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Abstract  20 

Quantitative assessment of forests is important at a variety of scales for forest planning and 21 

management. This study investigated the use of small-footprint discrete return lidar for estimating 22 

stand volume in broad-leaved forest at plot level. Field measurements were conducted at 20 sample 23 

plots in the study area in western Japan, composed of temperate broad-leaved trees. Five height 24 

variables and two density variables were derived from the lidar data: 25th, 50th, 75th, and 100th 25 

percentiles, and mean of laser canopy heights as height variables (h25, h50, h75, h100, hmean); and 26 

ground fraction and only-and-vegetation fraction (dGF, dOVF) as density variables, defined 27 

respectively as the proportion of laser returns that reached the ground, and the proportion of only 28 

echoes (i.e., single pulse returns for which the first and last pulses returned from the same point) 29 

within vegetation points. In addition, the normalized difference vegetation index (NDVI), which is 30 

often used as an estimator for leaf area index (LAI) and above-ground biomass, was derived from 31 

multispectral digital imagery as an alternative density variable (dNDVI). Nonlinear least square 32 

regression with cross-validation analysis was performed with single variables and combinations; a 33 

total of 23 models were studied. The best prediction was found when h75 and dOVF were used as 34 

independent variables, resulting in adjusted R
2
 of 0.755 and root-mean-square error (RMSE) of 35 

41.90 m
3
 ha

-1
, corresponding to 16.4% of the mean stand volume, better than or comparable to the 36 

prediction models of previous studies. 37 
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Introduction 42 

Obtaining quantitative information of forests at multiple scales is necessary for forest planning and 43 

management. The tree volume of a stand has been one of the most important characteristics, both 44 

economically and environmentally. As it interacts with total stand biomass, estimating stand volume 45 

is important as a potential contributive factor for understanding forest carbon dynamics. However, 46 

accurate and extensive inventories of forest are labor demanding and time consuming. As the need 47 

for amounts and quality of information increases, remote sensing becomes a more powerful 48 

technological instrument in forest management.  49 

Conventional two-dimensional remote sensing techniques, such as aerial photography or radar 50 

sensors, have been widely applied for acquiring forest distribution and mapping land-cover patterns 51 

(Wulder 1998). Moreover, the use of light detection and ranging (lidar), which provides 52 

three-dimensional information of forest characteristics, has significantly increased in the last decade. 53 

The measurement operates by emitting pulses from the sensors and determining the elapsed time 54 

between the return signals from the target surfaces (Lefsky et al. 2002a). Laser sensors can directly 55 

measure the vertical distribution of tree canopies and provide highly accurate estimates of vegetation 56 

height, cover, and canopy structure. 57 

There are two major categories of lidar system: waveform with large footprint (8–70 m) and 58 

discrete return with small footprint (0.1–0.3 m) (Lim et al. 2003b). Both of these sensor types have 59 

been successfully used to estimate forest stand volume and above-ground biomass, as well as other 60 

biophysical characteristics such as number of individual trees, tree height, and basal area (e.g., 61 

Lefsky et al. 1999a; Means et al. 2000; Næsset and Bjerknes 2001; Persson et al. 2002). In this study, 62 

we adopted discrete return lidar.  63 

Studies on the estimation of stand volume or aboveground biomass of broad-leaved forests are 64 

limited, although many studies have been conducted for coniferous forests since an early stage 65 

(Maclean and Krabill 1986; Nelson et al. 1988). For deciduous broad-leaved forests of eastern 66 

Maryland, USA, Lefsky et al. (1999b) estimated the above-ground biomass using full-waveform 67 

lidar, SLICER. In the tropical forests in Panama and Costa Rica, Drake et al. (2002, 2003) estimated 68 

above-ground biomass by waveform lidar, LVIS. More recently, discrete-return lidar has been 69 

applied to several broad-leaved forests in North America (Popescu et al. 2003, 2004; Lim et al. 70 

2003a; Lim and Treitz 2004). Although some experiments proved to be successful, the effective 71 

predictors vary from case to case. Therefore, more studies are needed to establish a versatile model 72 

for estimating stand volume or above-ground biomass of broad-leaved forests.  73 

Two approaches can be adopted with respect to the estimation using discrete-return lidar: (1) 74 
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individual tree based (e.g., Persson et al. 2002; Maltamo et al. 2004; Popescu et al. 2003, 2004) and 75 

(2) stand/plot-based (e.g., Nelson et al. 1988; Næsset 1997, 2002; Means et al. 2000; Lim et al. 76 

2003a; Lim and Treitz 2004). In the present trial, the latter approach was applied as it seems difficult 77 

to distinguish individual trees in the broad-leaved forest where tree canopies are closed.  78 

Therefore, the present study aimed to explore estimating stand volume of broad-leaved forest by 79 

plot-based 80 

approach using discrete-return lidar. 81 

 82 

Materials and methods 83 

Study site 84 

Expo’70 Commemorative Park is located in Suita City, Osaka, western Japan (34º47´N, 135º31´E) 85 

(Fig. 1), which belongs to the warm-temperate zone, where evergreen broad-leaved (laurel) forest is 86 

regarded as the climax vegetation. The park is a part of Senri Hill, which is about 50–130 m above 87 

the sea level. The topography of the study site is relatively flat. In 1970, the area was used as the site 88 

for the world exposition, Expo’70. After the large-scale reclamation, the site was afforested by the 89 

forest restoration project from 1972 to 1976 (Morimoto et al. 2006). Thirty years has passed since 90 

the reclamation, and most of the forest stands have canopies of more than 10 m in height. The study 91 

site is about 64.5 ha, including both evergreen and deciduous broad-leaved forests, ranging from 92 

sparse to dense forests. Forty-four evergreen and 13 deciduous broad-leaved tree species are found at 93 

this site. 94 

 95 

Ground reference data 96 

Field data were collected in 2004–2006, for a total of 20 plots, which include 14 evergreen and 6 97 

deciduous broadleaved stands. The basic size of the plots was 15 × 15 m, although some plots with 98 

different sizes such as 20 × 20 m, 10 × 20 m were established, subject to the forest conditions. 99 

Within each plot, diameter at breast height (DBH), tree height, and species of all living woody plants 100 

more than or equal to 1 cm in diameter were determined. The location of each plot was obtained by 101 

compass survey using a sitemap at 1:500 scale and a compass (Tracon LS-25 Surveying Compass, 102 

Ushikata Mfg. Co., Ltd., Japan). 103 

 104 

Stand volume 105 

Stand volume in each plot was calculated from the ground measurements for each individual tree. 106 

The individual tree volume is considered to be a function of DBH, height, and tree form, however 107 

the equation that involves only DBH and height was used for practical reasons in this study. For 108 

all species, tree volume equations based on the Timber Volume Table, West Japan edition (Japanese 109 

Forest Agency 1970) were used, as follows. 110 

Trees with DBH < 12.0 cm: 111 



4 

 

Log10V = 1.856641 log10 D + 0.819044 log10 H – 4.070481    (1) 112 

 113 

Trees with 12.0 ≤ DBH < 22.0 cm: 114 

Log10V = 1.864235 log10 D + 0.973986 log10 H – 4.232323    (2) 115 

 116 

Trees with DBH ≥ 22.0 cm: 117 

Log10V = 1.752091 log10 D + 1.131128 log10 H – 4.272709    (3) 118 

 119 

where: 120 

V = tree volume (m
3
) 121 

D = DBH (cm) 122 

H = tree height (m) 123 

 124 

Total plot volume was computed as the sum of the individual tree volumes. The characteristics of the 125 

sample plots are presented in Table 1. 126 

 127 

Lidar data and multispectral imagery 128 

Lidar data were acquired on October 4, 2004, using an Optech Airborne Laser Terrain Mapper 2050 129 

(Optech Inc., Canada). The aircraft’s position was calculated from a GPS receiver at fixed intervals. 130 

Each laser-point position was derived from the amplitude peak of the first or last returned pulse and 131 

transformed to x, y, z-coordinates in the local coordinate system based on the world geodetic system. 132 

A laser beam divergence of 0.19 mrad resulted in a footprint on the ground of approximately 19 cm. 133 

The study site was measured from an altitude of 1,000 m above ground level and flight speed was 134 

130 knots; scan mirror frequency of 67.2 Hz, pulsing frequency of 50 kHz, and scan range of ±5.3° 135 

gave a scan width of 173 m. The mission was designed with up to 40% sidelap to fix the interpoint 136 

distance less than 0.5 m. In addition to the lidar data, high-resolution multispectral images were 137 

acquired simultaneously by a digital camera with near-infrared mode. The images consisted of green 138 

(510–600 nm), red (600–720 nm), and near-infrared (720–800 nm) bands. At each pixel of the image, 139 

the result was recorded as a luminance within the range from 0 to 255. The images were rectified 140 

and converted into an ortho-image with pixel array dimensions of 7,124 × 7,246, at a resolution of ca. 141 

18 cm on the ground. 142 

 143 

Extracting variables 144 

According to the previous studies (Næsset 1997, 2002; Lim et al. 2003a), we considered stand 145 

volume estimated from the following model: 146 

 147 

v = β0h
β1

d
β2

    (4) 148 
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 149 

where v is the stand volume, h is a height variable, d is adensity variable, and ß0, ß1, and ß2 are 150 

regression coefficients. 151 

In order to extract the variables for the model, the lidar data and digital aerial photograph data 152 

were processed by the following procedures. Firstly, ground points were classified by creating 153 

digital terrain model (DTM) in TerraScan software (Terrasolid Inc., Finland). Classification of the 154 

ground is based on iterative building of a triangulated surface model (Soininen 2003). It starts by 155 

selecting local low points and controlling initial point selection with the maximum building size 156 

parameter. The triangles in the initial model are mostly below the ground, with only the vertices 157 

touching the ground. Then classification starts molding the model upwards by iteratively adding new 158 

laser points with terrain angle, iteration distance, and iteration angle. Using these classified ground 159 

points, the triangulated surface model was created and exported onto a grid with 1- m spacing. In the 160 

triangulated model, the maximum triangle size was 50 m. After classification of the ground points, 161 

the rest of the points were classified as vegetation points. The height of each point was calculated as 162 

the difference between the altitude of the vegetation points and the altitude of DTM. 163 

Each laser point was also classified into three echo types: (1) first echo: first pulse returns of 164 

multiple returns, (2) last echo: last pulse returns of multiple returns, and (3) only echo: single pulse 165 

returns when the first and last pulses returned from the same altitude. For each sample plot, five laser 166 

height variables were derived from the vegetation points: 25th percentile (h25), 50th percentile (h50), 167 

75th percentile (h75), 100th percentile (h100), and mean (hmean). Two canopy density variables were 168 

derived from the ratio of the number of laser return points. The numbers of the four different types 169 

of points used were: (1) number of first echoes (nf), (2) number of only echoes (no), (3) number of 170 

points classified as ground (ng), and (4) number of points classified as vegetation (nv). 171 

Ground fraction (dGF) was computed as 172 

 173 

dGF = ng / (nf + no)    (5) 174 

 175 

where dGF represents the ratio of the pulse that reached the ground to the projected lasers. dGF is 176 

revealed to be a significant variable for estimating leaf area index (LAI) in previous work (Sasaki et 177 

al. 2008). Only-and-vegetation fraction (dOVF) was computed as 178 

 179 

dOVF = no and v / nv    (6) 180 

 181 

where no and v is the number of only echoes in vegetation points. dOVF is a newly proposed 182 

density-related variable that assumes that the proportion of only echoes increases in forest stand with 183 

dense canopies as last echoes hardly penetrate and return from the forest floor. Furthermore, using 184 

the red and near-infrared bands of the acquired ortho-image, the normalized difference vegetation 185 
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index (NDVI) was computed as another density variable (dNDVI), because NDVI has been widely 186 

applied as an estimator of LAI and vegetation biomass (e.g., Tucker 1979; Gamon et al. 1995; 187 

Carlson and Ripley 1997). 188 

 189 

dNDVI = (NIR − R) / (NIR + R)  (7) 190 

 191 

where NIR and R indicate reflectance in the near-infrared and red wavebands, respectively. The 192 

above processing was done in ERmapper 7.1 (Earth Resource Mapping, Australia) and exported into 193 

ArcGIS 9.1 (ESRI Japan, Japan). GIS zonal statistical analysis was carried out in order to obtain the 194 

mean value of the raster cells within each plot.  195 

 196 

Statistical analysis 197 

Stand volume was regressed against one of the height variables and/or one of the density variables 198 

using the above-described model (Eq. 4). Nonlinear least-square regressions were performed to 199 

develop models using the lidar-derived and NDVI parameters. First, each parameter was tested as a 200 

single independent variable. Then all the combinations of the height variables and the density 201 

variables were examined. Consequently, a total of 23 models were studied. 202 

Leave-one-out cross-validation was then performed. For each cross-validation split, one plot was 203 

tested on the predictor model derived from the n - 1 remaining plots. The cross-validated coefficient 204 

of determination (R
2
) and the root-mean-square error (RMSE) were calculated for comparison of the 205 

models. All R
2
 values reported are adjusted for the effects of multiple independent variables. The 206 

analyses were done with R 2.7.2 (R Development Core Team, Austria). 207 

 208 

Results 209 

Stand volume of the 20 sample plots was regressed against the predictor variables. The results from 210 

each model are summarized in Table 2. The regression analysis for the models with the height 211 

variables alone resulted in adjusted R
2
 values between 0.377 and 0.730, with RMSE in the range 212 

50.93–90.57 m
3
 ha

-1
, corresponding to 19.9–35.4% of the mean stand volume. The highest adjusted 213 

R
2
 value was found when hmean was used (adjusted R

2
 = 0.730), followed by h50 (adjusted R

2
 = 0.714). 214 

When estimating by the density variables, none of these performed better than the height variables.  215 

Using combinations of height and density variables, the models basically performed better than 216 

the models using the same height or density variable, obtaining adjusted R
2
 values in the range 217 

0.376–0.755 (RMSE = 41.90–80.05 m
3
 ha

-1
, corresponding to 16.4–31.2% of the mean stand 218 

volume). Among the density variables, dOVF was revealed to be the most effective when combined 219 

with the height variables. The best prediction was found when h75 and dOVF were used (adjusted R
2
 = 220 

0.755). The RMSE was 41.90 m
3
 ha

-1
, corresponding to 16.4% of the mean stand volume. Figure 2 221 

shows a plot of the relationship between the observed and predicted stand volume by the best model. 222 
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 223 

Discussion 224 

This study examined the performance of various variables derived from discrete-return lidar data for 225 

stand volume estimation. Height and density variables derived from lidar data similar to in previous 226 

studies (e.g., Næsset 1997, 2002; Means et al. 2000; Holmgren 2004) were examined, except for 227 

dOVF, which was newly proposed in the present study. When those variables were examined 228 

separately, while the models using one of the height variables obtained relatively good fit, the results 229 

from the models with one of the density variables were not significant. This suggests that use of a 230 

height variable is more important than use of a density variable for estimating stand volume. 231 

The highest adjusted R
2
 value was found when h75 and dOVF were used as independent variables. 232 

h75 is likely to be related to the height of upper canopy layer in each stand (Fig. 3). This is concurrent 233 

with other studies that also included upper height percentile in their prediction models, such as 80th 234 

or 90th percentile (Means et al. 2000; Næsset 2002; Holmgren 2004). dOVF was found to be more 235 

effective than dNDVI, which is known as an estimator of LAI or green leaf biomass (e.g., Tucker 236 

1979; Gamon et al. 1995; Carlson and Ripley 1997). Although dGF was effective when combined 237 

with h25, the mechanism was unclear. As they are new variables, the performance of dOVF and dGF 238 

should be examined further. 239 

The next best model in this study was that of hmean. Compared with the other height variables 240 

considered in this study, hmean seems to have the advantage that it reflects canopy density more than 241 

h50 or h75 (Fig. 3). In closed canopy forests, which usually have high stand volume, lasers tend to hit 242 

the top part of the crowns intensively, resulting in higher hmean. In sparse-canopy forests, which 243 

usually have less stand volume, laser pulses tend to return from lower vegetation, leading to lower 244 

hmean (Fig. 3). The mean height and the derivative variables from mean height were also found to 245 

be useful in previous studies of hardwood/deciduous forests (Lefsky et al. 2002b; Popescu et al. 246 

2003; Nelson et al. 2004), although they were not compared with height percentile variables. 247 

  The best prediction model (h75 and dOVF) from this study was better than or comparable to the 248 

results in the other studies for broad-leaved forests. Lefsky et al. (1999b) estimated above-ground 249 

biomass in deciduous forest of Eastern Maryland, USA, obtaining RMSE of 45.8 Mg ha
-1

, 250 

corresponding to 19.2% of the mean aboveground biomass. Popescu et al. (2004) estimated tree 251 

volume by individual tree-based approach in deciduous forest in the southeastern USA, having R
2
 of 252 

0.39 with RMSE value of 52.84 m
3
 ha

-1
, corresponding to 32.3% of the mean stand volume. 253 

The results in this study demonstrated that the presented model for estimating stand volume from 254 

discrete-return lidar data achieved better or comparable prediction in broad-leaved forest compared 255 

with previous studies. Further work to refine and validate this approach should be done with 256 

different datasets, e.g., on a slope, or for a mixture of coniferous and deciduous trees, as results 257 

could be site specific and dependent on each forest condition (Means et al. 2000; Næsset 2004). 258 

Clarifying the property of each derived variable is also required to fully understand behavior of 259 
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estimation models. 260 

 261 
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