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    Strain Variations of the Yamasaki Fault Zone, 

Southwest Japan, Derived from Extensometer Observations

Part 2 — On the Short—term Strain Variations Derived from Strain Steps —

By Kunihiko WATANABE

(Manuscript received on March 6, 1991)

Abstract

   Coseismic strain steps during the Yamasaki fault earthquake sequence and some other distant large earthquakes 

have been observed with the extensometers at the Yasutomi Observation Vault of the Yamasaki Fault Observation 

Station. Usually, the amplitudes of those strain steps are larger than those theoretically expected and the polarities 

of strain steps also disagree with theoretically expected ones. The directions of the principal  strain axis of each 

strain released by strain steps were frequently normal or parallel to the fault strike. Therefore, the  ,pattern of the 

strain release strongly depends on the neighboring structure, namely, existence of the fault. In order to confirm 

this mechanism, a mechanical model for numerical simulations is presented. The results of these simulations could 

explain reasonably well the characteristics of the observed strain steps. The rather large amount of strain released 

by strain steps is considered to be the strain which has been previously accumulated in and around the observation 

site and is released by seismic waves. In the case of the Yasutomi Observation Vault, this kind of strain 

accumulation is originated by thermal deformation of the basement rock caused by surface temperature variations.

1. Introduction

   Sudden changes in strain variations, "strain steps", are occasionally detected on the 

continuous records of extensometer observations. From observational experiences, a few 

of these strain changes are consistent with those theoretically expected by assuming that 
the strain variations at the hypocenter is propagated elastically or viscoelastically to the 

observation site. However, most of the observed strain changes cannot be explained 

theoretically. Furthermore, some of those sudden changes remain as permanent 

discontinuities in strain, while others return to their original levels gradually. 

   There have been a number of theoretical investigations on strain steps directly related 

to earthquake origin. For example, Press  (1965)0 obtained displacements and strains on 
the ground surface caused by distant earthquakes. Sato and Matsu'ura  (1974)2) and 

Matsu'ura and Sato  (1975)3 calculated displacements and strains propagated through an 

elastic medium. Matsu'ura et al.  (1981)4 also calculated those in layered media with a 

viscoelastic layer. 

   On the other hand, there are some observational investigations on strain steps. For 
example, Wideman and Major  (1967)5) obtained an empirical formula,  M=  1.1+1.74 log(D),
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expressing a relation between the earthquake  magnitude( M) and epicentral distance(D) for 
strain steps down to  10  9. Takemoto and  Takada( 1969)6' also obtained a formula, 

 M=  0.4  +  2.2 log(D), down to  10  -8 strain steps. 

   Strain steps are occasionally observed with the extensometers at the Yasutomi 

Observation Vault of the Yamasaki Fault Observation Station. The observed strain steps 

are not always explained by such theoretical or empirical results as the above mentioned, 
which implies that these strain steps strongly reflect the physical conditions of the 

observation site. 

   In this study, we will investigate the strain steps observed at the  Yasutomi 

Observation Vault and try to clarify the short-term behavior of the fault zone. The 

strain steps caused by the Yamasaki fault earthquake sequence in 1984 and those caused 

by distant earthquakes are analyzed. A mechanical model which represents the 

characteristic strain steps in a fault zone will also be presented. 

2. The Yasutomi fault and its observation system 

   The Yasutomi fault and its extensometer observation system are explained briefly. 

Details are described by Oike et al.  (1981)7', Watanabe et al.  (1983)8) and the author in 

part  1 of the present  paper9). The structure of the Yasutomi fault has two distinguisha-
ble zones, "the fault zone" and "the fractured zone". In this article, "the fault zone" is 

defined as a belt zone of  100-200 meters thickness. Inside the fault zone, there are some 
"fractured zones" which are thin zones of fractured rock and fault clay . In the case of 

the Yasutomi fault, these fractured zones are almost parallel to the fault zone. 

   Electromagnetic Research Group for the Active Fault (1982)10) revealed the existence 

of the relatively low resistivity of 1000 ohm  • m in the belt zone of two kilometers width 

along the Yasutomi fault. Inside this belt zone, they found a further low resistivity zone 

of 100-400 ohm  •  m, 100-200 meters width, which seems to correspond to "the fault 

zone" mentioned above. Furthermore, very low resistivity streaks of 20 ohm • m with a 

few tens of meters thickness are recognized. These extremely low resistivity may be 

caused by the existence of "the fractured zones". The observation vault is wholly 

included in "the fault zone" and lies across "the fractured zones". By considering these 

structural stratum, characteristic behaviors of both the fault and fractured zones have 
been investigated, with regard to long-term strain variations, earth tides, surface waves 

and  S-waves9).1i)-  13). Detailed investigation of the behavior of the fractured zones inside 

the fault zone will play an important role for better understanding of the physical 
behavior of a fault system in the crust. 

   The topography around the Yamasaki Fault Observation Station and the location of 

the  Yasutomi Observation Vault are illustrated in Fig. 1. Spatial relation between the 

Yasutomi Observation Vault and the Chugoku  Expressway"' and the arrangement of 
extensometer sensors are shown in Fig. 2. As described in part  19), we  call the strain 

between the fixed-end of the extensometer rods and i-th sensor "fixed-end strain" of 

component 0-i. By taking the difference between the  i-th and j-th sensors, we can 
calculate the strain between these two sensors. We call this kind of strain "partial
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Fig. 1. Topography around the Yamasaki Fault Observation Station  (•). The Yasutomi 
      Observation Vault (L—shaped) is situated just under the Chugoku Expressway. 

      Solid triangles are the traverse posts of the Yasutomi—Usuzuku Baseline Network 
       for geodetic measurements. 
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Fig. 2. Spatial relation between the observation vault and the Chugoku Expressway. 

      Numerals denote the displacement sensors of the extensometers. Some fractured 

      zones are illustrated by shadows. The lower figure shows the vertical section of 

      the vault and the expressway. The corner of the vault is located under the 

      northern mountainous area.
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                 Table  1. Distanoes between the  fixed—end and each dis-
                         placement sensor and directions of the exten-

                         someter rods at the Yasutomi Observation 
                       Vault 

                                distance from              sensor No.direction of the rod                                the fixed end  

1  35.78  m  N34°  W 
         2 26.86 

         3 21.49 
         4 18.60 
         5 14.55 
        6 3.02 
        7 3.82  N72°  W 

        8 2.40 N56° E 
         9 12.76 

          10 22.76 
           11 34.83 
           12 47.89 

strain" of component  i—j. The directions of the extensometer rods and the distances 

between the fixed—end and each displacement sensor are listed in Table 1. 

   Differential transformers are used as the displacement sensors of the extensometers at 

the Yasutomi Observation Vault. The extensometer rods are hung by stainless strings 0.1 

millimeter in diameter. As the Yasutomi Observation Vault is just below the Chugoku 

Expressway, traffic vibrations with amplitudes of about  10-3 cm/sec and dominant 

frequencies of 10 Hz or more are always fed to the extensometer system. Therefore, no 

frictional disturbance is accumulated at any portion of the instruments. Furthermore, the 

state of the extensometers is sometimes checked by a test in which external force is 

applied to the ends of rods and removed. The hysteresis of the instruments and the 

sensitivity of the extensometers are examined by this test. The observed data are then 
confirmed to show natural phenomena without any instrumental disturbances. 

   In order to reduce traffic noise from the expressway, the output signals of the 

extensometers of periods shorter than one minute are cut off by active filters. These 

filtered signals are sampled by a multiplexer at one—minute intervals, and sent to the 

Disaster Prevention Research Institute of Kyoto University in Uji by a telephone line. 

The transmitted data are received and stored by a mini—computer system every minute. 

Through this data acquiring process, the time accuracy of extensometer data is within 

two minutes. 
   Because of the limited memory capacity of our observing system, minute data are 

stored on the CPU system for only 10 days or less. Important data are saved by a 

CMT recorder. Plotting recorders are also used for monitoring. These two kinds of 
data are used for the strain step analysis in this study.
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3. Strain steps caused by the Yamasaki fault earthquake sequence 

3. 1 Outline of the Yamasaki fault earthquake sequence 

   A moderate—size earthquake of M5.6 occurred at 09h39m on May 30th, 1984. We 
refer to this earthquake as "the Yamasaki fault earthquake" in this article. Nishigami 

 (1984)"3 determined the hypocenters of this earthquake and aftershock sequence with 

good accuracy. The hypocenter of the main shock(M5.6) is located on the Kuresaka— 
toge fault which is a fault segment belonging to the Yamasaki fault system. The 

direction of the main shock from the Yasutomi Observation Vault is  N155°W and the 
epicentral and hypocentral distances are 3.3 and 21.0 kilometers, respectively. The fault 

plane solution of the main shock derived by  Nishida(1985)163 indicates a  left—lateral strike 
slip type, and that the strike of one of the nodal planes almost coincides with the strike 

of the Kuresaka—toge fault. The hypocentral distributions determined by Nishigami 
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     Fig. 3. Hypocentral distributions of the Yamasaki fault earthquake sequence determined by 
           Nishigami  (l984)'53. Epicentral distributions of M  z 1.6 on the left-upper of the 
            figure are obtained by the  Tottori Microearthquake  Observatory". Solid lines 

            from NW to SE denote the  Yamasaki fault system.
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    Fig. 4. Time series of the Yamasaki fault earthquake sequence in  1984'7). The upper 
          figure shows the precise time series of the sequence on May 30th. The lower 
          shows the time sequence for one and a half months. 

 (1984)15 and time sequence obtained by the Tottori Microearthquake  Observatory") are 
shown in  Figs.  3 and 4, respectively. 

   The seismic activity of the Yamasaki fault earthquake sequence is as  follows  : 

Aftershock activity was high for 8 hours just after the main shock, including six major 

aftershocks with magnitudes greater than or equal to 4.0. From May  31st, the aftershock 

activity lessened. Two days after the main shock, activity resumed and an aftershock 

with  M4.1 occurred on June 1st as well as two events with M4.5 on June 2nd. After 

that, the aftershock activity decreased gradually, and aftershocks with M4.2, 4.0, 4.3 

occurred on June 5th, 13th, July 1st, respectively. Since July 1st, aftershocks with 

magnitudes greater than or equal to 4.0 have not occurred. For earthquakes with 
magnitudes around 4.0, we use F—P time magnitude values obtained by the Tottori 

Microearthquake Observatory of Kyoto University based on an empirical formula,  M= 

2.97  • log  (F—  2.5618) 

3. 2 Coseismic strain steps caused by the main shock 

 Fig.  5 shows the strain variations recorded before and after the Yamasaki fault 

earthquake. Concerning the fixed—end strain, polarities of the strain steps caused by the 

main shock were contraction in all components except the extension in component 6-7.
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                                        Fig. 5. Fixed—end strain variations before and after the Yamasaki fault earthquake which is 
           indicated by the arrow. The step amplitude of component 6-7 is cut down. Daily 

           precipitation is shown at the bottom. 

Amplitudes of the strain steps range from  —1.9 to  —  5.1 X  10-6 strain in A-tunnel and 
from  —  2.5 to  —5.1 X  10-6 strain in B-tunnel, where the negative sign,  "  —", denotes 

contraction. Sensors No. 1 and No. 5 went off scale during the main shock and there 

were no data until June 1st. The step amplitude of component 6-7 was +  14.6  X  10-6, 
where the positive sign,  " ", denotes extension. 

   We compare the observed strain steps with those theoretically expected. The 

hypocenter coordinates obtained by Nishigami  (1984)'5), fault plane solutions by Nishida 

 (1985)16) and magnitudes by the Tottori Microearthquake  Observatory') are used to 
calculate theoretical strain steps. According to the aftershock distribution shown in Fig. 

3, the source fault of the main shock is assumed a uni-lateral square fault of 6km  X 6 

km in area. The amount of dislocation,  D(cm), is obtained from an empirical formula, 

 log(D)  =0.5M-1.3 (Utsu (edit.) ;  1987)19). 

P-wave velocity and Poisson's ratio are assumed to be 6.0km/sec and 0.25, respectively. 

The strain change before and after the earthquake is calculated by substituting these 

parameters into the Sato and Matsu'ura's  equations') for a semi-infinite elastic medium. 
Theoretically expected strain changes are shown in Table 2. In this table, those for
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aftershocks are also listed. The theoretically expected strain changes for the main shock 

are 1.31 X  10-8 strain in A-tunnel,  1.57  x  10-8 in  B--tunnel and 6.11  X  10-8 in the direction 

of component 6-7. The observed step polarities and theoretically expected ones are the 

same in component 6-7, but not so in both A- and B-tunnels. The amplitudes of the 
observed strain steps are about two orders of magnitude greater than the theoretical ones 

in the three directions. Nishigami and  Tsukuda(1985)20) obtained two kinds of fan-

shaped vertical source fault with side lengths of about 5 kilometers. They also obtained 

the amount of dislocation  ranging 8 to 14 centimeters. By adopting their parameters, the 

calculated strain changes become smaller than the above-mentioned values and the 

difference between the observed and theoretical strain step amplitudes becomes greater. 

   As to the partial strains, the amplitudes of strain steps are one to three orders of 

magnitude greater than the theoretical ones, too. The steps of partial strains in each 

component do not show common polarity. In the case of  A-tunnel, extension and 

contraction distribute alternately. Such distribution of step polarities is the same as that 

recognized in the polarities of the secular trend of partial strain variations mentioned in 

part  19). These phenomena show that the distribution of local strain changes are not 
explained by the errors of calculations or by the errors of various parameters used in 

calculations. These local strain changes observed in A-tunnel seem to be affected by 

small-scale heterogeneity of the basement of the vault. On the other hand, in  B---tunnel, 

the two available partial strain components showed contraction. Though the polarity does 
not coincide with the theoretically obtained one, the two components in B-tunnel show 

the same polarity. Therefore, such small-scale heterogeneity confirmed in A-tunnel is not 

recognized in B-tunnel. 

3. 3 Strain steps caused by aftershocks 

   The fifteen epicenters of M  z 4 events of the Yamasaki fault earthquake  sequence') 

are shown in  Fig.  6 with their fault plane  solutions'). For twelve events among the 

fifteen, strain steps were recognized on some or most components of the extensometers. 
In order to calculate theoretically expected strain changes caused by aftershocks, the 

length of the source fault, L(km), was estimated by using the empirical formula, 

        log  (L)  =  0.5M-  1.8 (Utsu (edit.) ;  1987)19). 

The ratio of the length to the width of the fault is assumed to be 2  : 1. The obtained 

results are shown in Table 2. Table 3 shows the observed strain step amplitudes 

associated with the main shock and larger aftershocks with magnitudes greater than or 

equal to 4.0. As is evident from Tables 2 and 3, the amplitudes of the observed strain 
steps are usually one to two orders of magnitude greater than those theoretically ex-

pected. Concerning the aftershocks with magnitudes less than 4.0, clear strain steps were 
not recognized for two months after the main shock. Characteristics of the appearance 

of steps on the fixed-end strain components are described bellow. Each aftershock is 
referred to by the serial number as listed in Table 2 or 3. For example, event No.  1(M 

5.6) is the main shock occurring at 09h39m on May 30th.
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   Fig. 6. Epicentral distributions of studied earthquakes  (NI  et) with fault plane solutions 
         (upper hemisphere). The numbers correspond to those in Table 2. Black and 

         white areas indicate compression and dilatation,  respectively15). The solid triangle 
          denotes the Yasutomi Observation Vault. 

   Event  No.  2(M4.9) occurred twelve minutes after the main shock. All components 

except component 6-7 showed the same polarity of strain steps as that of the main 

shock. The next aftershock event  No.  3(M5.0) occurred twelve minutes after event No. 

2. The strain step amplitudes of this aftershock were, in spite of being of comparable 
magnitude, a few times smaller than those of the previous one of M4.9, except for 

component 0-10. The third aftershock event  No.  4(M4.5), which occurred twenty—eight 
minutes later, showed small steps on component 6-7 and all components in B—tunnel, 

except the two unavailable ones. After this, no strain steps were recognized during two 

aftershocks, event No.  5  (M4.  1  ), event No. 6(M4.1).  Fig.  7 shows the relation between the 
time sequence of aftershocks and the averaged strain step amplitudes with their absolute 

values. From this figure, concerning five aftershocks with magnitudes greater than 4.0 

for two hours from the main shock to event No. 6, it is generally said that the 

amplitudes of strain steps depend on the magnitudes of earthquakes and also decrease 
with time. 

    After a quiescent period of one and half hours, the next aftershock with magnitude 

greater than 4.0, event  No.  7(M4.5), occurred. Eight hours later, event  No.  8(M4.3) 
occurred. Some extensometer components showed small but clear steps from those after-

shocks. A succeeding aftershock event  No.  9(M4.3), however, produced no strain steps.
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    Fig. 7. Aftershock sequence and the averaged amplitudes of observed strain steps in 
          absolute values (solid circles). The numbers correspond to those in Table 2. 

 Both events No.  10(M4.1) and No.  11(M4.5) occurred after quiescent periods of one and 

half days and produced clear strain steps. It is noteworthy that comparatively large 

strain steps were observed by aftershocks which occurred after some quiescent periods. 

   Just after event No. 11, another aftershock event No. 12(M4.5) occurred successively. 

The strain steps of event No. 12(M4.5) are a few times smaller than those of event No. 
11. In Fig. 7, four pairs of aftershocks are seen, namely, events No. 2 and No. 3, No. 5 

and No.  6, No. 8 and No. 9, No. 11 and No. 12. In three cases of these four pairs, strain 

step amplitudes of the former events are larger than those of the latter ones. Therefore, 

it can be said that comparatively large strain step amplitudes are caused only by the 

former event of each pair. 

   Event No. 13 occurred after a quiescent period of three days. For this aftershock, it 

was noticeable that some components showed step polarities opposite to those of the main 
shock. No strain steps were recognized during event  No.  14(M4.0). This may be 

because of the fact that event No. 14 is the smallest aftershock in this analysis, and 

perhaps was too small to cause any strain steps. 
   A half month later, event  No.  15(M4.3) occurred. Remarkable strain steps were 

observed from this aftershock. Nevertheless, the step polarities of most components were 

opposite to those of the main shock.
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   Summarizing the above, it can be said that if an aftershock with magnitudes greater 

than 4.0 occurs after some quiescent period, some amount of strain steps can be expected. 

3. 4 Polarities of principal strain axes derived from strain steps 

   In part  19), we investigated the directions of principal strain axes, E  s-and E2-axes, for 

long-term strain variations employing two combinations of extensometers, 0-3, 0-10, 6-7 

on the northern side of the main fractured zone (called N-combination), and 0-2, 0-11, 

6-7 across the main fractured zone (F-combination). It was concluded in part  19' that 

the Yasutomi fault zone had changed in thickness with intervals of a few years. In this 
section, we have obtained the principal strains of steps and examined the change of 

thickness by using the same extensometer combinations as mentioned above. 

   As for the main shock, almost the same principal strain axes were obtained for N-

and F-combinations. One principal strain axis,  E1, was a contraction of  1.9-2.6  x  10-° 

strain in  N11-12°  E, and the other, e2, was an extension of  1.5  x  10-5 strain in  El  1-12° 

S. In other words, the contraction was almost normal to the fault and the extension was 

almost parallel to it. The results are shown in Fig. 8. The strain releasing pattern of 

both combinations and that theoretically expected are almost the same. However, the 

observed amplitudes of strain released are more than two orders of magnitude greater 
than the theoretical one. 

   Among the aftershocks listed in Table 3, only strain steps of event No. 11 and event 

No. 15 were large enough to calculate principal strains with good accuracy for both N-

and F-combinations. Their principal axes are illustrated in  Fig.  9 with those theoretically 

expected. 

   Concerning the former event No. 11, the directions of  E  1 for N- and F-combinations 

are  E22°  S and  El  1° S, respectively, and are almost parallel to the fault zone. Their am-

plitudes are  1.6  x  10  -8 and 1.7  x 10-8, respectively.  E, for N- and F-combinations are 
normal to the fault and the amplitudes are 3.9  x  10-8 and 3.6  X 10-8, respectively. Al-

though these amplitudes are about two orders of magnitude smaller than those of the 

main shock, the directions of principal axes are almost the same as those of the main 

shock. 

 N-comhl.  F  -  comb'.  Theoretical 

                                                                                                                                                         • 

                                                        Pal                                          10-5 

    Fig. 8. Horizontal principal strains for the main shock derived from the observed strain 
           steps and those calculated theoretically. N-combi. and F-combi. mean both 
           combinations of three components, (0-3,  0-10, 6-7) and (0-2, 0-11, 6-7), 
           respectively. Solid lines and broken lines denote extension and contraction, 

            respectively.
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   Fig.  10a. Amplitude distribution of principal strain  Ei for the Yamasaki fault earthquake. 
           Broken line denotes the assumed fault and solid triangle, the Yasutomi 

           Observation Vault. 

   For the latter event No. 15, one principal strain axis,  el, was extension in the direc-

tions of N20° E and  N11° E with amplitudes of 4.1 X 10-8 and 3.2  x  10-8 strain  for N— 

and F—combinations, respectively. The other principal strain axis, e2, was contraction 

with amplitudes of 2.3  x  10-8 and 2.2 X  10-8 strain for N— and F—combinations, respective-

ly. The polarities that the extension normal to the fault and contraction parallel to it are 

almost reverse to those of the main shock and the former aftershock. However, it is no-

ticeable that, in spite of their polarities, the azimuths of principal strain axes were normal 

and parallel to the fault zone. 

   On the other hand, most of the theoretical strains for the aftershocks show extension
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    Fig.  101). Amplitude distribution of principal strain  El for an assumed earthquake whose 
           hypocenter is 2 km shallower and shifted 0.5 km toward NW direction from 

            that of the Yamasaki fault earthquake. Other parameters are the same as in 
            Fig.  10a. 

from E—W to NW—SE. As the hypocentral distances are short, the amplitudes and direc-

tions of principal strain considerably depend on the hypocenter location. Figs.  10 a and b 

show  e  1 for two different cases of hypocentral locations. Other allowable adjustment of 

hypocentral parameters cannot reduce the discrepancies between theory and observation. 

Therefore, the distribution of strain changes also strongly depends on local heterogeneity. 

4. Strain steps originated by distant earthquakes 

   Coseismic strain steps are sometimes caused by distant earthquakes. However, there 
are also many cases where no strain steps are caused even by large distant earthquakes. 

From the minute data stored on CMT, distant earthquakes which originated strain steps 

are listed in Table 4. In this section, strain steps related to such distant earthquakes are 

discussed. 

4. 1 Principal strain axis of the strain steps 

   The strain step data saved by the CMT recorder were analyzed. Principal strains 
were calculated when strain steps of at least two directions were observed for both N— 

and F—combinations. The results for both combinations are shown in Fig. 11. The 

directions of principal axes are also mostly distributed normal or parallel to the fault 

strike, so that they seem to support the idea of thickness change of the fault zone. 
Especially, the principal strain axes obtained by N—combinations depend much more on 

the fault strike than those of F—combinations. This tendency is quite similar to that 

recognized for long—term strain variations shown in part  19). 

   One hour after the earthquake of M6.5 off Fukushima (event No. 20 in Table 4),
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    Fig. 11. Principal strains derived from the strain steps caused by distant earthquakes. The 

           upper figure shows those derived from N-combination and the lower figure, F-

           combination. The numbers correspond to those in Table 4. 

another earthquake of M6.7 occurred successively at almost the same locations. Never-

theless, no  strain steps were observed by the latter earthquake. Such phenomenon in 

which a large strain step is caused by the first event of temporally clustered earthquakes 

is quite the same as that recognized in the case of the Yamasaki fault earthquake 

sequence. 

4. 2 Magnitude, epicentral distance and strain steps 

   The strain steps which are originated by distant large earthquakes and recorded by 

the monitor recorder are discussed. Strain steps of greater than 5  x  10-9 strain are 

detectable by the monitor recorder. In order to know what kind of distant earthquakes 

originate strain steps at the Yasutomi Observation Vault, earthquake data of three 

categories were chosen from the J.M.A. catalogue and examined as to whether 

corresponding strain steps were observed or not on the monitor records. The selected
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  Table 4. List of strain steps originated by distant earthquakes.  "-",  "  x ",  "  ?  " and  "  -?  " 

           mean no steps, unavailable, doubtful and probable contraction, respectively. 

 No.  Y  M  D  H Mn 0-1 0-2 0-3 0-4 0-5 0-6 6-7 0-8 0-9 0-10 0-11 0-12                      A
mp. unit        (JNIA M

ag.) 
      Region depth 

      81 6 30 06h26m  io  °  -  1.5  •  -  -  -             (M3.1) 
      E. Chugoku 10km 

     83  10 31  01h5lm  2  10-° 4
.2  -4.0  11 17  51 -21  -22  - 2.5 2.0 -8.2 -9.2  (M6.2) 

      C. Tottori 15km 
      83 10 31  14h4Orn 3 I0  °  2

.2  -  -  1.7  -  -             {M5.4) 
      Hokkaido 262km 

      83 11 15 12h12m 410  1.3  -  - 1.5              (M3
.1) 
      Osaka Bay 14km 

      83  11 16  05h13m 510  °  -  -  -6 .6 -  -             (M3.8) 
     N. Kinki  17km 

      84  01  01 18h03m  610  ° 1
.0  - 1.4  -2.4 -1.2  -  - 2.0 3.1 3.4 2.7  (M7.3) 

       Off  Kh Pen. 388km 
      84 08 07 04h06m  7 10  -2 .3  -18 21 34 20 14 1.6 5.0 4.6 4.3 4.8 7.3  (M7.1) 

      Hyuganada 33km 
      84  09 14 08h48m  810  "  -2 .7  -3.0 5.6 9.2 6.5  -1.4 - 4.1 4.9 5.7  (M6.8) 

     W. Nagano 2km 
 85  01  06  00h46m  910 - 4.1  -1.8  -5.3  -3.2 - 5.8  x  -1.5 - -1.1 -1.8  (M5.9) 

     Wakayama 70km 
 85  04  03  09h58m 1010  " -  -  -  3.3  -1.3  -2.7  -2.5  -5.8  (M3.5) 

 Yamasaki 15km 
 85  04  04  05h21m  1110  °  -  -  1.8  -             (M6.6) 

      Ogasawara 458km 
 85  05  13  17h05m 12 I0  °  -  -5.7' -  (M4.1) 

 Hyuganada 29km 
 85  05  13  19h41m 1310  " - 1.7 1.0 3.0  (M6

.0) 
    Ehime 39km 

 85  05  29  15h1Om 14 10  °  -  -  -1 .0  -2.3  --  - 

  -

             (M2.8) 
       S.  Kii Pen. 49km 

 85  10  22  07h48m 1510  °  -  -  -  -  5.6? - - - 0.68 -  -             (M4
.6) 
      Harimanada 13km 

 85  11  27  09h01m  1610  ° - 1.2  -  • -  -2.6  -             (M5.1) 
    Obama  11km 

 86  03  22  17h26m 17 10  °  -0 .64  -  -  -  (M3.0) 
      SE. Hyogo 17km 

 86  06  24  11h53m  1810 2.0 2.5 1.9 1.1 1.9 - - 2.3 2.9 2.3 3.5  (N16.5) 
        Off Boso Pen. 73km 

 86  07  28  22h39m 1910  " - - - 2.9  (M4
.2) 
     Oki is. 21km 

 87  02  06  2Ih23m  2010  ° - 2 .0 1.6 1.5  -  -              (M6
.4) 
       Off Fukushima 30km 

 87  03  18  12h36m  21 10  °  --  2 .3  -2.5  -2.0  -1.6  -2.5  -  -  (M6
.6) 
      Hyuganada 48km 

 88  07  31  08h40m 2210 - 2 .4 - 2.8  -  -              (M5
.2) 
 Izu Pen. 5km 

 89  02  19  13h58m 2310  °  1.1  -  -  -  -  -  -  -  -               (M5 .3) 
    N. Mie  45km
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   Fig. 12. Magnitudes and epicentral distances of earthquakes analyzed. Solid circles denote 
          the earthquakes by which at least one component of strain step is recognized by 

          the monitor recorder. Cross marks denote the earthquakes with no strain steps. 
          Curves show maximum dilatations for reference which are theoretically expected 

          to be generated by the earthquakes of fifteen kilometers deep in  semi-infinite 
           elastic medium. 

earthquakes were (a) earthquakes with M  z 6 in and around the Japan Islands, (b) 

earthquakes with  M  z  4 in Southwest Japan and (c) earthquakes with M  z 3 around the 

Yamasaki fault. These criteria were adopted from our experiences as the level of the 

smallest earthquake which causes the strain steps at the Yasutomi Observation Vault. 

Concerning these earthquakes, when corresponding strain steps are recognized by at least 

one component, the earthquake is considered to trigger strain steps. In Fig. 12, all 

earthquakes examined are plotted on the  Magnitude-Epicentral distance space. Cross 

marks denote the earthquakes associated with no strain steps and circles denote those 
which originated strain steps. Maximum dilatations expected from crustal earthquakes of 

fifteen kilometers deep are shown on the figure for reference, which are theoretically 

calculated by using Sato and Matsu'ura's  method3) for a semi-infinite elastic medium. As 

the detectability of the monitor recorder is 5 X  10-9 strain, the amplitudes of observable 

strain steps should be greater than 5 X  10-9 strain. Strain steps with amplitudes greater 

than  5  X  10-9 are occasionally recognized for some earthquakes, in spite of the fact that 
the corresponding strain steps with such large amplitudes cannot be expected theoretically. 

Consequently, in the case of our observations, it can be said that most observed strain 

steps are neither explained theoretically nor agree with the existing empirical models. 

4. 3  Seasonality of the strain step direction 

   If the released strain by strain steps is greater than the theoretically expected one, 

the energy source that provides such an amount of strain may be the tectonic stress 

and/or due to meteorological effects. In order to examine whether the meteorological 

phenomena affect or not, we investigated the seasonal variation of strain step amplitudes. 
 Fig.  13 shows the relation between the strain step data saved by the CMT recorder and
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         Fig.  13b. Monthly average of strain steps except components 0-2 and 6-7. 

the month of the earthquake occurrence which originated those strain steps. From this 
figure, some seasonality can be recognized, namely, extending steps are dominant from 

May to November, and contracting ones, from December to April, except for components 

0-2 and 6-7. As mentioned in part  19), annual strain variations show extension 

(differential coefficients are positive) from May to November and contraction (those are 
negative) from December to April. These annual strain variations are caused by the 

annual variation of surface temperature. Accordingly, it can be said that the polarities of 

strain steps caused by distant earthquakes are closely related to the annual strain
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variations. 

   Two components, 0-2 and 6-7, show a noticeable tendency reverse to the other 

components. The reverse tendency of component 0-2 is suggestive. Generally speaking, 

the fractured zones inside the fault zone mutually affect each other, and the behavior of 

the fault zone itself is considered to be the composite phenomenon of the behaviors of 

these fractured zones. The reverse tendency of component 0-2 is considered to be caused 

by the highly fractured zone near sensor No. 2. 

5. Characteristics of the observed strain steps 

   The characteristics of the observed strain steps given in sections 3 and 4 are 

summarized in the  following  : 

 (1) The amplitudes of the strain steps originated by earthquakes are frequently one to 
    two orders of magnitude greater than those theoretically expected. The step 

    polarities frequently do not coincide with theoretically expected ones either. 

 (2) The strain steps  originated by earthquakes after a quiescent period are usually 
     large, while strain steps originated by successive earthquakes are frequently small. 

 (3) No simple relation among the recorded amplitudes of strain steps, the magnitude of 
     earthquake and the epicentral distance has been found in the case of the Yasutomi 

     Observation Vault. 

 (4) The directions of principal axes of strain steps mean the strain variation in the 
     direction normal to the Yasutomi fault zone. 

 (5) The strain steps originated by distant earthquakes show some seasonal variations in 
     their polarities. This seasonality is consistent with the annual strain variations. 

 (6) The step polarities of component 0-2, which is adjacent to the fractured zone, also 
     show some seasonality, but, these polarities are in opposite direction to those of the 

     other components. 

   From these results, the following interpretations can  be presented. The released 

strain by strain steps triggered by seismic waves is mainly that which has been previously 

accumulated around the observation site. Therefore, the amplitudes of strain steps depend 

on the condition of strain  accumulation at the observation site. Taking account of the 

shallowness of the vault and the seasonality of step polarities mentioned above, this 

locally accumulated strain is considered to be produced by the annual variations of 

surface temperature. The pattern by which this pre—accumulated strain is released is 

controlled by the fractured zones in the area where the thermal stress has been 

accumulated. In the next section, we will present a mechanical model which explains 

these characteristics of the observed strain steps. 

6. A simulation of strain variations by a mechanical model 

6. 1 Construction of the model 

   Many kinds of simple mechanical models which consist of springs, sliders and 

dashpots have been presented to explain earthquake related phenomena in the crust. 

Movements of the source fault are usually expressed by stick slips of  sliders21)-25). The



74 K WATANABE 

main purpose of making such mechanical models is to get a clue of the successive steps 

in unsolved crustal movements by expressing known crustal activities with simple 

constituent elements. In this section, we present a simple mechanical model which 

simulates the processes by which temperature variations accumulate strain locally, and by 

which that strain is released. 

   As a model of the basement rock of the observation site, we consider a structure 

where many material points are combined  three—dimensionally by sliders and elastic 

springs. The two—dimensional section of this structure is illustrated in Fig. 14. Each 

spring has its own elastic constants. Each slider also has its own static and dynamic 

frictional coefficients for shear movement, but is treated as an coherent body for normal 

movement. A slender rectangular area surrounded by a dotted line in the figure 

corresponds to the observation site and each material point corresponds to each 

displacement sensor. We consider the case in which the stress is applied only in the 

direction of the length of this slender area. Shear stress is then generated between the 

area and the neighboring portions, but without normal stress. Only frictional force 

caused by the shear stress need be considered. Therefore, the springs normal to the 
slender area may be replaced by bar springs. The mechanical model shown in Fig. 15 

represents the behavior of this slender area under these circumstances. Elements adjacent 

to the slender area in Fig. 14 correspond to the floor in Fig. 15. 

   In this model, material points, m,  (1=  1--  n), are combined by helical springs 

longitudinally. Both ends of the system are connected at a great distance to walls 

through weak helical springs. Strain is defined by dividing the relative displacement 

between two neighboring material points by the initial length of the helical spring. The 

Young's modulus of each helical spring,  kn can take an arbitrary value. The Young's 

modulus of each fractured zone is assumed to be smaller than those of other portions. 

Each material point is connected to the adjacent slender area through a bar spring and a 
slider. The rigidity of each bar spring is denoted by  1.. The static and dynamic 

frictional coefficients of each slider are denoted by  lia) and  g„ respectively. 

   A bar spring transfers the weight of a material point to a slider and originates the 

frictional force, independent of its deformation. There are two major characteristics  con-

            Lii\AALmom,II  II  I 

 VAAAISI1v1ivt, 

 Il  II  II  II  I          d-INV 
                      Fig. 14. Schematic structure of the basement rock.
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           Fig. 15. A mechanical model which represents the structure of the basement rock shown in 
                   Fig. 14. Displacements  x1 and  x,i are defined in the figure. 

      cerning this model. One is that each helical spring is subjected to thermal deformation 

      with a linear coefficient for thermal expansion, /3, and therefore the length of a helical 

      spring varies in proportion to temperature variations. The other is that the movements of 

      sliders do not correspond directly to strain steps but the movements of sliders affect the 
      locations of material points and yield the strain changes between them. The coefficient, 

 /3, and the initial length of a spring,  Lo, at temperature  To are assumed to be the same 
      throughout all springs. Therefore, the length, L, of a spring at temperature  T=  10-  4 

      is 

 L=L0  (1+/3  •  ,  (  1  ) 

       where z 1 T is temperature variation. Elastic constant,  kb is assumed not to be changed by 
       the temperature variation. When an external force is applied to a helical spring and 

       consequently extensional strain in the spring is generated, this is defined as positive strain. 
       Corresponding to this extensional strain, tensile stress is generated in the spring. The 

       direction of this stress is  defined as positive. Furthermore, if the temperature varies by 
        T, the relation between stress (a) and strain  (E) of the helical spring is 

 u=k•  e—k-R  •  JT. (2) 

      If the both ends of the spring are fixed, namely  E= 0,
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  c= — k •• 4T. (3) 

When temperature increases, as seen in equation (2), the compressive stress increases 
within the spring. If the temperature does not change, namely 4  T=  0, equation (2) 
expresses Hooke's Law. 

   In the following,  x, and  xs, denote the displacements of each material point and those 
of each slider,  respectively  (Fig.  15). The origins of the locations are the initial equili-
brium positions of each material point and slider, where the stress of each portion is zero 
at  t=  0. 

   Let us consider the case when temperature variation  ZIT is applied uniformly to the 
system shown in Fig. 15. All helical springs tend to be thermally deformed, causing each 
material point to move, depending on the elastic constants, Young's modulus k, and rigid-
ity  /. Strain energy accumulates within the helical and bar springs, and all material 
points stop at their new equilibrium positions. Each bar spring then acquires a restoring 
force of  xi  •  /. If this restoring force exceeds the static frictional force of  mi  •  j4, the 
slider starts moving in the direction in which the restoring force decreases, and stops at 
the point where the restoring force becomes equal to the dynamic frictional force of  mi •  Ili. 
Consequently, the restoring force of the bar spring decreases, inducing the equilibrium 
position of all material points to change, as do the restoring forces of all the bar springs. 
If newly acquired restoring force exceeds the static frictional force again, the same 
process is repeated. 

   The above behavior of the model can be expressed by the following equations. At 
time t=  to the temperature of the system becomes  T=  7,, and the locations of each 
material point and slider are  x, and  x5,  , respectively. 

   As the extension of the i +  1—th helical spring is  (x1+1  j—  xi.), the contracting force, 
4F, of this spring becomes 

 4Fi+1.  j=  ki+  (xi+  1,  xi.  )  ki+t  •  Lo(Ti—  To). (4) 

Similarly, the contracting force of the i—th helical spring is 

 LW,  j=  ki(x,,  xi_i,  )  ki  •  •  Lo(  T0). (5) 

As the restoring force of the bar spring is 

  —  
j—  xs,  ), (6) 

the same force acts on the slider. Consequently, the equilibrium equation for the i—th 

material point is 

 Z  1E+1,  j—  4F,,  j—  j—  )=0, (7) 

where the right direction is taken as positive. By rewriting equation (7), we get
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simultaneous linear equations, 

 ki+1  •  xH.1, (ki+1+ ki+ ki  •  xi-1, 
                 =f1 •  Lo(Ti—  To)  —  4  •  ; a,  j  (i=1  -  . (8) 

As the both ends are fixed,  xo,  x,1 and  x,,+1 are equal to 0 in linear equations (8). The 
static frictional force of  mi  •  i.t° between the floor and the  i-th slider prevents the slip of 
the slider. If any restoring  foice obtained by solving linear equations (8) exceeds the 
corresponding static frictional force, 

 —  )  >  Mi  •  14, (9) 

the slider starts sliding towards the decrease in restoring force. And when the restoring 

force decreases and equilibrates with the dynamic frictional  force, 

 —  4(xi,  ) I  =  mi •  'Eli, (10) 

the slider stops moving. Corresponding to the changes of bar spring restoring force, the 

equilibrium positions of all material points are rearranged. This rearrangement also 

causes the changes of strain energy within the helical springs and the bar springs. 

Therefore, linear equations (8) should be solved again by substituting those slider 

locations,  xsi,  I, obtained by equation  (10). If the restoring forces of all bar springs do 
not exceed static frictional forces of the corresponding sliders, all material points are set 

to their equilibrium locations. 

   The change in strain is obtained by dividing the change of relative distance between 
two material points by the initial length of the spring involved, 

 j=(xi  j-xi  1,  j)  •  (1  1  ) 

In the practical calculations for the present simulation, all the values of the above 

parameters are assumed a priori and the temperature variations are given by a sinusoidal 
function. For example, by taking 1/180 of the sinusoidal change as a unit time step, the 

equilibrium locations of all material points were obtained for each time step. 

   All material points included in the system can suddenly be moved from their locked 

position upon the arrival of seismic waves. In order to express this situation, we assume 
that the static frictional coefficients  ft° drop to 10% of their originally assumed values 
only at the time instant of seismic wave arrival. 

   By this decrease of static friction, sliders temporarily become easy to move. Here, 

the dynamic frictional coefficients  ieti are also assumed to decrease to 10% of their 

original values to represent stress drops at each material point. The strain variations of 

the components related to the moved sliders are generally greater than when they don't 

move. In other words, appreciable strain changes are recognized as strain steps in the 

present simulations. At the next time instant after the seismic wave arrival, both static



78 K. WATANABE 

and dynamic frictional coefficients are assumed to recover their original values, and each 
element tends to stabilize, depending on their parameters. 

6. 2 Numerical calculations and results of simulations 

   Some numerical simulations were carried out by using the above mechanical model 

with twelve material points in one direction. This model aims to simulate the general 

features of strain variations in a heterogeneous field. All material points and helical 

springs have the same mass and the same initial length, respectively.  ki,  1„  g° and are 

given by using random number tables. We consider that the non—uniform elastic 
constants will express the extent of fracture of the basement rock. In this article, 

calculations are carried out employing two kinds of parameter sets, A—group and B— 

group. The parameters used are listed in Table 5. 
   Annual temperature variations, T(t), are given by a sinusoidal function, T(t) =  To+ 

 Ta  sin  (cat  +50), where  To and  Ta are the initial temperature and the amplitude of 

temperature variations, respectively. In this case, one cycle of T(t) is divided into 180 

time  steps  ; therefore, a time interval becomes  2Jrco/180, which corresponds to about two 
days. Numerical calculations are carried out at this time interval. The results obtained 

are the strain variations between two neighboring material points, which correspond to 

partial strain variations. The results are shown in Figs. 16, 17 and 18. 
   Fig. 16 shows the strain variations which are originated by one cycle of temperature 

variations. This one cycle can be considered as annual variations with no earthquakes 

occurring during this one year period. The amplitudes of strain variations differ for each 

component. Generally speaking, the portions with small Young's modulus  k, tend to 

show small amplitudes of annual strain variations. 

   Fig. 17 shows the seasonal variations of strain step polarities. Earthquakes are 

generated every month (shown by dotted lines in the figures) and the polarities of strain 
steps by those earthquakes are examined. For almost all components, extensional steps 
are recognized when annual strain variations tend to increase, and vice versa. However, 

there are some components which show the reverse polarity. Generally speaking, strain 

steps are small when variation rates of strain are small. 

 Figs.  18a and b show the amplitudes of strain steps by five sets of two successively 

occurring earthquakes with time intervals of 2/3, 4/3, 2, 8/3 and 10/3 days, respectively. 

 Fig.  18a represents strain variations with positive differential coefficients and  Fig.  181) is 

for the negative case. From these figures, the strain steps by the latter earthquake is not 

obvious when the time interval is 2/3 days. In contrast, when two earthquakes occur 
with a time interval of 10/3 days, strain steps with almost the same amplitude can be 

observed in both earthquakes. Furthermore, we can recognize some strain steps 

originating with no external seismic waves. The surrounded area in Fig. 18a is enlarged 

and illustrated in  Fig.  18c to show small strain variations clearly. Zigzag variations 
recognized in the figure are caused by small steps of sliders without external seismic 

waves. We call these small steps non—seismic steps. 

    From Figs. 16, 17 and 18, the following characteristics are confirmed. 

 (1) The amplitudes of annual strain variations vary with elastic constants  (Fig.  16).
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Table 5. Parameter list used in the simulations. K1 and  L, of elastic constants denote Young's 
       modulus of each helical spring and rigidity of each bar spring, respectively.  e and  gi 

       of frictional coefficients mean static and dynamic frictional coefficient of each slider, 
        respectively. 

 Common parameters 

  Number of material points 12 
   Mass of a material points 2.6  x  104 gr. 

    Initial length of a helical spring  1000cia 
  Initial temperature 15°C  (deg.) 

    Amplitude of temperature variations 1.5°C 
    Line coefficient of thermal deformation 5 X  10-6  deg.  1 

 A-group  : 

            Elastic const. Frictional coeff. 

No. Young's modulus  IC, rigidity  Li static  g,° dynamic  it, 

 1  1.20  X  10"  1.50  X  10"  .40 .30 
2 2.31 1.95 .38 .26 
3 2.61 1.53 .43 .21 
4 2.28 1.77 .38 .25 
5 2.58 1.80 .43 .25 
6 2.61 1.83 .44 .21 
7 2.64 2.07 .44 .28 
8 2.49 1.92 .42 .21 
9 2.55 2.04 .43 .28 
10 2.22 1.74 .37 .29 
11 2.64 2.10 .44 .23 
12 2.16 1.95 .36 .21 
13 1.32 - - 

 B-group  : 

            Elastic const. Frictional coeff. 

No. Young's modulus  K, rigidity L, static  t.ii dynamic  gi 

1  1.28  x 10"  2.10  x 10" .56 .41 
2 2.97 2.10 .54 .49 
3 2.76 2.37 .51 .45 
4 2.58 2.07 .56 .47 
5 2.61 2.31 .62 .49 
6 2.61 2.04 .62 .49 
7 2.55 1.95 .58  .47 
8 2.76 2.04 .61 .47 
9 2.64 2.22 .54 .45 
10 2.28 2.07 .59 .44 
11 2.49 2.25 .56 .48 
12 2.37 1.89 .51 .48 
13 1.26
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   Fig. 16. Strain variations originated by the temperature variations of one cycle calculated 
          from the mechanical model. The left figure corresponds to A—group in Table 5, 

           and the right one, to B—group.  
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    Fig. 17. Strain variations originated by the temperature variations of one cycle calculated 
           from the mechanical model in the case where twelve earthquakes are generated 
           every month. The left figure corresponds to A—group in Table 5 and the right 

             one, to B—group. 

 (2) Extensional strain steps predominate in the period when the differential coefficient 
     of strain variation is positive, and vice versa. This indicates that seasonality of 

     strain variations governs the polarities of strain steps (Fig. 17). 

 (3) Reverse relation between differential coefficients of strain variations and step 

     polarities is occasionally recognized (Fig. 17). This may be caused by the mutual 
     relation among elastic constants of neighboring springs.
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 Fig.  18a. Strain variations originated by two successive earthquakes. The case that 
         differential coefficients of strain variations are positive is shown.  z corresponds 

        to 2/3 days in this simulation. The surrounded area in the middle of the figure 
         is enlarged and shown in Fig. 18c. 
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         Fig.  18b. Strain variations in the case of negative differential coefficients. 

(4) Strain steps are generally small when absolute values of differential coefficients of 
    strain variations are small  (Fig.  17). 

(5) As for two strain steps caused by two successive earthquakes, the step amplitudes 
    by the latter earthquake are smaller than those of the former earthquake when the 

    time interval between the two earthquakes is sufficiently small (Fig. 18). 

  These simulated results coincide well with the characteristics of the observed strain
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 Ext. 
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 Fig.  18c. Examples of non-seismic strain steps. The surrounded area in  Fig.  18a is 
            enlarged to show non-seismic steps clearly. 

steps mentioned in section 3.4. Therefore, it can be said that our mechanical model with 

a simulated structure around the observing site shows that surface temperature variations 

contribute to the strain energy. 

7.  Discussion 

    In the simulation by our mechanical model, it is assumed that the frictional co-

efficients decrease with seismic ground motions. The decrease of the frictional constants 

should range between some bounds. A number of tests have shown that a 90% decrease 
can reasonably well simulate the observations. The actual mechanism corresponding to 

this decrease is an important clue to understand the behavior of a fractured zone. 

    External forces such as tectonic stress or tidal forces are not concerned with the 

present analysis. Tectonic strain rate may be of the order of  10-7 strain/year or so, and 
tidal strains are of the order of  10-8 strain, while the amplitudes of annual strain varia-

tions caused by surface temperature reach to 5  x 10-6 strain in our case. Therefore, most 
strain variations in the Yasutomi Observation Vault may be induced by the surface tem-

perature variations. 
    Nakahori  (1977)") and Taniguchi and Oike (1984)12) found large amplitudes of tidal 

strain variations and surface wave amplitudes at the fractured zone of the Yasutomi fault. 
On the contrary, in our simulations, low elastic coefficient portions showed small ampli-

tudes of variations. This apparent discrepancy supports our model because our simula-

 tions concern only internal force such as thermal-deformation stress and not external 
 forces such as tectonic and tidal stresses.
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   Strain steps which have no relation with seismic ground motions are sometimes 
recorded. Their amplitudes are, in general, smaller than 5 X  10-8 strain. It can be 

considered that such non-seismic strain steps are observed when locally accumulated strain 

exceeds some threshold level.  Fig.  18c shows some examples of  non-seismic strain steps. 

Those amplitudes, though small in the figure, are dependent on the frictional coefficients 

and are variable in the simulation. It is considered that these non-seismic  strain steps 

also may reflect the frictional condition in and around the observation site. 

   As mentioned in section 2, traffic ground motions of the expressway just above are 

always remarkable. Nevertheless, strain steps are scarcely caused by those traffic ground 

motions. In general, traffic ground motion originating on the ground surface decreases 

rapidly both with depth and horizontal distance. That is to say, traffic ground motion 

concerns only a small area. In contrast, seismic wave length is so long in general that 

seismic waves transmit through whole of the fault zone without changes in their ampli-

tudes. In order to release the locally accumulated strain, it may be necessary for the 

whole of the concerned area to vibrate. Therefore, the fractured zones which seem to 

control the amplitudes of strain steps are considered to exist widely in the basement rock. 

   In future, it is important to investigate how seismic ground motion decouples the 

various basement rock at interfaces, and how they originate strain steps. From our 

observational experiences, we can imagine that this process may relate to the transfer of 
crustal materials, such as soil gas and underground water. This process is also suggestive 

in investigating geoelectric, geomagnetic and geochemical phenomena as precursors of 

earthquakes. 

8. Conclusions 

   The Yasutomi Observation Vault is situated inside the fault zone and its overburden 

depth is shallow.  In this article, we analyzed the strain steps observed at the Yasutomi 

Observation Vault and revealed some of the characteristic behavior of the fractured zones. 
The results are as  follows  : 

 (I) In many cases, the previously accumulated strain around the observation site is 
     released by coseismic strain steps. The amplitudes of observed strain steps are 

     frequently larger than those theoretically expected. 

 (2) Seismic waves often trigger strain steps, releasing such locally accumulated strain. 

 (3) The polarities of strain steps of each component seem to distribute randomly in 
     space. This may be caused by the heterogeneity of the physical properties of the 

      basement rock. 

 (4) The pattern of strain release by strain steps depends on the fault strike. In the 
     case of the Yasutomi fault, the strain changes in the direction normal to the fault 

     zone is predominant for strain steps. The pattern of this thickness change of the 

     fault zone derived from strain steps corresponds to that observed for long-term 

     strain variations. 

 (5)  Non-seismic strain steps are occasionally observed and some amount of locally 
     accumulated strain is released by those steps.
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 (6) The energy source of the locally accumulated strain is thermal deformation caused 
     by the annual variations of surface temperature. 
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