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Abstract 
The collision of single water droplets with a hot Inconel 625 alloy surface was 

investigated by a two-directional flash photography technique using two digital still 

cameras and three flash units. The experiments were conducted under the following 

conditions: the pre-impact diameters of the droplets ranged from 0.53 to 0.60 mm, the 

impact velocities ranged from 1.7 m/s to 4.1 m/s, and the solid surface temperatures 

ranged from 170 °C to 500 °C. When a droplet impacted onto the solid at a temperature 

of 170 °C, weak boiling was observed at the liquid/solid interface. At temperatures of 

200 or 300 °C, numerous vapor bubbles were formed. Numerous secondary droplets 

then jetted upward from the deforming droplet due to the blowout of the vapor bubbles 

into the atmosphere. No secondary droplets were observed for a surface temperature of 

500 °C at the low-impact Weber numbers (~30) associated with the impact inertia of the 

droplets. Experiments using 2.5-mm-diameter droplets were also conducted. The 

dimensionless collision behaviors of large and small droplets were compared under the 

same Weber number conditions. At temperatures of less than or equal to 300 °C, the 

blowout of vapor bubbles occurred at early stages for a large droplet. At a surface 

temperature of 500 °C, the two dimensionless deformation behaviors of the droplets 

were very similar to each other.  

Keywords: photographic observation, droplet impact, boiling phenomena, Weber 

number 



Introduction 
The collision of liquid droplets with solids is observed everywhere in our daily lives, 

and also in various industrial applications, e.g., spray cooling of hot materials (Bolle 

and Moureau, 1982), spray coating (Aziz and Chandra, 2000), fuel injection in 

combustion engines (Moita and Moreira, 2007), fire suppression using sprinkler 

systems (Manzello and Yang, 2002), and inkjet printing (Fukai et al., 2006). The 

dynamics of droplet collisions with solid substrates have fascinated numerous 

researchers in the area of fluid mechanics, as well as the engineers using these 

applications. Comprehensive reviews of related studies have been presented by Yarin 

(2006) and Rein (1993, 2002). A brief literature survey is presented in a later subsection. 

When a subcooled droplet impacts onto a solid substrate heated far above the boiling 

temperature of the liquid, there is a direct contact between the liquid and solid. The 

liquid is abruptly heated above the saturation temperature at the contact point, and the 

temperature of the solid surface decreases sharply (Seki et al., 1978). The high rate of 

increase in the liquid temperature leads to rapid boiling. Since the liquid temperature is 

very high at the liquid/solid interface and decreases sharply away from it, boiling occurs 

only at or very close to the interface. 

There are two types of bubble nucleation in boiling, namely heterogeneous nucleation 

and homogeneous nucleation (Blander and Katz, 1975; Skripov, 1974; Avedisian, 1985). 

In heterogeneous nucleation (Blander and Katz, 1975), vapor bubbles are generated at 

pre-existing nuclei such as cavities, defects, or gas pockets on the solid surface and 

impurities within the liquid. This boiling mechanism is dominant at temperatures lower 

than the limit of superheat, , at which a liquid can sustain the given pressure without 

undergoing a phase change. 
hnT

Homogeneous nucleation occurs appreciably at temperatures higher than the limit of 

superheat. Nuclei are spontaneously generated in the liquid due to molecular density 

fluctuations and a phase change from liquid to vapor occurs abruptly (Blander and Katz, 

1975). If the liquid temperature reaches the limit of superheat due to abrupt heating, 

both heterogeneous nucleation and homogeneous nucleation occur, resulting in the 

nucleation of numerous vapor bubbles (Skripov, 1974). The rapid growth and 
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coalescence of the vapor bubbles leads to the formation of a thin vapor film between the 

liquid and the solid. The deformation mechanics of the droplet are, therefore, influenced 

by these boiling phenomena, which are strongly dependent on the local temperature of 

the solid surface. 

In addition to the temperature of the solid surface, the behavior of droplets colliding 

with a substrate is affected by other parameters. The Weber number of the droplets, 

which is the ratio of the inertia force to the surface tension force, is often regarded as a 

key parameter (Wachters and Westerling, 1966; Bernardin et al., 1997; Yarin, 2006; 

Rein 1993, 2002). It can be defined by 
2

pWe dρυ σ= ,   (1) 

where ρ , υ , , and pd σ  are the liquid density, impact velocity of the droplet, 

pre-impact diameter of the droplet, and surface tension force, respectively. If the Weber 

number is small, the droplet impacts onto the solid and deforms without disintegration. 

For large Weber numbers, splashing occurs during the collision. The droplet Reynolds 

number is the ratio of the inertia force to the viscous force, given by 

/pRe dρυ μ= ,     (2) 

where μ  is the coefficient of liquid viscosity. Further, the impact angle of droplets to 

the solid, the roughness of the solid surface, and the wettability between the liquid and 

the solid also affect the droplet collision behavior. 

There have been many experimental works concerned with the collision of droplets 

with a hot substrate, as mentioned in a later subsection. In many of the studies, 

relatively large droplets with diameters larger than 1 mm were used, while smaller 

droplets are used in industrial applications. The Weber number and temperature of the 

solid substrate were regarded as key parameters affecting the normal collision of 

droplets with a smooth hot solid. If the dynamical similarity between the two droplet 

motions based on their Weber numbers roughly holds true, the knowledge obtained from 

studies on large droplets is applicable to the analysis of industrial applications. However, 

it is not yet clear whether the collision phenomena of relatively large droplets are really 

similar to those of smaller droplets. In the present study, this issue was addressed by 

directly comparing the deformation behaviors of large and small droplets on a hot solid 
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under the same Weber number conditions. In addition, despite prior experimental 

studies using small droplets, the details of the deformation behavior of the droplets and 

the boiling phenomena remain unclear, principally because of the experimental 

difficulties: the deformation and boiling phenomena of droplets occur within very short 

spatial and temporal scales. The boiling vapor bubbles and/or disintegrated droplets 

formed during the impact were considerably small in size as compared to the pre-impact 

diameter of the droplets. Therefore, the knowledge of such motion of the small 

bubbles/droplets was lacking thus far and was studied in the present study through a 

high-resolution flash photography technique. 

In the present study, the hydrodynamics and boiling phenomena of single water 

droplets impinging on a hot Inconel 625 alloy surface were studied experimentally. The 

pre-impact diameter of the droplets was approximately 0.6 mm, and the impact velocity 

was in the range of 1.7 m/s to 4.1 m/s. Droplets with diameters of approximately 2.5 

mm were also tested to investigate the dynamical similarity of the collision behavior of 

droplets. For this purpose, a two-directional flash photography technique with two 

digital still cameras and three flash units was developed. One camera and a pair of flash 

units were used to obtain double-exposure backlit images of the droplets during the 

collisions. The other camera and a flash unit were employed for taking bird’s-eye-view 

images of the droplets. These two types of images were obtained simultaneously so that 

the three-dimensional deformation behavior of the droplets could be monitored. By 

varying the Weber number and the temperature of the solid surface systematically, we 

investigated the hydrodynamics and the boiling phenomena of the droplets in detail. 

 

 

Literature Survey 
A literature survey of the experimental research on the collisions of droplets with 

solids was conducted. Wachters and Westerling (1966) investigated the impingement of 

subcooled water droplets with a diameter of approximately 2.0 mm on a polished gold 

surface heated to 400 °C. Ueda et al. (1979) studied the impact of saturated water 

droplets with diameters ranging from 0.94 mm to 3.02 mm on vertically heated stainless 
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steel or copper surfaces at 300 °C. Akao et al. (1980) investigated the dynamics of the 

collisions of droplets of water, ethanol, and acetic acid, with diameters ranging from 2.1 

mm to 2.9 mm, with a chromium-plated solid surface at 400 °C by using high-speed 

photography. They reported that the disintegration characteristics of the droplets were 

not determined solely by their Weber numbers. Chandra and Avedisian (1991) obtained 

very clear bird’s-eye-view images of n-heptane droplets impinging on a hot stainless 

steel surface at 24~250 °C with a Weber number of 43 by using a flash photography 

method, and also studied the deformation processes of n-heptane droplets impacting 

onto a hot ceramic porous surface (Chandra and C. T. Avedisian, 1992). Bernardin et al. 

(1997) carried out experiments investigating the impingement of water droplets on a hot 

aluminum surface at 100~280 °C with Weber numbers of 20, 60, and 280 and 

constructed regime maps showing film boiling, transition boiling, nucleate boiling, and 

film evaporation. Kang and Lee (2000) studied 2.3-mm-diameter water droplets 

impinging on a heated copper surface, using a high-speed camera to determine the 

effects of varying their impact angles on their deformation behavior. Inada and Yang 

(1993) investigated the mechanism of miniaturizing 4.0-mm-diameter water droplets 

impacting onto a hot platinum surface at 160~420 °C. Nagai and Nishio (1996) used a 

flash photography method to observe the dynamic behavior of the contact between 

water droplets and a sapphire surface heated above the Leidenfrost temperature. Chaves 

et al. (1999) studied the bubble formation inside 1.8-mm-diameter ethanol droplets on a 

hot aluminum surface by using CCD camera photography and concluded that the 

growth rate of vapor bubbles is independent of the Weber number, but is dependent on 

the wall temperature. 

The literature dealing with the collisions of small droplets with solids was also 

reviewed. Xiong and Yuen (1991) investigated the evaporation of droplets of water or a 

hydrocarbon mixture from a stainless steel surface by using a flash photography method. 

The initial diameters of the droplets ranged from 0.07 mm to 1.8 mm, and the 

temperature of the solid was varied from 63 °C to 605 °C. Anders et al. (1993) 

investigated the droplet wall interaction of ethanol droplets successively impacting onto 

a heated chromium-plated solid surface. The experimental conditions were as follows: 
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pre-impact droplet diameters ranged from approximately 0.09 mm to 0.21 mm and 

surface temperatures ranged from 25 °C to 280 °C. The effects of the impact velocity on 

the collision dynamics were also investigated. Ko and Chung (1996) conducted 

experiments to investigate the break-up of small n-decane droplets, with diameters from 

approximately 0.3 mm to 0.5 mm, on a hot brass surface. Karl and Frohn (2000) studied 

the deformation processes of small droplets of water or ethanol with diameters ranging 

from 0.07 to 0.26 mm successively impacting onto chromium-plated copper or steel 

surfaces heated above the Leidenfrost temperature. Chen et al. (2007) characterized the 

collision dynamics of diesel droplets with diameters ranging from 0.50 mm to 0.95 mm 

impinging on a hot inclined stainless steel surface heated to 480 °C. Hatta et al. (1995) 

conducted experiments on the collisions between water droplets with diameters from 

0.3 mm to 0.6 mm and an Inconel alloy 625 surface at 500 °C, and also studied the 

dynamics of the collisions of water droplets with diameters of less than 1 mm with hot 

stainless-steel and silicon surfaces (Hatta et al., 1997). Mehdizadeh and Chandra (2006) 

used a single-shot photography method to investigate the boiling phenomena of 

0.55-mm-diameter water droplets impinging on a hot stainless steel surface at high 

impact velocities and concluded that the temperature required for vapor bubble 

formation decreases with an increase in the impact velocity. 

 

 

Experimental Procedure 
Experimental apparatus 

Figure 1 shows a schematic diagram of the experimental apparatus used to observe 

the impact phenomena of single water droplets on the heated surface. Distilled water at 

room temperature in a gas-tight tank is sent to the top of a nozzle unit equipped with a 

nozzle oscillator. Water flows in through the nozzle and then issues vertically downward 

from the flat-tipped exit. A stream of droplets with uniform diameters and uniform 

intervals between successive droplets can be formed below the nozzle unit by oscillating 

it at a certain frequency (Pedersen, 1970). The droplet diameter and spraying velocity 

can be adjusted by varying the water flow rate. The droplets then hit a rotating disk with 
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a diameter of 200 mm and a small slit hole. The rotation speed of the disk was adjusted 

such that at most one droplet passed through the slit hole during each rotation of the 

disk and that the collision of a droplet with a solid substrate occurred a few times per 

second. An optical sensor (diode photoelectric sensor) captured the position of the slit 

hole in the rotating disk and provided a signal to trigger the flash photography. Because 

the falling water droplets were small, transparent, and relatively fast, it was difficult to 

directly capture them with the optical sensor. 

The horizontal test piece made of Inconel alloy 625 solid (a 6-mm-thick disk with a 

diameter of 28 mm) was firmly mounted on a copper base with an embedded cartridge 

electric heater. The test piece was polished with an abrasive compound before every 

experiment to keep the solid surface clean. The arithmetic mean surface roughness was 

confirmed to be within 0.3 μm. The surface temperature of the solid was maintained at a 

preset value by using K-type thermocouples with a wire having a diameter of 0.3 mm 

spot-welded on the Inconel 625 surface and a temperature controller that regulated the 

electric power supply to the heater. The deviation from the preset temperature during the 

experiments was within 10 °C.  ±

In these experiments, the pre-impact diameter of the droplets, , was varied from 

0.53 to 0.60 mm, the impact velocity, 
pd

υ , was varied from 1.7 to 4.1 m/s (the 

corresponding impact Weber numbers ranged from 24 to 134), and the temperature of 

the solid surface, , was varied from 170 °C to 500 °C.  wT

When conducting the experiments using large droplets, the rotating disk unit was 

removed. A very small water flow rate was supplied to the nozzle unit so that a droplet 

was formed at the nozzle exit, increased in size, and eventually detached due to gravity. 

Falling droplets with diameters of approximately 2.5 mm were directly captured by the 

optical sensor used for the strobe-light trigger signal. The impact velocity of the droplets 

was adjusted by varying the nozzle-to-substrate distance. 

The collision behavior of the droplets will be discussed, not only in relation to the 

dimensional length and time, but also by using the dimensionless length and time. The 

dimensionless spatial scale is normalized by the pre-impact diameter of a droplet. The 

dimensionless time, τ, normalized by the characteristic time for the impact inertia of 
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droplets is given as: 

/ ( / )e pt dτ υ= ,.  (3) 

where  represents the elapsed time after the droplet touches the solid. The Weber 

number, as well as the Reynolds number, is evaluated, taking into account the 

temperature dependence of thermo-physical properties, because the liquid temperature 

was not maintained at a certain value. When making large droplets, the temperature of 

the droplets formed at the nozzle tip became higher than the liquid in the water tank 

because of radiation heat transfer from the hot test piece to the nozzle tip. 

et

 

Photography and measurement procedure 

The collisions between the droplets and the solid were three-dimensional, so a 

two-directional observation technique was developed that used two digital still cameras 

(Canon EOS Kiss Digital X2) with an effective spatial resolution of 3888 ×  2592 

pixels and three microflash units (Sugawara MS-230A). Figure 2 shows a schematic 

diagram of the photography setup. One camera, the test piece, and a pair of flash units 

were aligned horizontally to obtain side-view, double-exposed, and backlit images of 

the droplets. Another camera and flash unit were arranged to provide bird’s-eye-view 

images of the droplets. For convenience, these camera arrangements are denoted 

Camera A and Camera B, respectively. The exposure time for both cameras was set at 

1/2 or 1 s, which was sufficiently longer than the duration of the flash (~2 μs). When 

trigger signals appeared, a flash controller (Sugawara RE307-U2) activated the three 

flash units independently at different preset delay times. The timing of each flash 

activation could be controlled with a resolution of 1 μs. The droplet images were 

exposed only when the flash units were triggered. 

For Camera A, the two flashes (light A and light B) were operated consecutively at a 

preset time interval such that backlit double-exposed photographs of the droplets could 

be obtained. Figure 3 shows examples of the double-exposed images of the droplets. 

The time intervals between the two flashes were (a) 0.50 ms and (b) 0.70 ms. Note that 

one flash bulb was colored red so that the images of the droplets exposed at the first and 

second flashes could be easily distinguished. In (a), the time interval between the two 
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flashes is small. Neither droplet has reached the solid surface even after the second flash. 

The pre-impact diameter of each droplet, , was determined directly from the images 

of the droplet by using the image analyzing software Adobe Photoshop CS3 Extended. 

The impact velocity of the droplet, 

pd

υ , was also determined from the time interval, tΔ , 

between the two flashes and the distance, LΔ , moved by the droplet: 

L tυ = Δ Δ .  (4) 

In addition, the uncertainty in the measurement of the spatial length, which depends on 

the magnification of the lens system (Canon MP-E 65mm), was at worst within 3 μm 

for the cases of small droplets. 

±

In (b), the first flash was triggered before the impact of the droplet, and the second 

flash was activated after the impact. The elapsed time can be determined from the 

spacing, , between the bottom of the droplet at the first flash and the solid, the 

impact velocity, and the time interval as follows: 
wLΔ

et t Lw υ= Δ − Δ .  (5) 
The time evolution of the droplet shape was followed by taking instantaneous images 

with various time intervals between the two flashes (0.3–5.0 ms for small droplets and 

3–30 ms for large droplets). It should be noted that there was a slight scatter in the 

pre-impact diameter, as well as in the impact velocity, in these experiments. Thus, the 

droplet diameter and spacing were measured for every image and irregular data were 

removed to minimize the experimental uncertainties. The allowable deviation of the 

pre-impact diameter and the impact velocity were set within ± 10 μm and 0.05 m/s for 
small droplets, respectively. For example, if the diameter was  = 0.60 mm, its 

scatter range would be between 0.59 mm and 0.61 mm. The scatter range of the 

pre-impact diameter and the impact velocity were within 

pd

± 60 μm and 0.02 m/s for 

large droplets, respectively. 

Camera A was suitable for accurate measurements of the impact conditions (the 

pre-impact diameter of the droplet, the impact velocity of the droplet, and the time after 

the impact of the droplet) and for following the time evolution of the shape of the 

droplet. However, the three-dimensional shape of the droplet could not be determined 

from its images, nor could the boiling phenomena occurring inside the droplet be 
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observed. To eliminate these disadvantages, Camera B was added, as shown in Figure 2. 

Camera B was tilted obliquely downward to provide bird’s-eye-view images of the 

droplet. The angle of tilt, α, of the camera and the position of light C were carefully 

adjusted in each experiment, because the quality of the droplet images obtained with 

Camera B was very sensitive to these factors, and the optimal angle was dependent on 

the impact conditions. The flash unit for Camera B was operated only once, when the 

second flash for Camera A was activated. Thus, two types of images for the droplets 

were obtained simultaneously with Cameras A and B. 

 

Estimation of the interfacial temperature and the limit of superheat 

The temperature at the droplet/solid interface is a key factor in investigating the 

boiling phenomena. According to some recent works, the local temperature distribution 

on a small area can be measured with a high resolution by using a diode temperature 

sensor array (Han and Kim, 2008) and micro-thermocouple arrays (Auracher and 

Marquardt, 2004). Tartarini et al. (2009) used infrared-transparent BaF2 crystals to 

non-intrusively measure the interface temperature with an infrared camera. However, it 

would be difficult to correctly measure the local temperature experimentally without 

using such measurement devices. Instead, the temperature at the liquid/solid interface at 

the moment of impact can be estimated with a simple one-dimensional theory (Seki et 

al., 1978; Aziz and Chandra, 2000; Bernardin and Mudawar, 1999, 2002, 2004; Cossali 

et al., 2008; Furuya and Arai, 2008). According to the one-dimensional transient heat 

conduction theory for interfacial contact between two semi-infinite solids with different 

temperatures (Carslaw and Jaeger, 1959; Eckert and Drake, 1972), the interfacial 

temperature, , is given by iT

H H PH H C C PC C
i

H PH H C PC C

T C T C
T

C C
ρ λ ρ λ
ρ λ ρ λ

+
=

+
,  (6) 

where ( , ), (CT HT Cρ , Hρ ), ( , ), and (PCC PHC Cλ , Hλ ) are the temperatures, densities, 

specific heats, and thermal conductivities of the two materials (C and H), respectively. 

According to Eq. (6), this theory indicates that the interfacial temperature is independent 

of the time elapsed after the contact of the two materials. In reality, however, the 
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interfacial temperature decreases with time because of convection, phase changes, and 

axisymmetric/three-dimensional heat transfer (Aziz and Chandra, 2000). In addition, a 

temperature jump could be present at the interface. Therefore, Eq. (6) can be used for 

rough evaluations of the interfacial temperature at the moment of droplet impact. 

According to the literature (Skripov, 1974; Lienhard, 1976; Avedisian, 1985; 

Derewnicki, 1985; Iida etal., 1994; Avedisian et al., 1999; Glod et al., 2002; Thomas et 

al., 2003; Hong et al., 2004), the limit of superheat of water at atmospheric pressure lies 

in the range = 283–313 °C. The critical temperature of water is 374 °C. If the 

calculated interfacial temperature becomes higher than the limit of superheat, the 

temperature calculated by Eq. (6) has no physical meaning. In such a case, a vapor film 

is formed between the liquid and solid immediately after the droplet impact. Although 

the time required for forming vapor layers cannot be measured correctly, it must be very 

short compared to the characteristic time scales (

hnT

/pd υ ) in the present experiments 

(Glod et al., 2002). 

 
Observations of impact phenomena of single droplets for small low Weber 

numbers 

The collisions of single water droplets with a hot solid were investigated with the 

observation techniques described above. The experiments were conducted for small 

Weber numbers (We ~ 30). Figure 4 depicts the deformation behavior of a water droplet 

impacting horizontally on the Inconel 625 alloy surface at 170 °C for  = 0.60 mm 

and 
pd

υ  = 2.1 m/s (We = 36). Figure 4(a) and 4(b) show side-view images of the droplet 

obtained by the double-exposure method using Camera A and the bird’s-eye-view 

images taken using Camera B, respectively. The elapsed times, , after the impact of 

the droplet on the surface are given in the images. The dimensionless elapsed times, 
et

τ , 

normalized by ( /pd )υ  are also shown. A circular thin liquid jet is formed around the 

bottom of the droplet and spreads radially (see Figure 4(a)). The thickness of the droplet 

at the center decreases monotonically (  = 0.04–0.47 ms). The droplet deforms into a 

thin circular disk. In Figure 4(b), a single bubble indicated by an arrow is formed at the 

impact point (  = 0.04 ms), which is caused by the entrapment of air at the impact 

et

et
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point (Chandra and Avedisian, 1991; Pasandideh-Fard et al., 1996; Mehdi-Nejad et al., 

2003; Fujimoto et al., 2000, 2004; Thoroddsen et al., 2003, 2005). At  = 0.10 ms and 

0.19 ms, additional bubbles are seen around this single bubble. Thereafter, isolated 

bubbles are observed in the rim of the liquid film caused by boiling or the deposition of 

dissolved air in the liquid. After the liquid film spreads to its maximal extension (  ~ 

0.59 ms), the constriction of the liquid film commences. It is seen from (a) that the 

contact diameter of a droplet decreases with time, while the height increases slightly. 

The liquid deforms into a convex lens shape at  = 1.37 ms. 

et

et

et

Figure 5 depicts a sequence of images showing the collision dynamics of a water 

droplet impinging on a surface heated to  = 200 °C. The pre-impact diameter of the 

droplet was  = 0.56 mm and the impact velocity was 
wT

pd υ  = 1.8 m/s. The 

corresponding Weber number is 26. At  = 0.07 ms in (b), a bubble indicated by an 

arrow is seen at the impact point. Boiling vapor bubbles are generated at the liquid/solid 

interface at  = 0.12 and 0.17 ms. At  = 0.26 and 0.39 ms in (a), small droplets can 

be seen above the body of the liquid. For convenience, these small droplets are called 

“secondary droplets.” The formation of secondary droplets can be explained by the 

following mechanism: after the droplet impacts on the solid, boiling occurs at the 

liquid/solid interface. The boiling vapor bubbles grow larger at the liquid/solid interface 

and can become detached from the solid. At the same time, the droplet deforms into a 

thin circular disk. As a consequence, the upper sides of the vapor bubbles reach the free 

liquid surface (the liquid/atmospheric air interface) and then blow out to the atmosphere, 

accompanied by many secondary droplets flying upward. The free surface in the center 

part of the liquid is smooth at  = 0.26 ms in Figure. 5(b), while the other part is 

lumpy, so the secondary droplets are mainly jetted from the thin circular film part. After 

 = 0.53 ms, secondary droplets are jetted from all areas of the liquid. Larger 

secondary droplets appear at later times (  = 0.53–1.17 ms), as shown in Figure 5(a), 

and are probably due to the bursting of larger vapor bubbles at the free surface. At  = 

1.17 ms, the free surface of the liquid is entirely distorted. At  = 2.93 ms, most of the 

liquid is separated from the solid surface, but some liquid is still in direct contact with 

the solid surface. 

et

et

et et

et

et

et

et
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Figure 6 shows the deformation behavior of a water droplet on the hot surface at  

= 200 °C for  = 0.57 mm and 
wT

pd υ  = 1.7 m/s (We = 24). These droplet images were 

obtained using a different magnification for the lens system and a different angle of tilt 

for light C in order to investigate the boiling phenomena during the initial stages of the 

collision. At  = 0.03 ms and 0.07 ms, some bubbles appear inside the liquid. The 

number of bubbles in the central part of the droplet apparently increases at  = 0.11 

ms. In the circular thin film region, bubbles are seen in the form of a ring, as indicated 

by an arrow. Thereafter, the bubbles increase in size due to heat transfer from the solid 

and/or the coalescence of adjacent bubbles. At  = 0.19 ms, the blowout of vapor 

bubbles occurs in the circular periphery, as indicated by an arrow. The droplet is filled 

with numerous vapor bubbles on a very short time scale. 

et

et

et

Figure 7 depicts the deformation behavior of a water droplet on the solid surface at 

 = 300 °C for  = 0.58 mm and wT pd υ  = 2.1 m/s (We = 34). At  = 0.12 ms in (b), 

small bubbles are present inside the droplet. The generation of secondary droplets is 

seen at  = 0.27 ms, as shown in (a). The apparent liquid/solid contact area decreases 

with time ( et  0.27–0.67 ms), suggesting that direct liquid/solid contact is dramatically 

reduced by the presence of the vapor bubbles or a thin vapor film at the liquid/solid 

interface. At et  = 0.45 m  and 0.58 ms in (b), the droplet is significantly distorted. 

Thereafter, the distorted liquid moves radially inward. Eventually, most of the liquid 

becomes separated from the solid surface ( et  = 1.30 ms). 

et

et

= 

s

The interfacial temperatures calculated by Eq. (6) for our system are  = 141 °C for 

 = 170 °C,  = 167 °C for  = 200 °C, and  = 251 °C for  = 300 °C. The 

vapor bubbles in Figures 4 to 7 are thus caused by heterogeneous nucleation. The 

number of vapor bubbles at  = 170 °C is appreciably fewer than the case of 200 °C, 

although the temperature difference is only 30 °C. Wang and Cheng (2009) reported that 

the heat flux from the solid to the liquid dramatically increases when the value of  is 

more than 140 °C, where the vapor nuclei become very active. Taking into account the 

fact that the actual interfacial temperature decreases with time, the present data are 

consistent with the results of Wang and Cheng (2009).  

iT

wwT iT wT iT T

wT

iT

It should be noted that the formation of a vapor film is possible not only in the 
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temperature range of homogeneous nucleation, but also at lower temperatures. The time 

required for the formation of a vapor film is much shorter in the homogeneous 

nucleation regime than at lower temperatures, because the number of nucleation points 

and the growth rate of each bubble are very large. For the case of  = 300 °C, the 

calculated interfacial temperature is less than the limit of superheat. Nevertheless, the 

growth and coalescence of vapor bubbles due to heterogeneous nucleation prevent 

direct liquid/solid contact and a vapor layer is probably formed at later times. 

wT

Figure 8 shows the deformation behavior of a water droplet on the solid surface at 

400 °C for  = 0.57 mm and pd υ  = 1.9 m/s (We = 28). The droplet impacts, spreads 

radially over the solid, and deforms into a thin circular disk ( et  = 0.09–0.30 ms). Unlike 

the cases discussed above, the shape of the droplet remains almost axisymmetric. After 

the droplet reaches its maximal extension, it constricts due to surface tension (Hatta et 

al., 1997). At et  = 0.42 ms, some secondary droplets are jetted upward from the thin 

liquid. At et  = 0.55 ms in (b), a dry area appears in the central part formed by the 

blowout of bubbles. As the droplet constricts, its diameter decreases and its height 

increases. At  = 1.42 ms, the droplet separates from the surface and its shape looks 

like a bowling pin, in which small vapor bubbles are observed. 
et

For the case of  = 400 °C, the interfacial temperature was calculated to be  = 

338 °C, which is a little higher than the temperature required for homogeneous 

nucleation. At te = 0.09 ms in Figure 8(b), the liquid/solid interface looks hazy, so a 

vapor layer probably exists there. The interfacial temperature soon decreases below the 

limit of superheat due to convection and rewetting (liquid/solid contact) occurs locally. 

As a consequence, vapor bubbles are formed at the cavities on the solid surface in the 

rewetting areas. This results in the formation of secondary droplets that are jetted 

upward from the center of the thin circular liquid at later times. 

wT iT

Figure 9 depicts the deformation behavior of a water droplet on the hot surface at  

= 500 °C for  = 0.58 mm and 
wT

pd υ  = 2.0 m/s (We = 33). The estimated interfacial 

temperature is  = 426 °C, which is higher than the critical temperature of water 

(374 °C). The droplet impacts on the solid surface, and then spreads radially. The liquid 

film reaches its maximum extension (  ~ 0.32 ms), and then constricts. The liquid is 

iT

et
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elongated upward in the shape of a bowling pin and rebounds off the heated surface. 

The flying droplet then splits into two parts (  = 1.58 ms). Although bubbles are 

present in the droplet, no secondary droplets are produced in the entire deformation 

process, unlike the cases in which the surface has a lower temperature. In addition, the 

number of vapor bubbles in the flying droplet as indicated by arrows is smaller than in 

the case for which the surface temperature is 400 °C (see the image at  = 1.42 ms in 

Figure 8(b)) because of less direct liquid/solid contact. It should be noted that a similar 

droplet deformation behavior was observed for  = 450 °C. Thus, the critical 

temperature at which the formation of secondary droplets occurs for We ~ 30 is between 

 = 400 °C and 450 °C.  

et

et

wT

pd

wT

 

Collision phenomena of droplets with a highly heated substrate at high Weber 

numbers 

The deformation behaviors of droplets striking a solid heated to 400 °C and 500 °C at 

larger Weber numbers were investigated. Figure 10 shows the collision of a water 

droplet with the solid surface at  = 400 °C for  = 0.54 mm and wT υ  = 3.0 m/s 

(We = 65). The droplet spreads further and the liquid thickness is less than the case of 

Figure 8. The periphery of the circular thin jet becomes wavy earlier and subsequently 

the fingering of the free liquid surface in the periphery can be clearly seen in (b). At  

= 0.27 ms and 0.35 ms in (a), numerous secondary droplets are observed above the 

upper surface of the thin liquid. At  = 0.35 ms, the liquid film is broken locally and 

some dry areas are formed as indicated by arrows. The dry areas then increase in size 

and number (  = 0.35–0.45 ms). At  = 0.54 ms, the droplet is split into many small 

droplets that are much larger than the secondary droplets jetted upward. All of the 

disintegrated parts levitate from the surface and fly radially outward. 

et

e

t

t

et e

Figure 11 shows the results for wT = 500 °C, pd  0.53 mm, and   = υ  = 3.2 m/s (We 

= 76). The deformation behavior of the droplet in (b) is similar to that of the collision 

shown in Figure 10 up to et  ~ 0.5 ms but a fewer secondary droplets are ejected. At et  

= 0.54 ms, the droplet has partially disintegrated. Although the Weber number for 

Figure 11 is larger than that for Figure 10, most of the droplet does not break. The 

, 
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droplet fragments then move radially inward ( et  = 0.61, 0.75 ms) and coalesce again.  

Figure 12 shows the deformation behavior of a water droplet on the solid surface at 

500 °C for pd  = 0.57 mm and υ  = 4.1 m/s (We = 134). The edge of the radially 

spreading jet nsists of a ring of small droplets at et  = 0.08 ms, as shown in (b). Some 

of these small droplets break away from the main body of the liquid at et  = 0.26 ms 

and fly radially outward. Such disintegration phenomena occur due to the large inertia 

of spreading liquid. At et  = 0.39–0.50 ms in (b), dry areas appear in the thin film part. 

Also, in (a), small secondary droplets are observed above the upper surface of the liquid 

film. The liquid thickness is thinner for a larger impact inertia (Weber number) and the 

vapor bubbles are present in the liquid even for wT  = 500 °C, as shown in Figure 9(b). 

The small droplets must be formed due to the blowout of the vapor bubbles and/or a 

vapor layer with a locally large thickness. Eventually the liquid film disintegrates into 

numerous particles and separates from the surface.  

 

 co

Discussion 

umber has been regarded as a key parameter for the collision of droplets The Weber n

with a hot solid (Wachters and Westerling, 1966; Bernardin et al., 1997; Yarin, 2006; 

Rein 1993, 2002). For example, the critical boundary, at which the disintegration of 

droplet occurs, has been discussed in relation to the Weber number (Wachters and 

Westerling, 1966; Hatta etal., 1995). In addition, it has been proposed that the maximum 

spreading diameter of droplets could be predicted as a function of the Weber number 

(Ueda et al., 1979; Akao et al., 1980; Chandra and Avedisian, 1991; Hatta etal., 1997; 

Karl and Frohn, 2000). Such predictions are in moderate agreement with experiments. 

In a strict sense, droplet collision phenomena cannot be correlated by the Weber number 

alone, because of the presence of other parameters affecting the motion of droplets. This 

section discusses additional experiments that were conducted using droplets with 

diameters of approximately 2.5 mm and the results are compared to the experimental 

data for the droplets with diameters of approximately 0.6 mm under a fixed Weber 

number and a fixed temperature for the solid. The conditions are investigated for which 

the dynamical similarity roughly holds true based on the Weber number.  
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wT  Figure 13 depicts the time evolution of the shape of the droplets for = 170 °C, 

p  = 2.51 mm, and d υ  = 1.00 m/s (We = 34). The droplet impacts, spreads, and 

orms into a circular disk. Overall, the deformation behavior of the droplet looks 

similar to that in Figure 4 at early dimensionless times (τ = 0~1.66). Many vapor 

bubbles are seen at the liquid/solid interface at τ = 2.08. The number of vapor bubbles is 

appreciably larger than the case of Figure 4. This can be explained as follows: Bubble 

nucleation is dependent on the temperature of the solid, the surface profile of the solid 

substrate, and the combination of liquid and solid materials. Moreover, the gas (air) 

dissolved in the liquid affects the boiling phenomena (Cui et al., 2001). Although the 

temperatures of the solid surfaces during the collisions could have been slightly 

different in the two experiments due to the bulk motion of liquid, the other parameters 

were the same. Thus, the number of vapor bubbles per unit area must be comparable. 

The dimensional liquid/solid contact area is larger for a larger droplet, resulting in the 

formation of more bubbles. 

There have been several 

def

theoretical models for predicting the growth process for a 

single vapor bubble in a uniformly superheated liquid (Lee and Merte, 1996), although 

the theories are not directly applicable to the present cases. As is obvious, the spatial 

and temporal scales of the growing vapor bubbles given by the theories are independent 

of the pre-impact diameter of the droplet and the characteristic time, /pd υ . It follows 

that the liquid motion caused by the boiling phenomena has no similarity based on these 

characteristic scales. In Figure 13, the free liquid surface becomes very lumpy due to the 

blowout of vapor bubbles at a later time. In contrast, the blowout of bubbles is rare in 

Figure 4 and the free liquid surface is very smooth. The dimensional time scale is too 

small for the bubbles to increase in size. 

Figure 14 shows the results for wT  = 200 °C, = 2.50 mm, and pd  υ  = 0.87 m/s 

(We = 26). The blowout of vapor bubbles takes place in the peripheral thin film part 

immediately after the collision (τ = 0.29 and 0.39), causing numerous secondary 

droplets to fly outward (τ = 0.56 and 0.80). The blowout of vapor bubbles occurs in the 

entire process. In contrast, in the case of Figure 5, the formation of the secondary 

droplet and the break in the peripheral liquid film are seen at later times. The number of 
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disintegrated droplets associated with the bubble nucleation is small because the time 

available for the bubbles to grow is short and the dimensional liquid/solid contact area 

is small.  

Figure 15 shows the results for = 300 °C, = 2.50 mm and wT  pd  υ  = 1.01 m/s 

(W

 °C, = 2.42 mm and 

e = 34). The blow out of vapor bubbles occurs at earlier dimensionless times in the 

spreading process compared to the case of Figure 7. Several dry areas are seen in the 

thin liquid film at τ = 2.09, and subsequently the liquid is split into small droplets. Many 

disintegrated droplets fly radially outward, unlike the case of Figure 7. It was concluded 

that the collision phenomena of large and small droplets do not show dynamical 

similarity in the heterogeneous boiling regime, where the estimated interfacial 

temperatures are less than the limit of superheat, because boiling vapor bubbles play an 

important role in the fragmentation of droplets. 

Figure 16 represents the results for wT  = 400 pd  υ  = 0.90 m/s 

(W

 shows the results for = 500 °C, = 2.50 mm, and 

e = 26). The time evolution of the droplet shape shows a trend that is very similar to 

the case of Figure 8. At τ = 0.34, the liquid/solid interface looks hazy, probably due to 

the presence of a vapor film. The liquid/solid direct contact is prevented until rewetting 

occurs. As a consequence, the droplet shape in the spreading process shows a trend that 

is very similar to that of Figure 8. Thereafter, the deformation behaviors of small and 

large droplets remain similar. The secondary droplets are jetted and a dry area appears at 

the impact point at τ = 1.86. Eventually, the droplet rebounds off the solid at τ = 4.63. 

The number of bubbles contained in the rebounding droplet is apparently large 

compared to Figure 8 because of a larger liquid/solid direct contact area in the rewetting 

time stage. 

Figure 17 wT  pd  υ  = 1.00 m/s 

(W

on

e = 33). The droplet impacts, sp ads, reaches a maximum extension, recoils, and 

rebounds off. As a whole, the collision behavior of the droplets is similar to the case of 

Figure 9, although the detailed shapes of the droplets are slightly different. At the 

temperatures of wT  = 400 °C and 500 °C, the formation of isolated vapor bubbles 

during the collisi  is far less than the cases with lower temperatures. The effect of 

isolated bubbles on the collision behavior is thus small. 

re
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In the cases of wT  = 170 °C and wT  = 500 °C, the droplets maintain an almost 

ax

roplet diameter time histories are similar to each other, although a 

lar

, there are some experimental difficulties in forming large droplets by the 

sim

isymmetric shape in all of the time stages. A quantitative comparison of the results for 

small droplets and large droplets was conducted by measuring the time evolution of the 

droplet diameter. Figure 18 represents the time evolutions of the dimensionless 

diameters, / pd d , of droplets on the solid for (a) wT  = 170 °C and (b) 500 °C. The 

definition o iameter, d , of a droplet is given in Figure 18(c). The Weber numbers 

are similar for all of the results, but the Reynolds numbers for larger droplets are 

approximately two times larger than those for small droplets. In (a), the droplet 

diameters increase with time, reach a maximum extension, and then decrease. An 

appreciable difference between the two results is seen. At wT  = 170 °C, the bubble 

nucleation is weak and the liquid is in direct contact with the solid substrate. Since the 

wall friction and internal viscous shear stress reduce the momentum of the radially 

spreading liquid, the dimensionless diameter of the droplets is smaller for a smaller 

Reynolds number. 

In (b), the two d

f the d

ger droplet rebounds off at an earlier dimensionless time. Since the liquid is almost 

isolated from the solid surface through a vapor layer, the effect of the Reynolds number, 

as well as the isolated vapor bubbles, is very small. As a consequence, the dynamical 

similarity of the two liquid motions roughly holds true by using the Weber number 

alone. In addition, the maximum spreading diameters of the droplets in (b) are small 

compared to the cases of wT  = 170 °C. This is because the wettability between the 

liquid and the substrate is better (associated with a smaller contact angle) for a lower 

temperature. 

Incidentally

ple drip method. The large droplets detach from the nozzle in the shape of teardrops 

and then fall vertically downward with oscillation. In a strict sense, the large droplets 

are not spherical in shape at the moment of impact because the nozzle-to-substrate 

distance (~50 mm) is not large enough to damp the oscillation due to viscosity. In 

contrast, the small droplets are spherical. These facts might cause some difference 

between the two deformation behaviors of droplets. 
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The deformation behaviors of droplets at higher Weber numbers are now investigated. 

Figure 19 shows the results for wT  = 400 °C, pd  = 2.47 mm, and υ  = 1.40 m/s (We 

= 65). Figure 20 shows the results for wT  = 500 °C, pd  = 2.59 mm, and υ  = 1.48 

m/s (We = 76). As can be seen in the res s shown in Figures 10 and 19 and Figures 11 

and 20, the collision behaviors of large and small droplets look very similar to each 

other. 

On

ult

e important issue for the use of Eq. (6) is that the interfacial temperature is a 

function of both the liquid and the solid thermal properties. It follows that the boiling 

phenomena, as well as the collision behavior of droplets, are dependent on the type of 

solid materials, even at a fixed surface temperature for the solid. To obtain a different 

interfacial temperature, 3-μm diameter diamond particles, which have a much larger 

thermal conductivity than Inconel alloy, were sprayed on the test piece to temporally 

form a thin layer of diamond particles on the surface. An additional experiment was 

then conducted with this ad hoc test piece. Figure 21 represents the results for pd  = 

2.57 mm and υ  = 1.06 m/s (We = 39). The surface temperature of wT  = 170 °C is the 

same as the case of Figure 13, but the interfacial temperature is highe It is obvious that 

more bubbles are formed than seen in Figure 13. The boiling phenomena are dependent 

on the type of solid material. Equation (6) is thus more appropriate than the surface 

temperature for characterizing the hydrodynamics and boiling phenomena of droplets. 

In addition, the deformation behaviors of large droplets on the two types of substrates 

become similar at later times because the heat capacity of the thin diamond layer is very 

small and the interfacial temperatures in the two cases become comparable.  

 

r. 

onclusions 
t study, the collision of single water droplets with a hot Inconel alloy 625 

su

 

C
In the presen

rface was investigated experimentally by means of a two-directional flash 

photography technique. This observation technique was found to be sufficiently 

powerful for our investigation of three-dimensional droplet motion and boiling 

phenomena. 
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The boiling phenomena can be roughly explained in terms of the interfacial 

tem

gime, where the interfacial temperature is less than the 

lim

he  behaviors of small and large droplets were compared under the same 

W

perature given by Eq. (6) and the limit of superheat. It was found that Eq. (6) is 

more appropriate than the surface temperature for characterizing the hydrodynamics and 

boiling phenomena of droplets.  

In the heterogeneous boiling re

it of superheat, vapor bubbles are formed at the liquid/solid interface. The blowout 

of vapor bubbles into the atmosphere gives rise to secondary droplets. At interfacial 

temperatures higher than the limit of superheat, a vapor film is formed immediately 

after the collision. However, isolated vapor bubbles are present inside the droplets even 

at wT  = 500 °C.  

T  deformation

eber number conditions. The dynamical similarity of the liquid motion is roughly 

obtained by the Weber number alone in the homogenous boiling regime. At lower 

temperatures, the deformation behaviors of droplets are affected by the Reynolds 

number, the contact angle, and the motion of boiling vapor bubbles whose spatial and 

temporal scales are independent of the pre-impact diameter of the droplets and /pd υ . 
The dimensionless times at which the secondary droplets are formed differ according to 

the droplet size. 
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List of figure and table captions 
Figure 1: Schematic diagram of experimental apparatus. 

Figure 2: Schematic diagram of photography setup. 

Figure 3: Samples of double-exposed images of water droplet impinging on heated 

Inconel alloy 625 surface for ( , pd υ , ) = (0.58 mm, 2.1 m/s, 500 °C). wT

Figure 4: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = (0.60 

mm, 2.1 m/s, 170 °C): (a) side-view images and (b) bird’s-eye-view images. 
wT

Figure 5: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = (0.56 

mm, 1.8 m/s, 200 °C). 
wT

Figure 6: Impact of a water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(0.57 mm, 1.7 m/s, 200 °C). 
wT

Figure 7: Impact of water droplet on solid surface for ( , pd υ , ) = (0.58 mm, 2.1 m/s, 

300 °C). 
wT

Figure 8: Impact of water droplet on solid surface for ( , pd υ , ) = (0.57 mm, 1.9 m/s, 

400 °C). 
wT

Figure 9: Collision of a droplet with hot solid for ( , pd υ , ) = (0.58 mm, 2.0 m/s, 

500 °C). 
wT

Figure 10: Collision of droplet with hot solid for ( , pd υ , ) = (0.54 mm, 3.0 m/s, 

400 °C). 
wT

Figure 11: Collision of droplet with hot solid for ( , pd υ , ) = (0.53 mm, 3.2 m/s, 

500 °C). 
wT

Figure 12: Collision of droplet with hot solid for ( , pd υ , ) = (0.57 mm, 4.1 m/s, 

500 °C). 
wT

Figure 13: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(2.51 mm, 1.00 m/s, 170 °C). 
wT

Figure 14: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(2.50 mm, 0.87 m/s, 200 °C). 
wT

Figure 15: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(2.50 mm, 1.01 m/s, 300 °C). 
wT

Figure 16: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = wT
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(2.42 mm, 0.90 m/s, 400 °C). 

Figure 17: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(2.50 mm, 1.00 m/s, 500 °C). 
wT

Figure 18: Time histories of spreading diameter of droplet for (a)  = 170 °C and (b) 

 = 500 °C, and (c) definition of dimensionless diameter. 
wT

wT

Figure 19: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(2.47 mm, 1.40 m/s, 400 °C). 
wT

Figure 20: Impact of water droplet on Inconel alloy 625 surface for ( , pd υ , ) = 

(2.59 mm, 1.48 m/s, 500 °C). 
wT

Figure 21: Impact of water droplet on Inconel alloy 625 surface with diamond particles 

for ( , pd υ , ) = (2.57 mm, 1.06 m/s, 170 °C). wT
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Fig. 2 
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Fig. 3  
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Fig.18(c) 
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