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Abstract

   A numerical simulation method of overland flood flow, in which the effect of buildings and 
other structures on flow behavior are taken into account is presented to be used in hazard zone 
mapping in respect to damages to wooden houses. At first, the basic equations and their explicit 
finite difference expressions are delineated, which assures stable and accurate solutions for overland 
flood flows. Then a procedure for taking into account the effect of structures on flow behavior is 
examined. Validity of this simulation method is checked by comparing the results of laboratory 

 model experiments to those obtained through calculations. Subsequently, the criteria for the destruc-
tion of wooden houses by a flood flow is discussed. These criteria, combined with the simulation 
method is used to predict the flood hazardous zones in an actual basin (Ogura basin, situated in 
the south of Kyoto Prefecture). Finally, we propose a method to estimate the amount of damage 
by an inundation, and compare the loss calculated under several imaginary bank breach points.

1. Introduction

   In Japan, about  50% of its population lives and  70% of owned real estate exist in 

flood hazardous zones. Although continuous efforts have been devoted to construct 
flood prevention works, the risks of river bank breach are still very high. In fact, the 
risks are greater than before due to the progress of the concentration of population 
and the concomitant structures in hazardous zones. Under these circumstances,  'soft' 
measures to mitigate disaster are very important. Among various soft measures, which 
is the modern generic term for non-structural flood prevention measures, the predic-
tion of flood areas and their severity, such as the ranges within which houses would 
be swept away, or severely inundated, or severely affected by sedimentation etc., would 
be the most urgent because such predictions would give us an understanding of the 
degree of safety of life and property. This is the starting point from which to devise 
strategy against flood hazards. 

   Our efforts first produced a numerical simulation method of inundation, in which 
the effect of structures on flow behavior were taken into account. After that, the 
criteria by which the resistance of wooden structures against being swept away was 
discussed. This criterion was derived as follows : Wooden houses are comparatively easily 
swept away due to their weak base structures. Therefore, the criterion of the structural 
limits beyond which a wooden structure will collapse, is also assumed as the criterion 
for the limit beyond which a wooden structure would be swept away. The criterion 
is defined as the condition when the applying moment, M, around the bottom of the
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post and beam structures exceeds the maximum resistant moment,  M. This set of 
conditions has been derived from a full-scale model test. According to the results of 

model experiments on hydraulic force acting on the house, there are linear relationships 

between the moment, M, and the hydraulic force factor u2A by taking water depth 

h as a parameter. This relationship is used to draw curves along which critical points 

are placed. The values of u and h by which these points are plotted will give the 

criteria for the destruction of post and beam structures by an inundation. 

   Resistance of window glass against hydrodynamic pressure was also examined and 

risk of window glass failure which may result in the case of severe damage to the 

house was discussed employing the same set of coordinates, u and h as in the case of 

removal by  flood. 

   We tried to predict the flood hazardous zones in an actual basin by combining the 

simulation method with this criterion corresponding to the several cases of bank breach 

points. Furthermore, we tried to estimate the amount of loss in each bank breach case 
by introducing functions to calculate the damage rate of a house under certain 

combinations of water depth and velocity. These estimations made it possible to discuss 

various problems such as at which points along a levee would a break cause the most 

severe damage in the basin, or how does the damage potential change with the change 

of times, or what would be the effect of  dosing the breach in the midst of flooding. 

2. Basic Equations and Their Finite Difference Scheme for Overland Flood Flows 

 2.  1 Basic Equations 

   Simplified Reynolds equations can be written as follows  : 

 au ^a(uu)  a(uv)  a(uw)1  ap a2u 

                              p ax p(p+0   ( 1  )  at ax ayaz az2 

 au  +  a(vu)a(vv) a(vw)1 ap1a2v                                    +(110+   ( 2  ) 
    at  ax  ay a,az2 

                                0=F.
pap             —  (  3  )                                         az 

   The continuity equation is 

   au ava.0   (  4  )            ± — 
         ax•ayaz 

When we take x, y axes horizontally and z axis vertically,  F=—F,,=0,  F2.--g, where, 

 u(t, x, y,  z),  v(t, x, y, z) and  w(t, x, y,  z) are velocity components in x, y, and  z 

directions, respectively,  t—  time,  g=gravitational force per unit mass,  p=pressure,  p= 

viscosity,  C—  eddy viscosity,  p  =density of fluid. In the case  of overland flood flows, flow 

conditions can be characterized as shallow because the problem possesses much larger 

horizontal than vertical scales. So that, these equations can be integrated over  z direc-

tion, under the assumption of hydrostatic pressure distribution, giving the following 

governing  equations  :
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where,  u0 and  vo are depth averaged velocity components of x and y directions, res-

pectively, M and N are water discharge per unit width in x and y directions, i. e. M= 
 uoh,  N=voh we herein call each of them  'flux',  h=water depth,  zb=elevation of the 

base,  rbx and  rb, are x and  y components of resistance to flow and we assume the 
following relations. 

 rby   —  gn2u04g+vg  rby  grevoll4H-vg  
      h"311113  (  7  )                         p 

where, n is Manning's roughness coefficient.  pzz,  p,,  /3,x,  ,ay„ are momentum correction 
coefficients, and they are 

       13—=TziS.:+h  {1+ ( uo )2}dz 
          1S" {iuv 1 

      P'''= 2buovo CIZ —fiYz   ( 8  ) 

 =  
h= 
 1 S:±h{i±( Yldz,                                 vo 

where u' and v' are fluctuation velocities from  u0 and  vo. In this study, we assumed 

all these momentum correction coefficients as unity. By integrating eq.(4) from z=zb(bed 

surfcce) to  z=zb+h(water surface) (See Fig.  1), we obtain the following continuity 

equation. 

       8hamaN      + —0   (  9  ) 
 at  ax  ay 

   This mathematical model of overland flood flow is restricted only by the afore-

mentioned assumptions and the validity of this model can be extended even to the 

         " — 

 Zbth  b 

        4 . 

                                                   Z.Zb 

 X 

                     Fig. 1. Definition sketch of coordinates system.
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vicinity of the advancing flood front. Furthermore, assuming that the front velocity is 

equal to the water velocity immediately upstream from the front, this model may be 

used to represent the whole flow field. 

 2.2 Finite Difference Scheme 

   The integration of the system of the equations is achieved numerically. The values 

to be calculated are the water depth, h, at each mesh center and the fluxes M and N 

normal to each mesh side. The arrangement of the mesh scheme and the calculation 

process are shown in Fig. 2. The derivatives approximated by finite differences lead 
finally to the following numerical forms of equations  : 

 t 
 •:M=uh  0:N=vh  h 
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              Fig. 2. Grids for two dimensional unsteady flow calculation and 
                      arrangement of mesh scheme. 

continuity equation 

              h7-ti/ 2, 34 1/2hr1-1/2, 3+1/2  + M4113+1/2 —M7,7-1-1/2  + N732.3+1N7-1-1212.1 0    (10) 
 2At  Ax  Ay 

momentum equation of x-component 

                  Mn+.2  ''3+1/2  XDX+  XDY 
 24t 

                     (h7:11/2, 1+112 +h7111../2,3+1/2)74-12.1+1/2 Zbi1+1/2h7:11/2. 1+1/2 — Zbi-1/2, +1/0  — =g
24x
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                          11..1-1/2\/(tel.+1/2)2+ (1)73+1/2)2 (11)             —gn41/2.+1/" ,/..n41/mo./3                                 2 11-1/ 2, 3+1/2+rti+1/2,  3-1/2)/j 

momentum equation of  y-  component 

            N'•`+2•—111!•[Inv-                   0+1/2,jl+112.3ijA 
              24t 

                     (h7a2.3 +1/2 +h711/2, 3-1/2) 01;V/2, j+1/2 Zbi+1/2, 1+1/2hiV/2, 3-1/2 Zbi A-I/2, 3-1/2)    =g
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   XDX,  XDY,  Y  DX and YDY are non-linear convection terms, in order to save space, 
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           Fig. 3. Arrangement of  uo,  uo and  M in calculation of XDX and XDY.
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only the finite difference expressions of XDX and XDY terms are presented below" 

(See Fig.  3)  : 

              XDX= (L17+112, P-1/21131.1+1/2U7-112.1+1121131-1, 3+112) //Ix, 

                                         (U7+1/2,1+1/2>0(Min,  j+1/2�  0) 
                   = (U7+112, 3+112M-7,3+112  U:L1/2,  3+1/211/17,j+1/2) /4x, 

                                               (U7+1/2.j+1/2-U7--112.3+112<0)  (16a)                      (U7
+112,1+112117141, 3+1/2  -  U7-112, 3+1121/717-1,  3+1/2)  / 4x, 

 (U7+112,3±112<0,  U7-112.  1+1/2>0) 
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                                    or  v4<0,  v2<0,  M3>0)  (21) 
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               =v3M1  (v3>0 ,  vi<0,  M1>0, M2>0 
                                       or  v3>0,  v1�0, M1>0)



     Hazard Zone Mapping in Respect to the Damages to Wooden Houses due to  Breaking of Levee 65 

 =  V3M2 (r3<0,  V1>0,  Mi>0,  M2>0 
                                    or  v,<O,  vi<O,  M2>0)  (22) 

 =  viM, ,  (v3>0,  v,<O,  M1<0, M2<0 

                                       or v3<0,  v,<0,  M,<O) 

 =v1M1 ,  (v3<O,  v1>0,  M1<0, M2<0 

                                       or v3>0,  v1�0,  M1<0) 
 =0  , (the others) 

   Unknowns in these equations are  Mn+2,  N"+2 and  hn-", so that, except at the bound-

ary, we can obtain values for  Mn+2 and  N"+' by substituting the known M",  Nn and 

 h" values into eq. (11) and  eq.  ( 12)  . Next, substituting these values into eq. (10), we 

obtain the values of  h"+3. Calculation of the inertia terms by the finite difference 
approximation is accomplished by using  M' and  N' as was introduced by Iwasa 

and  Inoue2). 

   The boundary condition at the fixed plain boundaries is that the mean velocity 
normal to the boundary is zero. The flood front of the flow is a moving boundary 

and presents a difficult problem even for computer-aided analysis. The present analysis 

sacrifices strictness of mass conservation to some extent to get rid of the complexity 

at the forefront. The alternative simplified treatment is that if the computation yields 

a flow depth less than a certain small threshold value in a mesh, the forefront is re-

garded as not having arrived yet, so that no flux is generated from this mesh. 

 2.  3 Consideration of the Effect of the Existence of Structures in a Mesh 

   As the overland flood flows are affected by the existence of houses and other struc-

tures, we must consider this effect. So far, two dimensional overland flood flows have 

been simulated by giving a certain roughness coefficient or equivalent friction coeffi-
cient respectively to the urban area, agricultural land, forest and so forth. For 

example, Xanthopoulos et  al3). adopted Manning's roughness coefficient  n=0.  067 for 
the village,  0.025 for the cultivated area,  0.040 and 0. 033 for the tree area and bush 

areas, respectively.  Aida') obtained an equivalent friction coefficient f, by considering 
the energy loss due to the screening effects of the buildings on the run-up of a 

tsunami, and he used  fc=0. 1 for the structure dense area. By comparing the results 

of numerical simulation with experimental results, Nakagawa et  ale). proved that if the 

proper value of roughness  coefficient is chosen in each mesh corresponding to the density 
of real estate development in it, it was possible to simulate the behavior of the over-

land flood flows in the  field quite accurately. But it is very difficult to evaluate the 
roughness  coefficient based on the greatly varying density of structures from area to 

area. Goto et  ale'. proposed the following equivalent roughness  coefficient: 

 n=  2
g1'e                      h4/3,c  1 

   1)  (23) 

where,  equivalent roughness  coefficient,  11=  distance from the front row of a group 

of buildings to the range where the energy loss is evident by the contraction of flow, 

 c  c=  discharge  coefficient presented by the function of Froude number and the contraction
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          Fig. 4. Definition sketch for evaluating the effects of houses in a mesh to 
                the behavior of the flooding water. 

coefficient. In this equation, there is a problem how to decide the value  /I. The 

information we can obtain from the topographical maps, are the number of buildings, 

total area of structures, arrangement of structures and so forth. But it might be very 

difficult to consider all this information into calculations for equivalent roughness. Hence, 

alternative to estimating the equivalent roughness coefficient, a method is presented 

that uses the concept of flux correction factor. This factor,  A, is defined as the rate 

of area occupied by structures to a mesh  area(4x4y), namely,  49 is calculated at each 
mesh center  (i+ 1/2,  j+1/2) (See Fig.  4)  : 

 Ai-F1/2,j+1/2  =,/  —  Ak/Aily  (24) 

where,  E  Ak  =  total area occupied by the structures. In this treatment, it is assumed 

that the scale of a mesh is sufficiently larger than the area occupid by any structure 

and that the structures in a mesh are scattered widely. Fluxes M and N are modified 

as follows : 

                          {1147,'.41/2 a=i+  1/2t   (25)                                12M7
,-gL1/2<0: a=i—1/2j                                  

: b=j+1/          M:
1121.         /2,/bNIVI2'tiV74712.  (26)                            N741,2,K0 :  b=j-1/2J 

By substituting eq.(25) and eq. (26) into  eq.(I0), we obtain the modified water  depth  : 

                                                    ,24t7Cp;+2                k -11/2,j+1/2ki-Y,12,j+1/2'n-F1'2j-F1/2/171-7.-1.41/21r,±1/2,j4-1ST7H1/7,j)                ibc 

 (27) 

3. Comparison with Laboratory Experiment 

   A quantitative test of the numerical model was done by comparing the results with 
the experimental outcomes. A situation is simulated, where the river bank is partially 
destroyed within an extremely short time interval and the two dimensional flood propa-

gates over a horizontal dry bed surface.
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 3. 1 Experimental Set-up 

   The experimental set-up is shown in Fig. 5. The flood plain area is 1.  84m  x  1.84m 

and the bank breach is 20 cm wide. Urethane blocks, 2. 5 cm wide, 2. 5 cm long and 

 3.  0 cm high, were arranged on the dry bed, and simulate the group of structures. A 

flooding was generated by pulling the gate up in an instant. 

   The surface velocity and the depth of flow at the breach point were measured by 

a high-speed TV-video camera and a servo-type water level gauge, respectively. The 

expanding shape of the flood front was measured by an another video camera. 

Water depth along the flow axis perpendicular to the breach at the distance of 0 cm, 50 

cm, 100 cm and 150 cm from the breach point was measured with 4 channel servo-

type water level gauges. Sampling speed was 125 Hz and the data were monitored on 

the pen-recorder and recorded into a data recorder. 

   Hydrograph and water depth at the breach point are shown in Fig. 6. Concerning 

the water discharge, since it was evaluated by using water surface velocity and water 

depth at the breach point, the value may be slightly larger than the actual water 

discharge. Experimental conditions are shown in Table 1, where  Bo=  width of the bank 

breach,  Ho=  initial water depth in the tank shown in Fig. 5,  i  =  bed slope,  n  =Manning's 

roughness coefficient  (m -"sec),  B=  distance from block to block. For the  CASE-1, 

there are no blocks on the bed. The flow freely descends to the downstream end of 

the flood plain. 

                                                                                      ..— 

 water gate c) 
 tank 20w 3                                                 tnr--...                               ..., i ' --- •   
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      13001300000000unit (cm) 
     0E100000130000. 

 1' 

                                   0 

                 0 1 2 3 
     -..--  184  ..- T(sec) 

        Fig. 5. Experimental setup. Fig. 6. Hydrograph and water depth 
                                                        at bank breach point. 

                   Table 1. Experimental conditions of the floodings 
                            due to sudden bank breach. 

                              CASE  B  (cm) 

 Bo=  20cm 1 
 H0= 5cm 

 i=0 2  2.5 
 n=0.01 3  5.5 

                      4  10.5
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 3.  2 Results and Discussion 

   Conditions of calculation are shown in Table 2, where,  At=  split  tdne of calculation. 

In CASE-3 and  CASE-4,  i+112,j+112—  O.  87  (=VI  —O. 25) as  zlx=z1y=  5 cm and  E  Ak=6.  25 

 cm'. In CASE-2,  4x=4y=2. 5 cm, which is equal in size to one block. Thus, in this 

case, in one mesh there is no block and in the other mesh the mesh area is wholly 

occupied by a block. In this case,  /9 is either 0 or 1. 

            Table 2. Conditions of calculation for the floodings due to sudden 
                      bank breach. 

                      CASE  B  (cm)  Ax  (cm)  dy  (cm) 
 B0=20ern 

 1 4. 0  4.0  H
o= 5cm 

 i=0 2  2.5  2.5  2.5 
 zit=0.  001              3  5

.0  5.0  5.0                  (
sec) 

             4  10.0  5.0  5.0 

   The shapes of flood front and surface profiles along the flow axis at  t=  1, 2, and 

3 seconds after the bank breach are shown in Fig. 7. In CASE-I, although the calcu-

lated shapes of the flood front show a little greater expansion than the experimental 

ones, they are in comparatively good agreement. Therefore, we can regard this simu-

lation model as appropriate under the condition of the uniform dry bed surface. In 

CASE-2, the calculated results are in very good agreement with the experimental ones, 
but this scheme requires much process time for computation because the values for 

 Zlx,  Ay and  At are very small. Considering the application of the method to the actual 

basin, it may be impossible to take each structure into account and to use such small 

scale  Ax or Ay. In  CASE-3 and CASE-4, we used values twice as large for  Ax and 

Ay, and considered the effects of the blocks by introducing the correction coefficient 

 Pi-1-1/24+1/2. Both calculated shapes of flood front and the water surface profiles along the 
flow axis are comparatively in good agreement with the experimental ones except for 

those occassions when the flood fronts are advancing diagonally among the blocks in 

CASE-4. From these results, we obtained satisfactory descriptive properties of the 

model for the each case, and the validity of this model was verified from the actual 

experimental results. 

4. Criterion for the Destruction of Wooden Houses by a Flood Flow 

   Some  investigations°  a) have found the empirical relationship between hydrodynamic 

force and the destruction or removal of wooden houses due to a flood flow, but they 

have not considered the mechanism of destruction itself. Here, we focus on finding 
the critical condition for removal of the wooden houses by discussing the hydrodynamic 

force applying to the structures and the resisting mechanism to this force. 

   The base structure of a typical contemporary  Japanese-style wooden house is shown
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Fig. 8. Example of base structure of typical Fig. 9. Behavior of tenon as plastic hinge 
      contemporary Japanese-style wooden subject to lateral load. 

        house. 

in Fig. 8. The base of post and beam structure is rather strongly bound with anchor 
bolts. However, the joint where the beam forms a crosspiece is tenon structure. As 
shown in Fig. 9, this joint behaves as a plastic hinge resisting a moment caused by a 
lateral load such as the hydrodynamic force of a flow and therefore, this may be the 
most weak point of the whole structure. We presume the dislodgement and removal of 
a wooden house in floodings occurs primarily by the destruction of this point, while the 
common believe that buoyant force acts as an important foctor may also be true to 
some extent. Since the effect of flooding on tenon jointing has yet to be investigated 
it is hoped that future research on this point will be undertaken. 

 4.1 Laboratory Experiments 
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                     Fig. 10. Profile of experimental model house.
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   The experimental flume (50 cm wide, 20 cm deep and 5 m long) and a structure 

model are shown in Fig. 10. This model structure (5. 0 cm wide , 7. 0 cm long and  9.  8 
cm high) hung by a stiff brass plate was set in the flow, and the drag force (or 

 `hydrodynamic' force) 
was measured. The measurement of the force was accomplished 

by using 4 pieces of strain gauge attached to both sides of the brass plate and by the 

following equation  : 

 F=E1(eA  -eB)/elo   (28) 

where,  eA and  eB=  change in length due to strain A and B, respectively,  E=  Young's 

modulus of plate,  /=  geometrical moment of inertia,  e=  edge distance,  /0---  distance from 

A gauge to B, and the value of  EI/elo is  constant  (  =  1.  94859  x  109 dyn) in this experi-

ment. The height of the acting point of the force,  h„ is obtained by  : 

 h,=Lo-sAlo(EA-EB)   (29) 

where,  Lo is a distance from A gauge to the bottom of the flume. 

   Experimental conditions are shown in Table 3. We show the relationship between 

hydrodynamic force F and the factor  u2A in Fig. 11, in which A=Bh and B is the width 

of the model structure. From this figure, the following relationship was obtained: 

        Table 3. Experimental conditions for demonstrating the hydrodynamic force 
                 acting on the house model. 

 Q(cm3/s)  R, h  (cm)  u  (cm/s)  F, 

       4079 6230  4.56-9.48  8.  61-17.  89  0.  089-0.  268 

        4992 8330  4.  95-9.  24  10.  81-20.  17  0.  I14-0.  290 

        6166 10230  5.  36-9.  26  13.  32-23.  01  0.  240-0.  317 

        7157 11760 5.66-9.32  15.  36-25.  29  0.  161-0.  340 

        8174 12480  6.  01-9.  45  17.  30-27.  20  0.  180-0.  354 
        9179 14010 6.31-9.32  19.  70-29.  09  0.  206-0.  370 

   3  10   
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Fig.  II. Relationship between drag force F Fig. 12. Relationship between drag coeffi-
       and hydraulic force factor  u2A. cient and Reynolds number.
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  =1.064  (30) 
 pu2  A 

   The relationship between drag coefficient and Reynolds number obtained from 

these experiments are shown in Fig. 12. The variation of the drag coefficient to the 

Reynolds number is rather slight. This is because the points at which the stream of 

water separates from a square structure model with sharp edges do not change as in 

the case of a cylinder. Furthermore, the wakes generated for the square cross 

sectional body shape having sharp edges like this house model are stable. In this 

experimental range (Froude number  O.  089-0.  370, Reynolds number  6230-14010), the 
drag coefficients in the open channel shear flow takes similar values in the uniform 

flow. 

   The height of point of action obtained from eq. (29) is shown in Fig. 13. The 

ensemble mean value of  hr/h was  0.732. 
   If the approaching velocity profile is approximated according to the following 

logarithmic law  : 

 u/u*=  5.  5+  5.  75log(u*y/v),  (4<y<h)  (31) 

the drag force, R, and moment, M, are obtained under the assumption that the drag 

coefficient CD is constant  : 

            1           R =—2pCDBhieN[{9. 025Re*)}2— 21n (9.  025Re*)23/K2  (32) 

             1           M=2pCDBIgu2*({1n (9.  025Re*)} 2 *4In (9.025Re) +1]/  (33) 

     2 where,  u*=.4Ih,  channel slope  (1/3600),  Re*=u*h/v,  v =kinematic viscosity and  K= 
 Kirman constant.  Eq.  (32) and (33) yield the following relationship  : 

 15 
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Fig. 13. Experimental and theoretical data Fig. 14. Relationship between  OA and moment 

       concerned with the height and the M taking depth h as a parameter in 

       acting point by the hydrodynamic hydraulic experiments. 

         force.
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 he=  M  0.  5{1n  (9.  025Re.—  0.  5}  2+ 1/8                                                       (34)  R  {i
n  (9.  025Re*)  —  1}  2+  1 

This relation is also shown in Fig. 13. Within the limits of experimental  Re*,  he/h 
assumes a nearly constant value of  O. 55, independent of the water depth, which is 
smaller than the experimental ones. The reason may be that in the analysis we didn't 
consider the effects of rising and  falling of the water level in front and behind the 
model structure. Therefore, in the following analysis, we adopted the experimental 
value for  he/h. 

   The relationships between u2A and M are shown in Fig. 14. The value of  Min 
the experiments is evaluated by using eqs. (28) and  (29)  . The straight lines in this 
figure were evaluated by 

 M=h,F=  O.  732hF=  O.  779u2A  (35) 

taking water depth, h, as a parameter. From this figure, it was found that there were 
linear relationships between M around the bottom of the pillar and the hydrodynamic 
force factor  ugh. These relationships in the prototype scale are shown in Fig. 15 after 
carrying out Froude similarity transformation. Geometric similarity scale was taken as 

 L./4=2=1/1098), where  Lm is a model house scale and  L, is a prototype house scale. 
Here, we used the scale of a typical Japanese wooden house for  L„„ which was used 
for the bearing force test described as follows. Bearing momental values of the full 
scale Japanese-style wooden house are also shown in this figure for each structural 
element. In Table 4, examples of bearing capacity of the wooden house are shown, 
which were obtained by a full-scale test on a typical Japanese wooden house subject 
to cyclic static lateral  load9). In this table TYPE-I has a basic frame structure composed 
of only post and beam structures, beams, floors and a roof.  TYPE-II and IV have, in 
addition to the basic frame structure, different types of diagonal beams. In  TYPE-III, 
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                 Table 4. Example of bearing capacity of the typical 
                             Japanese wooden house. 

     TYPE  F  M  h,  

I  0.95 49110  5.275 
 II 1.86 96153 5.275 
 III 3.70 191272 5.275 
 1V 1.95 100805 5.275 
          V  8.10 418730  5.275 

                        F : Total bearing capacity (ton) 
 M  : Total bearing moment (Nm)  

: Height of action point (m) 

plywood walls are added to TYPE-I. TYPE-V is a complete wooden house. In Fig. 15, 
 MI,  Mu,  --•  correspond to the bearing moments of TYPE-I,  II,  •••. The bearing capacity 

of the full scale house is, therefore, assumed to be equal to that of TYPE-V. 
   By taking the bearing moment for the full scale Japanese-style wooden house as 

 My, we obtained the following critical combinations of depth and velocity of the flood 
flow which would theoretically destroy the houses  : 

 uh�‘IMv/  (hc/h  •  CD/2  •  p)/VB  (36) 

   The curves in Fig. 16 show this relationship for the case  B=5, 7 and 10 m, re-
spectively by using the values of  My  =  418730Nm,  CD/2=  1. 064,  he/h=  0.732,  p=  1000 

 kg/m3. The upper range of each curve is the danger zones wherein a wooden house 
might be swept away. In this figure, three symbols are plotted. Open and full circles 
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               Fig. 16. Critical lines concerned with the house destruction.
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are the data presented by Kawata and  Nakagawa?), each, respectively corresponds to 
washed away and severely ruined houses, which were obtained by a calculation of 
overland flood flow and a field survey of the Misumi district after a heavy rainfall on 
7/23 in 1983. The triangle is the data presented by  Aide which was obtained by a 
method similar to the case of the tsunami disaster in the Usa district, Kochi prefecture 
due to the Nankai earthquake in 1946. In Fig. 16, river flooding data shows rather 

good agreement with the critical lines, whereas, the tsunami datum does not. The 
main reason for this discrepancy is presumably attributable to the difference in the 
mechanism of the external force between flow and wave, namely, the aspect of the 
flooding in Misumi district is similar to that of the experiment, while the behavior of 
tsunami flooding is wavy similar to surf and backwash. Therefore, there may be limita-
tions to relating only the hydrodynamic force of tsunami floodings with destruction of a 
wooden house. As these data depend on the accuracy of the calculations for the base 
structures and the width of a wooden house, it is necessary to examine the applicability 
of these criteria by collecting more actual data. 

 4.2 Criterion for the Breaking of Window Glass 

   Partial destruction of houses should also be considered in a flooding, such as the 

phenomena associated with the breaking of window glass.  Ishizaki'°) proposed an equa-
tion for the allowable wind pressure on a glass  window  : 

                               10'  
                          T        Pa(T)=fSb         a(1±K—tg—lon. (37) 

where, Pa=allowable wind pressure, T=duration of loading, a, b=short and long sides 

of glass, respectively, S, K and  m=  constants and  S=3.  5  x  0  x  104 kgf/m2,  K=70 

and  m=7,  f=strength factor, tg=thickness of glass plate. The wind pressure effects on 

the window glass per unit area is  : 

   P12pu2C  (38) 

where, p=density of air (kg  • sec2/m4), u=wind  velocity  (m/sec),  C=wind pressure 

factor. When applying this equation to hydraulic pressure, we assumed that the distri-

bution of hydrodynamic force is uniform.  However hydrostatic pressure is neglected for 

                                                 hydrodynamic 
                                                         pressure 

                                      hydrostatic 
           b pressure 

 ..- 

                         D:elevation of lower frame 

 d:depth from upper frame to water surface 
                        b:length of window 

                       h:water depth 

                 Fig. 17. Model of flow field against hydraulic pressure.
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                Table 5. Conditions for the calculation of the criteria for 

                          occurrence of window glass breakage. 

 a  (rn)  I  b  (m)  D  (0)  tg  (min) 
 CASE-1  0.  7  1.0  1.  3  1.  9,  3.  0,  5.  0 

          CASE-2  0.  7  1.8  0.5  1.  9,  3.  0,  5.  0 

 f=0.  5, S=4x  104,  T=1.  0, K=70, m=7 

the reason that the house is considered as already submerged, so that the water level 

inside the house is equal to that outside, as shown in Fig. 17. From eqs. (37) and (38), 

the relationship between the flow depth h and the velocity u which will present the 

allowable bearing capacity of the window glass is derived as follows : 

 u  =  V pCafS tg(1 +Kh—tgDglog74"(D<h<n±b)  (39a) 
                fS  to (1+Kb5glon,  10T"1       ,oC), (h>n+b)                                                    (3%) 

where,  p  =  1000/9. 8  kg•sec2/m4,  D  =  elevation of the lower frame of the window, d= 

distance from upper frame of window to the water surface,  b  =  height of window,  h= 

water depth. Some critical lines concerning the window glass breaking are shown in 
 Figs.  18(a) and (b) for the various kind of window glass dimensions listed in Table 5. 

In these figures, critical lines for the destruction of a wooden house are also drawn. 

It is found from these figures that, in general, the risk of window glass shattering will 

be higher than that of wooden house destruction until the water level just reaches the 

upper frame of a glass. It must be noted, however, window glass is easily broken by 

drifting objects. 

5. Hazard Analysis in the Ogura Basin 

 5. 1 Outline of the Study Area and the Previous Disasters in This Basin 

   The study area, called  `Ogura basin', is situated in the southern part of Kyoto pre-

fecture, Japan. This area is enclosed by moutains and the banks of two rivers, the Kizu 

and the Uji, and the total area is about 52  km2. Recent urbanization accompanied by
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increase in population in this area is remarkable. The present density distribution of 

houses and other structures in this area is shown in Fig. 19, classified by the percentile 

of the total house areas in the 125 m mesh size grid area. Elevation distribution in this 

area is shown in Fig. 20. It can be seen that the urban areas have been developed 

along the Kintetsu railway, but in recent yaers, residential development has taken place 
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 Fig. 21. Classification of the topography in Fig. 22. Previous breach points in the 

       the southern part of the Kyoto basin. Ogura basin.
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even in low lying areas. From a topographical point of view, this area has a cone-
shape with reclaimed land that was once Ogura pond situated in the middle of this 
area. So that, wherever a river bank breach might happen, flood water would flow 
into this reclaimed land, and the rising water would concentrate in and reform Ogura 

pond again. 
   Fig. 21 is a topographic map of the southern part of Kyoto  basin"). A large part 

of this basin is formed by the former lake, delta and back marsh of the Kizu river, 
and many former rivers can be seen. Depositional and erosional forms due to the bank 
breaches exist near the Mizushi and Shimotsuya districts along the easterly bank of the 
Kizu river. Especially, in the neighbourhood of the Mizushi district, this configuration 
extends about 1 km wide and 3 km long. From such topography, it is easy to suppose 
that this area had experienced large scale disasters due to bank breaches in the past 
and in reality, as shown in Fig. 22, we can see the previous bank breach  sites"). In 
the Edo era, floods were recorded 8 times from 1630 to 1850. Especially notable is the 
flood of  8/18 in 1712, when many bank breaches occurred such as at the Biwanoshou, 
Kouzuya, Shimada and other districts. A bank breach of the main channel of the 
Kizu river has not occurred since 1885. For the Uji river, 600 m long bank breach 
occurred along the south side bank at Daikoku site, due to heavy rainfall accompanied 
by typhoon 5313 in September, 1953. In the following calculation, we will assume 4 
bank breach sites  ; these sites are also shown in Fig. 19 nominated as  Pl, P2, P3 and 
P4. 

 5.2 Conditions of Calculation 
   The study area, enclosed by the heavy lines in Fig. 20, was discretized through a 

125 m mesh size grid,  Gix=4y=  125 m, on the topographical maps  (1/2500), and split 
time, At, was 2 seconds. We used Manning's roughness coefficients,  n=0.025 in river 
channel and  n  =  0.  04 on the protected lowland. The two dimensional numerical simu-
lation method was used both in channel and protected lowland under these conditions. 
The inflow hydrographs at the Yamashiro bridge into the Kizu river and at the 
Amagase dam site into the Uji river are shown in Fig. 23. The hydrograph of the Kizu 
river was adopted so as to give the peak stage of the flood in the river, where it 

                   15000 

                  10000  -

         m  tiZI1 

 5000  -            a 

                            Uji R. 

 0   
 0 1 2 3 4 5 6 7 

 Time(hour) 
       Fig. 23. Test hydrographs at the Yamashiro bridge and the Amagase dam site.
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becomes almost the same height as the bank crown. The river water stage was calculated 

on this basis in an imaginary rectangular cross-section whose bottom coincides with 

the measured local deepest bottom line. The actual cross-section has a compound 

shape, and therefore, the cross-section used in the calculation should have been larger 

than the actual one, which resultantly gave a larger discharge. Thus, the hydrograph 
used in the calculation has no rational relationship with the design-flood discharge of 

the river. Provided that the detailed cross-section of the Kizu river are given, the 

peak discharge of the hydrograph used in the calculation should be less or be nearly 
equal to the design-flood discharge. By the way, the design-flood discharge of the 

Kizu river is 6,100 m3/sec at Haze point near Yamashiro bridge and that of the Uji 

river is 1, 500 m3/sec at Uji point. 

   It must be noted here that the object of this study is not to discuss the hazard in 

detail in this particular basin but to present a general method to estimate the damage 

cost in an arbitrary basin. Therefore, we haven't paid critical attention to the discrep-
ancy between the hypothetical  hydrograph and that of design-flood. 

   The initial condition of the protected lowland was dry bed and that of the river 

was made by giving constant discharges of 6, 300  m3/sec and 800 m3/sec at the inflow 

point of the Kizu and the Uji river, respectively, and by calculating the water stages 
under these inflow discharges for 4 hours until the flow reached a steady state. For the 
downstream boundary condition, we assumed that the river water flows out of the 

boundary by only the water surface gradient. We neglected the influence of the 

confluence of the Katsura river downstream, and we did not consider the confluence 

                      Table 6. Test cases for simulation analysis. 

                               conditions of breach    CASEyear 
                          bank breach point 

            CASE-A sudden breach  P1 on 1983 
              -A'  15min required //  * 

             -B sudden breach P2  1' 
             -B'  15min required  *  * 

             -C sudden breach  P3  * 
              -C'  15min required  * If 

 -D sudden breach P4  * 
             -D'  15min required  *  * 

               -E sudden breach  P1 on 1965 

 -F  * P2  * 

     -G  "  P3  * 

 -H  * P4  * 

                              sudden breach 
             -I & closing P1 on 1983 

 2.5 hr after
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                               2 
 40 

 Kintetsu CASE—A — CASE—A' 
      Railway  CASE—B' 

   

- swept away area  \ swept away area  (X  104  r1.13/s) --CASE—C CASE—C' 
  7,                                                                           ---CASE—D--CASE—Dr  N -levee  crown 

       {before  breach) 

 20—  I   I 
                                                  kk‘  levee1

./%10     _(after breach) 

                                                                               - 

                    rest.              .  .  ................. 

 0   

       (19,50) (19,51) (19,52) (19,53) (19,54)  (19,55)  00 2 3 
 4 4 

         (20,50) (20,51)  (20,52) (20,53) (20,54) (20,55) t (hour) 

Fig. 24. Example of the scales and elevations for Fig. 25. Outflow discharges of each bank 
      brach point  P1 meshes in calculation breach point. 

       before and after the bank breach. 

of the tributaries and the drainage network systems in this basin. In Table 6, the test 

cases for this simulation analysis are shown. 

   We examined two cases of bank breach and their causative conditions, first, a bank 

collapse occurring in an instant and second, one taking 15 minutes for the bank to be 

breached completely. The width of the bank breach was 6 meshes long which is equal 

to 750 m, but if these meshes are diagonally located, the width of the bank breach 

would be larger than 750 m. We also assumed that the levee height after bank breach 

reduced to that of the inland elevation. Fig. 24 presents an examble of the width and 

the elevation of each mesh site  P1, before and after the bank breach. 

   In all cases, if the condition for wooden house removal by flood is satisfied in a 

certain  mesh(i+ 1/2,  1/2)  , we put  ri-F1/2,1+1/2 equal to unity to take into account the 

influence of interference of houses washed into to the surrounding meshes. 

 5.3 Results of Calculation 

   The discharge hydrographs at the breach points for every case are shown in Fig. 

25. In the case of instantaneous break, the maximum discharge from the breach 

occurred simultaneously with the instant of breach and it was quite a large value.  In 

every case, outflow discharge asymptotically became steady within about an hour. The 

hydrograph was different in each case, and the reason being that the water level in 

the channel and the width of the bank breach were different case by case. In the 

cases where it took 15 minutes for a bank to be breached, peak discharges were lower 

than those of the instantaneous bank breach cases, and the maximum discharges took 

place at a rather early stage of the breach. It was found that nearly  50% of the 
river discharge  outflowed from a breach point into the protected lowland in CASE-A 

and CASE-A' within about two hours after the bank breach, and in the other cases, 

more than  50% of the river discharge  outflowed there. 

 Fig. 26 shows the calculated results of the water depth distributions at  4 hours 

after bank breach in each case.  In almost every case, water depth in the Ogura
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reclaimed land was more than 7 m. In CASE-A and CASE-A' , a large part of the 
Tono and Terada districts were inundated more that 4 m deep , but in the other cases, 
as the elevation was comparatively high in these districst, they were only slightly or not 
inundated. These figures show that at 4 hours after bank breach, flooding water had already 
expanded to the Makishima and the Mukaijima districts overflowing the bank of the 

 Kintetsu railway.  In the case where 15 minutes were required until the bank was 
fully broken, water depth in the Ogura reclaimed land was slightly lower than that in 
the case of sudden bank breach  ; however, there were some areas inundated over 7 m. 

   The calculated results for flow patterns are shown in Fig. 27 at 4 hours after bank 
breach. In every case, the velocity was large near the breach site. In  CASEs-G, C', 
D and D', because of the influence of stagnant water in the Ogura reclaimed land, 
flow rate rapidly decreased some distances from the breach site, and it was extremely 
low within the Ogura reclaimed land, while in the  GASES-A, A', B and B', for the 
reason that the bed slope was comparatively steep at the southern part of the basin, 

quite a high velocity was calculated toward the Ogura reclaimed land. 
   Fig. 28 shows the time variations of the water level at each point shown in Fig. 20. 

From these figures, we were able to estimate the advancing velocity of the forefront. 
In CASE-A, it was about 4 km/hour near the breach point. The increasing rate of the 
water depth at the higher elevation area was very large in the early stage but soon 
became slight, while it was gradual but continued for a longer time in the lower ele-
vation areas. 

   Fig. 29 shows the maximum degree of damage of wooden houses under the condi-

tions of  Mr=  418730  Nm,  CD/2  =  1.  064,  he/h=0.  732,  p=1000  kg/m3 and  B=10  m. As 
the critical value of uh is calculated as 7. 4 m2/sec by using these values, the Reynolds 
number, when we discuss whether a house will swept away, is more than  7.  4 x 106. 
Therefore, experimental results concerning CD shown in Fig. 12 can be applid to the 
range of Reynolds numbers in the actual overland flood flows. The hundred percent 
of damage degree in the figure corresponds to the critical value of uh for house de-
struction calculated by eq.  (36)  . Damage degree was classified into 5 ranks, and each 
rank means the percentile of this critical value. In calculation, h and u were evaluated 
by using eq. (27) and the following equation, respectively, 

 u ={ (iM,YF1/2±9-in++1,2,j+1/2)2 +/+1/2.1+1/2)                                                      IVr-1-12/2.i+1)21112/(.917.'2+3 (40) 

   These figures proved that in the vicinity of the breach site, uh exceeded this 
critical value and there was scarce difference between instantaneous and 15 minute bank 
breach. CASEs-A, A', B and B' gave large uh values in the area between the Okubo-
bypass and east side bank of the Kizu river. A large part of this area is used for 
agriculture and there are few houses, so that the flooding water is neither interrupted 
nor contracted to produce large uh values. We were able to understand this situation 
by referring to  Fig.  27. 

   In the Ogura reclaimed land, water depth was very high but the damage degree 
took relatively small values as the velocity was slow. But if we can consider the effects 
of buoyancy additionally to the risk of washing away, the degree of damage could be
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          Fig. 28. Time variation of the water  level at each point shown in Fig. 20.
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more. 

6. Estimation of the Damage Cost 

   In order to evaluate the flood hazard risk of a certain basin, it is necessary to 

quantify the risk. Apart from loss of life, one possible quantifying method is to evaluate 
the expected value of damage cost to general property (house, household articles and 

etc., crope, public utilities and so  forth). If the mesh data, such as area rates occupied 

by domiciles, commercial structures, farms, etc. are prepared, we will be able to 

                  Table 7. Damage factor of houses due to floodings 

            water depth                                             above floor (m) 
   below   

                         floor  O.  0-,-0.  5 0. 5--1. 0 1. 0---2. 0 1 2. 0---3. 0 3. 0--- 
properties  

          group-A  0.  053  0.  072  0.  109  0.  152  0.  220 

    house -B  0.  03  0.  083  0.  126  0.  177  0.  266  0.  344 

             -C  0.  124  0.  210  0.  308  0.  439  0.  572 

    group-A bed-slope  i<0.001 
        -B  0.  001<i<0.  002 
 -C  0.002<i 

        (if the water depth is greater than  2.  Om above the first floor, damage factor is 
        taken unity for the 45% of the total number of the house) 

                                                               DESTRUCTION OF 
                                                                WINDOW GLASSES 

                                                                DESTRUCTION 

          / 

                                                               OF HOUSES  

 1=1/1000 1=1/500 
   4- r=0.220  0.344  0.572  4_ r=0.220 0.344  0.572 

 3_  r=0.152  0.266  0,439  3-  r=0.152 0.266 0.439 

 h(m)   h(m)   

 2r=0.109CM"0.3082 -  r=o.los  0.177 0.308 

 r=0.072  0.1260.210  r=0.072 0.126 0210 

                                      0.053.0530,083os3 0.124 I  r=0.053  0.083  0.124 

 r=0.030   r=0.030  . 

 . 

 °O  I 2      3  00   1 2   3 
 Li  (m/s) U (m/s) 

Fig. 30. Relationship between velocity and Fig. 31. Modified relationship between  ve-
      water depth for the damage locity and water depth for the 
   factor. damage factor.
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estabilish the cost of damage by the numerical simulation method described earlier . In 
the present study, as the information available was limited to the structure area rate in 

a mesh, only the house damage was examined. It must be noted here that because the 

aim of this chapter is focussed on not to quantify the damage of the particular case 

of Ogura basin, but to discuss the feasibility of the proposed numerical simulation 

method, discussion taking notice of only house damage should be sufficient for the 
theoretical purpose. 

   Table 7 is the Japanese  standard13) to estimate the damage factor r for the house 

in respect to the various water depths above and below the floor by a flooding. This 

tabulated standard would be transformed to the graph on the velocity-water depth 

plane as seen in  Fig.  30, by using Manning's formula taking the roughness coefficient 
 n  =O.  04. This figure shows that it contains a contradiction, namely, under a constant 

velocity, lower water depth sometimes can produce higher damage factors than that 

of greater depth. Therefore, we modified this relationship as shown in Fig. 31. Critical 
lines concerning house and window glass destruction are also presented in this figure. 

By use of the damage factor related to this velocity and water depth, we estimated 

the damage index  EFH-1/2,j+112 in each mesh and total damage index ET, given by  : 

           EFi+1/2,j+1/2=r1+1/2,j-1-1/2( 1 -1341/2,j-0A)   (41) 

 ET =  E  >  EFi+112.1+112    (42) 

where,  13  i+112.j+1/  2= flux correction factor given by eq.  (24)  . 

   Fig. 32 shows the calculated distribution of the damage index EF for CASEs-A, B, 

C and D at 4 hours after bank breach. If the water depth was greater than 2. 0 m 
above the first floor, the damage factor was taken as unity for  45% of the total 

number of the houses as stated in the standard. Naturally, the damage index took large 

values where the density of houses was high. For each case, the Ogura reclaimed 

land, the lowest elevation area, had little damage for the reason that there were few 

houses in this area, but in the surroundings of this area, the number of residences had 

been increasing, so that a high damage index area existed there. In recent years, buildings 
have become much denser in the vicinity of point P1, so that, for CASEs-A and A', 

EF's in the vicinity of P1 are of course very high. Whereas, in cases of breach at P2, 

P3 and P4,  EF's in the vicinity of P1 are small or even zero because the elevation there 

is comparatively high and inundation would not extend there. 
   In order to evaluate the influence of urbanization, we calculated the damage 

under the conditions of 1983 vs. 1965. Moreover, we examined the would be effects 

of flood fighting efforts to close the breach during flooding. 

   In Fig. 33, time variation of the total damage index ET are shown. This index in 
1983 took 3 and half times larger values than in 1965. We can say this study area has 

increased its damage potential by urbanization. Wherever the bank breach might occur, 

the tendency of increase with time of the total damage index was similar. If we couid 
succeed in closing the breach 2. 5 hr after collapse, the total damage index would 

decrease by about 10  (CASE-I).
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 150 1983 
                           — CASE—A 

 CASE—B 
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                                      CASE—D 

 CASE-1            100  [S.1707.1r 
 ETafter I                                         1965 

 — CASE—E 
                       / - • CASE—F                                                    CASE—G 

 50                                                    CASE—H 

 0  1 2 3 4 5 6 7 8 
 t (hour) 

          Fig. 33. Time variation in relation to the total maximum damage index. 

   The total damage cost may be estimated by the following relation  : 

 CT  =  ET  (4xily)C0/  A,  (43) 

where,  CT  =  total damage cost,  Co  =  worth of a house,  A  o  area occupied by a house. 

Supposing that the worth of a house was about 7 million yen and the area of a house 

is 70 m2, the total cost of damage is calculated to be about 200 billion yen. Moreover, 

it was found that the effects of closing the breach, the cost damage would decrease by 

about 16 billion yen. 

   If we had considered the damages to crops, public utilities, etc., the influence of 

drainage system, and the damage due to sedimentation, we would be able to estimate 

the cost of damage more accurately and reliably. 

7. Conclusion 

   The results obtained in this study are summarized below  : 

   (1) We proposed a simulation method for overland flood flows with consideration of 

the effects of structures in the flood area. 

   (2) We examined the applicability of this simulation method by comparing it with 
experimental laboratory results. Consequently, it was found that the model presented 

was able to simulate an inundation process accurately. 

   (3) We proposed criteria which might determine whether the wooden houses would 
be swept away. Moreover, resistance of window glass against hydrodynamic pressure 

was examined and it was found that the risk of window glass failure which might 

result concomitantly to severe damage to the house was higher than that of house 

destruction. 

   (4) We applied the simulation method combined with the criteria for house  destruc.
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tion to the Ogura basin. Under several calculation conditions, we attempted to estimate 
the hazard risk during inundation. 

   (5) The feasibility of the damage  cost being evaluated by calculating the damage 
factor in combination with the numerical simulation method was seen. Because the 

various mesh data on the population, property, etc. can be easily combined with the 
mesh information of velocity and depth of a flood in the numerical simulation, this 

method is feasible in risk analysis. 
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