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Abstract

   In order to explain the behavior of landsliding observed in an area of crystalline schist in 
September 1980, numerical simulation has been conducted by the finite element method under the 
effects of self-weight and  five different pore-water  pressures  ; corresponding to  O.  25,  O.  5,  O. 75,  1.  0 
or  1.  25 times the observed groundwater level. The finite element method is supplemented by joint 
elements as introduced by Goodman. The joint elements are so devised to express the shear stress 
to follow the Mohr-Coulomb's failure criterion and the normal stress not to be transmitted across a 

joint once the joint element has been opened by the tensile stress. The joint elements are arranged 
along the slip surface determined by measurements using the pipe strain-meters and an insert type 
of strain meter. The soil above the slip surface is assumed to be linearly elastic. By the initial 

position and the progression direction of rupture, crystalline-schist landslides can be classified into 
3 types. This simulation explains a case where the rupture starts at a point in the slope and 

progresses downwards at an average velocity of a few meters per hour. It is pointed out that the 
progression of the rupture has been controlled essentially by rise and fall of the pore-water pressure 
accompanied by rainfall during the slide.

1. Introduction

   Behaviors of landslides have been monitored by means of a variety of instruments 

up to the present. The main purposes of such monitoring have been to determine 

landslide features such as landslide boundary, the depth of slip surface, the compression 

and extension regions, the landslide direction and the displacement magnitude, to 

predict landslide occurrence time, and to find out effective countermeasures. We also 
have observed a number of crystalline-schist landslides in the Island of Shikoku, Japan. 

Through the observations, we have aimed at the elucidation of not only the landslide 

features etc. mentioned above but also the landslide mechanism. In order to prevent a 

natural or an artificial landslide, an understanding of landslide mechanism would greatly 
help us to decide the place and dimension of an effective countermeasure because a 

countermeasure at the landslide-initiation point could be most economical in preventing 

the slide. 

   The author explains the landslide mechanism, which is considered in this paper, 
using Fig. 1. The landslide-nucleation position as the starting point of rupture, the 

direction and the velocity of rupture progression along the slip surface (V) and the



40 A. SUEMINE 

             MEMO 

                        tO                                     / V 

     /I Mei 
         toca 

                   V 

          Vt  t2 

                                               Time 
     Fig. 1. Model of landslide  mechanism. to is the time of rupture initiation.  t, and t2 

           are the times of the initiation and stopping of displacement at a point, respect-
           ively.  V, and V are the rupture  velocities along the vertical and lateral direc-

           tions, respectively. D is the magnitude of displacement and  T-=t2—t, is rise 
            time. The extensometer are set up on the ground surface to observe the 

            ground-surface strain. The pipe strain-meters are installed for observing the 
           differential displacement within the earth. 

velocity of rupture propagation from slip surface to the ground surface (V1) are shown 

in the left inset of the figure. The subsurface-displacement and the surface-displace-

ment velocity which is calculated as D/T from displacement D and the rise time T, 

are shown in the right of the figure. A related question is whether the magnitude 

and time history of the displacement are function of the place or not. 

   In the previous  papers",2) the author described the landslide mechanism based on 

a series of observations at crystalline-schist landslides. The results may be summarized 

as follows. By the initiation position and the progression direction of the rupture, which 
are two of the important physical characteristics of the landslide mechanism, the land-

slide can be classified into 3 types. The first type is characterized by the rupture 

starting at the lower part of the slope and progressing to the upper part at an average 

velocity from a few meters per hour to about 10 meters per hour ; the second type 

by the rupture starting in the middle of the slope and progressing bilaterally along 

the slope at an average velocity of a few meters per hour ; and the third type by 

the rupture starting at the upper part of the slope and progressing downwards at an 

average velocity of a few meters per hour. 

   Slip surfaces were determined through observation of strains within the ground 

using pipe strain-meters (internal strain meters) and an insert type of strain  meter3) at 
44 boring sites in four crystalline-schist landslides investigated by us in Shikoku. The pipe 

strain-meter is an instrument where strain gauges are attached to a vinyl chloride pipe. 

Thirty-seven of these observed sites revealed that there was only one slip surface in 

each landslide. This figure is equivalent to 84 percent of the total observed slip surfaces. 
In 7 remaining sites, where two slip surfaces in a borehole were suspected by means of 

the pipe strain-meters, the deeper slip surface could not be confirmed with the insert 

type of strain meter because the boreholes were cut off by the shallower slip surfaces 
and deeper insertion was not possible. Therefore some of the deeper slip surfaces 

anticipated at these 7 sites may be observational errors. Consequently, many landslides 

in crystalline schist in Shikoku have very likely only one slip surface. In addition, the
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observations utilizing the pipe and the insert type of strain meter also indicated that the 

landslide movement in many cases could occur along the same slip surface almost every 

   This paper will present a theoretical explanation of the phenomena where in the 
rupture starts at a point in the slope and progresses downwards at an average velocity 

of a few meters per hour, by using the finite element method (F. E.  M.  ). First, a 

brief history in the stability analysis is described and the inadequacy of the stability 

analysis in elucidating the landslide mechanism is pointed out, and the F. E. M. as a 

more appropriate means is introduced. Second, the special features of the finite 

element method used in this paper is described. Third, the results of an application 

of this method to a crystalline-schist landslide are presented and discussed to give a 
theoretical implication of the observed landslide process. 

2. Stability Analysis and Finite Element Method 

   Stability analysis of slopes has been conducted for a long time. For example, the 

circular arc method was proposed in Sweden in the beginning of this century.  Fllenius 

developed a method for calculating a factor of safety, including cohesion and internal 
friction angle, and this method was popularized in the 1930s as the Swedish  methods'. 

Morgenstern and  Prices', and  Spencer') developed the works done by Taylor,  Janbu8) 
and  Bishop9) to form a theoretical equation for a factor of safety of general slip 

surfaces based on the slice method. 

   The first introduction of the method into Japan was made by N. Yamaguchi in 
1934 and by Z. Anzou in 1940 in the form of the mathematical equations and diagrams 

of the circular arc method. The theoretical equations based on the slice method of 

circular slip surface and non-circular slip surface were derived by T. Nomitsu in  194210). 

In this case the internal forces of the general slip surface were assumed to be parallel 

to the ground surface. 
   In the general slice methods, where limit-equilibrium condition is assumed, strains 

and statically-indeterminate stresses are not dealt with explicitly. Therefore the stability 

factor for each slice is not calculated explicitly. Thus, the methods are incapable of 

giving probable stresses on the slip surface which are essential for the use of failure 
criterion. 

   The use of F. E. M. can eliminate this difficulty accompanying the general slice 
method under the  limit-equilibrium condition ; the shape of slip surface, the determina-

tion of internal stress or the direction of resultant internal force. The stress and strain 

in the ground can be rationally calculated by using F. E. M., therefore the normal stress 
and shear stress at each and every point along the slip surface can be obtained. 

Assumptions with regards to statically-indeterminate stresses become unnecessary. A 

local as well as total factor of safety also can be calculated more reliably by using F. 
E. M. In this respect, the F. E. M. is superior to conventional stability analysis. 

   The analysis of the progressive failure by using F. E. M. with Haefelis's residual-

coefficient concept was first conducted by  Kitahara1 for slope stability during excavation.
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Lo et  a1'2). have also analyzed the landslide of progressive-failure type by F. E. M. In 

these studies of progressive failure of a given slope, they generally treated a slope's 

stability over a long term, where strength along the slip surface decreases gradually 

with infiltration of water canceling out the negative pore pressure. In these appli-

cations of the F. E. M., progressive failure was denoted by the shear failure zones of 

triangular elements, however the actual slip surface is more or less 10 centimeters 

thick. Consequently, these F. E. M. analyses do not strictly show the actual landslide 

movement. Recently, stability analysis of dams et al. by F. E. M. using the Kawai 

model (Rigid-Body and Spring Model) have been reported by Hada  et  al'3). 

   However, a limited number of analyses of safety factor and deformation conditions 

of slope by F. E. M. have been carried out until the present as summarized above. 

Furthermore, a comparison of the observed results with calculated results for the 

landslide mechanism during local heavy rainfall or typhoon, when groundwater level 

rose, has not been conducted at all as far as the author is aware. The reason for this 

situation may be partly due to the fact that very few spatial-temporal continuous and 

quatitative observations or landslide movements have been made so far, and the data 
which are prerequisite for the analysis have not been available. The observation 

conducted by the author in his previous paper" made it possible to apply the F. E. M. 

to landsliding by a heavy rainfall for analyzing that process quantitatively. 

3. Model and Analyzed Cases of Landslide in the Present Study 

 3.  1 The Irahara Landslide 

   The landslide area chosen for the present analysis is  Irahara"), Tokushima Pre-

fecture in Shikoku, where typical physical constants of soil are available. The P-wave 

profile was determined by seismic survey conducted in  Iraharam  . Density, cohesion and 
internal friction angle have been determined by soil test including triaxialtests under 

CU condition for core samples obtained from  boreholes151. Geological and topographic 

details of this area have been given in the previous paper". Figure 2 shows the arrange-

ment of instruments in the landslide area. The numbers assigned to internal strain 

meters in the previous paper" are changed in this paper. The table of correspondence 

is given in the Appendix. 

   The main physical characteristics (rupture-progression velocity and the initiation 

position of the rupture along the slip surface) were determined through the observations 
in situ during the actual landslide caused by a rainfall of more than 570 millimeters in 

a few days in September 1980. Measurements were made with respect to line A in 

 Fig.  2 by the pipe strain-meters, tiltmeters, extensometers and piezometers. Boreholes 

were simultaneously employed as pipe strain-meters and piezometers at that time. The 

observations of tiltmeters and extensometers showed that the whole landslide block, 

where the pipe strain-meters (A5, A6) had been installed, moved at that time. The 

velocity of progression of the rupture along a slip surface is calculated from the 

distance between the pipe strain-meters divided by the time difference of rupture 

outbreaks or breakage of the pipe strain-meters. Rupture was found to have occurred
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        Fig. 2. Arrangement of instruments at the Irahara landslide area.  A-m or B-n 
              denotes the pipe strain-meter.  T-1 denotes the  tiltmeter. 

      Table 1. List of the rupture velocity along line  A  ; The strain rate was evaluated 
               as the change during one minute just after the onset time 

                               Variation of Rupture 
                   Onset time strain Progression-velocity 

     A 5  7.5m  17.18  9/10/80  —63  x 10-6 

    A 6 6.5m 07.47 9/11/80—24  X10-6 2.5m/hour 

     A 5 7.5m 08.17 9/11/80  1599  X  10-6 

     A 6  6.5m 04.23 9/12/80  —1391  X 10-6 1.8m/hour 

     A 5  7.5m 16.51 9/11/80 scale over 

                                                                                                                                                                                                                                   . 

    A 6 6.5u111.27 9/12/80 scale over22m/hour 

at the slip surface near the pipe strain-meter A5. The rupture progressed downward to 

A6 at a speed averaging a few meters per hour (see Table  1)  "  . The groundwater 

level during the landslide movement was measured once a  day"'. 

   Figure 3 shows some of the results of the observations made by the insert type of 

strain meter on the targeted area. The accuracy of the measurement is approximately 

200  microstrains3). The pipe strain-meters A5 and A6 (A5', A6') were bent during the 

landslide activity caused by a typhoon in 1980. Therefore test boring (A5, A6) were 

made again at about 1 meter to 2 meters apart from the former pipe strain-meters 

(A5',  A6'). As is clear from these figures, the slip surface exists at a depth of around
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     Fig. 3 (b). Values. measured with an insert type of strain meter at site A6 in Fig. 2. 

 6.5 meters near A5 and around 7 meters near A6, respectively. The form of the 

ground surface was determined by topographic leveling prior to the landslide move-
ment in 1980. The forms and positions of cracks at both sides of the landslide area 

could be determined on the ground surface. Consequently, the shapes of ground surface 

and slip surface in this case may be considered as known conditions of the boundary 

surfaces. 

 3.2 2-D Finite Element Method 

 It is difficult to express the deformation of slip surface by using a normal F. E. M.,
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because the deformation of slip surface is large and the strength of slip surface shows 

elasto-plasticity, moreover a separation at slip surface may have taken place. In view 

of this situation, the author applied the 2-D F. E. M. supplemented by joint elements 

as introduced by  Goodman"' as a means for simulation and attempted to explain the 

observed landslide process quantitatively using this method. 
   Figure 4 shows the joint element constructed from four nodal points I, J, K and L. 

Two pairs of nodal points  I-L and J-K are assumed to occupy the same coordinate in 

the initial state, that is, the surfaces  I-  J and K-L are in contact. Slip-surface behavior 

is expressed by the relative position of both surfaces of the joint  element. The relative 

motion of both surfaces is classified as follows  : 

 (i) parallel motion to the joint 

 (ii) perpendicular motion to the joint (open and contact) 

 Y 

                                               s 
                    n 

                 AzaK I  /  2 
                                    js.=-,- 

 X 

 0 

               L 
 s=-1/2 

 I 
                       Fig. 4.  Configuration of the joint element. 
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             Fig. 5. Constitutive relationship for the joint  element  : (a) normal 
 direction  ; (b) shear direction.
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  (iii) rotational motion around the center of the joint element. 
The deformation characteristics of the joint element are determined by the shear  stiff-
ness  k„ the normal stiffness  k, and the rotational stiffness  k.. Since  k„ is a function of 

 k„, the constitutive relation of the joint element is expressed by two parameters k, and 
 k., as shown in Fig.  516),17). The yield shear stress, r,, is given by a function of the 

effective normal stress by assuming the Mohr-Coulomb's failure criterion. 

 ry=  c  ±  air,  tang  e<  =  0 

 ry=0  e>0 

in which c is the cohesion of the soil,  an is the effective normal stress and  0 is the 

internal friction angle. 
   In the present analysis by the F. E. M. the load-transfer  method16) is employed. 

This method needs only a very short calculation time, because the stiffness matrix need 
be solved only once. The boundary conditions of external forces (pore-water pressures) 
are varied in 5 stages and calculations under each boundary condition are iterated 
until the stresses will be judged to converge with predecided criterion. 

 3.3 Analytical Condition 
   Figure 6 shows the cross section of slope and the arrangement of the joint elements 

on the slip surface to be analyzed by the F. E. M. The joint elements are arranged 
only along the slip surface. It is assumed that the strength of a slip surface is residual 
one, because landslide movement occurs along the same slip surface almost every year. 
The author assumes that the joint elements are devised so as to express the shear stress 
following the Mohr-Coulomb's failure criterion and that the normal stress is not trans-
mitted across a joint once the joint element has been opened by tensile stress (see 

 Fig.  5)  . 
   The soil is generally anisotropic. However, in the present landslide area, observa-

tions have proved it to be practically isotropic. The results of seismic survey for 
instance revealed a small difference between velocities in cross sections as well as in 
longitudinal sections at intersect points implying a weak anisotropy, but the soil is as-
sumed to be isotropic because the differences were small. Density, cohesion and internal 
friction angle have been determined by soil test including triaxial tests under CU con-
dition for core samples obtained from  boreholes14),15). It is assumed that the soil above 
the slip surface is linearly elastic. The soil is denoted by an isoparametric  element"). 

   The boundary conditions are given as follows. The part below the joint elements 
are assumed to be fixed, because landslide movement occurs along the same slip surface 
almost every year. The displacement on the ground surface is kept free. 

   The problem remains unsolved as to the accuracy of the elastic constants of the 
soil mass and joints used in the F. E. M. The data available at this moment are those 
of P-wave velocity  (Vp=  800 m/sec), density, cohesion and internal friction angle. S-
wave velocity  (Vs) can be inferred from the data on  P-  wave velocity assuming that 

 Vp/V5= 2. This ratio corresponds to  Poisson's ratio being  O.  35, and this value is probably 
reasonable considering the deep weathering found through boring-core observations.
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     Fig. 6. Division of slope into finite elements. Joint elements are distributed only along 
           the potential slip surface. The observed ground water level is indicated by 

           The extensometer is indicated by 

          Table 2  (a). Physical constants of isoparametric  elements  ; Element No 1 
                       is unsaturated soil, element No 2 is saturated soil 

                       ISOPAMETRIC ELEMENT 

        Number of element Unit weight Young's modulus Poisson's ratio         
1  2.  2t/ma 54500t/m2  0.  35 

    2  2.3 57000  0.35 

                    Table 2 (b). Physical constants of joint elements 

                          JOINT ELEMENT 

 Cohesion Stiffness of Stiffness of Internal 
                         shear direction normal direction friction  angle 

 0.  07t/m2  1500t/m3  20200t/m3  30° 

The normal stiffness of the joint element is calculated from S-wave velocity and 
Poisson's ratio, while the shear stiffness is assumed to be about  7.  5 percent of normal 
stiffness. The physical constants used for the present analysis are shown in Table 2. 

    All elements are subject to gravity. This force changes the shape  of the elements 
and the distribution of stresses in the soil mass. The analyzed slope has no groundwater 
usually in the soil mass above the slip surface. This is taken to be the initial condition 
for self-weight analysis. Next, the pore-water pressures were applied to the upward 
direction, perpendicularly at the concerned joint elements. The pore-water pressure 
was assumed to be equal to the observed groundwater above the slip surface. The 
magnitude of these pressure were assumed to correspond to five different levels  ;
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 O. 25,  O. 5,  O. 75, 1. 0, or 1. 25 times the groundwater level observed during the outbreak 
           of the landslide caused by the downpour in 1980. Since the groundwater level during 

           landslide movement had been measured only once a day, it is quite possible that the 

            groundwater level during the rupture exceeded the observed level. The groundwater 
            level, equivalent to 25 percent of the observed level, corresponds to about one meter. 

            Moreover, the change in groundwater level (A5) observed at the landslide movement 
            in 1980 exceeded 6. 5  meters151. For this reason, an assumed value would be reasonable. 

            Since the joint elements are defined by the Mohr-Coulomb's failure criterion, the in-
            crease in pore-water pressure has an effect to weaken the strength of joint elements. 

            Therefore if the pore-water pressure is raised to a certain value, a landslide would be 
            triggered. 

               In this analysis, a coupling problem between soil displacement and water pressure 
            (stress-flow coupling problem) is ignored. Seepage pressures acting on the slip surface 
            and soil particles are also ignored because there  are no data for the analysis. The 

            observed groundwater level was that in the borehole where strainers had been perforated 
           at all depth. There is some doubt therefore if the observed groundwater level 

            corresponds to the actual pore-water pressure acting on the slip surface. However, it 
           is a fact that the slide was actuated while the groundwater level was high, and also it 
            seems to be reasonable that the pore-water pressure and groundwater level are in 
            close correlation. Thus, in the present analyses the pore-water pressure is assumed to 
            correspond to that due to observed groundwater level. 

          4. Analytical Results 

               First, the ratio between the shear stress and the shear resistance for each joint 
            element was calculated to determine a local factor of safety (L. F.  S.) of i-th element 

            as follows. 

                       L. F.  S.,  =   (c  a;  tan  b)  •  1,  
 Ti  •  I, 

            in which  T; is shear stress, c is cohesion,  o is effective normal stress,  I, is length of 

           joint and  cb is internal friction angle. The local factors of safety were calculated for 
            every six case for self-weight and the five pore-water pressures. Since the displace-

           ments itself is resisted by neighboring element and remains small, it is assumed that the 
            residual strength is maintained even if a slight movement occurs at places with the 
            local factor of safety less than  I. Next, the total factor of safety is calculated to 
            determine the whole stability. The total factor of safety (F. S. ) is calculated as follcws. 

                       F. S.  =   E  si • I                          , = tan 0                                   E 
ri • lal 

              The results of self-weight analysis are shown in the upper inset of Fig. 7. The 
            shaded areas denote joint elements with a local factor of safety less than 1. They exist 
           on both ends of the slip surface. The joint elements in the upper part of the slope 
            were opened because the lower nodal points of the joint elements were fixed. These
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    Fig. 8. Analytical results by F. E. M. The shaded areas denote joint elements with a 
          local factor of safety less than 1. F. S. shows a total factor of  safety  ; (a), (b) 
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gave an aggravating influence upon the local facter of safety in the upper part of the 
slope. This is a probable reason for the local factor of safety less than  1 in the upper 

part of the slope. In the lower part of the slope, little shear stress and thus little 
displacement was induced by the accumulated residual shear stress of the upper slope. 

This is supposed by the cause for the local factor of safety less than 1 in the lower part 
of the slope. But the total factor of safety still remained  1.28. 

   The middle inset of  Fig.  7 shows the case when 25 percent of the observed groud-

water level acts on the joint elements as pore-water pressure and the total factor of 

safety is  1.22. The case for 50 percent of groundwater level is shown in lower inset 

of  Fig.  7 where the total factor of safety is  1.16. The case for 75 percent of ground-
water level is shown in the upper inset of  Fig.  8 where the total factor of safety is 

 1.10. The middle inset of  Fig.  8 shows the case when the pore-water pressure corre-

sponds to the observed groundwater level and the total factor of safety is  1.05. Thus, 
even in this case the slope does not slide yet as a whole. However, at a number of 

areas a local factor of safety has already decreased to less than 1. The lower inset of 

 Fig. 8 shows the case where the pore-water pressure was  1.25 times the observed 

groundwater level. In this case, the displacement grows too large to maintain the 
equilibrium necessary for an analysis by the F. E. M. In other words the solution does 
not converge any more and thus computation is forced to stop. The displacement of 

each nodal point increased. The total factor of safety in this case was  0.99 and it 

reflects to the instability of the slope as a whole. 

5. Discussion 

   Figure 9 shows the local factor of safety under self-weight and five different pore-

     R6  115 R4 
3.0              --9- :Self-weight analysis 

 >  _  -&-   i0.25  X Observed pore pressure  
             - -ID-  i 0.5 X Observedporepressure 

                                                                            Li- --411- :0.75  X Observed pore  pressure 
rt 

    in- -A- 20^iObserved pore pressure 
  .,          _----- '1i1 .25 X Observed pore pressure.          4- 

                 \  

  0_ 

   _ A4         .,.eAt\A /V i 1  

      L 

        A.40'MOP& ,A4. 

 .   

    ,     .- '\ A•01 ..Nif4tA7',LA. . / i,.7\‘„\ei VA___i,,',  rd 1.0r-- y ., 
          L,.. 

 I  1 

    _ 

 , \\ . - i  
.                      _ 

      . 

    , 

         10  AG 20 30  AS 40  R450 
                                   Joint Number 

    Fig. 9. The local factor of safety under the condition of self-weight and five different 

          pore-water pressures corresponding to  0.  25,  O. 5,  O.  75,  1.  0 and  1.  25 times the 
           observed groundwater level.
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water pressures  ; corresponding to  O.  25, 0. 5,  O.  75,  1. 0 or 1. 25 times the observed 

groundwater level. The highest value for the local factor of safety is obtained in the 
case of self-weight analysis, while the factors become smaller in order of the pore-

water pressure,  0.  25,  O. 5,  0.  75,  1.  0 and  1.  25. In the case when the  pore-water 

pressure corresponds to  1.  25 times the observed groundwater level, the shear stresses of 
all the joints between A5 and A6 reach the yield stresses and shear failure takes place. 
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   Fig. 10 (a). The shear resistance of the joint elements under the condition of self-weight, 
 0.25 and  0.5 time the observed groundwater level. 
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     Fig. 10 (b). The shear resistance of the joint elements under the condition of  O.  75,  I.  0 
                and  1.  25 times the observed groundwater level.
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   The shear resistance acting on every joint for each condition is shown in Fig. 10 

(a) and Fig.  10  (b). The highest value for shear resistance is obtained in the case of 
self-weight analysis, while the shear resistance becomes smaller in order of the pore-
water pressure, 0. 25, 0. 5, 0. 75,  1.  0 and  1.  25 on the whole. Consequently this procedure 

for pore pressure is reasonable. Some of the values at both ends of the slope for  1.  25- 

times the groundwater level exceed the value of other conditions. This is likely influenced 
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     Fig. 11 (a). The shear stress of the joint elements under the condition of self-weight, 
               0. 25 and  O. 5 time the observed groundwater level. 
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by the forced stopping of the iteration calculation. Except for these values, the results 
seem reasonable. 

   The shear stress that acts on every joint for each condition is shown in  Fig.  11  (a) 
and  Fig.  11  (b)  . As is clear from the figures, the shear stress in self-weight analysis and 
those in the cases for 0. 25 and  O. 5 time the observed groundwater level are rather 
uniform. When the pore-water pressures are  O.  75,  1.  0 and  1.  25, the shear stress at 
every point fluctuates greatly. The shear stress acting at each joint between A5 and 
A6, especially those at joints 22, 24 and 34, becomes larger as the pore-water pressure 
increases. In addition, since the local factor of safety at these joints decreases gradually, 

it is considered that the condition during actual landslide is well reproduced (see 
Fig.  9)  . 

   Measurements by extensometers for the ground surface show that the spans of the 
extensometer No. 4, No. 5 and  No.  6 are in extension, while the spans for  No.  7 and 
No. 8 are in compression (see Fig. 2 and Fig.  6)15). The analytical results of the F. E. M., 
when pore-water pressure corresponding to  1.  25 times the observed groundwater level 
is exerted, show that all the spans for the ground surface over the joints No. 1 to No. 
31 are in compression, while the spans for the ground surface over the joints No. 32 to 

No. 56 are in extension (see Table  3)  . These simulated results are in good agreement 
with the observed facts. 

   Next, let us examine the local factors of the areas around the pipe strain-meters 
of A5 and A6. A comparison between Fig. 7 and Fig. 9 shows the following ; The third 

joint element downward from A5 (B in Fig. 7) has a local factor of safety less 1 when 
analyzed for self-weight. The area between A5 and A6 has a local factor of safety 
less than 1 when analyzed for  0.25 time the groundwater level. The area of local 
factors of safety less than 1 is enlarged when the pressure is  0.5 time. Further, the 
local factor of safety of A5 is less than 1 when the pressure is equivalent to  0.  75 time 
the observed groundwater level, while that of A6 still remains over 1. However, all the 

   Table 3. Calculated strain at ground  surface  ; No is the number of isoparametic elements 
            at ground surface ; Positive value implies extension and negative value compression 

 No Strain No Strain No Strain No Strain No Strain   

1  0.  0 2  0.  0  3  -0.  822E-5  4  -0.  106E-4  5  -0.  106E-4 
   6  -0.  128E-4 7  -0.  403E-4 8  -0.  369E-4 9  -0.  486E-4 10  -0.  275E-4 
  11  -0.191E-4 12  -0.  167E-4 13  -0.  729E-5 14  -0.242E-4 15  -0.261E-4 

  16  -0.  259E-4 17  -0.441E-4 18  -0.  349E-4 19  -0.303E-4 20  -0.159E-4 
  21  -0.  274E-4 22  -0.  150E-4 23  -0.  273E-4 24  -0.  125E-4 25  -0.310E-4 
  26  -0.  286E-4 27  -0.  265E-4 28  -0.  275E-4 29  -0.  131E-4 30  -0.  142E-4 

  31  -0.  104E-4 32  0.  870E-6 33  0.  107E-4 34  0.  196E-4 35  0.  329E-4 
  36  0.213E-4 37  0.  283E-4 38  0.  149E-4 39  0.  189E-4 40  0.  216E-4 
  41  0.  146E-4 42  0.  0 43  0.  384E-4 44  0.  337E-5 45  0.  477E-6 
  46  0.  801E-5 47  0.  571E-5 48  0.  315E-5 49  0.  561E-5 50  0.122E-4 

  51  0.  935E-5 52  0.  639E-5 53  0.  187E-5 54  0.731E-5 55  0.  0 
  56  0.443E-5
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joints between A5 and A6 have a local factor of safety less than 1 when the pore-
water pressure is equivalent to  1.  25-times observed groundwater level. This simulation 

suggests that the nucleus of the landslide was between A5 and A6, a point near A5, 

and the rupture developed bilaterally along the slope, i. e. the local factor of safety 
for the area around A5 became less than 1 first, and then that for the area around 

A6 followed. 

   It is impossible to confirm the exact position of the nucleus of the failure, because 

there was no pipe strain-meter between A5 and A6. But the extensometer  No.  6 close 

to the pipe strain-meter A5 showed the largest extension measured in this event. The 

lower pile of the extensometer, immediately next to A5, toppled over due to a large 
movement and as a consequence the total displacement of the slope could not be 

measured. The toppling at this position suggests that this area moved most actively among 

all other areas during the landslide movement in 1980. It is probable therefore that this 

area is the starting point of the landslide. If it is the case, the rupture started around 

 AS and reached the instrument A5 first and enlarged down the slope. The simulation 

given in the preceding section agrees with the observed fact by using the extensometers, 
that is, landslide movement occurred around A5. 

   The simulation suggests that the sliding proceeded with the rise and fall of pore-

water pressure. If the period of duration betweeh the  0.  75 time and the  1.  25 times 

the observed groundwater level were about ten hours, an average rate of the rupture 

process would be harmonized with the observed process, because the distance between 
A5 and A6 is about 30 meters. 

    After the landslide had ceased and stabilized, the pore-water pressur of the areas 

around A5 and A6 has been continuously measured in boreholes. It has been found 
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                                                    Fig. 12. An example of observation of pore-water pressure at site A6 in Fig. 2. 
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that the pore-water pressure has reached a peak with in about 10 to 30 hours after a 
rainfall, where the delay time calculated from the observation result shown in Fig. 12. 
As mentioned before, an enlargement of the rupture, from A5 to A6, can be explained 

by an enlargement of the area where a local factor of safety is less than 1. If it is 

the case, the progression velocity of the rupture agrees with the rate of increase in 

pore-water pressure. It is therefore reasonable that the increased duration of the pore-
water pressure on the slip surface can be taken to be of the order of about ten hours. 

In that case, the results of analyses, in a gross manner, explain the observed results 

on the progression velocity of the rupture which is a few meters per hour, as estimated 
from the difference of arrival times of movement in the order of A5 to  A6. 

6. Conclusion 

   The main physical characteristics of a landslide mechanism have been determined 

through observations by the pipe strain-meters and extensometers along line A at the 

Irahara landslide area Tokushima Prefecture during the landslide caused by a rainfall 

of more than 570 millimeters over a few days in September 1980. A rupture started 

at a point on the slip surface near the pipe strain-meter A5, while the soil above the 

slip surface was elastic. The rupture progressed downhill from A5 to  A6 along the 

slope at an average velocity of a few meters per hour. The mechanism of this 

progression of rupture zone along the slip surface is interpreted by the enlargement 
of local failure accompanied by the increase in the pore-water pressure, which was 

simulated by the F. E. M. with the joint elements along the slip surface. From this 

analysis, it is pointed out that the progression of the rupture has been controlled 

essentially by rise and fall of the pore-water pressure accompanying the rainfall during 

the slide. 
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                           Appendix 

                 Table 1. List of correspondence of internal strain meter 

                   Internal strain meter Internal strain meter 
           Part 1 Part 2 

        No. 1 A-3 
       No. 2 A-4 
       No. 3 A-5 
       No. 4 A-6 
       No. 5 A-7 
       No. 6 A-8 
        No. 7  A-1 
       No. 8  A-2 
       No. 9 B-3 
        No. 10 B-5 
         No. 11  13-6 
        No. 12 B-7 
 B-1 
                                                            B-2 
                                                            B-4 

ERRATUM 

   Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 33, Part 3, 1983, pp. 105-127. 

   Observational Study on Landslide Mechanism in the Area of Crystalline Schist 

(Part 1) -An Example of Propagation of Rankine State 

                           By Akira Suemine 

   Figure 5 and Fig. 17 in Part 1 should be changed next figures. 
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