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Abstract

   Numerical calculation method of short waves in the coastal zone is developed using the transformed mild 
slope equation, which is derived by transforming the elliptic MSE into the system of three first-order hyper-
bolic equations (H-MSE). The derived system of equations is solved by ADI method with employing the ar-
tificial boundary condition, called sponge layer to perform an effective computation. 

   Including additional effects of energy dissipation due to wave breaking and wave-current interaction, it is 
attempted to raise model's level up to the version which can calculate wave fields in the surf zone as well as 
around the coastal structures with an accuracy for engineering practices. After fundamental model tests, it is 
shown that the developed short-wave model predicts the stationary wave field in which effects of refraction, di-
ffraction, reflection and energy dessipation are simultaneously considered.

1. Introduction

   Short-wave prediction is the most important and fundamental work in the field of 
 coastal. engineering. However, even if under the assumption of periodic wave, it is not 

always easy to calculate the wave field in the coastal area where man-made structures 
and wave breaking exist. Several effects, such as refraction, diffraction, reflection, 
dissipation, non-linearity and wave-current interaction, simultaneously come to play a 
significant role for the wave propagation in this region. 

    One of the most general' approaches of shor-wave calculation so far is based on the 
time-dependent, vertically integrated Boussinesq equations (Abbott et al. 1981)1), which 
are able to simulate unsteady two-dimensional flows in vertically homogenous fluids and 
short-waves with weak non-linearity because of its inclusion of non-linear and dispersion 
terms. The disadvantage of this approach is a small range of applicability, i.e. the Ursell 
number  Ur  =  1. 

   Since the initial development of the mild-slope equation (MSE) by  Berkhoff (1972)2), 
a great strides have been made in the modelling of linear water waves under the 
simultaneous consideration of diffraction, refraction and reflection. The MSE sup-

plements the more copmrehensive approach base on the Boussinesq equations. For 
some applications the MSE is preferable. 

   This model is based on the theory of simple harmonic linear water waves, and so the 
effects of nonlinearity and energy dissipation by bottom friction or breaking are not
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taken into account. The motion of water is assumed to be irrotational and the problem 
is described by a two-dimensional field equation of elliptic type due to the vertical integra-
tion from the bottom to surface. Employing additional assumptions, energy dissipation 
and wave-current interaction, this model has been developed to the useful version for 
various engineering practices. 

   The elliptic MSE is most commonly solved by the finite element method, e.g. 
 Berkhoff  (1976)3). However, because this solution method usually requires a lot of com-

putational effort in the case of a large area, a simplification of the equation  and/or the 
effective numerical method have to be successfully attempted. Radder  (1979)4) derived 
the so-called parabolic approximation of MSE by the splitting matrix method, in which 
the diffraction in the direction of propagation is neglected and the diffraction along the 
wave front is considered. This method is applicable to computations of wave propaga-
tion under the condition that the main wave direction is maintained and reflection effect 
is negligible. The parabolic MSE governing foward-scattered wave motion has the ad-
vantage of reducing the computing time and capacity. Because of this advantage, a lot 
of efforts have done to make this model applicable for engineering purposes, e.g. 
Tsuchiya et al.  (1984)5). 

   Warren et al. (1985)6) and Copeland  (1985)7) has developed an alternative elliptic 
stationary MSE by transforming the equation into the system of three first-order hyper-
bolic equations (iterative form). Copeland  (1985)7) solved the resulting system of equa-
tions using an explicit finite difference scheme and showed that this method offers the ad-
vantage  of reducing computing time to get results of linear wave field (height and direc-
tion) with boundary conditions of arbitrary reflecting/transmitting power. In this paper 
we name this type of wave model "hyperbolic MSE (H-MSE) model". Madesen and 
Larsen  (1987)8) developed an approach to solve the H-SME using the ADI (Alternating 
Direction Implicit) finite difference scheme and a time-varying time step technique. 

   Ito and Tanimoto  (1972)9) showed a method to calculate the refraction-diffraction 
combined short wave propagation in terms of a system of linear long-wave equations 
which describes the amplitude variation of simple harmonic waves. Even though their 
basic equations are not completely equivalent to the elliptic MSE, the idea of the H-
MSE method probably originates in this approach. 

   In engineering applications of short wave field calculation, one of big restrictions is 
the fact that a computational domain is virtually infinite. However, economical con-
strains necessitate that the domain is limited as far as possible. Larsen and Dancy 

 (1983)'°) described that almost perfect absorption of waves can be obtained by the sponge 
layer. This approach is based on an artificial damping which is introduced in the gover-
ning equations by applying a friction factor in a few grid lines near the closed boun-
daries. The sponge layer has very broad-banded damping characteristics in the direc-
tion of wave propagation, however, it causes problem of artificial diffraction in the direc-
tion of wave crest line. Using technique of the sponge layer will be discussed in this 

paper. 
   Consideration of the effect of a nonlinear dispersion relation is also important for 
the wave propagation in shallow water, such as just before breaking, which has been ex-
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amined and incorporated into the parabolic MSE by Kirby and Dalrymple (1986)11). 
Especially in the nearshore dynamic system, the nonlinear wave-current interaction 
must be considered, which might be essential in a generation of nearshore circulation. 

   In this paper, modifications of the elliptic MSE for engineering practices are in-
vestigated and the H-MSE in the wave-current combined system is derived in section 2. 
The numerical calculation algorithm of the H-MSE is discussed in section 3. Several 
model tests of the developed computer code are performed and demonstrated in 
section 4. 

2. Basic equation for wave-current system 

   A wave-current interaction system plays an important role in the coastal hydraulics 
which is basis of predicting beach topography changes and nearshore circulation. For 
these purposes of nearshore environmental problems, the refraction-diffraction combined 
linear wave theory has been developed as a useful tool for the computer simulation of 
wave-current system in the coastal zone. In the following, the previous works on the 
MSE for the wave train propagating on the slowly varying depth and with currents is 

summarized and discussed, then the H-MSE  in the wave-current system with energy 
dissipation effect due to wave breaking is derived. 

2.1 The elliptic MSE in the wave-current system 

   Taking three dimensional rectangular coordinates (x, y, z), such that the x- and y-
axes are horizontal and z- axis is vertically upwards (see Fig. 1), the time-dependent 
MSE with currents is derived as Eq. (1), in which the energy dissipation due to wave 
breaking or bottom friction is included by the term of  kr  WO (e.g. Kirby (1984)11)). 

        D2(I) 
  D1 

 +  (7.0) Dt+DtU)(1)— (CCA,RD) 

 2 

 (u2  — W)11)  =  0 (1) 

                                            ,A00,..-iemodisirA. exp 

 0 

 y 

 A 

                    Fig.  1. Coordinate system and definition of variables.
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Where the Lagrangian derivative operator  DIDt is 

                         ,,.,                          -r 

 Dt  atax.(2) 

and,  0 is the velocity potential of linear wave motion,  U: the vertically uniform current 
vector, C and Cg: the wave celerity and group velocity, W: the dissipation factor, V: a 
horizontal gradient operator, rc: wave number vector, h: water depth, g: the gravita-
tional acceleration. In the wave-current system, two wave frequencies of the intrinsic 
wave frequency a and the observed (apparent) frequency  co are defined as: 

 (.0=6±  Tc•0 (3) 

where the  a is functional dependent on  k with the dispersion relation of 

 u2=gk  tank  kh (4) 

Because of the validity that the time and space scales of wave motion are small compared 
with currents, the local properties of the wave train can be specified by  CD  =  aexp  (iT), 
where a is the local amplitude and  iF is the phase. Assuming the phase  iF  (  CO;  X ,  t) is 
slowly varying function in time and space, local wave number and frequency are defined 
by 

 =  vir and  (0=  a /F                                            (5) 
 at 

From the first equation of Eq. (5), the irrotational condition of the local wave number, 
 Vx ic =0, is immediately obtained. Eliminating the phase function from Eq. (5), we 

get 

  —
at_Lv(0=0 (6) 

This equation means that  17 is a phase density (the number of equal phase lines per unit 
distance) and  CO is a phase flux (the number of phase lines passing a fixed point). 

   Assuming the steady sate and neglecting the higher order terms such as 

     au, ao aui au ao2 a20   U
S,U,U,U and U, 2          ax

,.  axi ax,. ax. ax,'                                                                   aX.aX.                 z ax= 

Eq.  (1) is finally simplified as: 

 7.(CC,70)±2iw(U.70)+iw7.00—(a2_k2ccg—  (02  W)CD =0 (7a) 

When no steady current is assumed Eq. (7a) is written as: 

 V.(CC,V(1))+(k2CCgd-  W)0=  0  (7b) 

2.2 Introduction of energy dissipation effect due to wave breaking 

   In order to introduce the dissipation effect to the MSE we consider the energy con-
servation described by the wave equation. Assuming the velocity potential by the form
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of  0:130=a(  x  )expilir(  x  ) and substituting it into Eq. (7b), we get the propagation relation 
from real part and the energy conservation from imaginary part, respectively. 

            MC  (77)2  =  k2  ±_g_.7a_ ± 72a_ (8a) 
            CCs a  a 

 7-(CCga274)-1-  a2o.  W=  0 (8b) 

As the wave energy is given by  E=112pgA2 (A: the wave amplitude,  A=oalg), Eq. (8b) is 
rewritten as: 

    7. (i---ECg)± EW= 0 (9) 
        kl 

Expressing energy dissipation rate with D, the energy conservation equation is expressed 
by 

 7-  (Edg)+D=0 (10) 

Consequently the dissipation function W in the MSE is defined by the relation of the 
wave energy dissipation rate D to the wave energy density E as: 

  147=—DE(11) 

   Three types of formulation may be proposed to evaluate the energy dissipation rate 
due to wave breaking. 

(1)  Type-1 (wave energy fulux model) 

 D=,1  ECg            d 

where d: the total water depth. 

(2) Type-2 (bore model) 

 D=pgH3   4h  T 

where T: wave period. 

(3) Type-3 (breaker eddy model) 

               2 Eel,           D=" e  T  h 

where  E„  Te and  4 are energy, period and length scale of the surface eddy of breaking 
wave. 

    The most commonly used model is  Type-1. Here we employ the model proposed 
by Izumiya and Horikawa  (1983)13) which is formulated as: 

          E312 1/2       D=7 -43__1)                                             (12)              p112(h 4- V/2(C
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where is the mean water level, 

 74,13=  180(A42*_m2t01/2 and  A/2*=-L   C pg(h+)2 (13) 

They suggested the model parameters of  j0=1.8, A /1.,= 0.009 to simulate wave reform-
ing. 
In their fomulation of energy dissipation rate due to breaking is rewritten by the ratio of 
breaker height to local depth  HI  h, as: 

 Ec     D =0 .08(H,.2—H)1/2  H, (14) 

where  1-1,=  Hlh, h is the local water depth. In the actual calculation we replaced the total 
water depth to the local water depth from the still water level. 

2.3 The hyperbolic MSE 

   One of economical methods to solve the elliptic partial differential equation is to 
transform it into system of first order partial differential equations. Applying this 
method to the MSE, the transformed version of MSE (H-MSE) in the wave-current 
system is derived. 

   For a simple explanation of derivation, the original MSE is firstly used and finally 
the H-MSE with disppation and current interaction terms is shown. 

   Assuming a simple harmonic solution and using the velocity potential of 

 0_21_  =  exp(i1F) (15) 

the original MSE is rewritten as: 

            C2at2e    (CCg7e)— C=0 (16) 

As shown by Madsen and Larsen (1987)8), the equivalent hyperbolic system to Eq. (16) 
is, 

 aP* a(2.* cpae     +—= 0 (17) 
 ax ay  c at 

         aP.             ,„,„ae 
   atu1/gx=  V (18) 

     aQ*ae    +cc —= 0 (19) 
       atg ay 

where  P*, Q* are pseudo fluxes. Time evolutional solution actually indicates iteration 
toward the steady solution of the elliptic MSE. As solutions can be assumed by the form 
of 

 =S(x , y, t)  exp( —  iwt) (20)
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 P*  P(x, y, t)  exp( —  icot) (21) 

 Q*  =  Q(x,  y, t)  exp( —  iwt) (22) 

the harmonic variation is extracted from the system of equations.  P, Q and S are com-

plex functions with respect to  x,  y, 1, which depict slow variation of wave motion. Conse-
quently the resultant form of the H-MSE is obtained as: 

       a—apQ,,asat        iws=ss (23)        ayc 

 aP  as   —  iwp+  cc
g  ax=0 (24) 

   aQas     i
wQ+ CC=o (25)      atgas 

using the relations of 

 aP* aea(27de      =CCand=CC(26) 
 at g  ax  atgay 

The elliptic MSE (7a) in the wave-current system with energy disspation is transformed 
into the equivalent system of equations which is same as that of nearly horizontal flow in 
the shallow water as: 

      _aPaQ10-2k2cc (62jaw iau ± av \ias _iws) 
     axay(02s  ax ay )t1 at 

      +2iw( CC,cc+VQ)-- 
     —SS (27) 

 aP as  —  kop+ cc
gax= 0 (28) 

                                           (29)     aQ,as             i(0Q+ cc--cp      atgay 

where SS is the wave generation term defined by 

           AS   SS= 
ixdy CS0 (30) 

where  ix and  4y are mesh-sizes in the x  and  y directions, C is wave celerity and is: the 
width of the wave front inside a grid, So: the complex surface elevation function specified 
on the generation grid points. 

3. Numerical calculation algorithm 

   The derived system of partial differential equations is same type as the linear long
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wave equation system. The effective finite difference algorithm for this system is ADI 

(Alternating Direction Implicit) scheme, which can be economically solved by the double 
sweep method. In this section, the outlines of the solving method employed is 

presented. 

3.1 Difference equations of H-MSE 

   The H-MSE described by Eqs. (27)-(29) are discretized by means of the ADI 
scheme of finite difference method. Defining the complex variables S, P and Q on a 
space-staggered rectangular grid system indicated in Fig. 2, the following finite di-
fference formulations are obtained for x  and  y sweep. 
For x-sweep of Eqs. (27) and (28): 

         Ain+1/222 
         At/2(Si'kS;A)+7{(2— 3)S,'.1,1-,E112+ OSin,k} 

         

, 1          -r— 
2dx{ (2 — 3)(1:17,i,1Pin—±11,0O(Pin,kPin— 1,k)1 

       ^ 24
y\ 

              {(262)(Q:,)-1/2Ck----1/12) ± 52(Q.!); 1/2(4,k--1/12)} 

 +CCU {U.ki2{ (2 —3)P;:k" Op7k}{ (2 — 52)C"2+62(2.1k-"2}1 
         = ssFk- 1/2                                            (31) 

 5 

       5  11111111111111 

 4 

 4  firirstin 

 3 

  3  onollinnn 

         2 

  2 011111111111E, p 0 
 0:  X 

  1  41111E111111 
 0

0  1  2  3  4  5 

 1  2  3  4  5 

                            Fig. 2. Space-staggered grid system. 

        (0: pseudo flux  Pi,k,  X  : pseudo flux  Qk and S: surface elevation  5;,k and water depth)
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      23n+n24 
        At(P1j'kPj,k)+-2  {(2  —  6)P;kEl  &PIA} 

             C2cn+ 1/2S+1/2\ = 0  +A
x,10-1J,kLik(32) 

where coefficients,  21, 22, 23, 24 are 

              C(02—U2 ±(Uj,k—Uj-1,k + Vj,k-1),•W  21=+z     C
w2Ax  Ay 

 22=  1(1)217  23  24=  i(ü-L 

For y-sweep of Eqs. (27) and (29): 

 21 (22               s1
,-,E1–sTk'"2)+-2 1(2 — a)s.,7),-1+ ostrik-1/2}        At/2 

        ±-1 {(2 —(32)(P)'?:kr1 — P1-4:11,0+ 62(P7A—P1_1,k)}            2x 

 24y "QLF3/2212) +2(Q;1-1/2pl.12) 

                                                          1-1/2           2iwrk-1{ (2 —(32)P;A+1 +132/1,k} ±VJ,k—2 1(2 —cl)V1/2±(3Q.7,1,11  CCU[2 

 =SS.;'),-1 (33) 

         23+3/2n+1/224 
 At ( 

      m 

               —Qj,k )+—2 {(2-6)C3/2±6C1/2} 

     + c21—(sn-kF_,–s7-kkl)–o (34)        g),J• 

where 3,  32 are weighting factors which indicate a complete implicit with  3=0, the 
Crank-Nicolson with  3  =1 and an explicit scheme with  5  =  2. Accurate solution are 
obtained by  3  =1 after certain number of iterations. 

3.2 Double sweep algorithm 

    Eq. (31) can be rearranged with respect to unknown variables of S".,:1-ki-                                                                      1/2, p jrz Ak- 1, pinlk, 
as follows. 

                  /12 ± g1  iF  1  Cj,k1/37–+11,k=Ey,k (35) 

where 

          2 2  A
i,,k= 21—At+—2(2-6) (36)
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 2-6         B 
 2  Ax (37) 

 2—              C
1j,k=  2  ix (38) 

 2  A  2  E1j,k=  (21—At2  is2  dx3(Pn  Pin-  1,k) 
 1ü  1i,2 6

2) (Qin1-1/21/12) ± 52(Q.;k-1/2(2;1/12)1  [  26 

            k-21{(2—5).P.; 1 +13;k} +V.k-1 1(2-32)(4Hk-112± 52Q:7;112/I    1'-1' 2 

 -FSS1/2                                            (39) 

On the other hand, Eq. (32) is rewritten as: 

        A2,k7:11' B2j.  ,kP  if!  :kP  1  +  S;,  112  =  E2j,k (40) 

where 

 A2j,k=  C2   1                                              (41)  g  Ax 

        A3 
'       B2'-1k/        2=—11/42—(3) (42)         At 

                          r--,21  C2j,k= (43)                 g Ax 

    E2,,k=(2j-11").Pn(44)             At2jA 

Eliminating S with Eqs. (35) and (40), we get a tridiagonal matrix with respect to P, as: 

 Flj,k13,7Z11,k+  Gli,k-P.;:kE  1  +  H1j,k-P7-1-11,k=  0  li,k (45) 

where 

 A  2.1.,k D  /  '13,k=  A  111  1j,k (46) 

 A2J.,kD2ik    Ls•k—A B21,k+ Ak (47)  1,k' 

 D2j,k            11
1j,k—         A

11k(-113 k(48)
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                                       2    Oti2k= E2j,k+  Dkk+(49)A 

Eq. (45) can be quickly solved by the Thomas algorithm (the double sweep method). 
When PI,P1 is obtained,  5.71112 is directly calculated with Eq. (35). 
In the case ofy-sweep, Eqs. (33) and (34) can be solved by the same manner with respect 
to V312and SW 

3.3 Boundary conditions 

   For the actual calculation of wave fields in the coastal zone, three types of boundary 
condition have to be specified, such as wave generation, absorption and reflection. The 
developed model in this study can introduce these conditions as follows. 

(a) Wave generation boundary 

   As mentioned in the previous section, wave generation can be incorporated into the 
model system in terms of the source term SS of the equivalent mass conservation 
equation, which is defined as: 

   SS=A
xAsyCS0 (50)            A 

where  So is the complex surface elevation function along a generation line, which is de-
fined as 

 So=A0eixo (51) 

where Xo is phase function described as: 

 xo=  k  •  x (52) 

Using this boundary condition, it is possible to generate waves with arbitrary height, 
wave number and direction. 

(b) Wave absorption boundary (sponge layer) 

   For engineering applications the computational domain has to be limited as small as 

possible. One possibility to achieve this demand is introducing an artificial absorption 
boundary. The so-called sponge layer developed by Larsen and Dancy  (1983)10) in their 
short wave paropagation model is employed here to absorb all outgoing waves at an open 
boundary. After each time (iteration) step, the surface elevation and pseudo fluxes are 
divided with artificial function p(x). The function used in this paper is 

              expl (2 -x/4x — 2 -;/°.' )1na;for 0�x� 
 ii(X)=(53)    1 for                                                               X
s= X 

where  ; is the sponge layer width and a is a constant that depends on the number of 

grids inside the sponge layer described by  aclAx.
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(c) Wave reflection boundary 

   The perfect reflection is achieved by 

 Q=0 or  P=0 (54) 

However, an arbitrary reflection boundary condition is often needed in the calculation 
of short waves around coastal structures. It is possible to get an analytical reflection 
coefficient for one-dimensional difference equation system as shown by Madsen and 
Larsen (1987)8), but this problem is not treated here. 

4. Fundamental tests of the model 

   In order to confirm the basic characteristics of the developed model, (1) wave height 
in the surf zone (breaking test), (2) effective application technique of the sponge layer 

(sponge layer test) and (3) external/internal diffraction tests are examined. 

4.1 Wave breaking test 

   Wave height variation in the surf zone is the most important information for near-
shore dynamics. The wave propagation model elaborated in section 2 includes the effect 
of energy dissipation due to breaking. Computed breaker height variation in the surf 
zone is examined by comparing with previous experiments. For this purpose the one-
dimensional numerical wave flume with uniformly sloping bottom (1/30) is set up as 
shown in Fig. 3 in which wave generator (generation term) is located at the left end of 
the flume. The sponge layers  (a=  10,  xs1  Ax=  5) are located at the back of numerical 
wave generator and at the end of slope. 

 numerical wave generator                                                                waves 
                                                            411111^, 

                         :•:•:.:. $.4  / 
                    cu         a• N 

               MIPPrr                      ' ()cc' w 
      •:.:•:.:  tp 500 

 ;:;:;*  c   ^  0  t:;;;*  R 
            vai;:t prr 0  s-yo9                    \  13 I 

 W • 7 •   

              Fig. 3.  Numerical wave flume for one-dimensional wave breaking tests. 

   Since the energy dissipation term suddenly affects at the breaking point, a 
numerically reflected waves (disturbances) are generated at this point. Thick broken 
line in Fig. 4 indicates an example of the unrealistic disturbances, where significantly 
reflected waves (left-going waves) are observed. 

   To eliminate this numerical reflection, a smoothing funcition is operated to the
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1.5  

                                    breaking point 

 O 

 ----no  operation 

 ----5-point operation 

                 — 7-point operation 

 0.51 1I   1.   0 0 .755 

 x/L0 

       Fig. 4. Elimination of numerical reflection due to wave energy dissipation term W. 

1   

      1 

             breaking criterion 

     / 7  

 e 

 H=4m,T=8s 

 H.5   

 ,/  H=2m,T=8s 

                              ---- without breaking 

                             - — with breaking 

        0 
 0  1.5 3 

 x/Lo 

Fig. 5. Breaking points estimated by the time-dependent MSE model and the method used in this study.
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dissipation term W. Assuming the linear smoothing function, 5- and 7-point operation 
centering the breaking point are examined. The resultant wave height  variatioin is in 
Fig. 4. It is recognized that 7-point operation of the smoothing function works well in 
eliminating numerical reflection and it does not affect the wave height decay inside the 
surf zone. 

   As employed in the time-dependent MSE model by Watanabe et al. (1984)14), the 
breaking point is specified after caluculating the whole region without consideration of 
wave breaking. By this method the wave height in the surf zone has to be calculated 

twice. To avoid this loss of computing time breaking and reforming judgement is per-
formed by the ratio of local wave height to depth in the preceding iteration step. Dif-
ference in results by the former and latter methods is examined and shown in Fig. 5 for 
two cases,  1-4=2 m,  T=8 s, and  14=4 m,  T=8  s. The breaking criterion of HB/hB 
=0 .78 is used. No significant difference in wave height variations is observed in both 
cases and it can be concluded that the latter method is applicable to determine the break-
ing point. 

   Test of breakier height variation is carried out to confirm the applicability of  break-
ing term used in the model. Fig. 6 shows the comparison of wave height variation be-
tween calculations and experiments. Fig. 6(a) is the result of typical spilling breaker 

 (Ho/Lo = 0.04, bottom  slope  = 1/30) and the case of spiller/plunger transition  (I-10/L0 
 =  0.02, bottom slope  =1/30). It is observed that the calculations explain experimental 

data within an allowable range except wave heights near the breaking point, where 
difference between the linear theory and experiments inherently exists because of wave 

profile peaking near the crest. 

4.2 Sponge layer test 

   The radiation condition is usually employed at the open boundary to scatter all 
outgoing waves. The technique of sponge layer based on an artificial damping is 
employed here, which enable an economical calculation for engineering applications to 
reduce the computational domain. 

   Larsen and Dancy  (1983)10) employed this technique in a computation of short wave 
field by means of dividing S and P (or  Q) with the disspation function  e(x) after each itera-
tion step. Madesen and Larsen (1987)8) used a liner friction factor in the sponge layer of 
their H-MSE numerical model. 

   Equal wave height lines in the constant depth are shown in Figs. 7(a) and (b), 
which depict effectiveness and drawback of the sponge layer, respectively. Almost 

perfect absorption is achieved within several grids of sponge layer for normal wave in-
cidence (Fig. 7(a)) and no disturbance is observed in it. In the case of side-wall 
boundary, however, wave diffraction due to sponge layer causes undesirable disturbance 
in the calculation domain, as shown in Fig. 7(b). Therefore, attention has to be made 
in setting the sponge layer not to generate such an undesirable disturbance. Sometimes 
selection of the boundary conditions is not so easy in the practical problems.
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 1.5  I 

                 slope 1/30 

 H  1  24\* 
    a  Ho• 

                                    • 

              ( 0.5 
 ifo/L0=0.0367 

 to  Ho/Le0.0385 

  0   - 
  0  0.05   0  .1 

                        h/L0 

 (a)HolL0=0.04 (calculation) 
 1.5•  

 +slope 1/30 

 • 
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4.3 Internal diffraction test 

   The most common test to examine the diffraction (internal diffraction) and refrac-
tion combined problem is the elliptical shoal test. Fig. 8 is the test setup used by the 

 Delft Hydraulics Laboratory  (1982)15) in which the elliptical shoal described by Eq. (55) 
is located on the uniformly sloping bottom. 

 h(x,  y)=  hi(x  ,  y)+ h2(x, y) (55) 

where 

              7  
               0 

 hi(x  ,  y)=360(sin  20°x+  cos 20°y) 

       h2(x,y)=0.3_ 1j 1( x-10.75 )21y-15 \2                2'1`5k3.75) 

       in the region: (x— 0.75   )2 ±( -.5 )2 �i 
       53 

         h2(x,  y)  = 0 otherwise
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Fig. 8. Setup of the elliptical shoal  experimentst5) and sections along which wave heights are compared with 
        calculations. 

The comparison between calculations and experiments conducted by the  Delft Hydraulics 
Laboratory15) is made. Fig. 9 shows the results of experiment. The result of the 
developed model is shown in Fig. 10. Wave height distributions along the specified 
lines are shown in Fig. 11 comparing with the Delft Hydraulics Laboratory's experimen-
tal data. From these figures, it can be observed that the calculated wave height after 

passing the elliptical shoal are higher than the experimental results, however their con-
vergence-divergence tendency is pretty good comparing with previous studies. It may 
be concluded that the numerical model has a well applicability to the problem combined 
the internal diffraction and refraction. 

4.4 External diffraction test 

   Reflection-diffraction (external diffraction) combined wave field is formed around 
emerged coastal structures. The test of external diffraction is conducted to examine the 
model's applicability to this problem, assuming the perfect reflection from the 
strucuture, constant water depth and normal incidence. Fig. 12 shows the reflection-
diffraction wave field calculated by Born et al.  (1965)16) Fig. 12(a) and by the model 
developed in this study Fig. 12(b). The former is the numerical evaluation of the Som-
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Fig. 11. Comparison of wave height distributions between calculations and experiments by the  Delft 
         Hydraulics  Laboratory"). 

merfeld solution and the latter is the numerical solution of the model developed where 
the sponge layer boundary condition is used. The figure shows that the sponge layer 
somewhat affects the wave field near the end boundary. However, the wave field in the 
domain of interest may be simulated with allowable accuracy. 

4.5 Example of application 

    An application of the model is demonstrated in Fig. 13 assuming the condition that 
normal wave incidence of wave period 16 s, height lm, into shallow water where a 
strucuture combined offshore breakwater and fishery harbour exists. Fig. 13(a) shows 
wave height distribution and Fig. 13(b) the equal phase lines (wave direction). 

    As the perfect reflecton from the strucutre is assumed in this calculation, wave 
height just in front of offshore breakwater seems to be extrememly large. However, 

judging from the figure, no significant disturbances by the sponge layer can be observed.
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5. Conclusions 

   Numerical calculation method of short waves in the coastal zone was developed 
using the transformed mild equation (H-MSE), which was derived by transforming the 
elliptic MSE into the system of three first-order hyperbolic equations. Including  addi-
tional effects of energy dissipation due to wave breaking and wave-current interaction, 
the version-up of the model was achieved to simulated the wave field in the surf zone as 
well as around the coastal structures with an accuracy for engineering practices. A 
highly efficient ADI algorithm was used iteratively to get the stationary solution in which 
effects of refraction, diffraction, reflection and energy disspation are simultaneously con-
sidered. 
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