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Quantum Back Reaction to asymptotically AdS Black Holes
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We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole
spacetime with negative cosmological constant. We study the geometry numerically obtained by
taking into account the energy momentum tensor of CFT approximated by a radiation fluid. We
find a sequence of configurations without a horizon in thermal equilibrium (CFT stars), followed by
a sequence of configurations with a horizon. We discuss the thermodynamic properties of the system
and how back reaction effects alter the space-time structure. We also provide an interpretation of
the above sequence of solutions in terms of the AdS/CFT correspondence. The dual five-dimensional
description is given by the Karch-Randall model, in which a sequence of five-dimensional floating
black holes followed by a sequence of brane localized black holes correspond to the above solutions.

I. BRANE WORLD BLACK HOLES AND THE
ADS/CFT CORRESPONDENCE

The AdS/CFT conjecture relates the gravitational dy-
namics of a (d + 1)-dimensional AdS spacetime to a d-
dimensional conformal field theory (CFT), and it was ini-
tially formulated as a correspondence between type IIB
supergravity on AdS5×S5 and N = 4 U(N) super Yang-
Mills (SYM) theory, with coupling ĝ and ’t Hooft param-
eter λ = ĝ2N , related to the supergravity parameters by

` = λ1/4`s ,
`3

G5
=
N2

π
. (1.1)

In the above formulas `s is the string length, ` and G5

are the five-dimensional AdS curvature length and New-
ton constant, respectively [1–3]. The correspondence re-
lates the supergravity partition function in AdS5 to the
generating functional WCFT of connected Green’s func-
tions for the CFT on the boundary, and it has a very
interesting connection with the Randall-Sundrum (RS)
model [4].
The RS model consists of two copies of a part of AdS5-

like spacetime. The boundaries of the copies are glued
with a positive tension brane. The model is described by
the following action:

SRS = SEH + Sbrane + SM , (1.2)

where SEH is the five-dimensional Einstein-Hilbert ac-
tion, Sbrane represents the action of the brane with ten-
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1 This formula is different from the ordinary AdS/CFT dictionary,
`3/G5 = 2N2/π, since we focus on models with two AdS bulk
regions and hence the degrees of freedom of the CFT, N2, is
doubled from π`3/2G5 to π`3/G5.

sion σ = 3/4πG5`, and SM describes matter confined on
the brane. On the four-dimensional brane, asymptoti-
cally flat spacetime is realized by tuning the brane ten-
sion relative to the negative bulk cosmological constant.
The Standard Model is localized on the brane, and the
observed four-dimensional nature of gravity arises owing
to the presence of a localized graviton zero mode [5].

References [6, 7]2 provided an interpretation of the RS
model in terms of the AdS/CFT correspondence. The
correspondence implies

SRS = − `

16πG5

∫
d4x

√
gR+ 2WCFT + SM , (1.3)

indicating that the classical gravity in the RS model is
dual to four-dimensional gravity coupled to a cutoff CFT.
From the above action, the effective four-dimensional
Newton constant is read as

G4 =
G5

`
. (1.4)

In the linearized, weak gravity regime various results
clearly support this conjecture [7, 11–13]. On the other
hand, although some evidence for the conjecture exists
(e.g. [14]), things become more complicated when trying
to extend the correspondence to the non-linear regime in
general [15, 16], and to black holes in particular. In this
paper we will be concerned with the latter case.

Let us summarize the present understanding of black
hole solutions in the RS model. In this model no large,
stable, static black hole solution localized on the brane
has so far been found, whereas small localized solutions
have been constructed numerically [17] for black holes
with size smaller than the curvature scale ` 3.

This situation can be interpreted in the light of the
AdS/CFT correspondence, and in Refs. [14, 19] it has

2 There are some related works such as [8–10].
3 It is fair to mention that the existence of such solutions is still
controversial [18].
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been conjectured that large stable black holes localized
on the brane do not exist in the RS model. The intu-
itive picture is as follows. Consider a four-dimensional
black hole with CFT. This black hole will evaporate into
CFT modes. If the correspondence is valid also in this
situation, this evaporation process must be equivalent to
a classical five-dimensional dynamical phenomena. This
may imply that there is no stationary black hole solu-
tion in the five-dimensional RS model, and that the five-
dimensional black hole “evaporates” by a classical pro-
cess. Note that existence of the numerical solutions of
Ref. [17], describing small black holes, is not in contradic-
tion with the above statement since the correspondence
is not expected to hold below the cutoff length scale of
the CFT, which is of order of the AdS curvature scale `.
Black holes floating in the bulk are also expected to ex-

ist [14], although no solution of this sort has been found.
Such floating black holes also cannot be large for the fol-
lowing reason. In the RS model, the gravitational force
between the brane and a particle in the bulk is repulsive.
Writing the metric in Poincaré coordinates,

ds2 = dy2 + e−2y/`
(
−dt̄2 + dx̄2

)
, (1.5)

one can see that the acceleration of a particle is a =
−∂y log

√
−gt̄t̄ = 1/` and independent of y. The only

force that compensates such repulsive force is the self-
gravity of the mirror image of the particle on the other
side of the brane. From the above observation, we expect
that, as ` decreases, the equilibrium position of the float-
ing black hole should move towards the brane. However,
the attractive force between the black holes is at most
of O(1/rh), with rh being the horizon size. If rh � `,
such attractive force will not be sufficient to cancel the
repulsive force from the brane. Thus, large black holes
will necessarily touch the brane.
Although the difficulty in constructing large localized

(or floating) black hole solutions in the RS model syn-
chronizes with the prediction from the AdS/CFT corre-
spondence, it is also true that larger black holes become
more difficult to construct simply for a technical reason
because two different scales, the bulk curvature scale `
and the black hole size, should be resolved simultane-
ously. Therefore it is difficult to prove the absence of so-
lutions numerically. Then, one of the authors proposed
to study black holes in Karch-Randall (KR) model [20],
in which the brane tension is chosen to be less than the
fine-tuned value of the RS model [21]. Unperturbed back-
ground bulk geometry is AdS, which is conveniently de-
scribed by

ds2 = dy2 + `2 cosh2 (y/`) ds2AdS4
, (1.6)

where ds2AdS4
is the line element of four-dimensional AdS

spacetime with unit curvature:

ds2AdS4
= −

(
1 + r̄2

)
dt̄2+

(
1 + r̄2

)−1
dr̄2+ r̄2dΩ2

2. (1.7)

Contrary to the Poincare chart convenient for RS model,
in this chart the warp factor is not monotonic but has a

minimum at y = 0. The position of the brane is specified
by y = yb, and yb is determined by the condition

σ = − 3

4πG5`
tanh (yb/`) . (1.8)

The RS limit is obtained by letting yb → −∞.
Let us consider a small black hole floating in the bulk

of the KR model. Following the same analogy as before,
we can look at the acceleration of a small mass particle.
In this case a particle feels a potential

Ueff = log
(
cosh

y

`

)
+ Usg , (1.9)

where Usg is the self-gravitational part caused by its own
mirror image on the other side of the brane. The profile
of Ueff is illustrated in Fig. 1 and suggests that there
will be two small black hole solutions: an unstable one
close to the UV brane, and a stable one near y = 0,
far from the UV brane. In the RS limit δσ → 0, the
latter is infinitely far from the brane and hence it does
not exist. It is natural to imagine that the stable floating
black holes also touch the brane when the size becomes
big enough.

U
eff

Unstable Equilibrium Point

y=0y=y
b y

Stable Equilibrium Point

FIG. 1. Effective potential in the KR model.

According to the AdS/CFT correspondence, we may
expect that a five-dimensional black hole in the KR
model will be dual to some object in the four-dimensional
gravity coupled to CFT with negative cosmological con-
stant [21]. Naive expectation is that a brane-localized
black hole and a floating black hole in the KR model are,
respectively, dual to a four-dimensional black hole with
back reaction of CFT halo and a star composed of CFT,
which we refer to in this paper as a quantum black hole
and a CFT star. If this duality is really the case, we can
examine black holes in the KR model by analyzing the
four-dimensional system.

On the four-dimensional brane in the KR model,
asymptotically AdS spacetime is realized. Under the re-
striction to static and spherically symmetric configura-
tions, the four-dimensional metric is in general written
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as

ds2 = −α(r)2dt2 + V (r)−1dr2 + r2dΩ2
2 . (1.10)

As we consider an equilibrium configuration with a black
object in the bulk, the corresponding CFT is also ex-
pected to be in thermal equilibrium at a finite tempera-
ture. The local temperature of CFT in equilibrium red-
shifts as

Tlocal(r) = T/α(r), (1.11)

where the global temperature of the system T is defined
with respect to the time-like Killing vector ∂/∂t.
Let us consider a quantum black hole in the above

thermal AdS spacetime. For black hole configurations
in equilibrium the appropriate vacuum state will be the
Hartle-Hawking state. In the asymptotically flat case,
back reaction due to CFT is too strong to keep the
asymptotic structure of the spacetime unchanged (the
total mass diverges). In the asymptotically AdS case,
a non-zero cosmological constant changes the situation
dramatically. Since the lapse function in AdS behaves as
α ∼ r/L for large circumferential radius r, where L is
the four-dimensional AdS curvature scale, the tempera-
ture and hence the energy density of thermal CFT de-
crease rapidly for r � L. This reduces the effects of the
back reaction. If the black hole size is large, the energy
density due to CFT will stay negligibly small at any ra-
dius. Whilst, if the size of the black hole is small, the
back reaction becomes important and a static black hole
solution becomes non-trivial. Roughly speaking, such a
small black hole will be unstable against the CFT back
reaction and will ‘evaporate’ into a CFT star of the same
mass.
The sequence of the CFT stars can be tagged by the

central density, and the end-point of the sequence cor-
responds to a star with singular central density and the
lapse vanishing at the center. Thus, this sequence of the
CFT stars will naturally flow into the sequence of quan-
tum black holes, whose starting-point corresponds to a
small black hole in the limit of zero horizon radius.
We can interpret the sequence of four-dimensional

quantum black holes and CFT stars from a five-
dimensional view point as follows. At the transition
point of the sequence, the lapse vanishes at the cen-
ter of the system. This four-dimensional configuration
corresponds to a five-dimensional black hole floating in
the bulk and just touching the brane, since the lapse
vanishes at the touching point for this five-dimensional
configuration too. In this way, we may speculate that
the sequence of floating black holes corresponds to the
sequence of CFT stars, while the sequence of brane-
localized black holes corresponds to the sequence of quan-
tum black holes.
In this paper, we will present our investigation con-

cerning the four-dimensional asymptotically AdS quan-
tum black holes and CFT stars with the aim of clarify-
ing the phase diagram structure of black objects in the
KR model. We will give quantitative estimates of the

characteristic quantities of the model by explicitly con-
structing equilibrium configurations in the dual picture
described by four-dimensional gravity with CFT correc-
tion. In Sec. II, we will show that the effects of CFT can
be properly approximated by a radiation fluid. We ana-
lyze properties of CFT in Schwartzschild AdS spacetime
and give the conditions for the radiation fluid approxima-
tion to CFT to be applicable. We will show that those
four-dimensional objects in equilibrium state can be well
approximated by this approximation, as long as we re-
strict our interest to the range of parameters where the
correspondence is expected to be valid. In Sec. III, we will
illustrate our method to construct equilibrium configura-
tions of four-dimensional self-gravitating CFT and study
its basic properties that can be derived analytically. The
full numerical analysis will be given in Sec. IV. Based on
the above results, we will finally discuss the implications
for the KR model via the AdS/CFT correspondence in
Sec. V and summarize the paper in Sec. VI.

For notation convenience, we set G4 to unity from
Sec. II to Sec. IV.

II. CFT ENERGY-MOMENTUM TENSOR AND
RADIATION FLUID APPROXIMATION

In order to study the effects of the back reaction, ex-
plicit knowledge of the quantum energy-momentum ten-
sor of the CFT in the Hartle-Hawking vacuum state
is necessary. The computation is, however, technically
very complicated and, apart from Ref. [22] where the
vacuum polarization has been obtained for a confor-
mal scalar field, we are not aware of other relevant re-
sults for Schwarzschild AdS black holes in the litera-
ture. Even had we obtained the exact expression for
the energy-momentum tensor, additional problems would
arise in solving the Einstein equations self-consistently.
The energy momentum tensor of CFT effectively con-
tains higher derivatives of the metric functions, and those
terms will introduce spurious solutions and make the
choice of boundary conditions quite non-trivial. For this
reason, as a first step, it seems natural to look for a sim-
plified scheme to take into account the quantum back
reaction approximately. In this paper we propose to use
the radiation fluid approximation, which makes it easy
to study back reaction effects of CFT on the spacetime
structure. In this section we evaluate the CFT energy-
momentum tensor using Page’s approximation [23] on the
Schwarzschild AdS black hole background [25], and com-
pare the results with those obtained by the radiation fluid
approximation.

Before introducing Page’s approximation, it is instruc-
tive to discuss the relevant length scales. Since the CFT
is scale invariant, the only scales that characterize the
system are (i) geometrical length scales of the space-time,
such as the distance from the BH horizon radius r − r̄h
or the curvature scale, and (ii) the scale related to the lo-
cal temperature of the system 1/Tlocal. For high enough
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temperatures, 1/Tlocal becomes the only relevant length
scale of the system, except for the vicinity of the horizon.
In this case, from the symmetry, the energy momentum
tensor of CFT should follow a Stephan-Boltzmann law,

Tµν =
π2

30
geffT

4
local(δ

µ
ν − 4δµ0δ

0
ν) , (2.1)

where geff represents the effective number of degrees of
freedoms. Expression (2.1) claims that a thermal CFT
can be approximated by a radiation fluid when the red-
shifted temperature of the system is high enough.
The procedure is, however, not straightforward, since

the radiation fluid approximation breaks down near the
horizon, due to the fact that the local temperature ∝ α−1

diverges there. In order to remove this pathology, we
need to consider the quantum contribution to the energy
momentum tensor, and will use Page’s approximation for
this purpose. We split the genuine energy density into
two parts, ρ = ρr + ρq, where ρr corresponds to a clas-
sical radiation fluid contribution and ρq to a quantum
contribution that is defined by the remainder of this sec-
tion.
As an example, we consider a conformal scalar field

on Schwarzschild AdS background. In this case Page’s
approximation is known to be equivalent to the fourth
order WKB approximation [26]. In order to take into
account all the degrees of freedom of SYM, conformal
spinor and vector contributions should be included. How-
ever, Page’s approximation produces unphysical diver-
gences on the event horizon for these cases, and to in-
clude such contributions rigorously, a more sophisticated
numerical method is needed [26]. We do not pursue this
rather technically complicated issue here. For a confor-
mal scalar field, the classical part ρr described by a radi-
ation fluid is given by

ρr =
r2

Kr̄4h
(1 + 3r̄2h/L

2)4 , (2.2)

while the quantum part ρq is computed by using Page’s
approximation as

ρq = − 1

K

9∑
i=0

air
i−6 , (2.3)

with

K ≡ 7680π2 (r − r̄h)
2 {

1 +
(
r2 + r̄hr + r̄2h

)
/L2

}2
.

The coefficients ai are polynomials in χ ≡ r̄h/L of degree
smaller than 9:

a0 = 33r̄4h
(
1 + χ2

)4
, a1 = −72r̄3h

(
1 + χ2

)3
,

a2 = 40r̄2h(1 + χ2)2 , a3 = −88r̄hχ
2
(
1 + χ2

)3
,

a4 = 104χ2
(
1 + χ2

)2
, a5 = 0 ,

a6 =
104

L2
χ2

(
1 + χ2

)
, a7 = − 32

L3
χ
(
1 + χ2

)
,

a8 =
16

L4
, a9 =

32

L5
χ
(
1 + χ2

)
.

Let us consider the quantum effects in the near horizon
region first. We define an inner critical radius rin as the
radius at which the equality

|ρq| = cρr (2.4)

is first satisfied, with c being a constant of order O(1).
For r < rin the quantum contribution dominates the clas-
sical radiation part. The result is not so sensitive to the
choice of c as long as it is O(1). Figure 2 illustrates
the relation between the horizon radius r̄h and the in-
ner critical radius rin: when r̄h is small compared with
the four-dimensional curvature scale L, rin/r̄h is approx-
imately constant of O(1) (e.g. rin ∼ 3r̄h/2 for c = 1/2);
when we increase r̄h beyond L, rin/r̄h begins to increase
and finally solutions of Eq. (2.4) cease to exist. No inner
critical radius can be defined for larger r̄h.

 1
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 3
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r in
 / 

r h

rh / L

FIG. 2. Relation between the horizon radius r̄h and critical
radius rin. We have set c = 1/2 and l/L = 10−8.

Having fixed the critical radius as above, we can dis-
cuss the strength of the reaction due to the CFT in the
region r < rin by comparing the total energy of the CFT
within the critical radius Min with the black hole mass
mh. When the size of the black hole is small, Min is es-
timated as Min ∼ (π2/30)geffT

4
localr̄

3
h ∼ `2/r̄h, where we

have substituted

geff =
3

4
· 15N2 , (2.5)

which is the value for N = 4 U(N) SYM theory, and
used the relation (1.1). The factor 3/4 in Eq. (2.5) is the
empirical factor that explains the discrepancy between
results for CFTs in strong and weak coupling cases [29].
Hence, we have

Min

mh
∼

(
`

r̄h

)2

. (2.6)

It is easy to see that, as long as `/r̄h is small, the above
ratio is also small, and the contribution to the total mass
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of CFT living inside the inner critical radius is negligible.
The cases with ` > r̄h are beyond the range of applicabil-
ity of the AdS/CFT correspondence and are outside the
parameter region of our interest. For illustration, Fig. 3
shows the ratio Min/mh with respect to the horizon ra-
dius.
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M
in

 / 
m

h 
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FIG. 3. Ratio of the total energy of the CFT inside the critical
radius and the black hole horizon radius. We set `2/L2 =
10−8.

Let us move on to the quantum effect in the asymp-
totic region next. At a large distance, the classical radia-
tion part of the energy density ρr behaves as 1/r

4, whilst
the quantum part ρq behaves as 1/r3, as is seen from
Eq. (2.3). Hence, the quantum part dominates above an
outer critical radius, rout, which is defined as before by
Eq. (2.4). By comparing Eqs. (2.2) and (2.3), we find

rout ∼ L (L/r̄h)
5
for small black holes with r̄h � L.

This quantum part ρq in the outer region gives a non-
negligible contribution for large r. In fact, by taking ρq
into account, the mass measured at r,M(r), will be mod-
ified as follows. Eq. (2.3) suggests that the leading term
of ρq behaves as ∼ −M(r)`2/L2r3 when we consider the
back reaction of the CFT to the background geometry4.
Then, M(r) will be modified as

M(r) ∼
∫ r

r′ 2ρqdr
′ ∼M(rout)×

(
r

rout

)−`2/L2

, (2.7)

where M(rout) is the mass in the region r < rout. Hence,
the effect of ρq significantly alter the total mass M from
the value for the bare black hole at a very large dis-
tance. The above result can be interpreted as the mass

4 Note that Eq. (2.3), which gives ρq ∼ −mh/L
2r3, is for one

conformal scalar while we consider N2 ∼ `2 degrees of freedom
here. Adding to that, the back reaction of the CFT to the back-
ground geometry will change its behavior from −mh`

2/L2r3 to
−M(r)`2/L2r3.

screening effect due to the non-zero graviton mass of
O(`/L2) [27, 28] 5. To avoid ambiguity of M with re-
spect to r, strictly speaking, we need to truncate the
model at a finite radius well outside the AdS curvature
radius but before this screening effect becomes signifi-
cant. This prescription will be justified later in Sec. V.
As long as this truncated model is concerned, we can ne-
glect the quantum part of the energy density ρq also in
the region r > rout. Once we neglect the quantum part,
this screening effect is also absent. Hence, in the actual
computation discussed in the succeeding sections, where
we use the radiation fluid approximation, we do not have
to care about this truncation.

As the size of a black hole becomes large compared
with L, the interval between rin and rout shrinks and
eventually disappears. Beyond that point, the classical
radiation part of the energy density ρr does not domi-
nate the quantum part for any r. Hence, one may think
that the approximating the energy momentum tensor by
a radiation fluid is not a good approximation at all. How-
ever, in this case the temperature is so low that the back
reaction to the mass due to CFT is negligibly small, as
long as we adopt the above prescription of truncating
the model at a finite radius before the screening effect
becomes significant. Hence, we conclude that in all cases
that we are interested in the radiation fluid approxima-
tion is expected to give a good approximation to the en-
ergy momentum tensor of CFT except for the vicinity of
the event horizon.

III. BOUNDARY THEORY DESCRIPTION OF
FLOATING BLACK HOLES

A. CFT stars

First, we re-examine spherically symmetric, equilib-
rium configuration of a radiation star in asymptotically
AdS spacetime, which was analyzed in Ref. [30]. The
only difference from the literature is that the effective
number of degrees of freedom geff is set to a large num-
ber (45/4)N2 in connection to the AdS/CFT correspon-
dence.

To deal with the above problem, it is convenient to
write the metric (1.10) as

ds2 = −e2ψV dt2 + V −1dr2 + r2(dθ2 + sin2 θdφ2) , (3.1)

5 When the graviton has small non-zero mass mg , roughly speak-
ing, the metric perturbation hµν obeys [20](

r−2∂rr
4∂r −m2

gL
2
)
(hµν/r

2) = 0 ,

which implies hµν ∝ r−1−(1/3)(mgL)2 and hence M ∝
r−(1/3)(mgL)2 . Hence, the leading correction due to the graviton
mass of O(`/L2) [27, 28], reproduces the r-dependence presented
in Eq. (2.7).
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with

V = 1 +
r2

L2
− 2m(r)

r
. (3.2)

We re-parametrize the time coordinate t so as to satisfy

lim
r→∞

ψ(r) = 0 . (3.3)

In these coordinates the total mass of the system is given
by

M ≡ lim
r→∞

m(r) ,

Pressure and energy density can be written as

ρ = 3Pr = 3Pθ =
π2

30
geffT

4
local =

3π3`2

8
T 4e−4ψV −2 .

(3.4)
The Einstein equations (with Λ = −3/L2) are

dm

dr
= 4πr2ρ , (3.5)

dψ

dr
=

16π

3
rV −1ρ , (3.6)

dρ

dr
= −4ρ(m+ 4πr3ρ/3 + r3/L2)

r2 + r4/L2 − 2rm
. (3.7)

The central density

ρc ≡ ρ(0), (3.8)

can be used to parametrize the solutions, and the bound-
ary condition for m(r) is specified by

m(0) = 0 . (3.9)

Then, integrating Eqs. (3.5) and (3.7) from r = 0 for
given curvature scales ` and L, we obtain a one-parameter
family of non-singular equilibrium configurations labelled
by ρc. From the boundary condition (3.3) and the rela-
tion (3.4), we obtain the global temperature

T = lim
r→∞

( 8

3π3`2
ρV 2

)1/4

. (3.10)

Finally, the solution of Eq. (3.6) is obtained algebraically
from Eq. (3.4) as

ψ(r) =
1

4
ln
(3π3`2

8
T 4ρ−1V −2

)
, (3.11)

without solving Eq. (3.6). Another global quantity of
interest is the total entropy of the system, S(L, `, ρc).
Once the functional dependence of M and T upon ρc is
determined, S can be obtained by integrating the first
law of thermodynamics,

dS =
dM

T
(3.12)

for fixed ` and L, with S = 0 at ρc = 0.

Notice that, writing the equations in terms of the
rescaled variables associated with “˜”, defined by

r = Lr̃ , ρ = L−2ρ̃ , m = Lm̃, (3.13)

L-dependence is eliminated from the Einstein equations
and also from the form of the metric function (3.2). Ac-
cordingly, the rescaled thermodynamic quantities defined
by

M(L, `, ρc) = LM̃(L2ρc) , (3.14)

T (L, `, ρc) = `−1/2L−1/2T̃ (L2ρc) , (3.15)

S(L, `, ρc) = `1/2L3/2S̃(L2ρc) , (3.16)

absorb the `-dependence present in Eq. (3.4), too. Owing
to the above scaling relations, we can set L = ` = 1
without loss of generality.

Details of the numerics for the CFT star configura-
tions will be reported in the succeeding section along with
the black hole ones. Here we wish to close this subsec-
tion with some analytic estimates of the thermodynamic
quantities of our interest. As discussed in Ref. [30], when
the radiation has negligible self-gravity, the metric will
be approximated by the pure AdS spacetime. The con-
dition for the self-gravity to be negligible can be stated
as

m(r)/r � 1, (3.17)

for all r. This condition is satisfied when the central
density of the radiation is much smaller than that cor-
responds to the four-dimensional AdS curvature scale,
(π2/30)geffT

4 � L−2. The temperature correspond-
ing to the critical central density at which the equality
(π2/30)geffT

4 = L−2 is satisfied will then be approxi-
mately given by

T ∼ `−1/2L−1/2. (3.18)

Below this temperature, the spacetime is practically AdS,
which will work as a box of the volume of O(L3) for the
radiation. Then, the total energy of the system can be
estimated easily as

M ∼ `2L3T 4. (3.19)

Similarly, the total entropy of the system is approximated
by

S ∼ `2L3T 3. (3.20)

Substituting T ∼ `−1/2L−1/2, one can estimate the total
mass and the total entropy at the critical point where the
back reaction to the geometry becomes important as

M/L ∼ 1 , (3.21)

`−1/2L−3/2S ∼ 1 , (3.22)

which is found to be consistent with the scaling relations
(3.14), (3.15) and (3.16). A precise evaluation of all the
thermodynamical quantities will be given later by explicit
numerical computations.
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B. AdS Black holes with CFT back reaction

Next, we discuss configurations with a black hole hori-
zon. As we discussed in Sec. II, fluid approximation
breaks down near the horizon. There is a critical ra-
dius rin, and for r < rin we cannot neglect the quantum
correction to the energy momentum tensor. However,
the role of quantum correction is simply to regularize the
divergent energy density obtained in the fluid approxi-
mation, and hence it is possible to approximate solutions
in this region by a vacuum solution of the Einstein equa-
tions, i.e. Schwarzschild AdS solutions. In the following,
we will use the critical radius rin as the junction radius at
which the Schwarzschild AdS solution for r < rin is con-
nected to the solution that includes the CFT back reac-
tion for r > rin. As before, we assume that the spacetime
is static and spherically symmetric. Thus, Eqs. (3.4),
(3.5), (3.6) and (3.7) are the same as before. Only the
inner boundary conditions are different. From the con-
tinuity of the metric functions at r = rin, we obtain the
boundary conditions,

m(rin) = mh , (3.23)

eψ(rin)dt = dt̂, (3.24)

where mh is the mass parameter of the central
Schwarzschild AdS metric that describes the region r <
rin, and t̂ is the time coordinate in the inner region
r < rin. We require that the temperature of the inner
black hole solution is equal to that of the outer thermal
radiation fluid. Then, we obtain

T = eψ(rin)T̂ , (3.25)

T̂ =
L2 + 3r̄2h
4πL2r̄h

. (3.26)

Here T̂ is the temperature defined with respect to the
timelike Killing vector ∂/∂t̂. The factor eψ(rin) in
Eq. (3.25) takes care of the difference between the time
coordinates for r ≤ rin and for r ≥ rin. With the above
boundary conditions, Einstein’s equations can be solved
numerically and the thermodynamical quantities evalu-
ated for various values of the horizon radius r̄h. Here
the scaling relations that hold in the star case are not
fully compatible with the boundary condition (3.25) with

(3.26), which requires T to scale like T = T̃ /L. There-
fore we cannot completely absorb dependences on both
L and ` by the rescaling, and the dimensionless ratio
`/L remains as a relevant parameter in the black hole
case. For a fixed value of `/L, we therefore compute the
functional dependence of M and T upon r̄h numerically.
Then, S is also obtained by integrating the first law of
thermodynamics (3.12).
In the preceding subsection we observed that there is

a critical point where the back reaction to the geometry
becomes important in the star case. The same is true for
the black hole case. When the size of the central black
hole is small, the temperature is high. Therefore the to-
tal mass is dominated by the radiation. As we increases

the size of the black hole, radiation temperature drops.
When the temperature drops down belowO(`−1/2L−1/2),
the effect of the radiation energy density becomes negli-
gible in the same way as in the star case. When the size
of the black hole is larger than that at the above critical
point, the geometry does not significantly deviate from
the Schwarzschild AdS spacetime.

As we further increase the size of the black hole, there
appears another type of critical point, which does not
exist in the star case. At this critical point, the stability
of the system as a micro-canonical ensemble changes. In
this regime the total mass of the system can be approx-
imated by the sum of the mass the black hole and that
due to the CFT,

M ∼ r̄h +
π2

30
geffL

3r̄−4
h , (3.27)

where we used a rough estimate for the temperature,
T ∼ 1/r̄h, which is valid for r̄h . L. The total mass takes
a minimum at r̄h ∼ (`2L3)1/5. This means that there are
several solutions with the same total mass, but with dif-
ferent temperature or entropy. Amongst these solutions,
the one with the larger entropy is micro-canonically sta-
ble. Since the total entropy is approximately given by

S ∼ r̄2h +
π2

30
geffL

3r̄−3
h , (3.28)

the sequence of the solutions is micro-canonically stable
for r̄h & (`2L3)1/5. The thermodynamic quantities at
this point of the minimum mass can be estimated as

M/L ∼ (`/L)2/5 ,

`1/2L1/2T ∼ (`/L)1/10 ,

`−1/2L−3/2S ∼ (`/L)3/10 .

Strictly speaking, we should consider a slightly different
type of ensemble to discuss the stability of the KR mod-
els. We discuss this issue later in Sec. V.

IV. NUMERICAL RESULTS

In this section we will present the numerical results.
We begin with showing plots for the thermodynamic
quantities: total massM (Fig. 4), temperature T (Fig. 5)
and entropy S (Fig. 6). The results for the CFT star and
for the black holes are shown next to each other, illus-
trating the smooth transition from one to the other.

The two sequences are connected in the limit of infi-
nite central density for the star configuration sequence,
and in the limit of vanishing horizon radius for the black
hole sequence. A CFT star with large central density ‘be-
comes’ a small mass black hole at the connection point.
The transition occurs at

M/L = 0.36 ,

`1/2L1/2T = 0.21 ,

`−1/2L−3/2S = 2.0 .
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FIG. 4. Total mass of CFT stars (left panel) and quantum black holes (right panel) with respect to the central density of the
star and black hole horizon radius, respectively. In the right panel we set the parameter `/L = 10−3, 10−4 and 10−5. The
transition between the two sequences occurs at M/L = 0.36.
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FIG. 5. Plots for the temperature in the same way as in Fig. 4. The transition between the two sequences occurs at `1/2L1/2T =
0.21.

These critical values do not depend on the ratio `/L.
As estimated in the preceding section, the minimum

of the total mass for the quantum BH occurs at r̄h ∼
(l2L3)1/5, which is consistent with the analytic estimate.
Figure 7 shows the relation between M and T . The

dotted line refers to the star sequence, while the solid
line to the quantum black hole sequence. In order to
clarify the back reaction effects, two additional reference
curves are also shown in the same figure. The dashed line
refers to the purely Schwarzschild AdS black hole case,
and the dotted-dashed line refers to the sum of the black
hole mass and the energy due to the CFT without tak-

ing into account the back reaction to the geometry. Fig-
ure 7, once again, shows the smooth transition between
the sequences of CFT stars and quantum black holes.
The solid line starts to deviate from dotted-dashed line
at r̄h ∼

√
`L, where the back reaction effects begin to

work. As is expected, the solid line deviates from pure
Schwarzschild AdS case (dashed line) when the energy of
CFT becomes relevant at M ∼ (`2L3)1/5, corresponding
to r̄h ∼ (`2L3)1/5.

In addition to the thermodynamic functions, we are
interested in how the CFT back reaction alters the space-
time geometry. Figures 8 and 9 show the behavior of the
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FIG. 6. Plots for the temperature in the same way as in Fig. 4. The transition between the two sequences occurs at
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FIG. 7. Relation betweenM and T for CFT stars (dotted line) and quantum black holes (solid line). For the black hole system,
we set `/L = 10−4. To understand the back reaction effect more clearly we add temperature-energy relation for Schwarzschild
AdS space with (dotted-dashed line) and without (dashed line) the contribution of the radiation fluids. The right panel shows
the closeup around the transition point.

metric functions m(r) and ψ(r) for CFT stars and quan-
tum black holes. We calculated them for various central
densities 10−4 ≤ ρcL

2 ≤ 102 in the star case and for var-
ious black hole masses 10−4 ≤ mh/L ≤ 1 in the black
hole case for l/L = 10−5. The results of the numerical
computation are shown only for r ≥ rin for the black hole
sequence.
It is easy to see that the metric functions are almost

the same for the star sequence in the large central density
limit and for the black hole sequence in the small size
limit. Let us focus on, for example, the curves for ρcL

2 =

102 in the left panel and mh/L = 10−4 in the right panel.
First, for a small radius (r/L . 10−2 for ρcL

2 = 102 and
mh/L = 10−4), there is a constant density core described
by

ψ(r) ∼ const , (4.1)

and

m(r)

L
∼ const×

( r
L

)3

. (4.2)

Here the constants are determined by the central den-
sity or the black hole mass. This region is followed by
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FIG. 9. Plot for the metric function m(r) in the same way as in Fig. 8.

the intermediate region (10−2 . r/L . 1). The behav-
ior in this region is approximately obtained by solving
Eqs. (3.5) and (3.7) for r/L � 1, assuming power law
solutions for m and ρ. With the aid of Eqs. (3.4), (3.5)
and (3.6), we obtain

m(r)

L
∼ 3

14

( r
L

)
, (4.3)

and

ψ(r) ∼ 1

2
ln
( r
L

)
. (4.4)

For stars with large central density and for black holes
with small mass, ψ(r) takes a large negative value for
a small r, which means a large red shift factor. The

growth of red shift factor compensates the usual growth
of black hole temperature in the small black hole limit,
and explains the convergence of global temperature of
the system. We also mention that in the black hole case
the back reaction effects are small for r̄h & (`2L3)1/5. In
this case m(r) takes an almost constant (not small) value
all over the spacetime (dotted lines in the right panel of
Fig. 9).

V. ADS/CFT INTERPRETATION

In this section we will discuss the implications of our
calculations for black hole solutions in the KR model
based on the AdS/CFT correspondence [6, 7, 14]. When



11

we discuss the AdS/CFT correspondence in the KR
model, our asymptotically AdS brane does not throughly
surround the five-dimensional bulk space. Therefore, in
addition to the CFT considered so far (CFT1), we need
to include the contributions from another CFT residing
on the boundary that limits the other side of the bulk
(CFT2) [24]. As long as thermal equilibrium state is
concerned, we have to relate the temperature of CFT2
to that of CFT1. For convenience, we introduce a sec-
ond brane at a finite but large distance from the first
brane. We calculate first the entropy of CFT2 on this
second brane and then send the brane separation to infin-
ity. The line element of four-dimensional metric induced
on the second brane is approximated by the pure AdS
metric:

ds2 = −f(r2)dt22 + f(r2)
−1dr22 + r22dΩ

2 , (5.1)

where t2 and r2, respectively, are time and radial coor-
dinates on the second brane, f(r2) ≡ 1 + r22/L

2
2, and L2

is the AdS curvature length on the second brane. The
infinitesimal proper time interval for a static observer
in these coordinates is f(r2)

1/2dt2. On the other hand,
this brane can be embedded in the five-dimensional bulk,
which behaves as (1.6) in the asymptotic region. In the
coordinates of Eq. (1.6) the second brane is located at
y = y2 approximately. The proper time interval in these
coordinates is described by ` cosh(y2/`) (1 + r̄2)1/2dt̄.
Thus, the ratio between these two time coordinates is

dt2/dt̄ = dr2/dr̄ = ` cosh(y2/`) = L2 . (5.2)

As for the first brane, a parallel discussion applies as
long as a large radius limit is concerned. The induced
metric on the first brane is also asymptotically AdS, and
the location of the brane is also specified by a y-constant
surface there. Thus, we find dt2/dt = L2/L. There-
fore, when thermal equilibrium is realized in the five-
dimensional picture, the relation between the tempera-
tures of CFT1 and CFT2 is given by

TL = T2L2 . (5.3)

By using the radiation fluid approximation, the entropy
of CFT2 can be estimated as

SCFT2 =

∫ ∞

0

4πr2
√
grr s dr =

π5

2G4
T 3L3l2, (5.4)

where s = (4/3)(π2/30)geff(T2/α)
3 is the radiation fluid

entropy density with geff given in Eq. (2.5). Since the
entropy estimated in Eq. (5.4) is independent of the po-
sition of the second brane where the CFT2 lives, we send
the second brane to the bulk boundary by taking the
limit y2 → ∞.
Now, let us consider brane-localized black holes which

should correspond to four-dimensional asymptotically
AdS quantum black holes. The AdS/CFT correspon-
dence indicates that the micro-canonical stability in the
four-dimensional CFT picture should correspond to the

dynamical stability in the five-dimensional picture. (No-
tice that there is no reservoir of energy in the present sys-
tem.) Hence, the previous discussion should be slightly
modified by taking into account the contribution from
CFT2. Estimating the mass for the CFT2 taking into
account a redshift factor, the total mass of the system
will be given by

Mtot =MCFT1
(
r̄h, `, L

)
+

3π5

8G4
T 4

(
r̄h, `, L

)
L3`2,

(5.5)

where the first term represents what we evaluated nu-
merically in the preceding section and the second term is
the contribution from CFT2. A micro-canonical stable-
unstable transition takes place at r̄h = 0.38 · (`2L3)1/5,
where Mtot above is minimized. Therefore the brane-
localized black holes are expected to be stable (unstable)
when the circumferential radius of the brane cross-section
of the horizon is larger (smaller) than the above critical
value.

We can also discuss the possible shape of the corre-
sponding five-dimensional solution. In the KR model,
there is a black string solution, and its brane induced ge-
ometry is exactly Schwarzschild AdS. Although this so-
lution does not satisfy the boundary condition that the
metric should get close to the five-dimensional pure AdS
at y → ∞, we expect that, when the induced geometry
of a brane-localized black hole is close to Schwarzschild
AdS, the bulk geometry is also close to a black string
solution. As we showed in the preceding section, this
is the case when the four-dimensional horizon radius is
larger than (`2L3)1/5. In this case the metric function
m(r) is almost constant and ψ(r) ∼ 0 for any r. (see
Figs. 8 and 9). The AdS/CFT correspondence suggests
that large black holes should look like black strings in
the five-dimensional picture, but there is small deviation
from the Schwarzschild AdS. We expect that this small
deviation is due to the truncation of the horizon of the
“black string” at a finite distance far from the brane,
having a cap there. Roughly speaking, the cap will be
formed near the throat corresponding to y = 0. In con-
trast, when r̄h . (`2L3)1/5, the behavior of m(r) and
ψ(r) is clearly different from the Schwarzschild AdS case.
This indicates that the five-dimensional bulk black hole
dual to a four-dimensional unstable black hole is not like
a black string.

We can also estimate the expected size of the black
hole in the five-dimensional picture since the entropy is
related to the five-dimensional area of black hole horizon
A5 by

S =
A5

4G5
. (5.6)

We may define the corresponding five-dimensional hori-
zon radius by

rh ≡
(

A5

2 · 2π2

)1/3

, (5.7)
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where the factor 2 represents the presence of two floating
black holes (one for each side of the bulk interrupted
by the brane). The total entropy and hence the size
of bulk floating black holes are almost constant in the
course of the transition (see Fig. 6). For example, the
horizon radius of the five-dimensional black hole, rh, at
the stability changing point is estimated as

rh = 0.7 · (`3L2)1/5, (5.8)

from `−4/5L−6/5G4Stot = 3.4 at r̄h = 0.38 · (l2L3)1/5,
where

Stot = SCFT1
(
r̄h, `, L

)
+

π5

2G4
T 3

(
r̄h, `, L

)
L3`2.

(5.9)

Again, the first term represents what we evaluated nu-
merically in the preceding section and the second term is
the contribution from CFT2.
Let us now move on to the transition between the se-

quences of floating black holes and brane-localized black
holes. Corresponding to this transition, in the four-
dimensional picture, we have confirmed that there is a
transition between CFT stars and quantum black holes.
According to the results of our calculation, the transition
occurs at

`1/2L1/2T = 0.21,

`−1/2L−3/2G4Stot = 2.0 + 1.4 = 3.4. (5.10)

Here, 2.0 comes from CFT1 and 1.4 from CFT2. These
critical values are independent of the ratio `/L. From the
entropy, the horizon radius of the five-dimensional black
hole just touching the brane is estimated as

rh = 0.7 · (lL)1/2. (5.11)

size

Stable brane 

localized BH
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of  brane localized BH
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r = 0.7 (l L)1/2
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Stable floating BH

Unstable brane 

localized BH

rh = 0.7 ×(l L)1/2

FIG. 10. Phase diagram of BH solutions in the KR model.

As we can see from Figs. 8 and 9, the geometry of a
star configuration in the large central density limit is very
similar to that of a small black hole. This indicates that

the five-dimensional geometry is also similar between the
bulk floating black holes just before touching the brane
and the brane-localized black holes just after touching.
The expected phase diagram of black hole solutions in
the KR model is illustrated in Fig. 10.

Before closing this section, we would like to mention
the screening effect. As we have seen, if we use the Page’s
approximation instead of our more crude radiation fluid
approximation, the mass varies logarithmically in r at
infinity. In five-dimensional picture this phenomena can
be understood as the leakage of gravitons from the brane
on the CFT1 side because massless gravitons in the four-
dimensional sense, which mediate the mass information
to the infinity, are localized on the CFT2 side. Then, at
a large distance the leaked energy should be observed as
the energy on the CFT2 side. In the four-dimensional
CFT language this transmutation of energy from CFT1
to CFT2 can be correctly described only when the in-
teraction between CFT1 and CFT2 is treated appropri-
ately. However, in the fluid approximation we treated
CFT1 and CFT2 as completely independent components
except for tuning the temperature. In such a treatment
the energy transfer from CFT1 to CFT2 is not taken
into account. Therefore, when we identify the mass, we
do not have to worry about the screening effect in this
approximation.

VI. SUMMARY

We analyzed asymptotically AdS configurations with
and without event horizon in thermal equilibrium in-
cluding the quantum back reaction due to CFT by us-
ing radiation fluid approximation with the aim to clarify
the phase diagram structure of black objects in the KR
model. We referred to the configurations with and with-
out a horizon as CFT stars and quantum black holes,
respectively. We have confirmed that the radiation fluid
approximation is good when typical length scales like the
horizon radius r̄h of the black hole are all larger than the
bulk curvature scale `, in which the AdS/CFT correspon-
dence is expected to be valid. We calculated the metric
and the thermodynamic quantities and found that: (i)
the sequence of solutions of CFT stars is smoothly con-
nected to the sequence of quantum black holes in the limit
of infinite central density, (ii) the thermodynamically
stable-unstable transition in the sequence of quantum
black holes occurs when the horizon radius r̄h is about
(`2L3)1/5, (iii) because of the back reaction effects, the
temperature of the system converges to ≈ 0.21 · (`L)−1/2

in the limit r̄h → 0, (iv) for r̄h & (`2L3)1/5, back reaction
effects are negligible and the space-time is approximately
given by Schwarzschild AdS.

We also discussed the implications of our calcula-
tions for black hole solutions in the KR model based
on the AdS/CFT correspondence. We claimed that (i)
there are stability changing points along the sequence
of brane-localized black hole solutions. The first tran-
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sition corresponding to the minimum total mass of the
system occurs when the five-dimensional horizon radius
is ≈ 0.7 · (`3L2)1/5; (ii) the sequence of bulk floating
black holes leads to the sequence of brane-localized black
holes and this transition between these two sequences oc-
curs when the black hole temperature is ≈ 0.21 ·(`L)−1/2

and the five-dimensional black hole horizon radius is
≈ 0.7 · (lL)1/2.
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