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Abstract

   We applied the Empirical Green's Function Method to simulate ground motions on hard rock and soft sediment at 

near distance (8  km) for the 1990 Hakone earthquake  (Mp4A=5.1) using the records of the foreshock  (Ki—  2.9). We 

examined the seismic data used in the Ashigara Valley Blind Prediction Test (Kudo, 1992), records from weak and strong 

motions observed at 3 superficial and 2 borehole sites. The main goal of this study is to investigate the non-linear 

behavior of soft soil at KS1 and  KS2 sites. Our method is based in a linear superposition of ground motions, which allows 

us to check the non-linear effect in soft sediments due to strong motions (more than 100 gals) by comparing the observed 

waveforms with the simulated ones. The simulation method proposed by Irikura (1986) is modified in order to correct a 

difference in stress drop that was found between these two events. We found the stress parameters play an important role 

in the simulations. The seismic source model is determined by using only rock sites waveforms, which is effected by 

 minimising the residuals between the synthetics and the observed waveforms. First we used a long time window to obtain 

the source model. Second, a time window of 3 seconds including the onsets and largest amplitudes of the S-wave part 

was used to determine the source model, avoiding contamination by seismic noises in the small event records. After 

defining the seismic source model we simulated the ground motions at KD1,  KSI and KS2, and compared the simulated 

with the observed seismograms. We found, the difference between the acceleration waveforms (synthetic and observed) 

to be relatively large at  KS1 and KS2 compared to the rest of the sites, and we conclude that a non-linear effect during 

the 1990 Hakone earthquake  (M,  =  5.1) at KS2 and KS  1 exists, based on these. From the comparison of their spectra, we 

could not find systematic changes of the predominant frequencies between the observed and synthetic at  KS1 and KS2.

Introduction

   The importance of site effects is well known for predicting ground motions from engineer-
ing interest and for understanding crustal structures and source processes from seismological 

interest. Recently two international test fields have been made with the purpose of evaluating 

the  state—of—the—art on—site—effect simulations. One of them is the Ashigara Valley Blind Pre-

diction Test. For that experiment, two events were selected, mainshock  (MimA  = 5.1) and fore-
shock  (MA=2.9), and five stations were chosen. One is located on rock outcrop (KR1), 

two on soft sediments  (KS1 and KS2), and two in borehole, under KS2, at a depth of 30 (KD 

1) and 97 (KD2) meters from the surface (Figure 1). The goal in that experiment was to
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   Fig.  1. Location of the epicenters of earthquakes and observation sites used in the blind prediction 
         test. The focal mechanism solution determined by NRIESDP (1991) is also shown (after 

         Kudo, 1992).
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    Fig. 2. Scheme of requirements for blind prediction test experiment  (?  means ground motion to be 
          predicted). 

predict weak and strong motions at the sediment sites given the records at the rock site 

(Figure 2). The results of the Ashigara Valley Blind Prediction Test were presented at the 
International Symposium on the Effects of Surface Geology on Seismic Motions held in 

Odawara, on March 25-27, 1992. They show a large scatter (Midorikawa, 1992) even if the 

same structure model is used for the numerical simulations. This confirms the extreme diffi-

culty to model realistic underground valley structures for ground motion simulations. This 

study is an attempt to overcome such difficulties by using a semi—empirical approach. With 
this in mind, we use the empirical Green's function method combined with the scaling law of 

earthquakes as proposed by Irikura (1986), to simulate ground motions observed at soft soil 

sites of the mainshock (M  =  5.1). The source model for the mainshock is determined from the 
analysis of the mainshock and the foreshock records at rock site. This method has the great 

advantage of not requiring structure models (Figure 3). We can check the non—linear effect 

of soft sediments during strong motions by comparing the observed records with the simulated 
ones because this method is based on the linear superposition of weak motions from small 

events. The purposes of our paper  are  : 1) to compare our synthetics with the Blind prediction 

test results, and 2) to investigate the non—linear effect of soil by comparing the observations 

with the synthetics at the soft sediment sites.
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 EMPIRICAL  OREEN'S FUNCTION METHOD 
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     Fig. 3. Scheme of blind prediction using empirical Green's function method  (?  means ground 

          motion to be predicted). 

Method 

   The method consists essentially of a special superposition of small events. We assume that 

both large and small earthquakes follow the  co-' spectral scaling model with a constant stress 

drop. Following the synthetic method for  co-2 model proposed by Irikura (1986), let the 

moment ratio between the large event to be simulated and small event used as empirical 

Green's function be N3. Then, the fault area of the large event is divided into NX N subfaults. 
The parameter N is also obtained from the  following  ; 

                           U0MO                          ==N3, 
 u  Mo 

             Ao =( Mo  7=(1) 
 ao mo) 

where  Co,  110 are the flat levels of the displacement spectrum (less than corner frequency),  A0, 

 a  0 are the flat levels of acceleration spectrum (less than  fr.) and  Mo  ,  m  0 are the seismic mo-
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ments for mainshock and foreshock (or aftershock) respectively. Then, the synthetic motions 

U(t) for the large event will be given using the small event u(t) by the follow  equation  : 

 N  N 

 U(t)  =E  E(   r  F(t—  *  u(t), (2) 
 1=1  j=1  rf, 

where 

                                           1 (N-L)'''  F(t)=6(t)±,[  t— (k-1)z(3)  nk= 1 (N— On' 

r and  r are the distance from the hypocenter of the small earthquake and from the  (i,  j) ele-

ment, to the site, respectively,  to is the sum of the time delay from the rupture starting point 

to the (4 j) element and that from the (i,  j) to the site,  z is the rise time of the target event, 

and n' is an appropriate integer number to shift the fictitious periodicity  z/(N-1) into a high 

frequency out of the frequency range of interest (here n'  =80 is used). 

   In order to use the record of a small event with different stress drop as empirical Green's 

function, we introduced a constant value C as the stress drop ratio between the large and small 

 event  : 

                                 L   C=©a(4) 

Since the spectral levels are affected for the same factor the equations in (1) will  become  : 

                            Uo                                               = U/V 
                                M° 

 =  CAr  , (5)  a ° 

and the equation (2) will be modified replacing u(t) with Cu(t) and N with  /V' as  follows  : 

                U(t)=E E(  r F(t— to) * Cu(t). (6) 
                                       i= 1 j=1 r 

More details about the parameter C are shown in the Appendix. 

Data 

   The strong motion records were obtained from the  MmA=5.1 earthquake that occurred 

on August 5, 1990, in the west part of Kanagawa Prefecture, called the 1990 Hakone earth-

quake. The other event is the biggest foreshock  MJMA  = 2.9, which occurred approximately two 
hours before the mainshock. Based on the focal mechanism determined by NRIESDP (1991) 
for the mainshock, we adopted the plane  B(strike=  N106° E,  dip=  72°) as the fault plane. 

The aftershock distribution 3.0  x  3.0km2(also reported by NRIESDP (1991)) was assumed to 

be the source area. 

   Ground acceleration was recorded at the five sites KR1,  KS1, KS2, KD1 and KD2
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                   Displacement spectrum KS2 comp. NS 
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     Fig. 4. Displacement spectra for foreshock (left) and mainshock (right), at sites KS1,  KS2, 
           KD1, and KD2. 

(Figure 2). Based on the analysis of the acceleration and displacement amplitude spectra at 
the five sites, the reliable frequency range was found to be from 0.4 Hz to 10 Hz for  KR1, 

 KS1 and  KS2  ; and from 0.9 Hz to 10 Hz for KD1 and KD2, due to the low signal levels for 

the small event compared with the noise levels which are least at the borehole sites (Figure 4). 

   We obtained the low frequency flat levels of displacement spectra and the high frequency
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                              Fig. 4. (Continued) 

flat levels of acceleration spectra at the rock site, KR1, for both events, as shown by straight 
lines in the upper and lower panels of Figure 5. The spectral ratio of the NS component at 

 KR1 is shown together with low and high frequency ratio levels in the middle of Figure 5. 
The ratio levels (low  frequency  : 680, high  frequency  : 40) depart largely from the relation 

given in equation (1) for the  co-2 model. This comes from the difference in stress drop be-
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tween the two events. 

Model 

   For the initial source model of the target event, we assumed a source dimension of 3.0 X 

 3.0km2(based on the aftershock distribution) with the strike direction of  N106°E and dip 

angle of 72°(NRIESDP, 1991). The rupture is propagated radially from the starting point (to 

be defined) at constant velocity  V,= 2.35 as 0.72  Vs(  V, : S wave velocity), and the rise time, 
0.16 seconds. That model is shown schematically in Figure 6. Since the stress drop of the 

target event is different from the small event we have to apply an appropriate method, i. e. the 

modified equations (4) to (6). Then, we obtain the synthetic parameters  N' =4 and  C=9.7 

based on the ratio levels following the procedure shown in the Appendix. We needed to 

assume more parameters to simulate ground motion from the source model such as rupture 

velocity, rise  time, and rupture starting point in the source area. We found them by forward 

modeling. We found that synthetics were insensitive to variations of the rupture velocity and 

the rise time, but very sensitive to the location of the rupture starting point. The best starting 

point was determined to be close to the center bottom of the fault plane (see Figure 6). Next, 

 •k-
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                                 Fig. 6. Source model used.
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we determined the best model minimizing the residual between the observed and the synthetic 
waveforms within a time window including the main motions, changing only the value C. 

Two cases are studied here. One is when all of a waveform is taken into  consideration  ; the 

other one is a 3 second comparison window, restricted just to the main part of the movement 

(upper left waveforms of Figures 7-11). The smallest residual value was reached with C equal 
to 6.5 and 8.0 for the first and second cases, respectively. The above procedure was applied to 

fit the observed records simultaneously at  KR1 and KD2. In each case, the components were 

weighted, based on the peak to peak amplitude of the observed waveform. 

Results 

   First let us discuss the source model considered in the first case  (C=6.5). After the 

model was completely defined, we used it to compute the synthetic motions at the other sites, 

at  KS1, KS2 and  KD1. These simulations are shown in Figures 7 to 11, where we can see the 

velocity and acceleration simulations with the respective observed waveforms. For all the sites, 
the fitting between the observed and synthetic one is very good from the S wave's onset 

through the coda part in velocity waveforms of NS component and good in the main part of 

the EW component. The signal—noise ratio is relatively small for the EW component records 

of the small event, specially low at the  borehole sites,  KD1 and KD2. This is the reason why 

the simulations are relatively not good in the EW component. It is also comprehensible why 

the EW component synthetic motions at  KD1 and KD2 appear to be strange (Figures 10 and 

11). For the KS1 site, the synthetic velocity waveform is very similar to that observed not 

only in the NS but also EW components. However, for the EW component, the peak value of 
the synthetic appears to be overestimated a little, compared with that of the observed one 

(Figure 8). The velocity simulation of NS component at KS2 agrees well with the observed 
one, but the simulation of EW component does not. This is probably because the signals are 

contaminated by background noises. Even so, the main part of the synthetic velocity of the 

EW component is consistent with the observation. On the other hand, the agreement between 

synthetic accelerations and the observed ones at KS2 and  KD1 is better than that of velocity 

waveforms (Figures 9 and 10), although, like in the case of velocity, the NS acceleration 
component still is better than the EW acceleration component. For the rest of the sites, peak 

accelerations of the simulations are in good agreement with those of the observed records. 

Only at KS1 site, did we find the synthetic peak accelerations of both components (NS and 

EW) to be a little overestimated. This overestimation does not appear at KS2. 

    Now let us consider the second case when we focused on the main movement and  C=8.0. 
This time the main part of acceleration movement was synthesized using a 3—second window. 

The simulations and observed waveforms are shown in Figures 13 and 14. By a very simple 

inspection a difference in amplitude between the observed and synthetic acceleration wave-

forms can be seen, which is related to the two soft soil sites  KS1 and KS2. We compared the 

peak to peak amplitudes in order to be objective in the evaluation of those differences. The 

peak to peak amplitude rationalized with respect to the observed amplitude is shown in Figure 
15. In this graphic is easier to see the difference between simulations at  KD1, KD2, and  KR1
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             Peak Value Statistics for Standard  Geoteclutical Model Predictions 
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          Left : component NS, right : component EW. Synthetics are calculated with  (C  8.0). 

with respect to that of  KS  I and KS2. Note that in this case the error is small enough to be 
differentiable of non linear effect. In Figures 16 and 17 the comparison between peak to peak 

velocities is shown. In this case the results became uncertain because the non—linear effect is 

comparable in dimension with the error (Figure 18). Another possible interpretation is that
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the non—linear effect operates at high frequency, since the apparent frequency for peak ac-
celeration (for example at KS2—NS, 1.8 Hz) is different from the apparent frequency for peak 

velocity (for KS2—NS 1.3 Hz), and so does not appear in velocity records. Also from the 

comparison of the acceleration and velocity spectra, we could not find systematic changes of 

the predominant frequencies between the observed and synthetic at  KS1 and KS2 (Figure 19). 

Discussion 

   In general, the results obtained here show better agreement than most of the predictions 

submitted to the Ashigara Blind Prediction Test at Odawara Symposium (Midorikawa, 1991).
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   Fig. 16. Velocity waveforms, synthetic (above) and observed (below), at  KR1,  KSI and KS2. 
         Left : component NS, right  : component EW. Synthetics are calculated with  (C=8 .0). 

The peak amplitudes for our predicted acceleration and velocity are shown together with those 

of the predictions submitted to Ashigara Experiment in Figure 12. 

   To discuss the non—linear effect, which is the main purpose of this paper, we should consi-

der the strong and week points of the procedure that we followed. The Empirical Green's
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Function Method considers the linear behavior of the medium. It can produce a good simula-

tion if the source model could be accurately simulated. Here we consider the simple model 

with constant rupture velocity, constant displacement and constant stress drop along the whole 

fault area. Therefore, the simulations have an amount of error due basically to the simplifi-

cation of the source model. However, it still can discuss the differences that surpass such 

amounts of error. In this case another factor arises, a correction for the differing stress drop 

between the small and large earthquake was carried out and constituted a very important 

factor for the final results, so that special attention was given to the determination of that 

correction. We can discuss relative variations of strong motion estimation between hard rock 

and soft soil sites, even if the absolute values of differences are not so reliable. The short time 

window gives better agreement between observation and calculations at the underground sites 

KD1 as well as KR1.  This means that longer time window data for the small event have  con-

tamination due to background noise because of low S/N ratios. Two different values of C 

were found depending on the time duration of the comparison window used to minimize the 

error. For the simulation with  C=  6.5, only small differences between observation and simula-

tion were found at  KS1, while the simulation with C= 8.0 showed clear overestimation at  KS1 

and KS2 sites. We interpret these results as indicating that a non—linear effect of soil 

restricted to a very limited portion of the strong motion exists. This is in agreement with
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Satoh et  al. (1992) results. 

Conclusion 

   We simulated ground motions at a site on a rock outcrop (KR1), at two soft soil sites 

 (KS1 and KS2), and at two borehole sites in sediments  (KD1 and KD2) from the 1990 
Hakone earthquake  (KmA=5.1) using the records of the foreshock with  Mme,  =2.9 as the em-

pirical Green's function. 
   We found that the stress parameter of the foreshock was different from that of the main-

shock based on the spectral ratio between both events at the rock site KR1. Then, the simula-
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tion method for the  (0-2 model proposed by Irikura (1986) was revised in order to be  applica-

ble to the case when a small event with different stress parameter from that of the  mainshock 

is used. 

   We could not find any clear differences between the observed and synthetic using the best 

model determined from a wide window (30 seconds). Using a 3—second window, the differ-

ences among the accelerations of synthetics and observed are clearly greater at  KS1 and KS2 

than at the rest of the sites. 

   From the comparison of their spectra, we could not  find systematic changes of the pre-

dominant frequencies between the observed and synthetic at  KS1 and KS2. 
   We conclude that non—linear effect during the 1990 Hakone earthquake  (MINIA=  5.1) 

exists at KS2 and  KS1, based on the overestimation of peak simulated accelerations obtained 
by a linear simulation of the observed ones. 
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Appendix 

   Estimation of stress parameter. 
   Stress parameter,  4.g, is given as 

 Zia=  k  Alofc3,  (A-1) 

where 

 Mo : seismic moment 

        fc : corner frequency 
        k=  (1/0.493)3 for circular crack (Brune, 1970) 

For  w2 model, flat level of acceleration spectra,  a  0, is given as 

 ao=fc2M0 (A-2) 

 fc=  (a  o  /MO"  (A-3) 

From  (A-1) and (A-3), stress parameter is given as 

 Zia=  k  Mo(ao  /M0)"=  k  AC"  ar (A-4) 

Estimation of seismic moment,  Mo, and source acceleration spectral amplitude,  ao. 

The spectral level of displacement at low frequencies, u  If  , and that of a acceleration at high 
frequencies  (<fm.),  a  h,  f are given as 

                      R 6,„   a
,f(r,  0,  0=  4  xral3  Mo  exp  [  --rfr/SQ(f)] (A-5) 

                    R 0,   a  
h.  f(r,  0,  CO)  =  4  xrp133  a  0  exp  [  --xfr/f3Q(1)1 (A-6) 

Therefore,  Mo and  ao at (A-4) are estimated from (A-5) and (A-6). The ratio of stress drop 
between large and small events, i. e. factor C, is expressed as follows, from  (A-1), (A-4), (A-
5), and  (A—  6  ). 

        juL-L••L    C=S=LLS2((A-7) 
          Zlosritah.f. 

That is, to obtain C, we need to know only the spectral ratio at low frequencies and the spec-

tral ratio at high frequencies between large and small events. Probably, the above estimation is 

more stable than Brune's method (1970) using  Mo and  fc.


