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Search for transition structures �TSs� as first-order saddles is one of the most important tasks in
theoretical study of chemical reaction. Although automated search has been established either by
starting from a local minimum �MIN� or by connecting two MINs, there is no systematic method
which can locate TSs of A+B→X�+Y� type reactions starting from separated reactants. We propose
such an approach for the first time; it was demonstrated to work very well in the SN2, Diels–Alder,
and Wittig reactions. © 2010 American Institute of Physics. �doi:10.1063/1.3457903�

Since the intrinsic reaction coordinate �IRC� was
defined1 as the mass-weighted steepest decent pathway
�MW-SDP� starting from a transition structure �TS� and
practical methods for computation of IRC were
developed,2–4 reaction pathways of numerous chemical reac-
tions have been elucidated by calculations of IRC. To calcu-
late an IRC, one has to locate a TS on a potential energy
surface �PES� as the starting point. Hence, there have been
considerable efforts to develop efficient methods locating
TS�s�.5–7 The most fundamental tools are geometry optimi-
zation methods,8–10 which can locate one TS starting from an
initial guess when the guess is appropriate.

If geometries of both reactant and product are known
beforehand, one can use double-ended methods which can
search for a path connecting the two geometries, e.g., the
synchronous transit method,11 the self penalty walk
method,12 the nudged elastic band method,13 the string
method,14 the growing string method,15 and others.5,6 These
methods can be used in automated samplings of many TSs
when they are applied to all �or randomly selected� pairs of
local minima �MINs� obtained by an automated MIN
sampling.7 There are several approaches which can find out
many TSs starting from single MIN:5,6 the gradient extremal
following �GEF� method,16 the eigenvector following �EVF�
method,17 the reduced gradient following �RGF� method,18

and the anharmonic downward distortion following �ADDF�
method.19 Among these, EVF is suitable in random sam-
plings, and it has been employed extensively in studies on
conformational rearrangements and cluster structure transi-
tions in combination with molecular mechanics force fields.7

In contrast to GEF, EVF, and RGF, all of which often may
enter into regions far away from IRCs, ADDF can more ef-
ficiently follow approximate reaction pathways avoiding un-
important regions of PES. Hence, ADDF has been used in
automated global reaction route mapping �GRRM� method
for PESs of expensive quantum mechanical calculations.19,6

Many reactions, including some organic and gas-phase
reactions, fall into the A+B→X�+Y� type. Since there are
shallow van der Waals potential wells between A and B in
general, the above automated methods can be applied with-
out modification. However, such wells are not always close
to TSs but are often located in very floppy regions of PESs,
which prevents to identify correct reaction coordinates in au-
tomated search. Since topologies of PES involved in initial
association states between A and B are very different from
those in the product minimum of X, a method specially
suited for such systems should be developed. In this paper,
we propose such an approach.

Let us think about pressing one reactant to the other with
a constant force. Here, we propose a principle; under the
force a distance between two fragments becomes minimum
in the most reactive orientation. In other words, the two frag-
ments can approach most closely to each other around an
entrance of mountain pass located in such orientation. Based
on this principle, the problem finding a reaction path can be
replaced by a task of locating an orientation in which the
distance between two fragments is minimum under the force.
Then, continuous increase of the strength of force will reduce
the minimum distance gradually, and finally, the product side
will be reached crossing a geometry close to corresponding
TS. How this principle works in actual chemical reactions
will be demonstrated below.

In this study, such orientations between a pair of frag-
ments A and B are located as local minima on the following
artificial energy function, F:

F = E + �
�i�A� j�B��Ri + Rj�/rij�prij

�i�A� j�B��Ri + Rj�/rij�p , �1�

where E is potential energy as a function of the atomic co-
ordinates �Qi�, ���0� is a parameter of magnitude of artifi-
cial attractive force, Ri and Rj are covalent radii of the ith
and jth atoms, respectively, rij is a distance between the ith
and jth atoms, p is an arbitrary integer explained below, and
summations are taken over all pairs of atoms in the frag-
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ments A and B. When both A and B are composed of single
atom, the last term in Eq. �1� becomes just �rAB, which
represents a constant artificial attractive force –� between
the atoms A and B. Figure 1 shows a typical diatomic poten-
tial curve E and two curves of F with different �. At small �
a local minimum is created before the barrier, and at suffi-
ciently large � the barrier disappears and the curve is always
downhill toward the minimum. In the case of general frag-
ments including many atoms, imposing a constant force be-
tween all pairs of atoms is not suitable. This is because a part
of fragments may dissociate during a reaction and the artifi-
cial force prevents the dissociations. Therefore, in Eq. �1� the
artificial forces are imposed between a few pairs of atoms in
a close distance by using a weight function of the modified
Shepard interpolation,20 where a parameter of the weight
function p was set to 6 after some tests. We found that
weights of H atom tend to be too large. Hence, the R of H
atom was set to zero in this study. The parameter � should be
adjusted by users. Since many researchers are familiar with
values of collision energy rather than force, assuming that
the interatomic interaction potential is expressed by a generic
Lennard-Jones 6-12 potential, one can rewrite � as follows:

� =
�

�2−1/6 − �1 + �1 + �/��−1/6�R0

. �2�

This equation represents an average force acting on two at-
oms in the energy range 0�E�� reflected by the Lennard-
Jones potential, where we used R0 and � to be the values for
argon clusters �R0=3.8164 Å and �=1.0061 kJ /mol�. Al-
though this transformation is not essential, it allows us to
specify the parameter in units of energy, where � is related to
collision energy on the Lennard-Jones potential. We use � �in
kJ/mol� instead of � throughout in the following discussions.

Four well-known organic reactions shown in Fig. 2 were
considered: �R1, R2� the SN2 reactions, �R3� the Diels–

Alder reaction, and �R4� the Wittig reaction with R=CH3.
Potential energy values, gradient vectors, and Hessian matri-
ces were computed at the B3LYP /6-31+G� level using the
GAUSSIAN09 programs.21 At small � �or small �� a minimi-
zation of F converges to a pre-reaction complex, while at
large � a product structure will be reached. Hence, starting
from �=0 kJ /mol, we increased � by 50 kJ/mol until a
minimization converges to a product side for each reaction.
The barriers were crossed with �=100 kJ /mol for R1,
200 kJ/mol for R2, 150 kJ/mol for R3, and 50 kJ/mol for R4,
respectively, where we denote these values as �0.
Figure 3 shows optimized structures with �=0 and
�=�0−50 kJ /mol, except for R4 where an optimized struc-
ture with �=�0−25 kJ /mol is shown because here
�0=50 kJ /mol. When �=0, the distance between two frag-
ments is very long. By imposing the forces with nonzero �,
artificial complexes with smaller interfragment distances can
be obtained. The reaction R2 is an extreme example in which
there is no local minimum before the TS and energy mini-
mization on the PES always converged to R2-1. However,
one can locate a complex R2-2 near the TS as a minimum on
the energy F of Eq. �1�.

Figure 4�a� shows the IRC profile on E of reactions R1
and R2, where R2 is the inverse reaction of R1. Starting from
the common TS, R1-1 and R2-1 in Fig. 3 were reached in the
backward and forward IRC followings, respectively. This
profile is consistent with the one calculated by the published
results although a different electronic structure method was
used.22 Then, starting from R1-1, a MW-SDP was computed
on F with �=�0 �100 kJ/mol�, in which 133 gradients and 2
Hessians were required. Its profile is shown in Fig. 4�b� with
a blue dashed curve. As seen in this figure, the curve is
always downhill and the MW-SDP reached the product side.
Meanwhile, a profile of potential energy E along this MW-
SDP, shown in Fig. 4�b� with a red solid curve, has a peak
corresponding to an approximate barrier of this reaction. A
structure at the highest energy point along this profile is
shown in Fig. 4�b�, where a structure of the true TS in black
body is overlapped behind the structure. The highest energy
structure is very similar to the true TS, and a TS optimization
starting from this approximate structure converged after 13
optimization steps, where exact Hessian was computed once
at the first point and default options in GAUSSIAN09 were
employed, i.e., Opt= �TS,CalcFC�.21 In the case of R2, a

FIG. 1. �a� A one-dimensional curve of potential energy E, �b� a curve of F
in Eq. �1� with small �, and �c� a curve of F with large �.

FIG. 2. The SN2 reactions �R1� and �R2�, the Diels–Alder reaction �R3�,
and the Wittig reaction �R4�.
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MW-SDP with �=�0 �200 kJ/mol� shown in Fig. 4�c� was
obtained starting from a point marked by � along the IRC
profile in Fig. 4�a�, where in the MW-SDP calculation 90
gradients and 2 Hessians were computed. A structure at the
top of potential energy profile in Fig. 4�c� is also similar to
the true TS, and the TS optimization starting from this struc-
ture converged after 18 steps.

To find other possible channels systematically, we per-
formed optimizations starting from random orientations for
R1 and R2 at �=100 kJ /mol, where generation of random
orientation was terminated when last ten optimizations con-
verged to the structures which were already found in earlier
optimizations. This procedure gave three local minima for
R1: a complex CH3OH¯F− which is a product of R1, i.e.,
R2-1 like structure, a complex CH2F−

¯HOH which is a
product of OH−+CH3F→CH2F−+H2O reaction, and a com-
plex OH−

¯FCH3 which was converged to CH3
−+HOF at

high �. Three local minima were found also in the case of
R2: the precursor of SN2 reaction, i.e., R2-2 like structure, a
complex CH3O−

¯HF which is a product of F−+CH3OH
→CH3O−+HF reaction, and a complex CH2OH−

¯HF
which is a product of F−+CH3OH→CH2OH−+HF reaction.
In these procedures, 1943 gradient vectors and 49 Hessian
matrices were computed in R1 and 1355 gradients and 39
Hessians were required in R2. As shown above and below,

100–200 gradients and a few Hessians are further required
per path in the MW-SDP and true TS calculations. For com-
parison, we performed automated searches using the GRRM
method. The GRRM searches were started from R1-1 and
R2-1 with the standard �full-ADDF� option,19 where path-
ways from other MINs were not considered. Although the
GRRM method was able to find the TS of R1, it failed to
leach the TS of R2. This is because the TS is too far to be
searched from R2-1. Moreover, the GRRM searches required
25 758/747 gradient/Hessian and 24 230/653 gradient/
Hessian computations from R1-1 and R2-1, respectively,
which are much more than those of the present method. This
is because the GRRM gave many intrafragment reaction
channels such as methyl group rotations, H atom dissocia-
tions, H2 dissociations, and others. Such intrafragment path-
ways should be searched by applying a method to each frag-
ment separately for best efficiency. We do not claim that the
present method is overall superior to minimum-to-minimum
methods including the GRRM method, since it does not
work in isomerization type reactions at all. We suggest use of
different methods in different purposes, and the present
method is the only approach specially suited for A+B→X
type reactions hitherto.

Figure 5�a� shows the IRC profile of Diels–Alder reac-
tion. A MW-SDP on F with �=�0 �150 kJ/mol� gave a rea-
sonable approximate structure of TS as the highest energy
point of potential energy profile, as shown in Fig. 5�b�,
where the TS optimization starting from this structure con-
verged after nine steps and 103 gradients and 2 Hessians
were computed in the MW-SDP integration. Figure 5�c�

FIG. 3. Weakly bound pre-reaction complexes �R1-1, R2-1, R3-1, and R4-1�
and reactive collision complexes �R1-2, R2-2, R3-2, and R4-2� pressed by
artificial forces in Eq. �1�, where � corresponds to �model� collision energy
in Eq. �2�.

FIG. 4. �a� The IRC profile �on E� of SN2 reactions �R1� and �R2�, �b� a
profile of MW-SDP on F in Eq. �1� with �=100 kJ /mol starting from the
geometry �R1-1� marked by � in �a� �blue dashed curve� and a profile of
potential energy E along the MW-SDP on F �red solid curve�, and �c� a
profile of MW-SDP on F with �=200 kJ /mol starting from the geometry
marked by � in �a� �blue dashed curve� and a profile of potential energy
along the MW-SDP �red solid curve�. In �b� and �c�, geometries correspond-
ing to the highest energy points along solid curves �artificial TS structures as
guesses of the true TS� are shown, where the true TS in black body is
overlapped behind them for comparison.
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shows the IRC profile of Wittig reaction. Although this reac-
tion is a multistep reaction,23 the second and latter steps
are not considered in this study since they are not the
A+B→X type and which should be treated by minimum-to-
minimum methods. A MW-SDP on F with �=�0 �50 kJ/mol�
again provided a reasonable guess of TS as the highest en-
ergy point of potential profile, as shown in Fig. 5�d�, where
the TS optimization starting from this structure converged
after ten steps and 148 gradients and 2 Hessians were re-
quired in the MW-SDP calculation.

In summary, an efficient algorithm to obtain a TS of
A+B→X type reaction is as follows: �1� determination of
�approximate� �0 by performing minimizations of F with
systematically changing the parameter �, �2� a computation
of MW-SDP on F with �=�0, and �3� a TS optimization
starting from the highest energy point of potential energy
profile along the MW-SDP by using a standard TS optimiza-

tion method.8–10 The first step can be done either by starting
from many random orientations or by starting from a guessed
orientation. The latter is faster if there is a very good guess,
while the former will give a systematic result including many
possible channels. It should be emphasized that there is no
physical meaning on structures on the function F of Eq. �1�;
we search for and use such artificial structures on F as
guesses of true TSs on E.

There have been a number of studies on relationships
between chemical reactivity and interparticle interaction rep-
resented by Fukui’s frontier orbital theory24 and the
Woodward–Hoffmann rules.25 Although such studies un-
doubtedly have great values, none of them has an ability to
systematically predict geometries of TS on quantum chemi-
cal PESs. The present method can be used in automated pre-
diction of unknown reaction pathways when energy minimi-
zations on F in Eq. �1� are performed starting from many
random orientations. Moreover, an extension to reactions in-
volving three or more particles is straightforward. Further
applications of the present method will be reported in forth-
coming papers.
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FIG. 5. �a� The IRC profile of Diels–Alder reaction, R3, �b� a profile of
MW-SDP on F in Eq. �1� with �=150 kJ /mol starting from the geometry
marked by � in �a� �blue dashed curve� and a profile of potential energy
along the MW-SDP �red solid curve�, �c� the IRC profile of Wittig reaction
�R4�, and �d� a profile of MW-SDP on F with �=50 kJ /mol starting from
the geometry marked by � in �c� �blue dashed curve� and a profile of
potential energy along the MW-SDP �red solid curve�. In �a� and �c�, geom-
etries of true TS are shown, while in �b� and �d�, geometries corresponding
to the highest energy points along solid curves �artificial structures as
guesses of the true TSs� are shown, where the true TSs in black body are
overlapped behind them for comparison.
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