm2)  3.  72  3.  72  3.63  3.77 

        Lower Yield Strength (t/cm2)  3.54  3.  62  3.  49  3.  68 
        Ultimate Strength  (t/cm2)  5.  27  5.  17  5.  50 5. 18 
       Elongation (10-2)  18.  2  16.  9  22.  6  27.  2 

   A total of 36 column specimens were tested. Their column length to minimum 

section depth rations,  1/D or  i/b, ranged from 6 to 26. The geometry of test speci-
mens is shown in Fig. 1. The columns had a 12 cm (b)  x 12 cm (D) square cross sec-

tion or a 12  cm  (b) X 18  cm  (D) rectangular cross section with 8-D10 longitudinal bars 

(gross reinforcement ratios of 0.0396 and 0.0264, respectively) and 4.5 mm hoops spac-
ed 6 cm apart. The mix proportion of concrete and the properties of materials are 

listed in Table L The concrete was cast in the horizontal position using a machin-

ed metal-form. The compressive strength of the concrete was 270-340 kgf/cm2  (26-

33 N/mm2) and the tensile yield strength of main reinforcement was 3,500-3,700 kgf/ 

cm2 (340-360  N/mm2). Age of specimens at test was 40-210 days. 

   Photo 1 and Fig. 2(a) show a specimen placed in the loading apparatus. Both 

ends of the column were supported by universal bearings to simulate pin-ended con-

ditions. The bearings were greased to minimize friction. Load was applied mono-

tonically at each column end with equal eccentricities,  e, at various angles, 0, from 
an axis of symmetry, as given in Fig. 1. Transverse deflections, u and v in the prin-

cipal axes of the section, denoted by x and y, respectively, and torsional rotation, a, 

at the mid-height of the column (Fig.  2(b)), rotations of both column ends,  0, and 
 Ow (where added subscripts, u and 1, represented upper end and lower end, respec-

tively), about the x and y axes of the section, respectively, and axial deformation, w,
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(Fig. 2(c)) were measured by potentio-meters. Those potentio-meters were support-
ed on a rigid frame running parallel to the line of action of the applied load. Typi-

cal arrangements of the instrumentation devices are shown in Fig. 3. Load was meas-

ured by load cells installed at the ends of the columns. The strains on concrete sur-

face and in reinforcing bars were measured by potentio-meters and strain gages at 

some selected locations.
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3. Method of Theoretical Analysis 

   The load-deformation response of the column was solved by the numerical meth-

od of a second-order  analysis') taking into account the effects of deflections and 

changes in stiffness of the columns on moments and forces. The following basic as-

sumptions have been made: 

  (1) lateral deflections of the column are small compared to its length and the cur-

vatures are represented by the second derivatives of the deflections;
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  (2) plane sections remain plane after  deformation; 

 (3) effects of shear on lateral deflection and rotation of the cross section due to 
torsional deformation are negligible; 

  (4) the assumed stress-strain relationships for the concrete and the reinforcing bars 
are shown in Fig. 4(a) and 4(b), respectively. Strain reversal is not considered. 

The concrete is unable to sustain any tensile stress. 

   The effect of the strain reversal on the analytical results is discussed later. 

   A symmetrically reinforced rectangular cross section is considered and an x-y 

axis system is taken with the origin at the centroid of the section (Fig. 1). A force 

P is assumed to act at the point which is defined in the x-y axis by the eccentrici-

ties  e, and  ey, as shown in Fig. 5. If the assumptions of perfect bonding and plane 

distribution of strains are made, the strain, E, in the section can be defined by the 

three quantities  E0,  0, and  Ov. 

 5=Ea+s'Sbv+Y'Sbx  (1) 

in which 50=strain at the centroid and  tbr,  Ov=curvatures produced by bending mo-
ment components,  Mr and  My, about the x and y axes, and are positive when they 

cause compression in the positive y and x directions, respectively. Knowing the 
strain distribution, the axial force, N, and the bending moments,  Mx and  My, are 

calculated from the assumed stress-strain relationships. In the present study, the con-

crete and the reinforcing bars are partitioned into many small elemental areas. The 

total force and the moments in the section are then evaluated by summation of the
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elemental forces acting on the elemental areas and the moments of the elemental 
forces, respectively. 

   A pin ended reinforced concrete column shown in Fig. 5 is considered for the 
case of monotonic loads P applied with biaxial eccentricities at each end. The later-
al deflections, u and v, of the column are assumed to be small, so that the curvatures 

 0x. and  0„ can be expressed in the form of second derivatives of  deflections 

 d'v    °
I.-- de (2a) 

                  d'u  
   de (2b  —) 

For the given load P=N, the deflections u and v also have to satisfy conditions of 
external equilibrium, namely 

 Mx(0„,95y)-=-P(v+ey)   (3a) 

 My  (0,z,  Chy)  =  P(u  +ez)   (3b) 

The equilibrium shape can be determined by the solution of simultaneous equations 
for the various unknowns P, u, v,  Mx,  My,  0, and  0,, using equations (2) and (3). 
Using the first derivatives of  deflections about the x and y axes,  0, and  By, the cur-
vatures are given by 

 dOx                                                        (4a)                   dz 

 Oy =dOy  (4b)                   dz 

Therefore the second-order simultaneous differential equations (2) and (3) can be re-

placed by the first-order simultaneous equations expressed as 

           du    =Oy (5a)             d
z 

 dv       —0   
  dz,   (5b) 

 (  dO, d0y 
 dz  'dz)    =P(v+ey)   (5c)  ) 

     My   
             dOx 'ddOz)             =P(u+e x)    (5d)       dz 

   The column length 1 is divided into several segments of the same length. For 

equations (5), application of the Runge-Kutta-Gill numerical integration method and 

the Newton-Raphson iteration technique yields the deflections  u and v corresponding 

to the load, P. In this numerical analysis, the column length was divided into 10 

segments, and the square and the rectangular cross sections were divided into 10  x 

10 and 10  x 15 elements, respectively. As the condition of convergence of calculation, 

deviation of deflection at the end of a column was limited to less than 1/10,000 of 

the column length. Convergence for the given load level was achieved within two or
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three applications of the Newton-Raphson technique. 

4. Test Results Compared with Analytical Results 

   The test results are summarized in Table 2. 

   Figure 6 shows the experimental strain distributions across the section for sever-

al load levels for square short columns C 000, C 020 and C 210. The concrete strains 

and the reinforcing bar strains may be seen to conform closely to the plane strain 

distribution. It is only near maximum load level that there occurs some deviation 

from the plane strain distribution. The strain in concrete just before crushing was 

0.004-0.005 for the columns subjected to biaxially eccentric loads. Final collapse was 
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                 Table 2 Summary of test results (unit:  1  t  =9.  8  kN). 

1 Specimen0e P= 

              Pmax  U  V W  a 0.z.0  Oyu  ex/ Oyl Demax  GE  max cm name deg cm t 
mm mm  mm deg deg  deg deg deg  x  10-3  x  10-3 

 Square columns 

 C  000 0 0  57.1  4.04  5.64 

 C205  22.5  0.6  51.4-- 4.16  5.23 

 C  210 22. 5  1.  2 43. 3_--- 4.  23 5. 15 

 68.  0 C 220  22.  5  2.  4  30.  0  4.  75  4.  71 

 C  250  22.5  6.0  18.  0  5.41  -

 C 020 0  2.4  33.4  4.64  6.98 

 C  420 45  2.4  33.3  5.01  6.42 

 B  000 0 0  47.  9  5.  09-0. 18  3.40  0.01  0.  00  0.50  0.03  0.  51  2.56  2.  73 

 B  205 22. 5  0.6 46. 2  2.46 4. 45  3.03  -0. 02 0. 43 0. 43 0. 51 0. 39  2.71 2. 88 

 B  210a 22. 5  1.  2 35. 8 7. 73  6.  45  2.41  -  0. 02  0.  64 0. 83  0.  67  0.  84 3. 13 3. 13 

 188.0  B  210b  22.  5  1.  2 34. 4 9. 76 6. 76  2.65  -O.  01 0. 73  0.  99  0.73  1.  00  3.97 4. 80 

 B  220  22.  5 2. 4 25. 4  14.  09 9. 19  1.80  -0.  01  0.  92  1.  46  0.  97  1.  49  4.  62  3.  84 

 B  250 22. 5 6. 0 13. 4  20.  45 11. 13  0.56  -  0. 02 1. 21 2. 32 1. 18  2.  28 4. 34 4. 36 

 B  020 0  2.  4  27.  7  14.  09-0. 82  1.  66  -0.  03  -  0.09  1.  52  -  0.09  1.  49  2.  96  3.  39 

 B  420 45  2.4  23.2  11.78  14.64  1.72  -0.  02  1.55  1.  20  1.52  1.  18  5.08  3.83 

    A 000a 0 0 55. 4 5. 2  4.  4  5.87  -0. 04 0. 06  0.  08 0. 21 0. 16 3. 32 2. 89 

 A  000b 0 0  54.9  5.8  5.  4 - - - - - - -  -

     A 205 22. 5 0. 6  32.  6 12. 1 14. 6  3.42  -  0. 07  0.  93 0. 74 0. 89  0.  85  2.  59  2.98 

 308.  0  A210 22. 5  1.  2 28. 0 13. 5  10.  9  2.  50  -0.  02 0. 65  0.  78  0.  71  0.  90 2. 13 2. 41 

 A  220 22. 5  2.  4 18. 9 25. 7  17.  4 2. 19  0.  07 1. 06  1.  58  1.  05 1. 59 2. 87 2. 57 

 A250 22. 5  6.  0 10. 9 42. 3  22.  5  1.  65  -0.  07 1. 45  2.  73 1. 48 2. 79 3. 23 3. 39 

 A020 0  2.4  18.8  33.7  -1.2  2.16  -  0.07  -  0.  12  2.00  -0.  04  2.06  2.24  2.41 

 A420 45  2.  4  17.2  20.  6  25.  4  2.08  -  0.04 1. 52  1.26  1.54  1.  24  2.75  2.73 

 Rectangular columns 

    RS300 0  3.  0  61.  4  3.  77  0.  49  1.  76  0.  01  0.  07  0.  60  0.  13  0.  65  3.  54  4.  38 

     RS322  22.  5  3.  0  59.  1  3.  23  4.  28  1.  67  -0.  02  0.  74  0.  59  0.  81  0.  62  4.  14  4.  48 

 120.0 RS345  45.  0  3.  0  50.  0 2. 11  6.00  0.97  -  0.04  1.  26  0.  36  1.  08  0.40 4. 12  4.  42 

     RS367  67.  5 3. 0  43.4  0.  58 8. 36  1.45  -  0.01  1.  54 0. 17  1.  46  0.09 4. 22 5. 25 

     RS390  90.  0  3.0  42.  8  -  0.  18  8.78  1.56  -0.  02  1.  43  -  0.  13  1.  54-  O.  08  4.  44  4.  18 

     RL300 0  3.  0 48. 4 20. 57  1.  50  3.88 0. 02  -  0. 02 1. 30 0. 18 1. 36 2. 70 3. 13 

    RL322 22. 5 3. 0 35. 5 10. 29  19.  57  2.64  -  0.06 1. 31 0. 68 1. 35 0. 75 2. 54 3. 15 

    RL345 45. 0  3.  0 28. 4 6. 08  27.  49  2.  14  -  0.05 1. 64  0.39 1. 74 0. 45 2. 32 2. 94 

 300.  0 RL367 67. 5 3. 0 24. 1 2. 46  29.  32  1.  66  0.  02 1. 78  0.  21  1.  83 0. 22  1.  97 2. 27 

    RL390  90.  0  3.  0  23.  5  0.  40  39.  42  1.  83  0.01 2. 37  -  0.03  2.  47  0.  02 2. 19 3. 12 

     RL622  22.  5 6. 0  18.  7 15. 16 26. 94  1.  49  0.  03 1. 65  1.  00  1.  71 1. 04  2.  79 2. 97 

     RL645  45.  0  6.  0  14.  5  8.  73  36.  78  1.  23  -0.  07  2.  43  0.  64  2.  48  0.  68  2.  33  2.  86 

     RL667  67.  5  6.  0  12.  5  2.  92  43.  59  0.  95  -0.  07  3.  04  0.  22  3.  10  0.  33  2.  34  2.  93
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     Fig. 7 Load versus longitudinal strain relationships (C series)  (unit: 1  t=9.  8 kN). 

accompanied by spalling of concrete in the compression zone. This immediately re-

sulted in the buckling of longitudinal reinforcement between ties at the compression 

corner. All columns except one case, specimen C 220, deflected symmetrically with 

respect to the column mid-height and failed at the mid-height section. In Fig. 7, 

the test results of load-strain relationships obtained from the longitudinal strain data 

at the selected positions (A, B, C and D) of the mid-height section are compared 

with the analytical results. The broken lines and the solid lines denote the test data 
and the analytical data, respectively. By this analytical method, the test behavior of 

load and strain of the short columns is seen to be well predicted. 

   Figures 8 and 9 show the load-deflection curves and the load-strain curves, re-

spectively, for the square long columns of  l/D  =  25.7. The solid lines and the broken 

lines in Fig. 8 indicate deflections at mid-height, u and v, respectively. The thin 

lines correspond to the test results and the thick line to the analytical results. In the 

test, crushing of concrete occured at the descending branch after the peak load.
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          (unit: 1  t  =9. 8 kN). (A series) 
 (unit:  1  t  =9.  8  kN). 

The load decreased suddenly just after the crushing of concrete and the column was 

failed. The numerical analysis adopted herein need not take the strain reversal into 

consideration. The reason for this can be seen in the following. The experimental 

strains at the compression and tension zone increase monotonically with increasing 
load in each zone and strain reversal occurs in only a range of small strain near the 

neutral axis of the section, as shown in Figs. 7 and 9. Therefore it is regarded that 

the ultimate strength and the deformation behavior of the columns are scarcely affect-

ed by the strain reversal. 

   Figure 10 shows the change of mid-height deflections with increasing load. In 

the case of square columns under biaxial loading at the angle of  0  =22.5° (Fig. 10 

 (a)), the direction of deflection corresponds closely to the plane including the load-
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             Fig. 10 Change of mid-height deflections with increasing  load. 

 (a-1, a-2) A series. 
 (b-1, b-2) RL series. 

ing points and the centroids of the end section, before reaching the maximum load. 

However, after the attainment of the maximum load, the column has a tendency to 

deflect away from that plane. In the case of rectangular columns (Fig.  10(b)), the 

lateral deflections significantly depend on bending about the weak axis of the section. 

The numerical analysis to solve the load-deformation response of the column is seen 

to predict the test behavior very well. The torsional deformation a in biaxially ec-

centric loads was very small, as shown in Table 2, and the effect is negligible. The 

maximum torsional angle was measured to be only 0.6°. From these test results, it is 

confirmed that the assumption of no torsional deformation is useful to the analysis.
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5. Ultimate Loads of Biaxially Loaded Short Columns 

   The ratios of the maximum load by the test to that by the numerical analysis, 

 Ptest/P.1, for every square short columns are listed in Table 3 and displayed by bars 

in Fig. 11. Analytical results agree well with the test results. In the same figure, 

predicted values obtained by Bresler's  method') and Ramamurthy's  method} are rep-

resented. Bresler and Ramamurthy proposed expressions for the shape of the inter-

action surface for a reinforced concrete column section with biaxial bending from 

 P test    

1 2Pcal.Analysis     • • Bresler 
 Ramornurthy       10

^ffig,!!7afa 

 0  8  0c  0.85Fc Fc Fc  Fc  E
u  0.003  0.003  0.004  0005 

 C000 C205 C210 C220 C250 CO20 C420 

            Fig. 11 Comparison of ultimate loads of short columns (C series). 
 *: failed at column end . 

    Table 3 Summary of analytical results of square short columns (unit: 1  t  =9.  8  kN). 

 Peal(t)  (Pte.,./Peat) 

   Specimen  Post  =0.  85F,  6c  =Fe 

   Name (  t) Analysis  Eu =0. 003  eu=  0. 003 004  Eu  =0. 005 

 I* I  II 

    C 000 57. 1  56.  5  53.  9  53.  9  59.  8  59.  8  59.  8  59.  8  59.  8  59.  8 
 (1.011)  (1.059)  (1.059)  (0.955)  (0.955)  (0.955)  (0.955)  (0.955)  (0.955) 

 C  205 51. 4  49.6 45. 7  47.  2 50. 8  52.  6 51. 3 52. 9 51. 4 53. 0 
 (1.036) (1. 125)  (1.089)  (1.012)  (0.977)  (1.  002)  (0.972)  (1.  000)  (0.  970) 

 C  210  43.  3  43.  3  39.6  41.6 44. 1  46.3  44.  8  46, 7  44.  8  46.7 
 (1.000)  (1.  093)  (1.  041)  (0.  982)  (0.  935)  (0.  967)  (0.927)  (0.  967)  (0.  927) 

 C  220 30. 0 33. 3  30.  0 31. 9 33. 4 35. 4 34. 2 36. 0 34. 5 36. 6 
 (0.901)  (1.000)  (0.940)  (0.898)  (0.847)  (0.877)  (0.833)  (0.870)  (0.820) 

 C  250  18.  0 17. 2 15. 7 17. 2  17.  3  18.  9 17. 8 18. 9  18.0 18. 9 
 (1.047)  (1.146)  (1.047)  (1.040)  (0.952)  (1.011)  (0.952)  (1.000)  (0.952) 

 CO20  33.4  33.9  32.7  32.  7  36.  3  36.  3  36.  9  36.  9  37.4  37.  4 
 (0.985)  (1.021)  (1.021)  (0.920)  (0.920)  (0.905)  (0.905)  (0.893)  (0.893) 

 C  420  33.  3  33.0  29.  3  31.  0  32.  6  34.  3  33.  5  35.  0  33.5  35.6 
 (1.009)  (1.137)  (1.074)  (1.021)  (0.971)  (0.994)  (0.951)  (0.994)  (0.935) 

  *  I: Bresler's Method 
   II: Ramamurthy's Method
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which, knowing the uniaxial strengths, the biaxial bending strengths may be calcu-
lated. 

   An expression derived by  Bresler5 for the strength of a  Biaxially loaded column 

is 

      1 1 1 1  
 P.—  P .. PyA (6) 

where  Pu=ultimate load under biaxial bending,  Pz=ultimate load under uniaxial 

bending when only eccentricity  e, is present,  Py  =ultimate load under uniaxial bend-

ing when  only eccentricity  ey is present, and  Po=ultimate load when there is no ec-

centricity. Values of  F3, and  PP are obtained from the interaction functions that rep-

resent the section capacity under uniaxial loading conditions. 

 Ramamurthy6) proposed two equations to define  approximately the shape of  Ms-

My interaction curves in square and rectangular columns with eight or more bars, 

equally distributed among the faces. The locus of the ultimate radial moment  Mu at 

any load level in square columns is approximately defined by 

 =  Muyo  —  0.1  (0  /45°)  1   (7) 

where  M.,0  =ultimate  uniaxial moment about y axis corresponding to load P under 

consideration and  (deg.)  =tan-1(evie3,) =inclination of the line joining the load 

point to the  centroid of the section to x axis. Equation (7) yields  Mu=0.9  Muyo for 
 B=45°.  Mu for any value of 0 is calculated by linear interpolation between bending 

about a major principal axis and bending about a diagonal. 

   Using the rectangular stress block with a constant ultimate stress  Cr and a fail-

ure limit strain  Eu to represent concrete in the analysis of cross section  strength", 

interaction curves under uniaxial loading conditions were calculated in four cases; 

(1)  6c=0.85  (Fc=compressive strength of cylinder) and  Eu=0.3%, (2)  ac—F, and 
 Eu=0.3%, (3) 6,=--F, and  fu=0.4%, and (4)  6e=1', and  eu=0.5%. 

   The majority of calculated values obtained from Bresler's method were less than 

those obtained from Ramamurthy's method. All calculated values for the cases where 

      was assumed give good predictions of maximum load observed by test com-

pared with the cases where  6,=0.85  Fe. However, the value of extreme fiber strain, 
 Fu, has slight influence on the prediction of load. The maximum load obtained by 

the authors' numerical analysis corresponds to the case of  ce—F, and  Eu=0.5%. 

6. Load-Moment Behavior of Square Long Columns 

   The behavior of the column under increasing load is illustrated by the axial load 

versus bending moment diagram for the critical section of the column given in Fig. 

12. The lateral coordinate gives the magnitude of the biaxial bending moment, M. 

The points for the combination of axial load and nominal end moment at the maxi-

mum strength obtained experimentally are designated by small circles for each col-

umn. The three curves denoted by  "1/D=15.7" or  "1/D-25.7" represent the corre-
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          Fig. 12 Interaction diagrams for column section illustrating load-moment 
                 behavior up to failure (units:  1  t  =9.  8  kN,  1  t•  cm  =0. 098  kN•m). 

sponding analytical data. When the column is short, the additional eccentricity due 

to lateral deflection at the critical section is negligible and the maximum moment can 

be estimated by the end moment at all stages. When the N-M path with increasing 

load has reached the interaction line denoted by  "1/D=0" (where  o-c=Fe and  Eu= 

2  Er), a material failure of the section occurs. If the column is long, the additional 

eccentricity at the critical section increases more rapidly at high load levels, and the 

N-M path is curved. The maximum load of the column eventually is reduced by the 

amplified bending moment caused by additional eccentricity. 

   There are two types of long column behavior for the case of  //D=15.7. When 

the eccentricity at the column ends is relatively large, a material failure of the sec-

tion occurs causing the N-M path to reach the interaction line. However, when the 

load is applied with small eccentricity, the column becomes unstable before reaching 

the interaction line and even at the critical section the column does not demonstrate 

its material strength capacity. This is called an instability failure. For all columns 

of  1/D=25.7, the instability failure occurred, except in the one case of e/D=0.5 in 

which material failure occurred. In the test results, the N-M path reversed to inside 

of the interaction line after reaching the interaction line. This is because the re-
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                  Fig. 13 Square long column interaction diagrams 
                         (units: 1  t  =9.  8 kN, 1  t•cm  =O.  098 kN•m). 

     Table 4 Summary of analytical results of square long columns (unit: 1  t  =9. 8 kN). 

   Specimen  trc*  Pm.x u v  0,  OY  E.., 
    name kg/cm2 t mm mm  deg  deg  x  10-3  

 B000  52.8  2.  12  1.06  0.  105  0.212  2.  10 
      B 205 42. 1  7.  42  3.  39  0.  350  0.  773 3. 11 

 B210  34.  9 9. 19  4.  48  0.  462  0.  947  3.  32 

 B220 280  25.4  14.30  7.64  0.777  1.49  4.37 
 B250  13.  2  17.  88  9.  24  0.  976  1.  95  4.  30 

 B020 26. 1  13.  45  0.00  0.000  1.  43  2.  95 

 B420  24.9  10.93  10.93  1.  15  1.  15  4.27 

 A000 39. 1 12. 1  5.  0  0.  30  0.  72  2.  05 

 A  205  30.  5 16. 1  7.  6  0.  47  1.  00  2.  20 

     A210  24.  2  19.  2  9.  7  0.  60  1.  20  2.  30 
 A220 310 17. 3 28. 9  14.  7  0.  90 1. 80  2.90 

 A250 9. 8 38. 7  18.  4 1. 17 2. 52  3.  21 

 A020  18.  0  38.  1  0.  00  0.  00  2.  35  2.  52 
 A420  16.  9 22. 0  22.  0  1.  38  1.  38  2.  92 

     *  ce: Assumed concrete strength 

duction of load carrying capacity of the critical section occurs by the spalling of con-

crete and the buckling of main reinforcements. 

   Figure 13 is the family of square column interaction curves giving the combina-

tion of the axial load and the end moment which cause failure of the column. Solid 

lines are obtained analytically, indicating the reduction in ultimate load due to  slen-

derness for various loading cases. All the test data are plotted by the small circles. 

Analytical results of the maximum loads  P..x and the deformation at  P=Prn,,,, for long 

columns are summarized in Table 4. In the case of square long columns, it is re-

markable that there is not much difference of the ultimate loads of the columns in 

spite of variation of the angle of eccentricity of the applied load. The analytical re-

sults agree quite well with the test results.
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7. Ultimate Loads of Rectangular Columns 

   Figure 14 shows how the maximum load  P„,,,„ varies with changing the angle  8 

of eccentricity for rectangular columns subjected to uniaxially or biaxially eccentric 

loads. Analytical results are listed in Table 5.  Because of the difference of load car-

rying capacity and bending stiffness about each of two principal axes, i.e. the strong 

axis and the weak axis, the maximum load of column decreases with increasing 0. 

For all short rectangular columns of  1=120  cm  (1/b=10), the material failure occured 

at the critical section. When the load is applied so as to cause bending about the strong 

axis, the effect of the additional bending moment caused by deflection on the ultimate 

                        o Experiment  P
max  (t)  • Analysis 

 60  -  II  I  ..120cm 

 50  -N. e  =  3  cm           . 

, 

. 

 40  - 

       aN  l - 300cm 
 30  --., e  3  cm                         `‘ .., 

 20  -  "---e--  -a                                              Fig . 14  P...x-0 relationship of rectangular 
                                                 columns (unit: 1  t  =9. 8 kN). 
      10 - I  =  300  cm 

 e  =  6  cm 

 0  -  '  '  '  "  9  (deg) 
           0 22.5 45 67.5 90 

      Table 5 Summary of analytical results of rectangular columns (unit: 1  t  =9.8 kN). 

   Specimen  6c*  Prnax  U  v  Ox  By  Eniax 
     name   kg/cm' t mm mm deg  deg  x  10-3  

    RS300  58.  7  5.  35 0 0  0.  92  4.  88 

     RS322  53.  0  3.  83  5.  12  0.  85  0.  66  5.  52 
      RS345 340  46.  4  2.  68  6.  58  1.  12  0.  46  5.  12 

     RS367  42.  7  1.  53  8.  23  1.  38  0.  26  5.  09 

    RS390  41.  4 0  9.  87  1.  60 0  5.  00 

     RL300 230  34.  2  18.  77 0 0  1.  26  2.  69 
      RL322 280  27.  2  10.  98  20.  43  1.  30  0.  74  2.  78 

      RL345 320  23.  9  7.  95  30.  15  1.  91  0.  53  2.  85 
      RL367 330  21.  6  3.92  35.  00  2.  23  0.  26  2.  57 

     RL390 340  21.  1 0  37.  72  2.  41 0  2.  30 

      RL622 270  17.  1  15.  83  26.  22  1.  71  1.  09  3.  19 
      RL645 280  13.  8  10.  96  37.  22  2.  44  0.  74  3.  17 

      RL667 340  13.1  5.  02  38.  41  2.  58  0.  34  2.  42 

 *6,  : Assumed concrete strength



 Stability of Slender Reinforced Concrete Columns Subjected to Biaxially Eccentric Loads 155 

load is negligible. However, when the load is applied to cause bending about the 

near-weak axis, there is some amount of reduction of ultimate load due to the addi-

tional moment. For the long columns of  1=-300 cm  (l/b =25), the ultimate load was 

affected largely by increasing deflection with increasing load and the instability fail-

ure occurred. When the columns are subjected to a biaxially eccentric load causing 

bending about the near-weak axis, that is, the  load is applied when angle 0 ranges 

from about  45° to 90°, the maximum load and the deformation of the columns closely 

resemble the behavior under uniaxially eccentric loading conditions about the weak 

axis. Therefore, those columns can be approximated by the columns under only uni-

axial bending about the weak axis. However, when the columns are subjected to 

biaxially eccentric load to cause bending about the near-strong axis, with 0 ranging 

from 0° to  45°, the ultimate strengths seriously depend on the angle of eccentricity of 

the applied load, as shown in Fig. 14, and consequently the column must be analyzed 

exactly by taking into account the biaxial loading effect. 

8.  Conclusions 

   The following conclusions can be drawn for the ultimate load and the deforma-

tion behavior of slender reinforced concrete columns subjected to a biaxially eccen-

tric load. 

 (1) On the basis of the test results, it is recognized that the concrete and the re-
inforcing bar strains conform closely to the plane strain distribution even in the case 

of biaxial bending. 

 (2) The numerical analysis adopted herein to solve the load-deformation response 
of the column very well predicts the test behavior. 

 (3) The ultimate load carrying capacity of a slender column is reduced by the ad-
ditional eccentricity due to lateral deflections, even in a column having a length to 

depth ratio of 15. 

 (4) In the case of square long columns, there is not much difference on ultimate 
loads of the columns in spite of variation of the angle of eccentricity of the applied 

load. 

  (5) In the case of rectangular long columns, when the columns are subjected to 
biaxially eccentric load to cause bending about the near-strong axis, the ultimate loads 

and the deformation behavior seriously depend on the angle of eccentricity of the ap-

plied load. Consequently those columns must be analyzed exactly by taking into ac-
count the biaxial loading effect. However, the columns subjected to biaxial bending 

about the near-weak axis can be approximated by that under only uniaxial bending 

about the weak axis.
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                        Appendix-Notation 

   The following symbols are used in this paper. 

b=width of column section 

D=depth of column section 

 E3  =Young's modulus of reinforcing bar 

 e=  Vex2+  ey2, resultant eccentricity of load 

 ex =componentof eccentricity of load in the x direction 
 ey=  component of eccentricity of load in the y direction 

 Fe=concrete cylinder strength 

 /=length of column 

M=biaxial bending moment 

 Mu  =ultimate biaxial bending moment (Eq.  (7)) 

 Muyo=ultimate uniaxial bending moment about the y axis (Eq. (7)) 

 Mx=bending moment about the x axis 
 MM  =bending moment about the y axis 

 N=  axial force
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P=compressive load applied at the ends of column 

 Peal  =  maximum load calculated by the numerical analysis 

 P.= maximum  load 

 Po=ultimate load under pure axial compression (Eq.  (6)) 

 Pte.t=maximum load obtained by test 

 Pu=ultimate load under biaxial compression (Eq. (6)) 

 Px=ultimate load under compression with uniaxial eccentricity  ex (Eq. (6)) 

 Pv=ultimate  load under compression with uniaxial eccentricity  ey (Eq.  (6)) 

u=component of lateral deflection in the x direction 

v=component of lateral deflection in the y direction 

w=total axial deformation of column 

 x=principal axis of the cross section 

y=principal axis of the cross section 
z=coordinate along original column axis 

 a=torsional rotation angle at the mid-height of column 

 E  =  strain 

 E  max=  compr  ession corner strain at maximum load 

 DE.=compression corner strain at maximum load measured by potentiometers 

 Gemax=compression corner strain at maximum load measured by strain gages 
 Eo=strain at the centroid of cross section 

 Ep=strain at maximum stress of concrete 

 E  u  =failure limit strain of concrete 

 Ey=yield strain of reinforcing bar 

8=inclination of plane including the loading point and the centroid of the end sec-

   tion to the x axis 
 Ox=slope of deflection curve of column about the x axis 

 Ost=rotation angle of the lower end of column about the x axis 

 Ozo=deflection slope about the x axis at origin of the z axis (see Fig. 5) 

 Ox2,=rotation angle of the upper end of column about the x axis 

 ey=slope of deflection curve of column about the y axis 

 tipz=rotation angle of the lower end of column about the y axis 

 00=deflection slope about the y axis at origin of the z axis (see Fig. 5) 

 8,.=rotation angle of the upper end of column about the y axis 

 6  =  stress 

 6  c=  ultimate strength of concrete used in the analysis 

 6v  =yield strength of reinforcing bar 

 0,v=curvature about the x axis 

 Øy =curvature about the y axis


