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Abstract.

We discuss the local structure of the net O 7→ M(O)′′ of von Neumann algebras

generated by a representation of a local gauge group C∞
c (M,G). Our discussion is

independent of the singularity of spectral measures, which has been discussed by many

authors since the pioneering work of Gelfand-Graev-Veršic. We show that, for type (S)

operators UA,b, second quantized operators with some twists, the commutativity only

with those U(ψ) is sufficient for the triviality of them, where ψ belongs to an arbitrary

(small) neighborhood of constant function 1. Some properties of 1-cocycles for the

representation V : ψ 7→ Adψ are also discussed.

1 Introduction

In this paper we consider a representation ψ 7→ U(ψ) of a local gauge group
C∞
c (M,G) defined in the Boson Fock space Γ(H), where the Hilbert space H

is the completion of the space of connection 1-forms on a manifold M :

U(ψ)Exp ω := e−
1
2 ||β(ψ)||2−⟨V (ψ)ω,β(ψ)⟩Exp (V (ψ)ω + β(ψ)) , ω ∈ H.

where, V (ψ) := Adψ, β(ψ) := dψ · ψ−1.
Roughly speaking, we consider the second quantization of the action of ψ ∈

C∞
c (M,G) on H defined by

ω 7→ ψωψ−1 + dψ · ψ−1, ω ∈ H.

The study of this representation seems to have started around 70’s by Gelfand-
Graev-Veršic[6] (for SL(2, R), R =function space) and by Ismagilov [1] (for G =
SU(2)). The present form of the representation first appeared in Gelfand-Graev-
Veršic[3], in which they proved the irreducibility for dim(M) ≥ 2 and semisimple
compact G. Although the proof was elegant, it contained some gaps. Later
they proved the irreducibility for dim(M) ≥ 4 in [4]. Unfortunately it still
contained a mistake, as was pointed out by Wallach[10]. On the other hand,
Albeverio-Høegh Krohn-Testard[8] proved the irreducibility for dim(M) ≥ 3 and
dim(M) = 2 with some conditions on the size of root vectors. Later Wallach
proved in [10] the irreducibility for dim(M) ≥ 3 and dim(M) = 2 under weaker
conditions than [8]. The dim(M) = 2 case has not been completely settled

1



yet. For the dim(M) = 1 case, Albeverio-Høegh Krohn-Testard proved that for
M = S1 the representation is reducible and in fact constitutes a type III factor
[8]. In the ’90s Driver-Hall proved that there is no such Ω ̸= 0 ∈ Γ(H) that
is invariant under all U(ψ)’s. Recently Y.Shimada[23] proved the irreducibility
for all compact M with arbitrary dim(M). He used the technique of Fock
expansion, which is a fundamental tool of White Noise Analysis. However, there
were some mistakes and the proof was not complete1, as remarked by T. Hasebe.
Almost all of the studies (except Shimada’s) were based on the analysis of the
disjointness properties between two spectral (in fact Gaussian ) measures related
to the representations of the abelian subgroup Exp (C∞

c (M, h)) ⊂ C∞
c (M,G).2

However, there seems to be no attmept to study the local structure of the
representation. Therefore, we study in this paper the algebraic structures of
the type (S) representation with its localization aspects in focus, according
to the suggestion by I. Ojima. We focus on the von Neumann subalgebra
M(O)′′ generated by the operators U(ψ) whose supports are contained in O.
The structure of the type (S) operators(see §2)

UA,b,cExp x := c · e− 1
2 ||b||

2−⟨Ax,b⟩Exp (Ax+ b),

looks like the symplectic structure of Weyl unitaries W (h), which are related to
the von Neumann algebra of free Bose fields[20]. However, we show that there
is a sharp difference between free field algebras and the algebra of the gauge
group representation. Namely, we prove
Theorem.

Let us define A := Lin{UA,b,c; (A, b, c) ∈ U(H)×H×T},A(O) := Lin{UA,b;A|H(O′) =
IdH(O′), AH(O) ⊂ H(O), Int(supp(b) ∩ O′) = ϕ }. Let N0 be a neighborhood
of 1 ∈ C∞

c (M,G). Then for any open subset O ⊂M , we have
(1) M(O)′ ∩ A = A(O′). (O′ := M\O.) In particular, M′ ∩ A = C1. M :=
M(M). Furthermore, it holds that U(N0)′ ∩ A = C1.
(2) The net O 7→ M(O)′′ satisfies

isotony : O1 ⊂ O2 ⇒ M(O1)′′ ⊂ M(O2)′′.
locality : O1 ⊂ O′

2 ⇒ M(O1)′′ ⊂ M(O2)′.

additivity : M = ∪
i
Oi ⇒ M′′ =

(
∪
i
M(Oi)

)′′
.

However, the Fock vacuum Ω := Exp (0) is not cyclic for local subalgebras
M(O)′′ with a proper subset O ( M . Furthermore, if the representation is
irreducible, then Ω is not separating for M(O)′′.

In particular, there are no clear modular-symplectic structure nor Reeh-
Schlieder property for the net. The most important point in our proof is that
there is a sharp difference between the behaviors of V (ψ) : ω 7→ Adψω and of
β(ψ) = dψ · ψ−1. The latter is regarded as a 1-cocyle for the former (§2, §3).
The difference is manifest when we consider the infinitesimal gauge transforma-
tions (§4). We show through the proof of the above theorem that if type (S)
operators commute with every U(ψ) for ψ belonging to the member of arbitrary
small neighborhood N0 of constant function 1 ∈ C∞

c (M,G), then it is a scalar
1Particularly he assumed that β(eφ) = dφ for any φ ∈ C∞

c (M, g), which is true only when
φ takes values in some abelian subgroup of G. In the general case we must compute the
derivative of the exponential mapping carefully. cf, [26].

2For the details of this method, see [3, 7]
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operator. Therefore even if the representation is reducible, the commutant is
very small.

2 Preliminaries

2.1 Boson Fock space and type (S) representations

In this section, we summarize some well-known background materials relevant
to our discussion. For the proof of the facts stated in this section, see e.g.
Guichardet[11], Albeverio, et al[7].

2.1.1 Operators of type (S)

We describe the algebraic structure of type (S) operators, which constitute a
weakly dense *-subalgebra of bounded operators in the Boson Fock space. Let
H be a complex Hilbert space,3, and Γ(H) its Boson (Symmetric) Fock space:

Γ(H) :=
⊕
n≥0

H⊗̂n.

(⊗̂ means a symmetric tensor product). In Γ(H), the set of exponential vectors{
Exp (h) =

(
1, h,

h⊗̂2

√
2!
, · · · , h

⊗̂n
√
n!
, · · ·

)
∈ Γ(H); h ∈ H

}
is linearly independent and is total in Γ(H)[11]. Consider the subset S =
{λExp x;x ∈ H,λ ∈ C} of Γ(H).
A unitary operator U ∈ B(Γ(H)) is called an operator of type (S) if it preserves
the subset S: US = S. The set of such operators is completely determined [11]:
Let U(H) be the group of unitary operators in H, T = {λ ∈ C; |λ| = 1} be the

1-dimensional torus. For A ∈ U(H), b ∈ H, c ∈ T, it is easy to see that the
operators UA,b,c defined by

UA,b,cExp x := c · e− 1
2 ||b||

2−⟨Ax,b⟩Exp (Ax+ b),

are of type (S).4 Moreover, the converse is also true. Namely,

Theorem 2.1 [11] All operators of type (S) are uniquely written as UA,b,c for
some A, b, c. Moreover, due to the relations

UA,b,cUA′,b′,c′ = exp (iIm⟨b, Ab′⟩)UAA′,b+Ab′,cc′ ,

the operators of type (S) constitute a topological group GH (with strong operator
topology) which is isomophic to U(H) ×H × T as a topological group when the
latter is equipped with products

(A, b, c)(A′, b′, c′) := (AA′, b+Ab′, cc′ exp (iIm⟨b, Ab′⟩)).

(Here, we topologize U(H) with the strong operator topology. )
3We define the inner product to be linear in the left variable and anti-linear in the right

variable.
4The above definition is well-defined because of the independence and totality of exponen-

tial vectors. The unitarity can be verified by a straightforward calculation.
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Proof. See [11]. �
Furthermore, we can show that type (S) operators are abundant.

Theorem 2.2 [2] The *-algebra generated by type (S) operators is weakly (strongly)
dense, and hence irreducible : {UA,b,c}′′ = B(Γ(H)).
More precisely, for any ε > 0, we have {UI,b,1; b ∈ H, ||b|| < ε}′′ = B(Γ(H)).

Proof. See [2]. �
Therefore type (S) operators play important roles in the study of representations
defined on the Fock space.

2.1.2 Type (S) representation

Let V be a unitary representation of a topological group G on a Hilbert space H.
A map β : G → H is said to be a 1-cocycle of G w.r.t. the representation V (de-
noted by β ∈ Z1(G, V )), if it satisfies β(γ1γ2) = β(γ1)+V (γ1)β(γ2)(γ1, γ2 ∈ G).
Let c be a function c : G → T satisfying c(γ1γ2) = c(γ1)c(γ2) exp (iIm⟨β(γ1), V (γ1)β(γ2)⟩).
Once V, β and c are given, we can construct a unitary representation Exp β,cV
of G on the Boson Fock space Γ(H) in terms of operators of type (S). Such
a scheme as this was proposed by Araki [21]. Exp β,cV is defined as follows:
Expβ,cV (γ) := UV (γ),β(γ),c(γ), i.e.,

Exp β,cV (γ)Exp x = c(γ) exp
(
−1

2
||β(γ)||2 − ⟨V (γ)x, β(γ)⟩

)
Exp (V (γ)x+β(γ)).

Now we consider the special case of this construction. Suppose that a complex
Hilbert space H is the complexification of some real Hilbert space H0 : H =
H0 ⊗R C. Let V0 be an orthogonal representation of G in H0. Let β be an H0

valued 1-cocycle for V . Then we can extend V0 to be a unitary representation
V on the complexified Hilbert space H and, in this case, c can be chosen to be
a constant function 15. Then we obtain a unitary representation ExpV,β . Later
we will take G to be the group of gauge transformations: G = C∞

c (M,G) = {ψ :

M
C∞

→ G; supp(ψ) is compact }6.
For v ∈ H, define a 1-coboundary ∂v : G → H by ∂v(γ) := V (γ)v − v. The
set B1(G, V ) of all 1-coboundaries for V is an additive subgroup of the set of
all 1-cocycles Z1(G, V ). The quotient group H1(G, V ) = Z1(G, V )/B1(G, V ) is
called a 1-cohomology group. (For more informations about this subject, see
e.g. [11, 12, 13].) The unitary representations UV,βi

(i = 1, 2) constructed above
are unitarily equivalent if β1 and β2 belong to the same cohomology class. That
is, if β1 and β2 are related by β2(γ) = β1(γ) + V (γ)v − v, it holds that

UI,−v,1UV (γ),β1(γ),1
= UV (γ),β2(γ),1

UI,−v,1,

and the shift operator UI,−v,1 becomes an intertwiner. In particular if we take
a coboundary β = ∂v, then the representation ExpV,β is equivalent to Exp0V
and the latter is easily seen to be highly reducible. (For example, the subspace
CExp (0) is invariant). Therefore in order to construct an irreducible represen-
tation we must choose a non-trivial cocycle, while the non-triviality of a cocycle
does not guarantee the irreduciblity.

5Im⟨V (ψ1)β(ψ2), β(ψ1)⟩ = 0.
6The group structure is defined by pointwise multiplications.
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3 The energy representation of C∞
c (M,G)

In this section, we review the definition of the energy representations. The gauge
transformation group is defined by C∞

c (M,G). This is considered as a group of
compactly-supported sections of (trivial) fiber bundle P ×Ad G, P = M × G.
In P ×Ad G, every point is represented as [(x, g, h)] (x ∈M, g, h ∈ G) w.r.t. the
equivalence relation (x, g, h) ∼ (x, g · a, a−1ha). This group is considered as a
nuclear Lie group.7

3.1 Isomorphism between Boson Fock space and L2(E ′, µ)

There is another important realization of type (S) representations. Let E be a
real nuclear LF space i.e., a space having the topology of the inductive limit
of Fréchet spaces. Suppose E has a positive definite inner product Q. By
the Bochner-Minlos’s theorem[5], there is a Gaussian measure µ on the dual
space E′ whose Fourier transform coincides with the characteristic function
exp

(
−1

2Q(·, ·)
)
: ∫

E′
ei⟨χ,F ⟩dµ(χ) = exp

(
−1

2
Q(F, F )

)
.

Let H0 be a completion of E w.r.t. the inner product Q, with H := H0 ⊗R C
its complexification. Then there exists a canonical isometric isomorphism θ
between the Boson Fock space Γ(H) and the space L2(E′, µ; C) of complex
valued square integrable functionals on E′ w.r.t. the Gaussian measure µ. More
precisely, θ is determined by the following relation:

θExp x = e
1
2 ||x||

2+i⟨·,x⟩.

If V is a strongly continuous orthogonal representation of a topological group Γ
on E w.r.t. the inner product Q, V can be extended to an orthogonal represen-
tation on H0. Through the complexification, it becomes a unitary representaion
on H. Furthermore, it is extended to a representation on E′ by the transposed
action:

⟨V (γ)χ, F ⟩ := ⟨χ, V (γ)−1F ⟩, F ∈ E, χ ∈ E′.

Taking these facts into consideration we can transform, by the isomorphism θ,
the representation ExpβV into the equivalent unitary representation on L2(E′, µ).
The transformed representation, also denoted by ExpβV , is defined by

[Exp βV (γ)Φ](χ) = ei⟨χ,b(γ)⟩Φ(V (γ)−1χ).

Historically most of the researches of the gauge group representation were based
on the study of this L2-space realization.

3.2 Definition of the representation of C∞
c (M, G)

Let M be a Riemannian manifold with a Riemannian metric g, and a Rieman-
nian measure dv. Let G be a compact, semisimple Lie group with Lie algebra

7For the topological properties of it, see [7].
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g. C∞
c (M,G) denotes the set of C∞-functions from M to G with compact sup-

ports, and Ω1
c(M, g) the set of g-valued 1-forms on M with compact supports.8

Since g is semisimple, g is equipped with an AdG-invariant inner product de-
fined by the minus sign of the Killing form B(·, ·) = Tr(ad(·)ad(·)), which is
negative definite by compactness. Next, define the inner product in Ω1

c(M, g) as
follows. Regard ω ∈ Ω1

c(M, g) as the mapping T (M) → g and for x ∈M , define
ω(x)∗ to be the adjoint of ω(x) : Tx(M) → g w.r.t. inner products in Tx(M)
and g. Then define9

⟨ω1, ω2⟩ :=
∫
M

tr (ω∗
2(x)ω1(x)) dv(x)

with tr a trace operator in Tx(M).
Let V be an orthogonal representation of the group C∞

c (M,G) on the nuclear
LF space Ω1

c(M, g), defined by

V (ψ)ω(x) := (Adψ(x))∗(ω(x)), (x ∈M,ω ∈ Ω1
c(M, g), ψ ∈ C∞

c (M,G)).

A distinguished 1-cocycle of β : C∞
c (M,G) → Ω1

c(M, g) of V , called the Maurer-
Cartan cocycle is defined by

β(ψ)(x) := dψ(x) · ψ(x)−1
(
= (Rψ(x)−1)∗ ψ(x)(dψx(·))

)
: Tx(M) → g.

Let H0 be the completion of Ω1
c(M, g) w.r.t. ⟨, ⟩, H := H0 ⊗R C its complexifi-

cation.
From the previous argument, we obtain a unitary representation U = ExpV,ψ
of C∞

c (M,G) on the Boson Fock space Γ(H):

U(ψ)Exp ω := e−
1
2 ||β(ψ)||2−⟨V (ψ)ω,β(ψ)⟩Exp (V (ψ)ω + β(ψ)) .

To conclude this section, we state some properties of 1-cocycles for the repre-
sentation V .

Proposition 3.1 Let PVψ be an orthogonal projection onto the subspace {ω ∈
H; V (ψ)ω = ω}. Let ψ,ψ1, ψ2, ψ3 ∈ C∞

c (M,G). It holds for γ ∈ Z1(C∞
c (M,G), V )

that
(1) supp(γ(ψ)) ⊂ supp(ψ).
(2) If ψ1 = ψ2 on an open subset U ⊂M , γ(ψ1) = γ(ψ2) on U .

(3) lim
n→∞

1
n
γ(ψ1ψ

n
2ψ3) = V (ψ1)P

V
ψ2
γ(ψ2).

(4) If lim
n→∞

1
n
γ(ψn) ̸= 0 for some ψ10, then γ is not a trivial cocycle. In par-

ticular, Maurer-Cartan cocycle β is not trivial: β /∈ B1(H,V ). (In fact β /∈
B1(H,V ).)

Note that the limit in (3) does not depend on ψ3.
Proof. (1) Let K := supp(ψ). and x /∈ K. We shall prove γ(ψ)(x) = 0. Since
K is closed, there is some compact K1 such that x ∈ K1, K1 ∩ K = ϕ. Let

8Here, supp(ψ) := {x ∈M ;ψ(x) ̸= e} for ψ ∈ C∞
c (M,G) and supp(ω) := {x ∈M ;ωx ̸= 0}

for ω ∈ Ω1
c(M, g).

9We define the inner product ⟨·, ·⟩ to be anti-linear in the left variable. cf. footnotes in p.
3.

10This limit exists. Put ψ1 = ψ3 = 1, ψ2 = ψ. in (3).
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ψ1 ∈ C∞
c (M,G) be any function whose support is contained in K1. Since ψ

and ψ1 have disjoint supports, we have ψψ1 = ψ1ψ. Then from the 1-cocycle
condition, it holds that

γ(ψψ1) = γ(ψ1ψ),

or equivalently

γ(ψ) + V (ψ)γ(ψ1) = γ(ψ1) + V (ψ1)γ(ψ).

Since supp(ψ) ∩K1 = ϕ, V (ψ) = I on K1. Therefore on K1, we have

γ(ψ) + γ(ψ1) = γ(ψ1) + V (ψ1)γ(ψ).

Therefore
γ(ψ) = V (ψ1)γ(ψ).

Suppose γ(ψ)(x) ̸= 0. Then due to the triviality of the center of g, there is some
ψ1, supp(ψ1) ⊂ K1 such that V (ψ1)γ(ψ)(x) ̸= γ(ψ)(x), which contradicts the
above equality. Therefore γ(ψ)(x) = 0 and supp(γ(ψ)) ⊂ supp(ψ).
(2) From the 1-cocycle condition again, we have

γ(ψ2ψ
−1
1 ) = γ(ψ2) + V (ψ2)γ(ψ

−1
1 )

= γ(ψ2) + V (ψ2)[−V (ψ−1
1 )γ(ψ1)]

= γ(ψ2) − V (ψ2ψ
−1
1 )γ(ψ1) on U.

Note that γ(1) = 0, which implies γ(ψ−1) = −V (ψ−1)γ(ψ). Since U is open and
ψ1|U = ψ2|U , we have supp(ψ2ψ

−1
1 ) ∩ U = ϕ. Therefore from (1), it holds that

supp(γ(ψ2ψ
−1
1 )) ∩ U = ϕ. Thus, we obtain γ(ψ2ψ

−1
1 ) = 0 on U . Furthermore,

V (ψ2ψ
−1
1 ) = id on U . Therefore we have

0 = γ(ψ2) − V (ψ2ψ
−1
1 )γ(ψ1)

= γ(ψ2) − γ(ψ1) on U.

(3) First, we prove it for ψ1 = 1 case. From the 1-cocycle condition, we have

γ(ψn2ψ3) = γ(ψ2) + V (ψ2)γ(ψ
n−1
2 ψ3)

= γ(ψ2) + V (ψ2)(γ(ψ2) + V (ψ2)γ(ψ
n−2
2 ψ3))

= (I + V (ψ2))γ(ψ2) + V (ψ2)
2[γ(ψ2) + V (ψ2)γ(ψ

n−3
2 ψ3)]

= · · ·
= (I + V (ψ2) + V (ψ2)

2 + · · · + V (ψ2)
n−2)V (ψ2) + V (ψ2)

n−1[γ(ψ2) + V (ψ2)γ(ψ3)],

1
n
γ(ψn2ψ3) =

1
n

n−1∑
k=0

V (ψ2)
kγ(ψ2) +

1
n
V (ψ2)

nγ(ψ3)

n→∞−→ PVψ2
γ(ψ2).

Here in the last equality we used the von Neumann’s mean ergodic theorem
([28], p. 57). The general ψ1 case follows from the ψ1 = 1 case:

1
n
γ(ψ1ψ

n
2ψ3) =

1
n
{γ(ψ1) + V (ψ1)γ(ψ

n
2ψ3)}

n→∞−→ V (ψ1)P
V
ψ2
γ(ψ2).
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(4) For any trivial cocycle ∂ω (ω ∈ H), it holds that

1
n
||∂ω(ψn)|| =

1
n
||(V (ψn) − I)ω||

≤ 2
n
||ω||.

Therefore lim
n→∞

1
n
∂ω(ψn) = 0 and the claim holds. Next we prove β /∈ B1(H,V ).

Fix a nonzero abelian subalgebra h and consider φ ∈ C∞
c (M, h), dφ ̸= 0. Since

ψ = eφ takes values in an abelian subgroup of G, we have β(ψ) = dφ. Then we
get

1
n
β(enφ) =

1
n
· ndφ

= dφ (̸= 0).

Therefore β /∈ B1(H,V ). �
We add an alternative proof of it.
Second proof of β /∈ B1(H,V ).
Suppose β(ψ) = ∂ω(ψ) for some ω ∈ H. For s ∈ R, we have

β(esφ) = sdφ = (V (esφ) − I)ω (s ∈ R − {0})

⇔ dφ =
1
s
[V (esφ) − I]ω

s→0−→ [φ, ω], ∀φ ∈ C∞
c (M, h).

Here in the last equality we have used the formula

V (esφ)ω = es[φ,·]ω = ω + s[φ, ω] +
s2

2!
[φ, [φ, ω]] + · · · .

Since g is semisimple, we can show that for any compact set K ⊂M there exists
such φ ∈ C∞

c (M, g) as is constant on K but [φ, ω] ̸= 0 on some nonempty open
subset of K. This is clearly a contradiction . �
Remark.
Since there is no nonzero Ω ∈ Γ(H) that is invariant under all U(ψ)’s, we can
prove that supp(γ(ψ)) ⊂ supp(ψ) for γ ∈ Z1(C∞

c (M,G), U).

4 Local structures of the net O 7→ M(O)′′

In this section the results obtained by the present author are explained in details
and are proved. Our discussion is based on the algebraic structure of type (S)
opertors and the support properties of ψ ∈ C∞

c (M,G). The type (S) relations:

UA,b,cUA′,b′,c′ = exp (i Im⟨b, Ab′⟩)UAA′,b+Ab′,cc′ ,

reminds us of the commutation relations of Weyl unitaries :

W (h)W (k) = exp
(
− i

2
Im ⟨h, k⟩

)
W (h+ k).
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(In fact the latter is a special form of the former with some modifications.)
Therefore it is useful to compare their algebraic structures. Although our rep-
resentation is not a genuine quantization of gauge fields yet, it may shed some
lights on the possible structure of quantum gauge field theory. First, we briefly
describe the structure of Weyl unitaries, which is a representation of CCR’s of
free Bose fields.

4.1 Local structure of Weyl unitaries

Consider a neutral scalar field. They are generated by Weyl unitaries.
Let H be a complex Hilbert space, K ⊂ H a closed real subspace of H (for
real subspace K, we denote by K ≤R H). We define Weyl unitary operators
W (h)(h ∈ H) on Γ(H). They are determined by{

W (h)W (k) = exp
(
− i

2 Im ⟨h, k⟩
)
W (h+ k)

W (h)Exp (0) = exp
(
− 1

4 ||h||
2
)
Exp ( ih√

2
).

The von Neumann algebra M(K) := {W (h);h ∈ K}′′ is called a second quanti-
zation algebra. Here, S ′ = {T ∈ B(Γ(H));TS = ST,∀S ∈ S} is the commutant
of S ⊂ B(Γ(H)). For K ⊂ H, define K′ := {h ∈ H; Im⟨h, k⟩ = 0,∀k ∈ K} (sym-
plectic complement of M). For a general von Neumann algebra M acting in a
Hilbert space H, we say a vector Ω ∈ H is cyclic for M in H if MΩ is dense in
H. We also say Ω is separating for M in H if for any Q ∈ M, QΩ = 0 ⇔ Q = 0
holds. This condition is equivalent to the cyclicity of Ω for M′ in H.

The following properties hold.

Theorem 4.1 [20, 24, 29] For K ≤R H, we have
(1) K ′ is a closed real subspace of H.
(2) K1 ⊂ K2 ⇒ K ′

1 ⊃ K ′
2

(3) K ′′ is the closed real subspace of H generated by K.
(4) (K + iK)′ = K ′ ∩ iK ′= the set of all vectors orthogonal to K.
(5) K ′ = {0} if K is a dense subspace of H.
(6) For a closed real subspace K of H and an orthogonal projection P in H,
the following quivalence holds:

PK ⊂ K ⇔ (I − P )K ⊂ K ⇔ PK ′ ⊂ K ′ ⇔ (I − P )K ′ ⊂ K ′.

If one of these conditions is valid, then

P (K ′) = (PK)′ ∩ PH.

Second quantization algebras has a natural modular structure. The subspace
K ≤R H is called standard if K + iK is dense in H and K ∩ iK = {0}. If K is
standard, then we can define the canonical involution s : K + iK → K + iK by
s : h+ ik 7→ h− ik, h, k ∈ K. It can be shown that

Theorem 4.2 [29] If K is standard in H, then
(1) s is a densely defined, closed antilinear involution.
(2) K ′ is also standard and the canonical involution is the adjoint s∗ of s.
(3) If s = jδ

1
2 is the polar decomposition of s, then

j2 = I, jδ
1
2 = δ−

1
2 j, j(K) = K ′.
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Before the birth of Tomita-Takesaki theory, Araki [20] showed that (when stated
in the modern style)

Theorem 4.3 [20, 29] The vacuum vector Exp (0) is cyclic and separating for
M(K) [M(K) is in a standard form w.r.t. the Fock vacuum ] iff K is standard.
More precisely, the following statements hold for K ≤R H.
(1) M(K) = M(K).
(2) Exp (0) is cyclic for M(K) iff K + iK is dense in H.
(3) Exp (0) is separating for M(K) iff K ∩ iK = {0}.
(4) M(K)′ = M(K ′) (Haag duality).
(5) {M(K1) ∪M(K2)}′′ = M(K1 +K2).
(6) M(K1) ∩ M(K2) = M(K1 ∩ K2). and consequently M(K) is a factor iff
K ∩ iK ′ = {0}.

From the above theorem, we can define the densely defined operator in H with
a cyclic and separating vector Ω := Exp (0).

S0 : M(K)Ω → M(K)Ω, AΩ 7→ A∗Ω,

which is known to be closable. Furthermore, if we consider the polar decompo-
sition of the closure S of S0,

S = J∆
1
2 ,

we then arrive at the following theorem of Osterwalder-Eckman[22], which is
a reformulation of Araki’s result in the language of Tomita-Takesaki modular
theory.

Theorem 4.4 [22, 29] S = es, J = ej ,∆ = eδ. Here, eA is a second quantiza-
tion of a (possibly unbounded) operator A in H.

In summary, there is a natural modular-symplectic structure in the algebra of
Weyl unitaries. In particular, the Fock vacuum is cyclic and separating for
any proper local subalgebra. In fact the local algebra is proven to be a unique
injective type III1 factors (cf. [18, 24]). In the next subsection we compare these
results with the corresponding local gauge algebras.

4.2 Local structure of the representation of gauge group

Next, we state the corresponding local structures of gauge group representation.
To this end, let us introduce some notations. Let UA,b := UA,b,1 and A =
Lin{UA,b; (A, b) ∈ U(H) × H}. Let O be an open subset of M . We consider
the net O 7→ M(O)′′ of von Neumann algebras generated by the *-algebras
M(O) := Lin{U(ψ); supp(ψ) ⊂ O}. We also consider the *-algebra defined by

A(O) := Lin{UA,b;A|H(O′) = IdH(O′), AH(O) ⊂ H(O), Int(supp(b)∩O′) = ϕ }.

Here, O′ := M\O is the complement of O. Now we state our main results.

Theorem 4.5 Let N0 be a neighborhood of 1 ∈ C∞
c (M,G). For an open subset

O ⊂M, we have
(1) M(O)′ ∩ A = A(O′). In particular, M′ ∩ A = C1. M := M(M). Further-
more, it holds that U(N0)′ ∩ A = C1.
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(2) The net O 7→ M(O)′′ satisfies
isotony : O1 ⊂ O2 ⇒ M(O1)′′ ⊂ M(O2)′′.
locality : O1 ⊂ O′

2 ⇒ M(O1)′′ ⊂ M(O2)′.

additivity : M = ∪
i
Oi ⇒ M′′ =

(
∪
i
M(Oi)

)′′
.

However, the Fock vacuum Ω := Exp (0) is not cyclic for M(O)′′if O ̸= ϕ,M .

To prove this theorem, we need some lemmata.

Lemma 4.6 If {(Ai, bi)}Ni=1(N = 2) are elements of U(H) × H, any two of
which are different, then there exists a number i0(1 ≤ i0 ≤ N) and a vector
xi0 ∈ H such that Ai0xi0 + bi0 ̸= Ajxi0 + bj , (∀j ̸= i0).

Proof. We prove this lemma by induction. It is obvious for N = 2. Suppose we
have proven for N (N ≥ 2). Let us consider the (N +1) elements {(Ai, bi)}N+1

i=1 .
Then there exists some (i0, xi0) such that Ai0xi0 +bi0 ̸= Ajxi0 +bj , (∀j ̸= i0, 1 ≤
j ≤ N). Compare (AN+1, bN+1) and (Ai0 , bi0).
(i) bi0 = bN+1 case.
If AN+1xi0 ̸= Ai0xi0 , then (i0, xi0) satisfies the requirement. If not, since
AN+1 ̸= Ai0 , there exists y ̸= 0 ∈ H such that AN+1y ̸= Ai0y.
As Ai0xi0 + bi0 ̸= Ajxi0 + bj , we can take ε > 0 so small that we obtain

Ai0(xi0 + εy) + bi0 ̸= Aj(xi0 + εy) + bj , (j ̸= i0, j 5 N).

And this is also valid for j = N + 1.
(ii) bi0 ̸= bN+1 case.
If AN+1xi0 + bN+1 ̸= Ai0xi0 + bi0 , then (i0, x0) satisfies the requirement.
If AN+1xi0 ̸= Ai0xi0 and furthermore, AN+1xi0 + bN+1 = Ai0xi0 + bi0 , then for
ε > 0, AN+1(1 + ε)xi0 + bN+1 ̸= Ai0(1 + ε)xi0 + bi0 and we can take ε so small
that Ai0(1 + ε)xi0 + bi0 ̸= Aj(1 + ε)xi0 + bj still holds . �

Lemma 4.7 Type (S) operators {UA,b} are linearly independent.

Proof. Suppose
N∑
i=1

λiUAi,bi = 0. Again we prove this by induction on N . We

may assume (Ai, bi) ̸= (Aj , bj) (i ̸= j). For any x ∈ H, it follows that

N∑
i=1

λie
− 1

2 ||bi||2−⟨Anx,bn⟩Exp(Anx+ bn) = 0

(i) N = 2 case.
Since exponential vectors are linearly independent and (A1, b1) ̸= (A2, b2), there
exists some x ∈ H such that A1x + b1 ̸= A2x + b2. Therefore Exp (Aix + bi)
are linearly independent and we obtain λ1 = λ2 = 0.
(ii) Suppose we have proven for N−1. Then by the last lemma there exists some
xi0 such that Ai0xi0 + bi0 is different from any of Ajxi0 + bj(j ̸= i0). Therefore
again by independence we obtain λi0 = 0. Thus from the induction hypotheses
all of the λi are 0 . �
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Lemma 4.8 [3, 8, 10] {V (ψ)dφ; supp(ψ), supp(φ) ⊂ O} is a total set in H(O).

Proof. This is a slight modification of the fact proved in [8]. �

Lemma 4.9 {β(ψ); supp(ψ) ⊂ O} is also total in H(O).

Proof. This is a consequence of the 1-cocycle property of β. Let h be any Cartan
subalgebra of g.
For φ ∈ C∞

c (M, h), ψ ∈ C∞
c (M,G) with supp(ψ), supp(φ) ⊂ O, we have

β(ψeφ) = β(ψ) + V (ψ)dφ.

Therefore

V (ψ)dφ = β(ψeφ) − β(ψ) ∈ Lin{β(ψ); supp(ψ) ⊂ O} (♢)

From the totality of Cartan subalgebras as discussed above, we see that (♢)
holds for any φ ∈ C∞

c (M, g), supp(φ) ⊂ O. Thus, the claim holds from the
totality of {V (ψ)dφ} . �
Remark.
Note that for φ ∈ C∞

c (M, h),

β(eφ) = dφ = exact 1-form.

However, the proposition says that even if M has non-trivial de Rham coho-
mology (with compact support) H1

c (M,R) ̸= 0, {β(ψ)} is a total set in H.
This is a consequense of the Lie algebra structure. Therefore although abelian
one-parameter subgroups s 7→ esφ, φ ∈ C∞

c (M, h) play important roles in our
analysis, they are not sufficient for understanding the whole structure of the
Maure-Cartan cocyle.

Lemma 4.10 Let ψ ∈ C∞
c (M,G), supp(ψ) ⊂ O, φ ∈ C∞

c (M, g), supp(φ) ⊂
O, K := supp(dφ). Let N0(O) be a neighborhood of 1 ∈ C∞

c (M,G) whose
elements are supported in O. Then there exist an open covering {Vk}Nk=1 of K
and two families of functions {ψkj }0≤j≤nk<∞,1≤k≤N ⊂ N0(O), {φk}1≤k≤N ⊂
C∞
c (M, g), supp(φk) ⊂ Vk such that

ψ|Vk
= ψknk

ψknk−1 · · ·ψ
k
0 |Vk

, ∀k,

dφ =
N∑
k=1

dφk on K.

Proof. Let x ∈ K, g := ψ(x). There exist an open neighborhood Ux of x and
some function ψx0 ∈ N0(O) such that ψ(y) = g ·ψx0(y),∀y ∈ Ux. It is known that
for any connected neighborhood E of e ∈ G, we have G = ∪k≥1 Ek, where Ek :=
{g1g2 · · · gk; gi ∈ E , ∀i}. Taking a small E , there exists {gi}li=1 ⊂ E , {ψxi }li=1 ⊂
N0(O) and neighborhoods Vi,x of x, Vi,x ⊂ Ux, such that g = gl · gl−1 · · · g1 and
ψxi (y) = gi, ∀y ∈ Vi,x. Define Vx := ∩iVi,x ̸= ϕ. We see that

ψ|Vx = ψxl · · ·ψ
x
0 |Vx .

Since K ⊂ ∪x∈K Vx and K is compact, there exists x1, · · · , xN ∈ K such that
K ⊂ ∪Nk=1 Vxk

. Define Vk := Vxk
. Let {χk}Nk=1 be a partition of unity associated
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with the covering {Vk} of ∪k Vk. Take φk := χkφ and we obtain the result. �
Proof of Theorem4.5
(1) We can write Ξ ∈ M(O)′ ∩ A as Ξ =

∑N
i=1 λiUAi,bi , where all of (Ai, bi)’s

are different and λi ̸= 0,∀i. Since Ξ ∈ M(O)′, we have U(ψ)ΞU(ψ)−1 = Ξ for
supp(ψ) ⊂ O. Therefore∑
i

λiU(ψ)UAi,biU(ψ)−1 =
∑
i

λiUV (ψ),β(ψ)UAi,biUV (ψ)−1,−V (ψ)−1β(ψ)

=
∑
i

eiIm⟨β(ψ),V (ψ)bi⟩λiUV (ψ)Ai,β(ψ)+V (ψ)bi
UV (ψ)−1,−V (ψ)−1β(ψ)

=
∑
i

eiθ(ψ,Ai,bi)λiUV (ψ)AiV (ψ)−1,β(ψ)+V (ψ)bi−V (ψ)AiV (ψ)−1β(ψ)

=
∑
i

λiUAi,bi ,

where θ(ψ,Ai, bi) := Im{⟨β(ψ), V (ψ)bi⟩−⟨β(ψ)+V (ψ)bi, V (ψ)AiV (ψ)−1β(ψ)⟩}.
(Note that UA,bUA′,b′ = eiIm⟨b,Ab′⟩UAA′,b+Ab′ , U

−1
A,b = UA−1,−A−1b.)

From the Hausdorff property there exist small neighborhoods Wi of (Ai, bi) such
that Wi ∩Wj = ϕ(i ̸= j). From the continuity of ψ 7→ U(ψ), there exists some
small neighborhood N0 of a constant function 1 ∈ C∞

c (M,G) such that for any
ψ ∈ N0(O) := {ψ ∈ N0; supp(ψ) ⊂ O}, (Aψi , b

ψ
i ) ∈Wi holds. Here, we define{

Aψi := V (ψ)AiV (ψ)−1,

bψi := β(ψ) + V (ψ)bi − V (ψ)AiV (ψ)−1β(ψ).

Suppose for some ψ ∈ N0 and i0, (Aψi0 , b
ψ
i0

) ̸= (Ai0 , bi0). From Lemma 4.7,
{UA,b}’s are independent. Hence we obtain λi0 = 0, which is a contradiction.
Therefore for all i and ψ ∈ N0(O), (Aψi , b

ψ
i ) = (Ai, bi). Furthermore, we have

θ(ψ,Ai, bi) ∈ 2πZ. Now, from the fact that β(1) = 0, we see that θ(1, Ai, bi) =
Im{⟨0, bi⟩ − ⟨0 + bi, 0⟩} = 0. Since ψ 7→ θ(ψ,Ai, bi) is continuous, it holds that
θ(ψ,Ai, bi) = 0. Therefore the proof is reduced to the following proposition.

Proposition 4.11 Ai|H(O) = IdH(O), Int(supp(b) ∩ O) = ϕ(∀i), AiH(O′) ⊂
H(O′).

Proof. From the above argument, it follows that for all ψ ∈ N0(O),

V (ψ)AiV (ψ)−1 = Ai, (♭)

β(ψ) + V (ψ)bi − V (ψ)AiV (ψ)−1β(ψ) = bi. (♮)

Insert (♭) into (♮), then we obtain

β(ψ) + V (ψ)bi −Aiβ(ψ) = bi. (♯)

Next, let us take an arbitrary Cartan subalgebra h of a semisimple Lie algebra g
and consider the map φ ∈ C∞

c (M, h), supp(φ) ⊂ O, and define ψ := esφ(s ∈ R).
For sufficiently small |s|, ψ belongs to N0(O). Since h is commutative, we obtain
β(ψ) = sdφ. Therefore in this case (♯) is reduced to

sdφ+ V (esφ)bi − sAidφ = bi ⇔ (Ai − I)dφ =
V (esφ) − I

s− 0
bi.
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In the s→ 0 limit, it follows that

(Ai − I)dφ = [φ, bi] (♠)

for all φ ∈ C∞
c (M, h), supp(φ) ⊂ O. Since the whole Lie algebra g is a union of

all Cartan subalgebras: g = ∪
Cartan subalgs

h and the equality (♠) is linear in the

variable φ, it is valid for all φ ∈ C∞
c (M, g), supp(φ) ⊂ O.

Next, we prove Int(supp(b) ∩ O) = ϕ.
Consider again arbitrary Cartan subalgebra h and the corresponding root space
decomposition of the complexification of semisimple g :

gC = hC ⊕
⊕
α∈∆

gα.

Here, ∆ is the root system for h and gα is the root space corresponding to α ∈ ∆.
Let ωα ∈ C∞

c (M, gα), supp(ωα) ⊂ O. Put ψ := eφ ∈ N0(O), φ ∈ C∞
c (M, h).

From V (ψ)Ai = AiV (ψ), it follows that

V (eφ)Aiωα = AiV (eφ)ωα

= Ai[ωα + i⟨α,φ⟩ωα +
1
2!

(i⟨α, φ⟩)2ω + · · · ]

= ei⟨α,φ⟩Aiωα.

This equality implies Aiωα ∈ C∞
c (M, gα). Therefore we see that Ai preserves

the root space structures:{
C∞
c (M, h) Ai−→ C∞

c (M, h),

C∞
c (M, gα) Ai−→ C∞

c (M, gα).

Expand bi w.r.t the root space decomposition: bi = bhi +
∑
α∈∆ b

α
i . Then for

φ ∈ C∞
c (M, h), supp(φ) ⊂ O,

(Ai − I)dφ = [φ, bi] = [φ, bhi ] +
∑
α∈∆

i⟨α, φ⟩bαi

= i
∑
α∈∆

⟨α,φ⟩bαi .

Since (Ai − I)dφ ∈ C∞
c (M, h), it follows that ⟨α, φ⟩bαi = 0. Since this holds for

any φ with supp(φ) ⊂ O, we have Int(supp(bαi )∩O) = ϕ. Taking all the possible
Cartan subalgebras as usual, we conclude that Int(supp(bi)∩O) = ϕ . From the
above arguments, we find that for φ ∈ C∞

c (M, g), supp(φ) ⊂ O,

(Ai − I)dφ = [φ, bi] = 0,

or equivalently,
Aidφ = dφ.

Therefore for ψ ∈ N0(O), we have

AiV (ψ)dφ = V (ψ)Aidφ = V (ψ)dφ.
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From Lemma 4.8, we have only to prove

AiV (ψ)dφ = V (ψ)dφ for all ψ with supp(ψ) ⊂ O. (♡)

for the proof of Ai|H(O) = IdH(O) (we have already shown that this (♡) is true
for ψ ∈ N0(O)). From Lemma 4.10, there exists an open covering {Vk}Nk=1 of
K := supp(ψ) and two families of functions {ψkj }0≤j≤nk<∞, 1≤k≤N ⊂ N0(O), {φk}1≤k≤N ⊂
C∞
c (M, g), supp(φk) ⊂ Vk such that

ψ|Vk
= ψknk

ψknk−1 · · ·ψ
k
0 |Vk

, ∀k,

dφ =
N∑
k=1

dφk on K.

Thus, we obtain

AiV (ψ)dφ =
N∑
k=1

AiV (ψ)dφk

=
N∑
k=1

AiV (ψkl ) · · ·V (ψk0)dφk

=
N∑
k=1

V (ψkl ) · · ·V (ψk0)Aidφk

=
N∑
k=1

V (ψkl ) · · ·V (ψk0)dφk

= V (ψ)dφ,

where in the third equality we used the equality AiV (ψ) = V (ψ)Ai for ψ ∈
N0(O). Therefore Ai|H(O) = IH(O). Furthermore, if AiH(O′) * H(O′), there
exists some ω ∈ H(O′) such that supp(Aiω) ∩ O ≠ ϕ. Again by the semisim-
plicity of g, there exists some ψ ∈ N0(O) such that V (ψ)Aiω ̸= Aiω. Since
V (ψ)ω = ω, it leads to a contradiction:

Aiω = AiV (ψ)ω = V (ψ)Aiω ̸= Aiω.

Therefore we have AiH(O′) ⊂ H(O′) and we obtain Ai ∈ A(O′). The opposite
inclusion A(O′) ⊂ M(O)′ ∩A is obvious by the definition. Note that the equal-
ity U(N0)′ ∩ A = C1 is also proved in the previous argument.
(2) The validity is obvious of the properties : isotony, locality (since supp(ψ1)∩
supp(ψ2) = ϕ ⇒ ψ1ψ2 = ψ2ψ1) and additivity. This is an analogous situation
to the case when there is an underlying Wightman field theory whose field oper-
ators ϕ(f) are affiliated with the local algebras. In such a case additivity of the
local net is always guaranteed. Furthermore, if we add the spectrum condition,
as is usually assumed, cyclicity and separating property for the vacuum vector
Ω is automatic (Reeh-Schlieder theorem [18]). In order to examine the cyclicity
and separating properties for our representation, consider the proper open sub-
set O ⊂ M . Make an orthogonal decomposition of the Hilbert space according
to the support properties:

H ∼= H(O) ⊕H(O′), H(O) := {ω ∈ H; supp(ω) ⊂ O}.
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From the decomposition, we may use the identification which is an isometric
isomorphism:

Γ(H) ∼= Γ(H(O)) ⊗ Γ(H(O′)),
Exp (ωO + ωO′) ↔ Exp (ωO) ⊗ Exp (ωO′).

Under the identification, we can compute the action of ψ, supp(ψ) ⊂ O:

U(ψ)Exp (ωO + ωO′) = e−
1
2 ||β(ψ)||2−⟨V (ψ)(ωO+ωO′ ),β(ψ)⟩Exp (ωO + ωO′)

= e−
1
2 ||β(ψ)||2−⟨V (ψ)ωO,β(ψ)⟩Exp (ωO + ωO′)

= (U(ψ)|H(O) ⊗ IH(O′))(Exp (ωO) ⊗ Exp (ωO′)).

Note that ⟨V (ψ)ωO′ , β(ψ)⟩ = 0. Therefore the local algebras have the following
form:

M(O)′′ ∼= {U(ψ)|Γ(H(O)) ⊗ IΓ(H(O′)); supp(ψ) ⊂ O}′′ ⊂ B(Γ(H(O))) ⊗ CIΓ(H(O′)),

M(O)′ ∼= {U(ψ)|Γ(H(O)); supp(ψ) ⊂ O}′ ⊗ B(Γ(H(O′))).

From these forms it is clear that Exp (0) is not cyclic for H if H(O′) ̸= {0} �.

Remark.
It is clear that if the representation is irreducible, then Ω is not separating for

M(O)′′ (O ̸= ϕ,M) and any local algebras M(O)′′ are type I factors.
From the proof of (2), we see that Haag-type duality11 M(O)′′ = M(O′)′ is
equivalent to the following two conditions:{

{U(ψ)|Γ(H(O)); supp(ψ) ⊂ O}′′ = B(Γ(H(O)))
{U(f)|Γ(H(O′)); supp(f) ⊂ O′}′′ = B(Γ(H(O′)))

We are not sure if the boundary behavior of the derivative of ψ affects the
irreducibility of the representation. Therefore it seems that the proof of the
irreducibility for {U(f)|Γ(H(O′)); supp(f) ⊂ O′} requires more discussions, even
if we have proved the irreducibility for the same dimensional manifolds. Finally,
if we want to prove the irreducibility from our theorem, there is a difficulty
concerning the strong limit. Let Ξ ∈ M′. Then from the strong density of A,
there is a net {Ξα} ⊂ A, s− limΞα = Ξ. We know from the proof of the above
theorem that if for any α, there exists some α > 0 such that Ξα0 commutes with
all U(ψ) where ψ belongs to some small neighborhood of 1, then Ξα0 = λα0I.
Taking subnet, we see that Ξ is also a scalar operator. However, if for any
α, there is an operator U(ψ)(ψ ∈ N) which does not commute with Ξα for
any small neighborhood N of 1 ∈ C∞

c (M,G), the situation is more subtle. Let
{Nk}∞k=1 be a family of neighborhoods of 1 such that

{1} ⊂ · · · ⊂ Nk+1 ⊂ Nk ⊂ · · · ⊂ N1,
∞∩
k=1

Nk = {1}.

The situation is as follows. For any α and any k, there exists some ψα,k ∈ Nk
such that ΞαU(ψα,k) ̸= U(ψα,k)Ξα, which implies

ΞαU(ψα,k)Exp (ωα,k) ̸= U(ψα,k)ΞαExp (ωα,k), ∃ ωα,k ∈ H.
11This condition is crucial for the Doplicher-Haag-Roberts sector theory [27].
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However, ψα,k ∈ Nk implies limk→∞ ψα,k = 1 and therefore we have

s− lim
k→∞

U(ψα,k) = I.

Furthermore, by the assumption{
s− lim

α
Ξα = Ξ,

U(ψ)Ξ = ΞU(ψ), ∀ψ ∈ C∞
c (M,G).

Therefore to prove the irreducibility, we must derive some contradictions from
these conditions, which looks quite non-trivial. The difficulty in this approach
seems to be different from those appearing in the Gaussian measure analysis
of the preceding researches in dim(M) = 2 [4, 8, 10]. While our approach is
formulated in a way independent of the dimensionality of the manifold, such a
possibility may not be negated that the dimensionality might show up at certain
point in the process of taking suitable limits.
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