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Abstract 

A multilayered ground composed of alluvial sand layers and soft clay layers is a common 

stratigraphic profile of most urban areas in Japan. Urban development with respect to natural disaster 

countermeasures often necessitates the construction of rather massive structures on soft soil deposits, 

e.g., the construction of a large-scale river embankment along the riverbank. The large-scale river 

embankment or super levee is an embankment with a broad width which can withstand even overflow, 

so that destruction by a dike break and its resultant flooding can be prevented.  

In the present research, the numerical analysis of a large-scale levee construction in Torishima, 

Osaka City, Japan is presented in terms of the long-term consolidation analysis and the dynamic 

analysis. The ground consists of alluvial sandy layers and soft clay deposits, which have been locally 

improved by several methods, including deep mixing beneath the main levee, and combination of 

sand drains and sand compaction piles under the extended back slope part. Almost 10 years after the 

completion of the Torishima super levee, subsidence and superficial cracks were observed around the 

road pavement on the top of the super levee. Subsequently, a comprehensive investigation was 

conducted to find the causes of the deformations in this case, as well as the evaluation of the super 

levee behavior under dynamic loadings.  

Firstly, modeling of Osaka soft clay obtained from Torishima site was conducted using an elasto-

viscoplastic constitutive model. The effect of destructuration, demonstrated by the shrinkage of the 

yield and the overconsolidation boundary surfaces, and the strain dependency of elastic shear modulus, 

were studied through a comparison of the simulations with the experimental results for the undrained 

triaxial compression tests. The strain dependency of shear modulus is newly introduced in this study 

to reproduce the soil behavior more precisely, particularly at the earlier stage of loading.  

Secondly, the long-term consolidation analysis of this super levee has been carried out through 

the finite element simulations. The finite element formulations, within the finite deformation theory 

for a Biot’s type two-phase mixture, were applied in the numerical analysis. The construction 

sequence for the super levee was included in the numerical simulation by implementing the 

simulation in several stages based on the real loading profile of the embankment construction. The 

simulations were conducted in two phases, namely, the first phase for the natural (unimproved) 

ground case, and the second for the improved ground case. The effects of the destructuration aspects 

in clay layers were studied in terms of the consolidation behavior of the unimproved ground case. For 

the improved case, the analysis was performed by including the ground-improved zones in the finite 

element simulation. The field observation data obtained during the preloading process, prior to the 

construction of the super levee, were employed to verify the assumptions and to calibrate the material 
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properties of the improved layers. The effects of destructuration in the natural ground cases were 

observed as the excess pore pressure buildup after the construction and the strain localization. The 

effects of the ground improvement techniques were studied by comparison of the deformation results 

and the excess pore water pressure responses with the natural ground case. The numerical results 

show that it is important to carefully estimate the unequal long-term settlement for the construction of 

large-scale embankment on soft soil deposits.  

Thirdly, a cyclic elasto-viscoplastic constitutive model was presented by which the 

characteristics parameters of the Torishima soft clay were determined through the integration of the 

constitutive equations. The simulation results were compared with the cyclic triaxial test data for the 

stress-strain relations and stress paths. Attempts were made to obtain the parameters so as the best 

agreement can be achieved between the simulated results and experimental data. The dynamic finite 

element formulation for a two-phase mixture theory was then derived within the finite deformation 

theory with updated Lagrangian scheme. The finite deformation theory based formulations were 

applied to appropriately simulate the large deformation phenomena. Using the derived formulations, a 

sophisticated three-dimensional computer program entitled COMVI3D-DY10 was developed for large 

deformation analysis of the multilayered systems subjected to dynamic loading conditions. The cyclic 

elasto-viscoplastic and the cyclic elasto-plastic constitutive models have been included in the code. As 

an example of large deformation problems, the strain localization analysis of soft clay samples 

subjected to a compelled acceleration were conducted under plane strain conditions. The shear 

banding process was examined through the strain distributions and the mean effective stress 

distributions in the specimen. 

Finally, the dynamic analysis of the Torishima super levee was conducted through two cases; as 

the natural (unimproved) ground case and the improved ground case. The cyclic triaxial test 

simulations were carried out on the sand specimens from the upper sand layer of Torishima site, to 

obtain the material parameters using the cyclic elasto-plastic constitutive model. The dynamic 

behavior of the super levee on multilayered ground was thoroughly evaluated by the acceleration 

responses, the displacements, the excess pore pressure, and the strain distributions for the unimproved 

and improved ground cases. Moreover, the effects of the ground improvement techniques on the 

liquefaction-induced large deformation in the super levee were studied. 

Based on the outcomes of this study, some recommendations were given for the construction and 

design guideline of super levees, by which the occurrence of such local settlement and superficial 

cracks during the consolidation, like that happened in Torishima case, and/or during the earthquake 

loading can be prevented in the future projects.  
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Chapter 1 

INTRODUCTION  

 

1.1. Background and Objectives 

Flooding and sediment-related disasters have been a main cause of damage all around the world. In 

Japan, due to the high precipitation and the specific characteristics of rivers, flooding has been one of 

the main natural disasters resulting in severe damage and destruction over the past several years. Most 

rivers in Japan flow directly from the mountains to the sea with a short stream length and a steep 

gradient, which results in a rapid flow and a high flood risk. One half of the entire country’s 

population and 70 percent of the national assets are concentrated in the low-lying flood plains and in 

the basins of major rivers, which are designated as potential flood hazard areas. In such areas, levees 

or flood walls are conventionally constructed along the rivers to control inundation and consequent 

damages. These levees have been considered as important structures for the prevention of floods. In 

order to confine floods within rivers, continuous levee lines have been constructed along the rivers in 

Japan as part of a comprehensive flood control management plan (Takeuchi 2002) 

The investigation of past flood disasters, such as Hurricane Katrina in 2005 which resulted in 

extensive devastation and more than 1000 fatalities due to the breaching of levees, has raised serious 

concerns regarding the vulnerability of levees and flood control structures, not only for disasters 

resulting from recent events, but also for worst-case scenarios like the combination of an earthquake 

and heavy rainfall, which may induce more severe damage to levees than flooding alone. Considering 

the low reliability and the weakness of conventional river embankments against disasters, a high-

standard river embankment, so-called ’super levee’, was firstly proposed in Japan as protection along 
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major rivers where absolutely no embankment collapse can be allowed (Kundzewicz and Takeuchi 

1999). A super levee is constructed by widening the back slope of a normal river embankment to a 

broad width (200-500 m) with a gentle slope, on which urban buildings and traffic facilities are 

developed. The construction costs are justified since this process redevelops urban areas and increases 

the value of the developed lands. The super levees can withstand even overflow, so that destruction by 

an embankment break and its resultant flooding can be prevented. In addition, a super levee is 

expected to have more resistibility against earthquakes and the consequent damage they cause. Figure 

1.1 shows an example plan of a super levee. As depicted in the figure, ordinary land use is permitted 

in the high-standard embankment areas. 

 

Back slope

River area

Before construction of super levee

After construction of super levee

High-standard embankment (Super levee)

Back slope (Approx. 30H)

High-standard embankment area

River area

H

 
Figure 1.1. Example plan of a super levee: normal levee vs. super levee. 

 

In the past few years, many parts of the continuous levee line in the downstream of the Yodo 

River in Osaka City, Japan have been widened to super levees. The Yodo River is the largest river in 

the Osaka metropolitan region and has a high risk of flooding. Any levee breakage alongside this river 

would result in severe damage and human fatalities. Despite the advantages of super levees, in 

comparison with normal levees, several unknown issues prevail concerning the construction of such 

massive embankments, particularly on soft ground deposits beside rivers. On the other hand, the 

necessity of super levee construction in that area, as part of the flood control management system, 

demands a comprehensive study on the failure and/or deformation mechanism and the overall 

behavior of the levee over soft soil strata. 
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In the present study as the main objective, consolidation and dynamic analyses of a super levee

along the Yodo River at Torishima is carried out. The Torishima super levee is located at the left bank

of the Yodo River, which flows into Osaka Bay, in the western part of Osaka City. The super levee

extends about 450 m in length along the riverbank from kilopost 1k500 to 1k900.  Figure 1.2 shows a

general map of the area with a bird’s-eye view of Torishima super levee site. Due to the 1995 Kobe

(Great Hanshin) Earthquake, about 2000 m of the continuous levee line along the Yodo River,

including the Torishima dike, were severely damaged by the liquefaction of the foundation soil

(Matsuo 1996). Thereafter, the rebuilding of the levee on that site was initiated by the construction of

a super levee. The main levee, with a height of 8.1 m, was built on a foundation improved by deep

mixing. The back slope extension has been constructed on a foundation improved by sand drains and

sand compaction piles, with a gentle slope of approximately 1V:29H. Prior to the construction of the

super levee, the preloading process had been accomplished to improve the characteristics of the clay

layers by pre-loading.

Source: Google Maps

Osaka City

Osaka Bay

Torishima super levee site

Figure 1.2. Aerial view of Torishima super levee site.

Almost 10 years after the completion of the Torishima super levee, ground settlement with

superficial cracks were observed on the top of the super levee around the road pavement, as shown in

Figure 1.3 (Oka 2009). Subsequently, a comprehensive investigation was conducted to find the causes

of the deformations in this case and to evaluate the behavior of the super levee under static and

dynamic loadings. The outcomes of the investigation could then be employed to revise the current
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construction guidelines for super levees. According to the current Japanese construction manual for

high-standard river embankments, the only criterion for settlement control is that the allowed

settlement must be limited to 10 cm for design purposes.

Longitudinal cracks: (1k600)

Transverse cracks: (1k900)

1k600

1k600

Crack

Crack 10 m

10 m

Figure 1.3. Superficial cracks on the top of the Torishima super levee.

Concerning the consolidation analysis of such a massive levee on soft soil deposits containing

soft clay layers, the characteristics behavior of sensitive soft clay during shearing should be

particularly taken into account. Soft clay specimens have shown complex behavior during shearing,

which can be associated with the collapse of the soil structure and microstructural changes. The

structure of natural soil consists of two components, namely, the fabric and the bonding between

particles (Burland 1990). The term ‘destructuration’ is often used to describe the progressive damage

to the bonding between soil particles during plastic straining. In many natural soft clays, the presence

of interparticle bonding is demonstrated by sensitivity. The sensitivity of clay is defined as the ratio of

its undisturbed strength to its remolded strength (Terzaghi 1944). The sensitivity may range from

about 4, for sensitive clays, to values of over 100, for so-called extra-sensitive or quick clays. In fact,

most clays, except for those which have been heavily overconsolidated, lose a portion of their original

strength after remolding. For Osaka soft clay, sensitivity levels of 4 to 10 are quite common, which
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indicates the high sensitivity for this type of clay. In some areas, however, larger values have been 

reported (e.g., Adachi et al. 1995, KG-NET 2007). Certain types of unstable behavior, such as the 

anomalous pore pressure response after the completion of loading and secondary creep caused by the 

destructuration in sensitive clays, have been reported by many researchers, e.g., Mesri and Choi 

(1979), Mitchell (1986), Lavallee et al. (1992), Hunter 2003, etc. 

The destructuration of Osaka soft clay specimens from Torishima site is studied via the elasto-

viscoplastic modeling under undrained triaxial conditions. The effect of the destructuration is then 

evaluated in a boundary value problem as the consolidation analysis of an embankment on one-layer 

foundation characterized by the material parameters of Osaka soft clay. For the numerical simulation 

of the boundary value problem, the finite element formulations within the framework of finite 

deformation theory are employed to appropriately simulate the large deformation phenomenon 

induced in soft clay layer under the embankment loading.  

The behavior of the soils under embankment loading, like any other nonlinear materials, is 

dependent on the orientation of the applied principal stresses. In the analysis of embankment 

construction, the placing of the fill materials results in the rotation of the principal stresses in the 

ground foundation. This effect is considered by including the Lode angle in the constitutive equations. 

The inclusion of Lode angle is accomplished through the Mohr-Coulomb failure criterion as the 

variation of the stress ratio. The Lode angle describes the magnitude of the intermediate principal 

stress with respect to the maximum and minimum principal stress values. Figure 1.4 displays the 

projection of the principal stress axes in the π-plane with a definition of the Lode angle θ, in which 

vector B A′ ′ is the projection of the stress vector in the π-plane, (1)
in is the unit vector along 1σ axis, and 

vector B C′ ′ is the projection of vector B A′ ′ along the unit vector (Chen and Mizuno 1990). 

The construction process of the embankment in the finite element models can be considered 

through the simplified approach, in which the embankment loading is applied as the incremental nodal 

forces on the embankment-ground interface elements, following the construction history of the 

embankment. This is the simplest possible approximation for the construction load. However, in order 

for the analysis to consider the stiffness and deformation of the embankment in an appropriate manner, 

the embankment layers must be included in the finite element model as it is. Construction of the 

material must be performed incrementally following the layered construction procedure. This 

procedure is presented in detail in Section 2.4.3. 

In addition to the long-term consolidation behavior, the behavior of the super levee under the 

dynamic loading conditions needs to be evaluated. According to the subsurface layers profile, the 

existence of loose saturated sand layers justifies the high potential of liquefaction and the subsequent 
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large deformations at the ground levels and atop the super levee, which becomes more extensive since 

the large deformations induced by the sensitive soft clays are also likely to happen. In order to 

properly predict the behavior of soft clay under dynamic loading conditions, a cyclic elasto-

viscoplastic constitutive model is introduced. The performance of the model is verified though the 

modeling of soft clay samples under cyclic triaxial loading conditions. 

 

1σ

2σ 3σ

θ

1 2 3σ σ σ> >

B′

A′ C′

 0  3
πθ≤ ≤ρ

( )(1) 1 2, 1, 1
6in = − −

 
Figure 1.4. Stress state on π-plane with the definition of Lode angle θ. 

 

To further the simulation of the super levee under dynamic loading, a sophisticated three-

dimensional computer program is developed based on the finite element formulations in the 

framework of two-phase finite deformation theory. In order to suitably analyze the large deformation 

phenomenon, the finite deformation theory with updated Lagrangian scheme must be adopted. The 

cyclic elasto-viscoplastic model for the clay and the cyclic elasto-plastic constitutive model for the 

granular materials are incorporated in the code. The performance of the program is evaluated in the 

strain localization analysis of the Osaka soft clay specimen under dynamic loading conditions. Strain 

localization or shear banding is a phenomenon in materials under shearing, by which plastic 

deformations localize into finite narrow bands of intense straining. Finally, the dynamic analysis of 

Torishima super levee is carried out as the natural (unimproved) ground case and the improved 

ground case. The dynamic response of the super levee as well as the effect of ground improvement 

techniques are examined through the improved ground case and by comparison of the results with 

those for the natural ground case. 
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1.2. Organization of the Dissertation 

This doctoral dissertation is organized in six chapters including the present one, which are outlined as 

follows: 

Chapter 1 gives a brief introduction about the background and objectives of the current research.  

Chapter 2 provides the elasto-viscoplastic modeling of Osaka soft clay specimen taking into 

account the destructuration aspects, namely, the microstructural degradation and the strain 

dependency of elastic shear modulus. The degradation of the elastic shear modulus as the strain 

dependency is introduced herein to improve the stress-strain relation results at the earlier stage of 

loading. The consolidation analysis of an embankment construction on a soft clay layer foundation is 

also presented in this chapter evaluating the effects of each destructuration aspects in a boundary 

value problem. 

Chapter 3 presents the consolidation analysis of the Torishima super levee construction on soft 

soil deposits, in which the effects of destructuration of soft clay layers are studied through three cases 

on the natural ground, followed by the analysis of the improved ground case according to the project 

specifications. The embankments of the super levee are properly modeled in the finite element mesh 

so that the stiffness and the consolidation of the embankments can be considered in addition to the 

embankment loading. 

Chapter 4 presents a cyclic elasto-viscoplastic model and its application to simulate the behavior 

of soft clay specimens under cyclic triaxial loading conditions. The characteristic parameters of the 

soft clay layers at Torishima super levee site are also determined by integration of the constitutive 

equations under the cyclic triaxial conditions and the comparison of the simulated results with the 

laboratory tests data.  

Chapter 5 demonstrates the dynamic analysis of soft soil deposits using the finite deformation 

theory which contains the details of the dynamic finite element formulation for a two-phase mixture 

theory, in addition to the results of the dynamic strain localization analysis for a soft clay specimen 

under plane strain conditions. The dynamic analysis results of the Torishima super levee are also 

presented in this chapter considering the effect of the ground improvement techniques and the 

multilayered ground response on the super levee. 

The last chapter, Chapter 6, highlights some remarkable conclusions of the study which is 

followed by a number of recommendations. Based on the results of present case study on the 

Torishima super levee, some practical recommendations are given regarding the construction 
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guideline of super levees. In addition, some recommendations are proposed for the further works in 

the context of this study.  
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Chapter 2 

ELASTO-VISCOPLASTIC MODELING OF 

OSAKA SOFT CLAY CONSIDERING 

DESTRUCTURATION  

 

2.1. Introduction 

Certain types of unstable behavior, such as the anomalous pore pressure response after the completion 

of loading and secondary creep caused by the destructuration in sensitive clays, have been reported by 

many researchers. Prediction of these phenomena by numerical modeling has been investigated over 

the last few decades. Oka et al. (1991) have introduced the variation of the viscoplastic parameter into 

the original elasto-viscoplastic constitutive model, proposed by Adachi and Oka (1982), to represent 

the structural breakdown of clay. However, it was not able to successfully reproduce the field 

anomalous soil behavior during long-term consolidation. Later on, Kimoto and Oka (2005) improved 

the elasto-viscoplastic constitutive model for use in predicting the unstable behavior during 

consolidation. In their proposed model, structural changes are expressed as strain softening, with 

respect to the accumulation of viscoplastic strain, so that the model can describe the instability not 

only around the failure stress, but also during compressive deformation. A validation of the proposed 

model has been performed by applying it to simulate various laboratory and field tests in addition to 

practical problems (e.g., Kimoto and Oka 2005, Oka et al. 2008, Karim and Oka 2010). Although 

giving consideration to the effect of structural degradation on strain softening and post-peak responses 

has helped to improve reproductions of the stress-strain behavior of soft clays, the reproduced results, 
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particularly in the small strain range, have often differed from the laboratory test data. Hence, the 

strain dependency of the elastic shear modulus is employed to overcome this inadequacy in the 

modeling of soft clays. 

It is well known that the deformation characteristics of soils, particularly the elastic shear 

modulus, are non-linear due to the microstructural changes that occur during loading. The shear 

modulus at small strain levels is often expressed as the function of the void ratio and the effective 

confining stress through the several empirical equations from the laboratory tests (Ishihara 1996). 

Consideration of the effective confining pressure has been made by normalizing the shear modulus 

through a power function of the mean effective stress. For large stains, however, the strain 

dependency of the shear modulus should also be taken into account. An evaluation of the variation in 

the shear modulus in the experiments reveals the significant reduction in the shear modulus when 

strain increases. Several empirical equations have been proposed for the strain-dependent shear 

modulus of geomaterials (e.g., Kovacs et al. 1971, Hardin and Drnevich 1972, Seed et al. 1986, etc.). 

For soft clays, Ogisako et al. (2007) have shown the normalized elastic shear modulus reduction 

function based on the viscoplastic shear strain and have proposed a hyperbolic equation for that 

expression in the elasto-viscoplastic constitutive model. 

In this chapter, the effect of destructuration on soft clay behavior is studied. In order to predict 

the soil behavior, using the elasto-viscoplastic model proposed by Kimoto and Oka (2005), the model 

parameters are firstly determined based on the laboratory test data. Then, triaxial test simulations are 

performed considering the destructuration parameters, i.e., structural degradation and the strain-

dependent shear modulus. Comparisons are made through the stress-strain relations and the stress 

paths under undrained triaxial compression conditions. The influences of the structural degradation 

and the strain-dependent shear modulus are particularly studied in a two-dimensional consolidation 

analysis of an embankment construction on a layer of Osaka soft clay. Several cases have been 

considered in order to properly study the effect of each aspect of destructuration in the two-

dimensional problem. 

 

2.2. Elasto-Viscoplastic Constitutive Model for Water-Saturated Soils 

As mentioned earlier, the elasto-viscoplastic constitutive model proposed by Kimoto and Oka (2005) 

is adopted. The model is an extension of the rate-dependent model for water-saturated clay, firstly 

proposed by Adachi and Oka (1982), which combines the Cam-clay model (Roscoe, Schofield and 

Thurairajah 1963) and Perzyna’s (1963) overstress type of viscoplasticity for the elasto-viscoplastic 

formulation. Kimoto and Oka (2005) improved the original model by Adachi and Oka (1982) in order 
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to overcome the structural degradation of the soil skeleton, considering the shrinkage of both the 

overconsolidation boundary surface and the static yield surface with respect to the accumulation of 

viscoplastic strain. In this section, the features of the model are described as can be found in Kimoto 

and Oka (2005). However, the model is modified here in several ways, namely, the variation in the 

stress ratio at failure by Lode’s angle, the introduction of a new definition for the dilatancy coefficient, 

and the introduction of the strain dependency of the elastic shear modulus. 

In the adopted constitutive model, Terzaghi’s effective stress for water-saturated soil is used by 

considering that extension is positive even for the pore pressure, as 

 ij ij w ijUσ σ δ′= +                                                                       (2.1) 

where ijσ  is the total stress tensor, ijσ ′
 is the effective stress tensor, wU  is the pore water pressure, 

and ijδ  is Kronecker’s delta. In addition, total strain rate tensor ijε  is assumed to be divided into two 

parts, namely, 

e vp
ij ij ijε ε ε= +                                                               (2.2) 

where e
ijε  denotes the elastic strain rate tensor and vp

ijε  is the viscoplastic strain rate tensor. The elastic 

strain rate tensor is expressed as 

1
2 3(1 )

e m
ij ij ij

m

S
G e

ε
σκ δ
σ

′
= +

′+
                                                  (2.3) 

in which G is the elastic shear modulus, ijS  is the deviatoric stress tensor ( ijij m ijS σ σ δ′ ′= − ), mσ ′  is 

the mean effective stress, and the superimposed dot denotes the time differentiation. κ is the swelling 

index and e is the void ratio. The degradation of elastic shear modulus G as a function of strain will be 

presented in the next section. In the present study, the initial void ratio e0 is used in Equation (2.3) for 

simplicity. 

 

2.2.1. Overconsolidation Boundary Surface 

An overconsolidation boundary surface is assumed to delineate the normally consolidated (NC) 

region and the overconsolidated (OC) region as 

( )* *
(0) ln 0b m m mbf Mη σ σ′ ′= + =                                                 (2.4) 
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where 0 bf <  indicates the overconsolidated region and 0 bf ≥  shows the normally consolidated 

region. *
(0)η  is the relative stress ratio defined by 

( )( ) ( )( )* * * * *
(0) 0 0ij ijij ijη η η η η= − −                                                    (2.5) 

in which subscript (0) denotes the initial state before deformation and *
ijη  is the stress ratio tensor. 

mbσ ′  controls the size of the OC boundary surface. 
*
mM  is the value of * * *

ij ijη η η=  when the 

volumetric strain increment changes from compression to swelling. In order to include Mohr-

Coulomb’s failure criterion with zero cohesion, stress ratio *
mM  is considered to be a function of 

Lode’s angle θ  given by 

1 3
3/2

2

1 3 3
 

3 2
J

cos
J

θ −=
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                                     (2.6) 

* 6 2 sin
( )

(3 3sin ) sin 3(3 sin ) cos  
mM

φθ
φ θ φ θ

=
+ + −

                                   (2.7) 

where J2 and J3 are the second and the third invariants of the deviatoric stress tensor, respectively, and 

φ  is the internal frictional angle. Lode’s angle varies in the range of  0  3
πθ≤ ≤ , where  0θ =  

represents the triaxial compression mode and the maximum value shows the extension mode of 

loading under triaxial conditions. In Equation (2.7), by taking 0θ = , the stress ratio at triaxial 

compression *
mcM  can be obtained as 

* 2 6sin
3 3 sin  mcM

φ
φ

=
−

                                                        (2.8) 

To describe the structural degradation of clay, strain softening with the accumulated viscoplastic 

strain is introduced in addition to strain hardening with the viscoplastic volumetric strain as 

01
exp( )vp

mb ma v

e
σ σ ε

λ κ
+′ ′=
−

                                                      (2.9) 

where maσ ′  is assumed to decrease with an increase in viscoplastic strain with 

( )exp( )ma maf mai maf
hzσ σ σ σ β′ ′ ′ ′= + − −                                          (2.10) 
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in which z is the accumulation of the second invariant of the viscoplastic strain rate given by  

0

  ;    
t

vp vp
ij ijz zdt z ε ε= =∫                                                   (2.11) 

In Equation (2.10), maiσ ′  and mafσ ′  are the initial and the final values for maσ ′ , respectively. β is a 

parameter that stands for the changing rate of maσ ′ , while the proportion of maf main σ σ′ ′=  provides 

the degree of possible collapse of the soil structure at the initial state. h is an additional degradation 

parameter with a non-negative value that controls the rate of degradation of the soil skeleton. In this 

study, the value of this parameter is assumed as 1h = . 

 

2.2.2. Static Yield Function 

In the following, static yield function yf  has been proposed to explain the mechanical behavior of clay 

at its static equilibrium state as 

  ( )* * ( )
(0) ln 0s

y m myf Mη σ σ′ ′= + =                                           (2.12) 

where ( )s
myσ′

 denotes the static hardening parameter. 

Static equilibrium state 0yf =  refers to the case when no viscoplastic deformation occurs, which 

can only be reached after an infinite time. Incorporating the strain softening for the structural 

degradation, the hardening rule of ( )s
myσ′

 can be expressed as 

( ){ }( ) ( ) 0
  exp( ) 1

exp( )maf mai mafs s vp
my myi v

mai

z eσ σ σ β
σ σ ε

σ λ κ

′ ′ ′+ − − +′ ′=
′ −

                         (2.13) 

 

2.2.3. Viscoplastic Potential Function 

In the same manner as for the static yield function, viscoplastic potential function pf  is given by 

( )* *
(0) ln 0p m mpf Mη σ σ′ ′= + =                                               (2.14) 
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where dilatancy coefficient *M  is defined separately for the overconsolidated region (OC) and the 

normally consolidated region (NC). In the original definition by Kimoto and Oka (2005), *M  is given 

by  

( )*

* * *

' '

                 :NC region

      :OC region
ln( / )

m

ij ij

m mc

M

M

θ

η η

σ σ

=
−

⎧
⎪
⎨
⎪
⎩

                                         (2.15) 

in which mc mbσ σ=′ ′  for isotropic consolidation. In general, it can be expressed as 

* *
(0) (0)

*
exp( )

( )
ij ij

mc mb
mM

η
σ

θ

η
σ′ ′=                                                  (2.16) 

According to the above definition, the value of dilatancy coefficient *M  becomes zero when the 

stress path coincides with the mean effective stress axis during cyclic loading. Therefore, a new 

definition for *M  (Kimoto et al. 2007) is introduced here as 

( )
( ) ( )

*

*

* *

                :NC region

 :OC region
m

m mb m

M
M

M

θ

σ σ θ
=

′

⎧⎪
⎨
⎪⎩

                                            (2.17) 

where *
mσ  denotes the mean effective stress at the intersection of the surface, which has the same 

shape as bf , and is given by 

*
(0)

*
*  ex

)
p

(m m
mM θ

η
σ σ ′=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                   (2.18) 

The overconsolidation boundary surface, the static yield function, and the viscoplastic potential 

function are illustrated for isotropically consolidated soil in Figure 2.1.  

 

2.2.4. Viscoplastic Flow Rule 

Based on the overstress type of viscoplastic theory, first adopted by Perzyna (1963), viscoplastic 

strain rate tensor vp
ijε  is defined as 
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    ( ) pvp
ij ijkl y

kl

f
C fε

σ
∂

= Φ
′∂

                                                     (2.19) 
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f f
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=

≤
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⎨
⎪⎩

                                                (2.20) 

( )ijkl ij kl ik jl il jkC a bδ δ δ δ δ δ= + +                                               (2.21) 

where  are Macaulay’s brackets, )(Φ yf
 
is the rate-sensitive material function, and ijklC  is a fourth 

order isotropic tensor. a and b in Equation (2.21) are material constants.
 

)(Φ yf
 
is determined from 

the experimental correlation proposed by Adachi and Oka (1982) and Kimoto and Oka (2005) as 

)( ( )
* *

 0Φ  exp  ln m
y m

mb

f m M
σ

σ η
σ

′
′ ′= +

′
⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
                                    (2.22) 

in which m′  is the viscoplastic parameter. 

 

* ( )mM θ

'
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'
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'
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(a) OC region                                                 (b) NC region 

Figure 2.1. Overconsolidation boundary surface, static yield function and viscoplastic potential function. 

 

Deviatoric viscoplastic strain rate vp
ije  and volumetric viscoplastic strain rate vp

ijε  can be 

expressed as 

( )
* *

1 0

* *
(0)

*
 exp  lnv ijp m

ij
mb

ije C m M
σ

η
σ

η η
η

′
′

−
= +

′
⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟
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                                 (2.23) 
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                    (2.24) 

where 1 2C b=  and 2 3 2C a b= +  are the viscoplastic parameters for the deviatoric and the volumetric 

strain components, respectively. 

 

2.2.5. Strain Dependency of the Elastic Shear Modulus 

The non-linearity of soil stiffness has been studied extensively on materials such as sands, clays, and 

gravel, and has been well summarized by Ishihara (1996). For cohesive soils, several empirical 

equations have been proposed by considering the dependency of the shear modulus on the effective 

confining stress (Kokusho et al.  1982). In the original configuration by Kimoto and Oka (2005), the 

change in the elastic shear modulus of the elasto-viscoplastic model is given by the square root 

function of the normalized mean effective stress as 

0
0

m

m

G G
σ
σ

′
=

′
                                                            (2.25) 

in which 0G  is the value for G  when 0m mσ σ′ = ′ .  

Equation (2.25) considers only the effect of the confining pressure, which can accurately 

approximate the variation in shear modulus at very small levels of strain. In regions with large levels 

of strain, however, as demonstrated by the experimental results, the strain dependency of the shear 

modulus should be considered as well. Various empirical formulations have been provided from the 

laboratory test results to express the strain dependency of the shear modulus (e.g., Hardin and 

Drnevich 1972, Wang and Kuwano 1999). Ogisako et al. (2007) have introduced a normalized shear 

modulus reduction function based on the viscoplastic shear strain in soft clay specimens and have 

proposed a hyperbolic equation for that expression, namely, 

 
( )( )0

1

1
rvp

G G
α γ

=
+

                                                        (2.26) 

where α  is the strain-dependent parameter, r  is the experimental constant, and vpγ  is the 

accumulated viscoplastic shear strain given by an accumulation of the viscoplastic deviatoric strain 

rate as  
vp vp vp

ij ijde deγ = ∫ .  
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In this study, based on the experimental results, 0.4r = is chosen. Therefore, the final 

formulation for the variation in shear modulus can be incorporated as 

( )( )0 0.4
0

1

1
m

vp
m

G G
σ
σα γ

′
=

′+
                                                (2.27) 

 

2.3. Numerical Modeling of Osaka Soft Clay 

The numerical modeling of Osaka soft clay specimens has been conducted using the described elasto-

viscoplastic model. Material parameters have been determined by laboratory tests using natural 

samples. The sampling procedures were performed as part of a geotechnical investigation of a super-

levee construction project along the Yodo River in Torishima, Osaka City, Japan. Geotechnical 

investigations have been performed through the drilling of two boreholes, which reach down to about 

40 m below ground level. Standard penetration tests (SPT) and undisturbed tube samplings (Φ= 75 

mm) in various layers have been performed. According to the boring results, the subsurface strata 

were composed of alluvial sand and soft clay layers overlying a diluvium dense gravel layer and a 

rather stiff clay layer at a depth of about 35 m. The cross section of the subsurface layers is 

schematically illustrated in Figure 2.2. B1 represents the topsoil material with a thickness of about 

2.25 m, As2 is the upper alluvial sand layer with a thickness of approximately 8.5 m, Ac2 is the 

alluvial soft clay layer with a thickness of 12 m, As1 is the lower alluvial sand layer with a thickness 

of 5.5 m, and Ac1 is the alluvial clay deposit. Dg and Dc indicate the diluvium sandy gravel and 

rather stiff clay deposits, respectively. 

Laboratory tests were conducted on the clay specimens obtained from the Ac2 layer, including 

undrained triaxial compression tests with different strain rates, and consolidation tests with different 

loading methods, namely, the constant rate of loading (CRL) and the standard incremental loading 

(STD) methods. The triaxial tests on the soft clay samples were conducted at two different strain rates, 

namely, 0.05 %/min and 0.005 %/min, and at three levels of confining pressure equal to 100, 200, and 

400 kPa. 

For the Ac2 layer in Torishima, the value of sensitivity has been reported as 6-8 (KG-NET 2007), 

which indicates the high sensitivity of the Osaka soft clay in this district. In order to predict the 

triaxial behavior of soft clay, elasto-viscoplastic model parameters have been determined from the 

laboratory test results following the proposed method by Kimoto and Oka (2005), as well as other 

characteristic parameters. Viscoplastic parameter 'm  is determined from undrained triaxial 
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compression tests conducted at different strain rates. By having 'm , the other viscoplastic parameters,

1C and 2C , are obtained from Equations (2.23) and (2.24) in the triaxial stress state. The

representative material parameters of the Ac2 layer are listed in Table 2.1. It is seen that the soft clay

layer was divided into three individual sub-layers based on the soil properties. The stress-strain

relations and the stress paths were used to evaluate the aspects of the destructuration in the

constitutive modeling.

B’1

As2

Ac2

As1

Ac1

Dc

Dg

0

10

20

30

40 m

Figure 2.2. Soil profile in Torishima, Osaka.

2.3.1. Modeling of Soft Clay Considering Structural Degradation

As the first stage, the behavior of the soft clay specimens obtained from the Ac2 layer were simulated

using the representative material parameters listed in Table 2.1, which were determined based on the

triaxial test results. Comparisons were made with the experimental results through the stress-strain

relations and the stress paths. The effect of structural parameters n and β on the stress-strain relations

and the stress paths have been shown by Kimoto and Oka (2005) as softening behavior after the peak

stress point, in which the larger structural parameter, β, promotes the rapid degradation of the shear

strength. Nonetheless, the behavior before the peak stress point does not change with the structural

parameters and it remains similar to that of the case in which no structural degradation is

considered ( 0)  . Figure 2.3 shows the effect of the structural parameter β on the stress-strain

relations and stress paths of a clay specimen in the NC region presented by Kimoto (2002). By taking

the larger value of β, the stress state reaches the residual state more quickly.
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Table 2.1. Material parameters of soft clay layer Ac2. 

  Ac2-U Ac2-M Ac2-L 

Depth (m)  11.0 - 15.0 15.0 - 19.0 19.0 - 23.0 

Test no.      Tw 2-1-2  
      Tw 2-1-2b 

Tw 2-2-1 
Tw 2-2-2 

Tw 2-3-1 
Tw 2-3-2 

Initial void ratio e0 1.25 1.65 1.42 

Poisson’s ratio υ 0.3 0.3 0.3 

Initial elastic shear modulus (1) G0 (kPa) 3759 3927 5993 

Compression index λ 0.341 0.593 0.652 

Swelling index κ 0.019 0.027 0.014 

Stress ratio at failure M*
m 1.24 1.18 1.12 

Viscoplastic parameter m’ 24.68 28.2 21.15 

Viscoplastic parameter C1 (1/s) 3.83×10-11 1.85×10-11 8.99×10-11 

Viscoplastic parameter C2 (1/s) 3.83×10-11 1.85×10-11 8.99×10-11 

Structural parameter ' '/maf main σ σ=  0.83 0.67 0.60 

Structural parameter β 5 10  15 

(1) Based on the mean effective stress at the depth of the specimen 
 

Figures 2.4 and 2.5 present the experimental results and the corresponding simulated results by 

the elasto-viscoplastic model, where the symbols show the experimental values and the solid lines 

represent the relevant simulated results. The stress-strain relations of the testing samples and the 

predicted results are presented in Figure 2.4. The results demonstrate quite a good tendency, in terms 

of strain softening and post-peak responses. However, considering the behavior around the peak stress 

point, the simulated results show smaller strain at the same shear stress level. This implies a larger 

shear modulus in the predicted results, which leads to a smaller accumulated deformation.  

 

 

Figure 2.3. Effects of parameter β on stress-strain relations and stress paths, (after Kimoto 2002). 
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The simulated stress paths for the clay specimens under different levels of confining pressure, 

illustrated in Figure 2.5, follow the corresponding experimental results, although the initial part of the 

stress path curve in some cases does not agree with the experimental values. The simulations indicate 

the elastic behavior at the initial part of the stress paths in contrast to the experimental data.  

In order to improve the predicted results, the inequality of the viscoplastic parameter for 

deviatoric strain component 1C  and the viscoplastic parameter for volumetric strain component 2C  

was considered by taking different values for 2C , as 2 1C C≥ . Nonetheless, the effect of this 

consideration was insignificant. The dissimilarity of the stress paths between the simulation and the 

experiments can be attributed to the influence of the sampling process and the consequent disturbance 

to the structured soil behavior, which results in less elasticity in the earlier stages of shearing in the 

laboratory tests. Furthermore, the pore water pressure in the tests, which is measured by means of a 

pressure sensor connected to the top and the bottom of the specimen, represents an average value of 

the pore water pressure within the entire sample. However, the simulation results, obtained by the 

integration of the constitutive equations, represent the one-point response in which the size or the 

boundary effect has been disregarded. 
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Figure 2.4. Stress-strain relations during triaxial tests and simulated results considering only the

structural degradation.
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Figure 2.5. Stress paths during triaxial tests and simulated results considering only the structural

degradation, ( )m failureM q   .
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2.3.2. Modeling of Soft Clay Considering Structural Degradation and Strain-

Dependent Shear Modulus 

In order to improve the predicted results, the strain-dependent elastic shear modulus was taken into 

consideration in addition to structural degradation. Giving consideration to the effect of the strain 

dependency of the shear modulus in the modeling changes the values of the structural parameter. The 

strain-dependent parameter α, and the modified values for structural parameter β are presented in 

Table 2.2. 

 

Table2.2. Strain-dependent parameter and modified values for the structural parameter. 

  Ac2-U Ac2-M Ac2-L 

Test no.  Tw 2-1-2 
Tw 2-1-2b 

Tw 2-2-1 
Tw 2-2-2 

Tw 2-3-1 
Tw 2-3-2 

Strain-dependent parameter α 20 10 10 

Structural parameter β 10 15 20 

 
 

Figure 2.6 indicates the stress-strain relations of the predicted results beside the experimental 

data, while the stress paths for both cases are presented in Figure 2.7. As mentioned above, the 

symbols in these figures represent the experimental data from laboratory tests and the solid lines show 

the corresponding predicted values when using the elasto-viscoplastic constitutive model. Applying 

the modified values for β and the strain-dependent shear modulus leads to more accurately predicted 

results. Although giving consideration to strain-dependent shear modulus G leads to an enormous 

improvement in the predictions of the stress-strain relations, particularly around the peak stress points, 

its effect on the stress paths under triaxial test conditions is insignificant. The predicted results 

emphasize the capability of the elasto-viscoplastic model to reproduce the sensitive soil behavior 

through the structural degradation parameters, of which a more accurate response is achieved by 

considering the strain dependency of the shear modulus. 

The effect of different strain rates is studied through the results on the specimens from Ac2-U 

layer, namely, Tw2-1-2 and Tw2-1-2b, which have been compressed in the strain rates of 0.05%/min 

and 0.005%/min, respectively. Figure 2.8 illustrates the experimental and the simulated results on the 

samples at the confining pressure of 400 kPa. Using the lower rate of strain in the experiment leads to 

the slightly higher level of strength in the specimen. This fact is correspondingly observed in the 

simulated results, although the difference in the stress paths is insignificant.  
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Figure 2.6. Stress-strain relations during triaxial tests and simulated results considering the structural

degradation and strain-dependent shear modulus.
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Figure 2.7. Stress paths during triaxial tests and simulated results considering the structural degradation

and strain-dependent shear modulus, ( )m failureM q   .
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Figure 2.8. Effect of different strain rates on the experimental and the simulated results. 

 

2.4. Consolidation Analysis of an Embankment Construction on Soft Clay 

The effects of these two factors, structural degradation and the strain-dependent shear modulus, have 

been studied in the context of a typical geotechnical problem, namely, a two-dimensional 

embankment construction. The finite element consolidation analysis of an embankment on a soft clay 

foundation was performed for three cases. All cases assume the same initial conditions. In Case 1, 

both destructuration aspects were ignored by making β and α equal to zero (no structural degradation). 

In Case 2, the effect of structural degradation was considered, while the original shear modulus 

formulation, Equation (2.25), was used. In Case 3, the effect of the strain-dependent shear modulus 

was considered in the simulation by applying Equation (2.27) and the modified values for structural 

parameter β. The overall features in each case of the finite element analysis are summarized in Table 

2.3. Comparisons have been made among the results of these cases to evaluate the influence under 

plane strain conditions. 
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Table 2.3. Specifications for each case in the 2D numerical analysis. 

 Structural  
degradation 

Strain 
dependency of 
shear modulus 

Case 1 (No structural degradation:  β=0, α=0 ) × × 

Case 2 (Structural degradation:  β=10, α=0)   × 

Case 3 (Structural degradation + Strain dependency of G:  β=15, α=10)     
 : Considered,    ×: Not considered. 

 

2.4.1. Problem Description 

The consolidation analysis of the Osaka soft clay foundation subjected to embankment construction 

was performed using the finite element method. The geometry and the finite element mesh of the 

problem are presented in Figure 2.9, where a typical embankment with a height of 3.2 m and a slope 

of 1:2, was constructed on a soft clay foundation with a thickness of 10 m and characterized by the 

parameters of Osaka soft clay.  

 

Drainage boundary

Impervious boundary Impervious boundary

10
 m

9.5 m 45.5 m

1:2

3.25 m

3.
2 

m

 

Figure 2.9. Finite element mesh and boundary conditions for the embankment construction. 

 

As shown in Figure 2.9, the embankment layers were properly modeled in the finite element 

mesh so the stiffness and the consolidation of the embankment layers could be considered in the 

simulation in addition to the embankment loading. Due to symmetry, only half of the embankment 

was represented in the finite element mesh. The size of the modeled domain was determined so that 

the boundary effects would be negligible. A fully saturated condition was assumed, in which only the 

boundary located at the top was permeable. The displacement boundary at the bottom of the domain, 
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which is regarded as the base ground, was fixed in both vertical and horizontal directions, while the 

right- and the left-hand side boundaries were fixed only in the horizontal direction. Mesh sensitivity 

studies were done to confirm that the mesh was dense enough to produce converging results. The 

elasto-viscoplastic material parameters of the Ac2-M layer were applied for the soft ground layer, 

while the elastic behavior was adopted for the embankment layers assumed to be made of granular fill. 

Table 2.4 gives the material parameters, which were used in the finite element analysis. 

 

Table 2.4. Material parameters for the embankment and the ground layer. 

Parameters k 
(m/s) 

γt 
(kN/m3) e0 G0 

(kPa) 
OCR λ κ M*

mc m’ C1,C2 
(1/s) n β α 

Embankment 1.00×10-5 19.8 0.8 4300          

Ground  
(Ac2-M) 3.85×10-10 16.0 1.65 3930 1.10 0.593 0.027 1.18 28.2 1.85×10-11 0.67 10,15(1) 0,10 

(1) Modified value after strain-dependent shear modulus consideration 

 

2.4.2. Finite Element Formulations Based on Finite Deformation Theory 

In the numerical simulation, the finite element method for two-phase mixtures, based on the finite 

deformation theory and the updated Lagrangian approach, is adopted with the objective Jaumann rate 

of Cauchy stress for the weak form of the equilibrium equation (Oka et al. 2002a; Kimoto et al. 2004). 

A Biot’s type of two-phase mixture theory is used with a velocity-pore pressure formulation. The 

grain size particles and the fluid are assumed to be incompressible. An eight-node quadrilateral 

isoparametric element with reduced Gaussian (2×2) integration is employed for the displacement. The 

pore water pressure is defined by a four-node quadrilateral isoparametric element. Figure 2.10 shows 

the quadrilateral elements and Gauss points for the soil skeleton and the pore water pressure.  

 

8-node quadrilateral element 
for the soil skeleton

4-node quadrilateral element 
for the pore water pressure

Gauss points

 
Figure 2.10. Isoparametric elements for the soil skeleton and the pore water pressure. 
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Concerning the finite deformation framework, strain rate tensor ijε in the previous section, i.e., 

the section that described the constitutive model, is replaced by stretching (or rate of deformation) 

tensor ijD . The finite element formulation, based on the updated Lagrangian method, is explained here, 

including the discretization of the equilibrium equation followed by the continuity equation. 

 

2.4.2.1. Updated Lagrangian Approach 

In Lagrangian methods, the nodes, the elements, and the quadrature points move with the material, so 

that constitutive equations are always evaluated at the same material points, which is an advantage for 

history-dependent materials such as soils. On the other hand, in Eulerian descriptions, the elements do 

not deform with the material and they retain their original shape regardless of the magnitude of the 

deformation. 

Finite element discretization with Lagrangian descriptions are commonly classified as the total 

Lagrangian approach and the updated Lagrangian approach. For the total Lagrangian approach, the 

discrete equations are formulated with respect to the reference configuration. For the updated 

Lagrangian approach, the discrete equations are formulated in the current configuration, which is 

assumed to be the new reference configuration. Figure 2.11 shows the motion of a continuum body in 

a stationary Cartesian coordinates, in which iX X= , ix x= , and ix x′ ′= , are coordinates of the point 

P at time 0t = , t t= , and t t t= + ∆ , respectively. The configuration at time 0t =  is the initial 

configuration, where the body is not deformed yet, the configuration at time t t= is the current 

configuration, i.e., the latest known configuration, and the configuration at time t t t= + ∆  is unknown.  

In the present study, the incremental boundary value problem is applied by the rate type of the 

equilibrium equations with incremental constitutive equations and appropriate boundary conditions. 

Thus, the configuration at time t t t= + ∆  is provided by solving the rate type of equilibrium equation 

at the current configuration ( )t t=  with a linear approximation in terms of time. By integrating this 

procedure from time 0t =  to , 2 ,...t t∆ ∆ , approximate solutions of nonlinear equations can be 

obtained. The finite element formulation based on the updated Lagrangian approach is effective for 

strongly nonlinear problem inducing large deformation and rotation, since the reference configuration 

is consecutively updated at each step of calculation to the latest deformed configuration. 
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Initial configuration: 
reference configuration 
(known)

(unknown)
Current configuration
(known)

(a) Total Lagrangian formulation

(unknown)

Current configuration: 
reference configuration 
(known)

(b) Updated Lagrangian formulation
 

Figure 2.11. Motion of a continuum body in stationary Cartesian coordinate system, (a) total Lagrangian 

formulation, (b) updated Lagrangian formulation. 

 

2.4.2.2. Equilibrium Equation 

Terzaghi’s effective stress is adopted for the two-phase soil medium as 

ij ij w ijT T U δ′= +                                                              (2.28) 

where ijT
 
is the Cauchy stress tensor, ijT ′  is the effective Cauchy stress tensor, wU  is the pore water 

pressure, and ijδ  is Kronecker’s delta.  

Taking the time derivative of Equation (2.28) yields  
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ij ij w ijT T U δ′= +                                                              (2.29) 

For the finite element method, we used a rate type of equilibrium equation for the updated 

Lagrangian formulation. Assuming fully saturated conditions, the weak form of the equilibrium 

equation for the entire fluid-solid mixture in domain V can be expressed as 

,
ˆ 0ji j i

V

S v dVδ =∫                                                              (2.30) 

in which ˆ
ijS  is the total nominal stress rate tensor with respect to the current configuration and ivδ  is 

the virtual velocity vector component. 

The relationship between the nominal stress rate tensor and the Cauchy stress rate tensor is given 

by 

ˆ
ij ij kk ij ik jkS T L T T L= + −                                                         (2.31) 

ˆ
ij ij kk ij ik jkS T L T T L′ ′ ′ ′= + −                                                      (2.32) 

where ˆ
ijS ′

 is the effective nominal stress rate tensor and ijL  is the velocity gradient tensor. 

Combining Equations (2.28) to (2.32), the total nominal stress rate tensor can be related to the 

effective nominal stress rate tensor as 

 
ˆ ˆ

ij ij w ij kk w ij w ik jkS S U L U U Lδ δ δ′= + + −                                          (2.33) 

Using Green’s theorem and Gauss’s divergence theorem, Equation (2.30) can be written as 

ˆ ˆ( ) 0ji i ji ij j
V

S nv d S L dVδ δ
Γ

Γ − =∫ ∫                                               (2.34) 

where Γ  denotes a boundary surface of the closed domain, V , and n  is the unit normal vector to 

boundary surface Γ . Incorporating Equation (2.33) into Equation (2.34) leads to 

( )ˆ (  )ˆ
ij ij w ij ij kk w ij w ik jk ij ji i

V V V
jS L dV U L dV L U U L L dV S v dnδ δ δ δ δ δ δ

Γ

′ + + − = Γ∫ ∫ ∫ ∫           (2.35) 

 Using the Cauchy stress theorem, Equation (2.35) becomes as follows: 
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 ( )ˆ
ij ij w kk kk w ij w ik jk ij ti i

V V V

S L dV U D dV L U U L L dV S v dδ δ δ δ δ δ
Γ

′ + + − = Γ∫ ∫ ∫ ∫              (2.36) 

 where ijD  is the stretching tensor defined by ( )1

2ij ij jiD L L= + and tiS  is the nominal traction vector 

given by ˆ
ti ji jS S n= . 

Substituting Equation (2.32) into Equation (2.36) results in 

( )
ij ij ik jk ij kk ij ij w kk

V V V V

kk w ij w ik jk ij ti i
V

T D dV T L L dV L T L dV U D dV

L U U L L dV S v d

δ δ δ δ

δ δ δ δ
Γ

′ ′ ′− + +

+ − = Γ

∫ ∫ ∫ ∫

∫ ∫
                     (2.37) 

The objective Jaumann rate of Cauchy stress tensor îjT ′ is defined by means of Cauchy stress rate 

tensor ijT ′
 and spin tensor ijW  as 

îj ij ik kj ik kjT T W T T W′ ′ ′ ′= − +                                                      (2.38) 

The constitutive equation is described using the Jaumann rate of Cauchy stress tensor îjT ′
 and 

stretching tensor ijD  as 

ˆ ( )e vp
ij ijkl kl klT C D D′ = −                                                        (2.39) 

where e
ijklC  is the elastic tangential stiffness matrix and vp

ijD  is the viscoplastic stretching tensor, 

which is related to the total stretching tensor as 

e vp
ij ij ijD D D= +                                                              (2.40) 

where e
ijD  is the elastic stretching tensor defined as 

1
2 3(1 )

e m
j

m
ijij iD S

T
G e T

κ
δ

′
= +

′+
                                              (2.41) 

 in which ijS  is the deviatoric stress tensor rate ( ij ij m ijS T T δ′ ′−= ). Viscoplastic stretching tensor vp
ijD  

is given by 
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( ) pvp
ij ijkl y

kl

f
D C f

T

∂
= Φ

′∂
                                                     (2.42) 

where are Macaulay’s brackets; ( ) ( )y yf fΦ = Φ , if 0yf >  and ( ) 0yfΦ = , if 0yf ≤ . 

 

 

The tangent modulus method (Pierce, Shih and Needleman 1984) is implemented here to 

determine the viscoplastic stretching tensor. Hence, Equation (2.39) can be rewritten in matrix form as 

{ } [ ]{ } { }T̂ C D Q′ = −                                                       (2.43) 

where [ ]C  is the tangential stiffness matrix and { }Q  is the relaxation stress vector.  

The substitution of Equation (2.38) into Equation (2.43) gives 

 { } [ ]{ } { } { }T C D Q W′ ′= − +                                                (2.44) 

in which { }W ′
 
is the vector defined as { } { }W WT TW′ = − . 

For the discretization of the weak form of the equilibrium equation, we adopt FEM with an 

isoperimetric element. The velocity and the pore water pressure are approximated as  

{ } [ ]{ }*v N v=                                                            (2.45) 

{ } [ ]{ }*
w h wU N U=                                                         (2.46) 

where [ ]N  and [ ]hN  are the shape functions of the eight-node quadrilateral element for the nodal 

velocity vector and the four-node quadrilateral element for the pore water pressure, respectively. 

Combining Equation (2.37) and Equation (2.44) and using the finite element approximations, the 

final weak form of the equilibrium equation becomes 

 [ ]{ } [ ] { } [ ] { } [ ]{ } [ ]{ } { }* * *T T

L v w
V V

K v B Q dV B W dV K v K U F′− + + + =∫ ∫             (2.47) 

in which,                                                    

[ ] [ ] [ ][ ]T

V

K B C B dV= ∫                                                     (2.48) 
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[ ] [ ] [ ][ ] [ ] [ ][ ] [ ] { }{ }T T T T

L M M M M M v
V V V

sK B D B dV B U B dV B T B dV′= + +∫ ∫ ∫          (2.49) 

[ ] { }{ }T

v v h
V

K B N dV= ∫                                                      (2.50) 

{ } [ ] { }T

tF N S d
Γ

= Γ∫                                                       (2.51) 

[ ]MB is the matrix which transforms the nodal velocity vector { }*v into the velocity gradient 

vector{ }L , i.e.,{ } [ ]{ }*
ML B v= . Also, [ ]{ }S ik jkD L T L′= − , and [ ]{ } kk w ij w ik jkL U UL LU δ δ−= . 

Using Euler’s scheme, the nodal velocity vector and pore water pressure can be obtained as 

{ } { }*
*

u
v

t

∆
=

∆
                                                              (2.52) 

{ } { } { }* *

* w wt t t
w

U U
U

t
+∆

−
=

∆
                                                    (2.53) 

where { }*u∆
 
is the vector of the incremental nodal displacement. Incorporating Equations (2.52) and 

(2.53) into Equation (2.47) becomes 

  [ ] [ ][ ]{ } [ ]{ } { } [ ]{ } { } { }* * * * w
L v w v wt t t t t

K K u K U t F K U t F t F
+∆ +∆

+ ∆ + = ∆ + + ∆ − ∆           (2.54) 

where 

{ } [ ] { }* T

V

F B Q dV= ∫                                                        (2.55) 

{ } [ ] { }Tw

V

F B W dV′= ∫                                                      (2.56) 
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2.4.2.3. Continuity Equation 

Assuming the incompressibility of the soil particles and the pore water, the continuity equation is 

obtained from the mass conservation equation of the soil-water mixture as 

, 0w ii ii
w

k
U D

γ
+ =                                                            (2.57) 

where k  is the coefficient of permeability, iiD  is the stretching tensor, and wγ  is the density of the 

pore water. 

The weak form of the continuity equation is given by 

, , 0w ii ii w ii ii
w wV V V

k k
U D dV U dVW W dVWD

γ γ
+ = + =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∫ ∫ ∫                        (2.58) 

in which W  is a Galerkin weighted function for the continuity equation as { }hW N= . Proceeding 

with the similar procedure as described for the equilibrium equation, Equation (2.58) becomes 

 , ,, 0w i i w i ii
w w V V

i
k k

U n d U dVW D dW VW
γ γΓ

Γ − + =∫ ∫ ∫                              (2.59) 

where n  is the unit normal vector to boundary surface Γ . 

Using finite element approximations for the pore water pressure, as described by Equation (2.46), 

the discrete form of the continuity equation is given by 

 [ ] { } [ ] [ ]( ){ }* * 0T

v h w t t
K u t K V U

+∆
∆ − ∆ + =                                     (2.60) 

where  

 [ ] { }{ }T T

v h v
V

K N B dV= ∫                                                    (2.61) 

 [ ] [ ] [ ]T

h h h
w V

k
K B B dV

γ
= ∫                                                  (2.62) 

{ } { }{ } [ ]T
h h

w

k
V N n B d

γ Γ

= − Γ∫                                              (2.63) 



36 
 

2.4.2.4. Discrete Equation 

Combining the equilibrium equation and the continuity equation, the final system of equations for the 

FEM analysis, based on the finite deformation theory, can be obtained as 

 
[ ] [ ] [ ]

[ ] [ ] [ ]( )
{ }
{ }

{ } [ ]{ }* *
,

*
, 0

t
L v t t v w t

T
w t tv h

K K K u t F K U

UK t K V
+∆

+∆

+ ∆ ∆ +
=

−∆ +

⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎨ ⎬ ⎨ ⎬

⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎩ ⎭⎣ ⎦ ⎩ ⎭
               (2.64) 

where  

 { } { } { } { }*t wF F F F= + −                                                   (2.65) 

 

2.4.3. Construction Procedure of the Embankment 

The simplest approximation for simulation of the new material placing in a finite element analysis is 

by applying the increment of the weight of the fill as the external load on the nodes of the 

embankment foundation interface. However for a more accurate analysis, the embankment 

construction procedure should be implemented by which the stiffness and the consolidation of the 

embankment can be considered in addition to the embankment loading.  

When constructing material, the following procedure is recommended (Potts and Zdravkovic 

1999): 

a. Divide the analysis into a set of increments. For a particular increment the element to be 

constructed are inserted and given a constitutive model appropriate to the material behavior 

during placing. This often means that the material has a low stiffness. In the current study, the 

elastic behavior with a low stiffness equal to 75% of the original stiffness of the material is 

assumed for the material during placing. 

b. Nodal forces due to the self body forces of the constructed materials are calculated and 

applied on the corresponding nodes. 

c. The global stiffness matrix and all other the boundary conditions are assembled for the 

increment. The analysis is performed to obtain the incremental changes in displacements, 

strains, and stresses. 

d. Before application of the next increment, the constitutive model for the elements just 

constructed is changed to represent the behavior of the fill material once placed. Incremental 
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displacements of any nodes which are only connected to the constructed elements (i.e., not

connected to elements that were active at the previous increment) are zeroed.

e. Apply the next increment of analysis.

The incremental procedure is schematically depicted in Figure 2.12.

The linearized construction sequence of the embankment is schematically shown in Figure 2.13.

As shown, it was assumed that the embankment would be constructed in four layers within 40

consecutive days. A consolidation analysis was performed until 1000 days after the end of the

construction.

(a)

(b)

(c)

(d)

(e)

Figure 2.12. The procedure for implementing the embankment construction in the finite element analysis.
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Figure 2.13. Loading profile based on the construction stages. 

 

2.4.4. Numerical Analysis Results and Discussion 

2.4.4.1. Vertical Displacements 

The predicted results for the vertical displacements at the ground level due to the construction of the 

embankment are presented in Figure 2.14 for all three cases on various days. The settlements at the 

ground level are shown corresponding to each construction stage and consolidation after the end of 

construction. All cases show a trough-shaped ground settlement beneath the embankment with a 

surface heave around the toe of the embankment. Despite the increases in ground settlement beneath 

the embankment, during and after construction, the surface heave around the toe decreases during 

consolidation. The maximum settlement at each construction stage occurs at the node which is located 

just beneath the centerline of the embankment. 

All the cases, i.e., Case 1 with no structural degradation, Case 2 with structural degradation, and Case 

3 with structural degradation and strain-dependent shear modulus, demonstrate the same general 

features in terms of ground settlement, although the settlement values are different for each case. 

Regarding the settlement at the embankment centerline after 40 days, Cases 1 and 2 have almost 

similar settlements with a value of 2.17 cm. Thereafter, however, during consolidation, the strain rate 

in Case 2 increases (due to the softening in the soft clay layer) and leads to a larger displacement, i.e., 

7.67 cm, at the embankment centerline after 1000 days versus a displacement of 4.65 cm in Case 1 at 

the same time. In Case 3, where the effect of the strain-dependent shear modulus has been 

incorporated, the settlement becomes significantly large not only during consolidation, but also during 

the construction of the embankment.  
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The surface settlement that develops at the embankment centerline after the final construction 

step, after 40 days, is 2.4 cm in Case 3 which increases up to 8.9 cm after 1000 days during 

consolidation. Figure 2.15 shows the vertical ground displacements at the embankment centerline 

versus time for all three cases. An evaluation of the development of settlement over time for all three 

cases clearly indicates the effect of both the structural degradation and the strain dependency of the 

shear modulus considerations. 
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Figure 2.14. Ground settlement profiles during and after construction for the different cases. 
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Figure 2.15. Ground settlements versus time at the embankment centerline. 

 

2.4.4.2. Lateral Displacements 

The variations in lateral displacement along the depth beneath the toe of the embankment are shown 

in Figure 2.16. As the displacements of the nodes located at the bottom of the model were fixed in 

both directions, the lateral displacement at a depth of 10 m is zero. The lateral displacement at the toe 

of the embankment develops during the construction and reaches the maximum positive value at a 

depth of 3.0 m upon completion of loading. Thereafter, it decreases with time as consolidation occurs 

and achieves negative values after 1000 days of consolidation at the same depth. When comparing the 

horizontal displacement at the toe of the embankment after the end of construction, after 40 days, 

Cases 1 and 2 present nearly identical lateral displacements with a value of 1.22 cm at a depth of 3.0 

m, as shown in Figures 2.16(a) and (b). On the other hand, Case 3, which considers the strain-

dependent shear modulus, shows a slightly larger lateral displacement with a value of 1.35 cm at the 

same depth, as shown in Figure 2.16(c). The values of the lateral displacement after 1000 days at a 

depth of 3.0 m are -1.62 cm for Case 1, -1.35 cm for Case 2, and -1.14 cm for Case 3. This indicates a 

backward movement during consolidation. An evaluation of the ground settlements and the lateral 

displacements at the toe of the embankment in the three cases indicates that in the case of a larger 

ground settlement, a smaller lateral displacement will develop due to consolidation.  
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Figure 2.16. Lateral displacements under the toe of the embankment during and after construction.
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2.4.4.3. Overall Deformation

The deformed meshes of the model after 1000 days of consolidation in the three cases are presented in

Figure 2.17, in which the deformations have been enlarged to 10 times the actual values. Since the

deformations during and just after the construction were rather small, the final deformations after

1000 days are presented here for comparison. In all cases, the deformations are particularly localized

in the upper part of the subsurface layer beneath the embankment. The deformation of the

embankment is insignificant compared with that of the ground layer. For Case 1, a small deformation

occurs below the embankment, as shown in Figure 2.17(a), while for Case 2, a large deformation is

observed in Figure 2.17(b). The deformation becomes even larger when considering the strain

dependency of the shear modulus and the structural degradation in Case 3, as the distorted mesh

beneath the embankment can be seen in Figure 2.17(c).

(a)

(b)

(c)

Figure 2.17. Deformed meshes after 1000 days of consolidation for the different cases:

(a) Case 1, (b) Case 2, and (c) Case 3 (deformations have been enlarged 10 times).



43 
 

2.4.4.4. Lode Angle 

The variation of Lode angle within the embankment and ground layer is presented in Figure 2.18, for 

Case 3. All the cases demonstrate quite similar features in the variation of Lode angle. As explained in 

Section 2.2, the variation of the stress ratio is considered here as a function of Lode angle according to 

the Mohr-Coulomb’s failure criterion with zero cohesion. Lode angle alters from 0θ = , representing 

the triaxial compression mode, to 60θ = indicating the extension mode of loading. The construction 

of the embankment leads to slightly rotations of the underneath ground layers which emerge as the 

lateral movement in the ground layers with the ground level heave near the toe of the embankment. 

This fact is clearly observed in the results during the construction (Figures 2.18(a) to 2.18(d)) as the 

increase of the Lode angle values mostly in the lower layers of the embankment, in underneath ground 

layers, and in the area around the toe. After the end of the construction (Figures 2.18(e) and 2.18(f)), 

as the consolidation proceeds, the larger values of Lode angle are developed in the upper layers of the 

embankment around the centreline following the ground deformations.    

 

2.4.4.5. Viscoplastic Shear Strain 

The accumulated viscoplastic shear strain is determined by the viscoplastic deviatoric stain rate, as 

 
vp vp vp

ij ijde deγ = ∫ . The results of the accumulated viscoplastic shear strain contours at each 

construction stage and during consolidation are presented in Figures 2.19, 2.20, and 2.21 for Cases 1, 

2, and 3, respectively. As an elastic model is employed for the embankment layers, viscoplastic strain 

develops only in the subsurface layer. The maximum shear strain is distributed mostly in the upper 

part of the soft clay foundation close to the embankment. The shear strain distributions during 

construction are similar for Cases 1 and 2, but the differences become more evident during 

consolidation. In Case 2, with structural degradation parameters, extensive strain localization can be 

observed just beneath the embankment with larger amounts of viscoplastic shear strain than that in 

Case 1. Considering the strain dependency of the shear modulus in Case 3, however, larger strain is 

localized during construction and consolidation. The maximum value of accumulated viscoplastic 

shear strain in Cases 1 and 2, from 0.6% after the end of construction,  as shown in Figures 2.19(d) 

and 2.20(d), increases to 9.57% in Case 1 and 28.1% in Case 2 after 1000 days of consolidation, as 

shown in Figures 2.19(f) and 2.20(f). In Case 3, the maximum value of the accumulated viscoplastic 

shear strains at the end of the construction, after 40 days, is 0.84% which increases to 30.7% after 

1000 days of consolidation, as shown in Figure 2.21(f). 
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 2.18. Lode angle contours for Case 3 on various days: (a) 10 days, (b) 20 days, (c) 30 days,         

(d) 40 days, (e) 100 days, and (f) 1000 days (legend unit: degree). 
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 2.19. Viscoplastic shear strain contours for Case 1 on various days: (a) 10 days, (b) 20 days,       

(c) 30 days, (d) 40 days, (e) 100 days, and (f) 1000 days (legend unit: %). 
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 (a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 2.20. Viscoplastic shear strain contours for Case 2 on various days: (a) 10 days, (b) 20 days,       

(c) 30 days, (d) 40 days, (e) 100 days, and (f) 1000 days (legend unit: %). 
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 2.21. Viscoplastic shear strain contours for Case 3 on various days: (a) 10 days, (b) 20 days,       

(c) 30 days, (d) 40 days, (e) 100 days, and (f) 1000 days (legend unit: %). 
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2.4.4.6. Excess Pore Water Pressure 

The general features of the excess pore water pressure distribution are presented in Figure 2.22, which 

shows the excess pore pressure contours during construction and consolidation for Case 1. The excess 

pore water pressure is generated in the ground layer in the whole depth below the filling zone with a 

maximum value of 36 kPa immediately after the end of the construction and then dissipates during the 

consolidation and reaches about 30 kPa after 1000 days (Figure 2.22(f)). As the permeability of the 

clay layer is rather low and the drainage boundary is located only at the top, the dissipation rate during 

the consolidation is not so high. The other cases exhibit approximately the same excess pore pressure 

distribution as Case 1. Figure 2.23 presents the contours of excess pore pressure for Case 3 at several 

construction steps. The variations in the pore pressure in Case 3 during the construction process, 

within 40 days,  shown in Figures 2.23(a) to 2.23(d) are the same as those in Case 1, shown in Figures 

2.22(a) to 2.22(d). Nevertheless, after the completion of loading, Case 3 demonstrates different 

responses, particularly in the strain-localized region beneath the embankment. Figures 2.23(e) and 

2.23(f) indicate the concentration of pore pressure contour lines just beneath the embankment in Case 

3. This implies higher excess pore water pressure in that region compared with that in Case 1, as 

shown in Figures 2.22(e) and 2.22(f), respectively. 

In order to clarify the effect of destructuration on the pore pressure response in the strain-

localized region, the variations in excess pore pressure versus time at four reference points beneath the 

embankment are presented in Figure 2.24 in a logarithmic scale for the three cases. These points are 

located at different levels where large strain occurs. All the cases produce rather similar amounts of 

excess pore water pressure during construction, but different amounts during consolidation. For Cases 

2 and 3, temporary increases in pore water pressure are observed at 100 days, during consolidation, 

because of the consideration given to the structural parameters. As a larger structural parameter β is 

employed in Case 3, a higher secondary generation is observed. Although the amounts of regenerated 

excess pore pressure at various points are less in Case 2 than those in Case 3, the effect of structural 

degradation is clearly observed. Comparing the variations in excess pore pressure at different points in 

Case 3, shown in Figure 2.24(c), the secondary generated pore pressure at Points C and D, located in 

the area with strain localization, are higher than those at Points A and B. 

It should be mentioned that the consideration of the strain-dependent shear modulus affects the 

pore water pressure response by changing structural parameter β to a larger value. The anomalous 

build-up of pore water pressure after loading is observed; this is similar to the field- measured 

evidence reported by Mesri and Choi (1979), Leroueil et al. (1979), Mitchell (1986), etc. This 

indicates the extensive microstructural changes in the clay layer in the localization area, which causes 

the unstable behavior during consolidation. In sensitive soft clays, the pore pressure increases or 

becomes stagnant following the completion of the embankment construction, due to the collapse or 
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the rearrangement of the initial clay structure. This is associated with the increase in viscoplastic 

strain. 

 

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 2.22. Excess pore water pressure contours for Case 1 on various days: (a) 10 days, (b) 20 days,   

(c) 30 days, (d) 40 days, (e) 100 days, and (f) 1000 days (legend unit: kPa). 
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(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Figure 2.23. Excess pore water pressure contours for Case 3 on various days: (a) 10 days, (b) 20 days,   

(c) 30 days, (d) 40 days, (e) 100 days, and (f) 1000 days (legend unit: kPa). 
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Figure 2.24. Excess pore water pressure versus time for the different cases.
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2.5. Concluding Remarks 

The behavior of Osaka soft clay was modeled via an elasto-viscoplastic constitutive model. The effect 

of destructuration on the behavior of Osaka soft clay was studied. The destructuration was considered 

by both viscoplastic structural degradation and a strain-dependent elastic shear modulus. The 

comparison of the predicted results with the laboratory test data under undrained triaxial compression 

conditions, exhibited the significant influence of both destructuration aspects on the soft clay response. 

Structural degradation includes the unstable behavior during consolidation due to the microstructural 

changes in the soft clay skeleton which lead to the softening behavior after the peak point along the 

stress-strain relation curve, a rapid increase in the strain rate, and a temporary increase in pore water 

pressure during consolidation. The strain dependency of the elastic shear modulus is related to the 

non-linear behavior of the shear modulus, which is a function of the viscoplastic shear strain and the 

variation in mean effective stress. In order to predict the behavior of sensitive soft clay more 

accurately, it is necessary to take into account the strain dependency of the shear modulus in addition 

to the structural degradation parameters. The predicted results presented a good agreement with the 

corresponding experimental values. This agreement emphasizes the capability of the elasto-

viscoplastic model to reproduce the behavior of sensitive soft clay. 

The influence of the destructuration aspects was then evaluated in a two-dimensional boundary 

value problem. The consolidation analysis of an embankment construction on a soft clay foundation 

was conducted by the finite element method through three cases. The results clarified the effects of 

these considerations of which large strain and consequent deformations developed due to the 

structural degradation during consolidation. Moreover, the generation of pore pressure after the 

completion of the construction was observed in the narrow zone close to the embankment. 

Considering the strain dependency of the shear modulus, however, larger strain and larger 

displacements developed not only during the consolidation, but also during the construction of the 

embankment. 
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Chapter 3 

CONSOLIDATION ANALYSIS OF A LARGE-

SCALE LEVEE CONSTRUCTION ON SOFT 

SOIL DEPOSITS  

 

3.1. Introduction 

In this chapter, the consolidation analysis of the Torishima super levee construction on soft soil 

deposits is carried out. The ground layers at the Torishima super levee site consist of alluvial sandy 

layers and soft clay layers, which were locally improved before the construction of the levee, by the 

Deep Mixing Method (DMM) beneath the normal levee and a combination of Sand Drains (SD) and 

Sand Compaction Piles (SCP) under the extended back slope. The elasto-viscoplastic constitutive 

model, proposed by Kimoto and Oka (2005), is adopted to simulate the behavior of clay layers in the 

two-dimensional finite element consolidation analysis. The embankments of the super levee are 

properly modeled in the finite element mesh so that the stiffness and the consolidation of the 

embankments can be considered in addition to the embankment loading. The construction sequence 

for the embankments is included in the numerical simulation by implementing the simulation in 

several stages based on the real loading profile of the embankment construction. The consolidation 

analysis is divided into two phases. The first phase is the consolidation analysis of the super levee 

construction on the natural (unimproved) ground in which the characteristic behavior of the clay 

layers in particular is studied by considering the effects of destructuration, namely, the structural 

degradation and the strain dependency of the elastic shear modulus, on the long-term consolidation 
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response. The second phase is the consolidation analysis of the improved ground case. The improved 

parts of the ground are modeled in the finite element simulation. In order to obtain material 

parameters after the ground improvement, the existing ground settlement data during the preloading 

procedure, before construction of the super levee, are used to verify the assumptions and to calibrate 

the material parameters of the improved layers. The results of each phase, such as deformations and 

excess pore water pressure responses, are presented and discussed. Comparisons are made through the 

results of each phase to evaluate the consolidation mechanism and the effect of the ground-

improvement techniques. 

 

3.2. Site Description 

The cross section of the super levee with subsurface layers and ground-improvement details are 

schematically presented in Figure 3.1. The general stratigraphic profile of the Torishima area is 

composed of alluvial sandy layers and soft clay layers overlying a dense gravelly layer, and 

subsequently, a rather stiff clay layer at a depth of about 35 m. Em1 and Em2 represent the 

embankment fill materials of the main levee and of the extended back slope, respectively. B1 

represents the topsoil material with a thickness of about 2.25 m. As2 is the upper alluvial sand layer, 

which has a thickness of approximately 8.5 m, Ac2 is the alluvial soft clay layer, which has a 

thickness of 12 m, As1 is the lower alluvial sand layer, which has a thickness of 5.5 m, and Ac1 is the 

alluvial clay deposit. Dg and Dc indicate the diluvium sandy gravel and the rather stiff clay deposits, 

respectively.  

As shown in Figure 3.1, deep mixing (DM) was performed up to 10 and 14 m in depth beneath 

the main levee to improve the whole thickness of layers B1 and As2, respectively, and slightly 

improve the upper part of layer Ac2. The deep mixing was performed as DM walls (DMW), 1.6 m in 

thickness, by overlapping the soil-cement columns with a diameter of 0.9 m. DMWs were designed in 

a grid pattern of 5.8 by 4.8 m, which provides an average improvement ratio of 50% in the DM-

improved area. The vertical sand drains were installed beneath the back slope extension in different 

diameters and patterns according to the design requirements, to accelerate the rate of consolidation in 

the Ac2 clay layer by shortening the drainage path. In the current cross section shown in Figure 3.1, 

the sand drains were installed in two zones, namely, Zone 1 sand drains in a 2.0×2.0 m square grid 

with a diameter of 0.3 m, and Zone 2 sand drains in a 2.76×2.76 m square grid with a diameter of 0.43 

m. The sand drains were installed up to a depth of about 24.0 m. At the upper part of the sand drains, 

sand compaction piles (SCP) were positioned up to a depth of 6.7 m, covering the entire depth of 

layer B1 and half the depth of layer As2, mostly to prevent the liquefaction failure of these layers. The 

SCPs were arranged in smaller square patterns within SD grids, of which the SCPs were alternately 



55 
 

installed over the sand drains. In the current cross section, SCPs were formed with a diameter of 0.5 m 

in a square grid of 1.4×1.4 m for Zone 1 and with a diameter of 0.7 m in a square pattern of 1.95×1.95 

m for Zone 2. 

 

DMM 50%

Em1Em2
B1

As2

Ac2

As1
Ac1

Dg
Dc

SD Ф 0.3    2.0 m

SCP Ф 0.5    1.4 mSCP Ф 0.75    1.95 m

SD Ф 0.43    2.76 mSD Ф 0.43    2.76 m

-10

-20

-30

-40
(m)

OP+8.10 m
HWL+5.20 m

OP+0.0

Ф : SCP/SD diameter                  : SCP/SD spacing in square pattern  
Figure 3.1. Cross section of the Torishima super levee, soil profile, and ground-improvement techniques. 

 

3.3. Development of the Numerical Model 

In order to study the long-term consolidation behavior of the super levee construction on the soft clay 

strata, two-dimensional numerical analyses are developed under fully saturated conditions. The 

behavior of the clay layers is simulated using an elasto-viscoplastic model as explained in Section 2.2, 

while the elastic behavior is applied for the sand and the gravel layers. The finite element 

formulations for large deformation analysis of the water-saturated medium are adopted. The 

construction procedure for the super levee and the loading profile are presented here in addition to the 

model geometry and the boundary conditions. 

 

3.3.1. Construction Procedure and Loading Profile 

The linearized construction sequence for the super levee is schematically shown in Figure 3.2. In this 

figure, the symbols show the assumed construction layer/stage of each embankment. The rate of 

loading is simulated following the procedure as explained in Section 2.5.3. The rate of loading was 

simulated by the successive addition of elements corresponding to each stage of embankment 

construction. For a particular construction stage, the elements to be constructed were added and given 

a constitutive model appropriate to the material behavior during placing. The nodal forces due to the 

self-weight body forces of the constructed material were calculated and applied to the corresponding 

nodes. The global stiffness matrix and all the other boundary conditions were assembled for the stage, 

and the FEM analysis was implemented. Before applying the next stage, the incremental 
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displacements of any nodes, which are only connected to the constructed elements, were zeroed. The 

procedure for the construction of the other stages follows similar steps. The final results are obtained 

by the accumulated results of each stage of the analysis.  
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Figure 3.2. Construction sequence for the super levee and consolidation time after its completion. 
 

The construction of the super levee was begun by placing the main levee fill material in eight 

layers consecutively within 5 months. The construction was carried out by extending the back slope 

immediately after the completion of the main levee in six layers up to a maximum height of 6.3 m 

during a period of 4 months. After the construction was suspended for 13 months, and time was 

allowed for a short-time consolidation, the procedure was then followed through to the final level by 

the placing of two layers in 5 months. Hence, the super levee was completed in a total of 27 months. 

As shown in Figure 3.2, the consolidation analyses are continued for 10 years after the completion of 

the super levee in order to consider the long-term behavior of such embankments on soft clay deposits. 

 

3.3.2. Problem Geometry and Boundary Conditions 

The geometry and the boundary conditions of the finite element analyses are presented in Figure 3.3. 

The size of the model domain is determined so that the boundary effect can be minimized. Fully 

saturated conditions are assumed with a drainage boundary only at the top. The displacement 

boundary at the bottom of the domain is fixed in both horizontal and vertical directions, while the two 

side boundaries are fixed only in the horizontal direction. The initial effective stress conditions of the 
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ground layers are assigned at the outset of the analysis based on the unit weight of the subsurface 

layers. The embankment layers are directly simulated in the finite element analyses following the 

construction sequence presented in Figure 3.2.  

 

120 m120 m 168.5 m 40 m

1:51:29

8.2

40 m

8.1 m

Drainage boundary

Impervious boundaryImpervious boundary

 
Figure 3.3. Geometry and boundary conditions of the finite element model (final shape after completing 

the construction). 

 

3.4. Consolidation Analysis of the Natural (Unimproved) Ground Case 

The consolidation analysis of the super levee construction on a natural ground (unimproved) is 

performed to study the effect of destructuration, demonstrated as the structural degradation and the 

strain-dependent elastic shear modulus, on the long-term consolidation behavior. The destructuration 

is delineated by the structural degradation in the elasto-viscoplastic constitutive model. The structural 

degradation has been expressed as strain softening with respect to the accumulation of viscoplastic 

strain, so that the model can describe the instability not only around the failure stress, but also during 

the compressive deformation. On the other hand, the non-linearity of the elastic shear modulus as 

another aspect of destructuration is taken into consideration as explained in Section 2.2.5.  

Evaluating the effects of soft clay destructuration on the super levee consolidation analysis, three 

cases are simulated on the natural ground, namely, Case N1 without any consideration given to either 

the structural degradation or the strain dependency of the shear modulus, Case N2 with consideration 

given only to the structural degradation, and Case N3 with consideration given to both the structural 

degradation and the strain dependency of the shear modulus. All the cases assume the same initial 

conditions, in which only structural parameter β and strain-dependent parameter α are subjected to 

change. The material parameters summarized in Table 3.1 are used in the simulations of which the 

elastic behavior is assumed for the sand and the gravel layers and the elasto-viscoplastic constitutive 

model is applied for the clay layers. 
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Table 3.1. Material parameters for the natural ground case. 

 
k 

(m/s) 
γt 

(kN/m
3
)

e0 
G0 

(1) 
(kPa) 

λ κ M
*

mc m’ C1,C2 
(1/s) n β α OCR

Em2 1.00×10
-5 18.0 0.8 5385 

   
 

Em1 1.00×10
-5 17.5 0.8 4310  

B1 1.00×10
-5 17.5 0.93 3300  

As2 7.37×10
-6 18.0 0.84 5375  

Ac2-U  5.75×10
-10 17.0 1.25 3760 0.341 0.019 1.24 24.68 3.83×10

-11 0.83 5,10
(2) 20 2.0 

Ac2-M  3.85×10
-10 16.0 1.65 3930 0.593 0.027 1.18 28.2 1.85×10

-11 0.67 10,15
(2) 10 1.6 

Ac2-L  2.69×10
-10 16.6 1.42 5995 0.652 0.014 1.12 21.25 8.99×10

-11 0.60 15,20
(2) 10 1.7 

As1 5.55×10
-6 18.0 0.9 6465  

Ac1 1.60×10
-9 16.0 1.30 3540 0.326 0.0326 1.12 20.0 3.00×10

-12 0.70 10,10
(2) 10 1.2 

Dg 1.00×10
-5 19.0 0.9 40920     

Dc  5.30×10
-10 18.0 1.20 7695 0.217 0.0217 1.30 20.0 1.16×10

-13 0.70 10,10
(2) 10 1.9 

(1) Based on the mean effective stress at depth of each layer. 
(2) Modified values after strain-dependent shear modulus consideration  

 

 

3.5. Consolidation Analysis of the Improved Ground Case 

The consolidation analysis of the super levee on the improved foundation is conducted based on the 

improvement techniques performed at the Torishima site, namely, deep mixing walls, sand drains, and 

sand compaction piles. The temporary effects of each improvement technique during the installation 

procedure, such as changes in stress in the surrounding soil and the development of excess pore water 

pressure, are disregarded in this study. Efforts are made to simulate each improvement technique 

inasmuch as its substantial function can be represented effectively in the two-dimensional (2D) 

analysis. The simulation for this case is conducted by considering the effect of both the structural 

degradation and the strain dependency of the shear modulus on the clayey layers, so the results can be 

compared with those in Case N3 for the natural (unimproved) ground. 

 

3.5.1. Simulation of Deep Mixing Walls Under Plane Strain Conditions 

Deep mixing is an in situ ground-improvement technique which mixes in situ soil with a cementitious 

agent (mainly cement slurry or powder) by augers to improve the engineering characteristics of the 
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soil. This technique has been used to mitigate potential damage to levees by enhancing the overall 

stiffness and reducing the permeability of the soil.  

In the two-dimensional plane strain model, deep mixing walls are directly modeled in the finite 

element mesh based on the actual size and spacing, whilst for the surrounding parts in between the 

DM walls, the equivalent material parameters are estimated and assigned. The characteristics of the 

composite ground treated with deep mixing walls can be well represented by the estimated equivalent 

parameters. Figure 3.4 shows the conversion of the 3D deep mixing wall pattern into the equivalent 

plane strain model. The equivalent stiffness of the soil-DM composite is calculated using the stiffness 

of the deep mixing walls and the stiffness of the natural soil with the respective area improvement 

ratio as 

, , ,(1 )composite DM DM s DM soil s DME E a E a= × + × −                                          (3.1) 

 where ,composite DME

 

is the equivalent stiffness of the soil-DM composite, DME  is the DM wall stiffness, 

soilE  is the natural soil stiffness, and ,s DMa  is the area improvement ratio for the surrounding parts 

amid the DM walls. The deep mixing walls have been installed mainly in the sandy layers, as shown 

in Figure 3.1. Therefore, the equivalent permeability is estimated based on Darcy’s law as 

 , , ,(1 )v composite DM s DM soil s DMk k a k a= × + × −                                          (3.2) 

in which ,v compositek is the equivalent vertical permeability of the soil-DM composite, DMk  is the 

permeability of the deep mixing walls, and soilk  is the permeability of the natural soil. In the same 

manner, the equivalent horizontal permeability of the soil-DM composite is assumed to be equal to 

the permeability of the DM walls as the part with lower permeability, namely,  ,h composite DMk k= .  

According to the DM wall pattern in the Torishima super levee project, respective area 

improvement ratio ,s DMa , for the composite parts amid the DM walls, is obtained as 30%. Following 

Equations (3.1) and (3.2), the characteristic parameters of the soil-DM composite zone can be 

determined. The properties of the DM walls are subsequently obtained from the existing data in a 

similar case study conducted by Oka et al. (2002b). 
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Figure 3.4. Conversion of the deep mixing walls in a 3D pattern into the plane strain model. 

 

3.5.2. Simulation of Sand Drains Under Plane Strain Conditions 

Vertical drains have been employed for almost half a century to promote more rapid consolidation of 

rather thick deposits of soft fine-grained soil. Vertical drains are installed by placing high-

permeability material columns such as sand, gravel, and prefabricated materials, into low-

permeability soft deposits. Vertical drains accelerate the dissipation of construction-induced pore 

water pressure within low-permeability soil by allowing radial drainage to the high-permeability 

drains connected to underlying permeable strata or overlying drainage blankets. The drains speed up 

the construction time of the embankments and reduce the long-term maintenance costs by accelerating 

the rate of settlement and reducing the excess pore water pressure which may cause a risk to the 

stability of the embankment slopes. Since the stiffness of vertical drains is insignificant, the drains 

may be used in conjunction with other stabilizing techniques.  

The consolidation behavior of a sand drain foundation can usually be predicted by analytical 

theories (e.g., Barron 1948 and Hansbo 1981), which deal with a single drain surrounded by a soil 

cylinder in a unit cell. The unit cell analysis assumes that consolidation takes place in uniform soil 

with linear compressibility characteristics in the absence of lateral movement. The consolidation 

around vertical drains is basically three-dimensional; therefore, such restrictive conditions are not 

likely to be realized in soil under embankment loading. The numerical techniques based on the finite 

element method provide essential means for the analysis and the design of multi-drain systems. The 

three-dimensional finite element modeling of vertical drain systems is very sophisticated and requires 

a large computational effort, especially when applied to a real super size embankment project over a 

large number of sand drains. In practice, drainage within the soil may take place in both vertical and 

radial directions, although it is often reasonable to assume that radial flow predominates. The three-

dimensional radial flow into vertical drains can be approximated by simplified 2D plane strain models. 
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An appropriate mapping method, which represents the typical arrangement of vertical drains, can be 

used for effectively modeling the vertical drains in plane strain finite element analyses. Several 

methods have been proposed for the simulation of sand drains in plane strain models by using the 

concept of analytical theories (e.g., Cheung et al. 1991, Hird et al. 1992, Indraratna and Redana 1997, 

and Chai et al. 2001). Hird et al. (1992) developed a matching procedure which can be achieved by 

adjusting the drain spacing (geometry) and/or the permeability of the soil. The proposed method 

includes the effects of smear zones around the drains without any requirement for separate 

discretization. A smear zone is created during the auger drilling of sand drains or during the mandrel 

driving of prefabricated vertical drains, where the soil in the vicinity of the drain is remolded and its 

hydraulic conductivity is reduced. Here, the geometry and the hydraulic conductivity matching 

procedures, developed by Hird et al. (1992), are employed to simulate the sand drains.  

In order to employ a realistic 2D finite element analysis for vertical drains, equivalence between 

the plane strain analysis and the 3D axisymmetric analysis needs to be established. The spatial vertical 

drain system with effective drainage radius R should be converted into the equivalent infinitely 

parallel drain wells located at a spacing of 2B, for which B is the half width of a plane strain unit cell. 

Drainage radius R is determined by in situ drain spacing S based on the drain installation pattern, 

while 0.564R S= ×

 

for a square pattern and 0.525R S= ×

 

for a triangular grid pattern. The 

conversion of an axisymmetric sand drain unit into the plane strain approximation is schematically 

shown in Figure 3.5, where l is the length of a drain unit cell, and rw and rs are the radius of the drain 

and the radius of the smear zone in an axisymmetric unit, respectively. bw is the half width of the sand 

drain under plane strain conditions. Following the Hird et al. (1992) method, to match the rate of 

consolidation in the plane strain and the axisymmetric unit cells, the equality of the average degree of 

consolidation is required each time and at every level in the cell. Hence,  

hax hplU U=                                                                   (3.3) 

where haxU is the average degree of consolidation for the axisymmetric cell and hplU  is the average 

degree of consolidation for the equivalent plane strain conditions achieved by horizontal drainage. 

According to Hansbo (1981), under instantaneous steps of loading, the average degree of 

consolidation hU  on a horizontal plane at depth z and time t is predicted as 

         ( )1 exp 8h hU T µ= − −                                                        (3.4) 

in which hT

 

is the time factor for the radial drainage and µ

 

represents the effect of the smear zone and 

the well resistance as 
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  ( ) ( )2ln ln 0.75 2
s w

n k k
s lz z

s k q
µ π= + − + −

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                    (3.5) 

where wn R r= and s ws r r= . k and sk  are the horizontal permeability outside and inside the smear 

zone, respectively. wq is the discharge capacity of the drain representing the well resistance of the 

sand drains. Combining Equations (3.3) to (3.5) and disregarding the effect of the well resistance, the 

relationship between the horizontal permeability of plane strain condition hplk and the horizontal 

permeability of axisymmetric unit cell haxk , is given by 

  ( ) ( )[ ]
2 2 2

3 ln ( ) ln( ) 0.75
hpl

hax hax s

k
R B

k n s k k s
= ×

+ −

⎛ ⎞
⎜ ⎟
⎝ ⎠

                              (3.6) 

The modified horizontal permeability of the soil within the sand drains in the plane strain model 

is obtained based on the in situ horizontal permeability of the soil and considering the size and the 

permeability of the smear zone. By setting B to a desired value in Equation (3.6), a different geometry 

for the sand drain can be assigned under the plane strain conditions. This becomes useful when 

keeping similar drain spacing between the two systems and leads to an excessively large number of 

elements in the finite element analysis. 
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(a) Axisymmetric radial flow (b) Plane strain  
Figure 3.5. Conversion of the axisymmetric sand drain unit into the plane strain model. 
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In the present study, the sand drains are represented in the plane strain model by applying 

additional drainage boundary conditions to the nodes of the mesh at the locations of the sand drains 

instead of including separate elements to represent the sand material ( )0wb = . This method is adopted 

to prevent any computational instability which may easily occur by putting the narrow elements as 

sand drain material in the finite element mesh. Representing the sand drains as boundary conditions 

implies that the sand drains provide ideal drains with no additional resistance to embankment loading. 

Concerning the permeability matching procedure described in Equation (3.6), the plane strain drain 

spacing is assumed as 2B R=  and the size of the smear zone is assumed as 2s ws r r= = . The 

permeability of the smear zone as term hax sk k  is considered to be determined from the preloading 

process results. 

 

3.5.3. Simulation of Sand Compaction Piles Under Plane Strain Conditions 

The sand compaction pile (SCP) method has been widely used in construction to form compacted 

sand piles by vibration, dynamic impact, or static excitation in a soft ground. Originally developed in 

Japan to improve stability or compressibility and to prevent liquefaction failure in loose sand, the SCP 

method is now often applied to soft clay grounds to ensure stability and to reduce ground settlement. 

The principle of this ground improvement technique is the densification of the ground which leads to 

an increase in soil density as well as lateral effective stress. Besides the strengthening effect of SCP, 

the drainage function of sand compaction piles is considered to enhance the resistibility of soft clay 

deposits by accelerating the rate of consolidation.   

In the current study, as sand compaction piles have been installed only in the sandy layers, the 

drainage effect of SCP by itself is disregarded. For the locations in which the sand compaction piles 

are installed on the top of the sand drains, the drainage effect is preserved by substituting the sand 

compaction piles with sand drains that are connected underneath. In order to include the strengthening 

effect of SCP in the finite element simulation, the simplified homogenization method is adopted to 

avoid a large number of elements which may be produced by directly modeling the SCP as discrete 

elements. The basic concept of the simplified homogenization method is to describe the SCP-

improved ground as a homogenized composite material with equivalent material properties, by which 

the improved area can be analyzed in the same mesh as that for the unimproved area.  

According to the standard penetration test (SPT) results from the geotechnical site investigation 

before and after the SCP installation, the stiffness of the SCP improved zones is approximated as 2.5 

times the stiffness of the unimproved soils in the As2 layer. The equivalent permeability matching 
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procedure is applied in the SCP improved zones based on the corresponding sand drain size and 

pattern. The others characteristic parameters are kept the same as for the unimproved soil. 

 

3.5.4. Parameter Calibration Based on the Preloading Monitored Data 

The excess preloading procedure has been carried out by temporarily placing the fill material over the 

zones of installed sand drains to improve the properties of the subsurface layers, particularly thick soft 

clay layer Ac2. The preloading procedure has been initiated prior to the construction of the super 

levee, in two stages. At first, the fill material has been placed in the whole area of preloading at a 

height of 1.0 m within 10 days. After a suspension of 100 days, the fill height has risen to 3.0 and 7.0 

m, according to the expected embankment height of a super levee. The preloading scheme and 

profiles are plotted schematically in Figure 3.6 within the sketch of the super levee cross section. 

During the preloading procedure, the settlements at ground level have been observed at several points 

simultaneously. The locations of the recorded points for the current cross section are also depicted in 

Figure 3.6 with the distances from the left toe of the main levee. 
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Figure 3.6. Preloading scheme and profiles with the locations of the settlement observing points during the 

preloading procedure. 

 



65 
 

Based on the preloading profiles, finite element simulations are conducted for the consolidation 

analyses during the preloading process. The equivalent material parameters for the improved zones 

are calculated using the proposed methods to model the ground-improvement techniques under plane 

strain conditions. For the clay materials the parameters after the strain-dependent shear modulus 

consideration, are allocated. Since the preloading procedure has been performed mainly to improve 

the characteristics of the clay layers within the sand drains by pre-consolidation, efforts are made to 

approximate the appropriate properties of the Ac2 layers after the sand drain installation and the 

preloading procedure. Two main factors are determined herein, namely, the permeability of the smear 

zone as hax sk k  and viscoplastic parameters 1C and 2C  in the Ac2 sub-layers within the sand drains. 

By progressing the consolidation and the discharge of excess pore water pressure through the 

sand drains, the performance of the sand drains may be reduced in time due to the fine particles 

entering the drainage channel known as the clogging. This effect is speculated here by changing the 

permeability of the smear zone. On the other hand, the viscoplastic parameters obtained from the 

laboratory test data may be different from the actual field values. Several reasons can be given for this, 

such as the disturbance and the stress release of the soil specimens during the sampling procedure, the 

higher applied stress rate in the laboratory tests, and the different stress histories which the soil has 

experienced in the field. In addition, the installation of the sand drains and the consequent fabric 

changes in the clay layer can particularly affect the viscoplastic parameters. Considering the 

uncertainty of the viscoplastic parameter values obtained from the experimental results and the effect 

of the sand drain installation, changes in the viscoplastic parameters are expressed by the CI index. 

Viscoplastic parameters 1C and 2C  are obtained to be identical in this study; therefore, the CI index is 

defined as 1 1

Improved NaturalCI C C= .  

Comparisons are made through the settlement profiles at the ground level with the field observed 

data to calibrate the soil parameters within the sand-drained zones. Figure 3.7 shows the settlement-

time profiles under a preloading of +3.0 m, at the field monitored points and the corresponding points 

in the simulations. The field observed data are displayed by symbols and the predicted ones are shown 

by lines. As illustrated in Figure 3.7(a), the analysis is initiated with 1CI =  and 5hax sk k = , wherein 

the predicted results are larger than the field observed data. Therefore, the analysis is carried out by 

reducing the viscoplastic parameter index as 0.1CI = , shown in Figure 3.7(b). Taking a smaller 

viscoplastic parameter for soft clay layers Ac2 results in a better agreement with the field observed 

data, since the pre-consolidation of the clay layers subjected to preloading is in progress. In the 

analyses under a preloading of +7.0 m, and following the same +3.0m preloading analyses, at first 

reduced viscoplastic parameter 0.01CI =  is adopted with 5hax sk k = . However, as shown in Figure 

3.8(a), the predicted results exhibit rather larger values than the field data. Therefore, the permeability 
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of the smear zone is adjusted to 10hax sk k = , in order to achieve more precise values in the prediction 

results by slightly reducing the rate of consolidation-induced settlement, as shown in Figure 3.8(b).  
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Figure 3.7. Settlement-time profiles at the ground level for the points under +3.0 m preloading; (a) 1CI = , 

and (b) 0.1CI = , (S4-S9 the field data points, P1-P3 the predicted data points). 

 

As the main deformation under the super levee construction is expected to occur with the high 

embankment level, and also considering the long-term behavior of the super levee, the results of the 

+7.0m preloading analysis are assigned for further analyses of the improved ground case. Accordingly, 
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the final material parameters for the subsurface layers are obtained by assuming 10hax sk k =  and 

0.01CI = . Table 2 presents the additional material parameters which are used for the improved case 

analysis. As presented in the table, the effect of sand drains is applied by taking equivalent values for 

the horizontal permeability. 
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Figure 3.8. Settlement-time profiles at the ground level for the points under +7.0 m preloading; 

(a) 5hax sk k = , and (b) 10hax sk k = , (S19-S24 the field data points, P4-P6 the predicted data points). 
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Table 3.2. Additional material parameters for the ground layers for the improved ground case after the 
preloading process calibration. 

 
Layers 

k 
(m/s) 

γt 
(kN/m

3
) 

e0 
G0  

(kPa)
λ κ M

*

mc m’ C1,C2 
(1/s) n β α

DMW /Sand 9.80×10
-9 20.0 0.72 81155

DMW/Clay 5.75×10
-11 20.0 0.72 81155

B1-DM 7.00×10
-6 18.75 0.8 27040

B1-SCP kx: 3.55×10
-6 17.5 0.93 13430

As2-DM 5.16×10
-6 19.0 0.72 28065

As2-SCP kx: 2.62×10
-6 18.0 0.84 13430   

As2-SD kx: 2.62×10
-6 18.0 0.84 5375   

Ac2-U-DM 4.20×10
-10 18.5 1.25 26980

Ac2-U-SD kx:2.04×10
-10 17.0 1.25 3760 0.341 0.019 1.24 24.68 3.83×10

-13 0.83 10 20

Ac2-M-SD  kx:1.37×10
-10 16.0 1.65 3930 0.593 0.027 1.18 28.2 1.85×10

-13 0.67 15 10

Ac2-L-SD  kx:9.55×10
-11 16.6 1.42 5995 0.652 0.014 1.12 21.25 8.99×10

-13 0.60 20 10

As1-SD kx: 1.97×10
-6 18.0 0.9 6465

 kx: Equivalent horizontal permeability. 
OCR is applied based on the highest overconsolidation pressure at each layer due to the preloading 
process. 

 

3.6. Simulation Results and Discussion 

The results of the analyses, including the three cases of the natural ground (i.e., Cases N1, N2, and 

N3) and the improved ground case are presented in this section. Comparisons are made through the 

deformations and the excess pore water pressure responses. The vertical displacements are presented 

as the settlement at the ground level, the settlement atop the super levee, and the settlement profiles at 

different depths of ground layers. The lateral displacements are exhibited for the ground layers at the 

left- and the right-side toes of the main levee. The volumetric strain, the accumulated viscoplastic 

shear strain, the Lode angle, and the excess pore water pressure are shown as contours of the 

variations at several steps of the simulation.  

 

3.6.1. Vertical Displacements 

In Figure 3.9, the overall vertical displacements at the ground level are presented in various stages, 

during and after construction, for both natural ground and improved ground cases. The vertical 

displacements are plotted as settlements versus X coordinate from the left-side boundary. In general, 

all the cases present quite similar features. The trough-shaped settlements beneath the main levee with 



69 
 

upward heaves adjacent to the main levee are observed at an earlier stage of construction. Continuing 

the construction in the back slope, the settlements develop beneath that part and increase during 

consolidation. The surface heaves around the toe of the embankments have an upward movement 

during construction, which turns downward after completing the construction.  

Comparing the vertical displacements for the natural ground cases at the end of the construction 

(EOC) in 27 months, Cases N1 (without destructuration) and N2 (with structural degradation) 

demonstrate almost similar settlements, while Case N3 (with structural degradation and strain 

dependency of the shear modulus) exhibits relatively larger settlements. The maximum value of the 

settlements after 27 months is observed at X = 280 m with a value of about 0.20 m equally for Cases 

N1 and N2, and about 0.22 m for Case N3. This fact indicates the effect of the strain dependency of 

the shear modulus on the deformations during the loading process. During consolidation, however, as 

the structural degradation is taken into account for Cases N2 and N3, larger settlements are developed 

because of strain softening in the soft clay layers. The maximum overall settlements in 10 years after 

EOC occur at X = 280 m with a value of 0.26 m in Case N1, and at X = 260 m with values of 

approximately 0.32 m and 0.40 m in Case N2 and Case N3, respectively. In Case N3, larger structural 

parameters are applied; thereby larger settlements are predicted compared with those in Case N2. 

Comparing the vertical displacements for the improved ground case and Case N3, the improved 

ground case exhibits the same features in terms of the ground level settlement, although the predicted 

surface heave around the embankment toes is quite small. The settlements beneath the main levee 

become smaller than those in Case N3, as DM walls have been installed underneath. The effect of 

SCP/SD is observed as accelerating the rate of consolidation by shortening the drainage paths, in 

which the generated excess pore water pressure and subsequent deformations are reduced. The overall 

maximum settlements in 10 years after EOC for the natural ground case is about 0.29 m at the 

location of X = 265 m. The settlement versus time at X = 260 m, which represents the location of the 

maximum overall settlement in most of the cases, is plotted in Figure 3.10 in a logarithmic scale. The 

effect of the structural degradation and the strain dependency of the shear modulus can be clearly 

observed among the natural ground case results. The displacement rate in Case N3 starts with larger 

values in the surface heave and the settlement, compared with those in Cases N1 and N2, which have 

similar displacement rates during the construction process. After that, the rates of displacement in 

Case N2 and Case N3 increase due to the structural degradation during the consolidation and result in 

larger settlements. In the improved ground case, the vertical displacement appears as settlement in an 

earlier stage of construction, despite the surface heave in the natural ground cases. Furthermore, the 

effect of the sand drain installation at this location is observed as a higher rate of displacement during 

the construction, which is reduced during the long-term consolidation and results in smaller settlement 

compared with those in Case N3. 
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Figure 3.9. Ground level settlement profiles during loading and consolidation for the natural ground cases 

(Cases N1, N2, and N3) and the improved ground case. 
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Figure 3.10. Ground level settlement versus time at X= 260 m for the natural ground cases (Cases N1, N2, 

and N3) and the improved ground case. 

 

The overall vertical displacement profiles at different depths of ground layers are presented in 

Figures 3.11 and 3.12 for Case N3 and the improved ground case, respectively. The vertical 

displacement profiles at the ground level are depicted along the settlement profiles atop the As2 layer 

at a depth of 2.2 m, atop the Ac2 layer at a depth of 10.95 m, atop the As1 layer at a depth of 22.95 m, 

and atop the Dg layer at a depth of 32.05 m. The settlement profiles at various depths show similar 

features to the corresponding settlements at the ground level, but with smaller values. At the deeper 

layers, the values of the vertical displacement decrease due to the smaller influence of the 

embankment loading at those layers. Comparing the settlement profiles at each depth for Case N3 and 

the improved ground case, the effect of ground improvement is clearly observed as smaller vertical 

displacements. At depths of 22.95 m and 32.05 m, however, the improved ground case shows slightly 

larger settlements than those for Case N3, since the stiffness of the upper layers has been improved 

and the deformations under embankment loading have been distributed to the deeper layers.     

The predicted vertical displacements atop the super levee after the end of the construction are 

presented in Figure 3.13 for different cases. The vertical displacement on top of the super levee 

appears in trend similar to that for the ground level settlements, but with smaller values in general. 

The locations of the maximum settlement atop the super levee in different cases nearly corresponded 

with the locations of the settlements in the ground level. For the natural ground cases, the settlements 

in 1 year after EOC are almost similar for Cases N1, N2, and N3. Afterwards, however, the effect of 

structural degradation within the consolidation process becomes more evident and leads to relatively 

larger settlements in Cases N2 and N3. In the improved ground case, as pre-consolidation with sand 

drain installation has been carried out, a smaller settlement develops compared with that in Case N3. 

Nonetheless, the notable relative settlement is still observed throughout the surface of the super levee.  
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Case N3; at depth of 10.95 m (atop Ac2 layer) 
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Case N3; at depth of 22.95 m (atop As1 layer)  
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Figure 3.11. Vertical displacement profiles for the natural ground, Case N3, at ground level and at 

different depths. 
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Improved ground case;
 at depth of 32.05 m (atop Dg layer) 

  1 month
  3 months
  5 months
  7 months
  9 months
  22 months
  27 months (E.O.C)
  E.O.C + 5 years
  E.O.C + 10 years

  X coordinate (m)

 

Se
ttl

em
en

t (
m

)

 

Figure 3.12. Vertical displacement profiles for the improved ground case at ground level and at different 

depths. 
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Figure 3.13. Settlement profiles atop the super levee after the end of the construction (EOC), for the 

natural ground cases (Cases N1, N2, and N3) and the improved ground case. 

  

3.6.2. Lateral Displacements 

The lateral displacements at the left- and the right-side toes of the main levee along the ground layers 

are illustrated in Figure 3.14 for Case N3 and the improved ground case. The other natural ground 

cases demonstrate variations nearly similar to those of Case N3; therefore, the results for Case N3 are 

only presented here to evaluate the effect of the ground-improvement techniques on the lateral 

displacements. In consolidation of the embankment construction, the lateral displacement along the 
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toe follows the process of excess pore pressure generation and dissipation under the embankment by

forward and backward movements.
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Figure 3.14. Lateral displacement profiles at the main levee toes along the ground depth for the natural

ground, Case N3, and the improved ground case.

For Case N3, the lateral displacement at the right-side toe of the main levee is increased toward

the right for 9 months with its maximum value at a depth of 11 m. Then it moves toward the left

during the suspension of construction and consequent short-time consolidation. This sequence is

continued by starting the next phase of construction and the following consolidation period.  The

maximum lateral displacement along the depth during the consolidation is observed at a depth of
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about 18 m, which is located in the Ac2 clay layer. At the left-side toe section, however, the lateral 

displacement presents rather different behavior, since the construction is carried out on both sides of 

this section. At first, by constructing the main levee, it shows the lateral movement toward the left. 

However, by continuing the construction to the back slope, which is located on the left side of this 

section, rightward movements appear slightly. During the long-term consolidation, the lateral 

displacement in this section follows the dissipation process of the generated excess pore pressure 

beneath the back slope, by showing leftward movements with its maximum value at a depth of about 

18 m. 

For the improved ground case, at the right-side toe, the lateral displacement follows the same 

tendency as that for Case N3, but with smaller displacements due to the installation of the DM walls. 

At the left-side toe, similar movements occurred with smaller values while the surrounding soil is 

treated by the improvement techniques. During the long-term consolidation, the lateral displacement 

profile along the depth moves toward the right, following the dissipation of the generated excess pore 

pressure beneath the main levee. 

 

3.6.3. Volumetric Strain 

The volumetric strain, which is calculated by the summation of the vertical and the horizontal strain, 

is shown in Figures 3.15, 3.16, 3.17, and 3.20 for the three natural ground cases and the improved 

ground case, respectively. The volumetric strain contours at different stages of construction, namely, 9, 

22, and 27 months, and 10 years after EOC are presented. As the volumetric strain changes over a 

wide range during the analysis, different legend scales are adopted in each case, accordingly.  

After 9 months, Cases N1, N2, and N3 demonstrate nearly similar distributions of volumetric 

strain, with the strain localization mainly in the area just beneath the embankments and slightly at the 

upper part of the Ac2 clay layer. After 22 months, despite the similarity in the results for Cases N1 

and N2, Case N3 shows a larger zone of strain localization in the Ac2 layer. 10 years after EOC, the 

volumetric strain localization is clearly observed in the Ac2 clay layers beneath the back slope for the 

three cases. A larger volumetric strain develops in Case N2 in comparison to that for Case N1, and the 

values of localized volumetric strain in Case N3 become even larger, because the strain dependency 

of the shear modulus is considered. The levels of volumetric strain in the improved ground case, 

shown in Figure 3.18, develop beneath the filling zones with smaller overall values compared with 

those in Case N3. However, significant strain localization is observed in the upper part of layer Ac2 in 

between the DM walls and the SCP/SD installation zones, in which about 5% of the volumetric strain 

is localized after 10 years of consolidation. 
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(a)  

(b)  

(c)  

(d)  

Figure 3.15. Volumetric strain contours for Case N1 at various steps; (a) 9 months, (b) 22 months,          

(c) 27 months (EOC), and (d) 10 years after EOC (legend unit: %). 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.16. Volumetric strain contours for Case N2 at various steps; (a) 9 months, (b) 22 months,          

(c) 27 months (EOC), and (d) 10 years after EOC (legend unit: %). 
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(a)  

(b)  

(c)  

(d)  

Figure 3.17. Volumetric strain contours for Case N3 at various steps; (a) 9 months, (b) 22 months,          

(c) 27 months (EOC), and (d) 10 years after EOC (legend unit: %). 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.18. Volumetric strain contours for the improved ground case at various steps; (a) 9 months, (b) 

22 months, (c) 27 months (EOC), and (d) 10 years after EOC (legend unit: %). 
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3.6.4. Accumulated Viscoplastic Shear Strain 

The accumulated viscoplastic strain is developed only in clay layers since the elasto-viscoplastic 

constitutive model is assigned for these layers and the elastic behavior is considered for the sand and 

gravel layers. The accumulated viscoplastic shear strain contours in 10 years after EOC are shown in 

Figure 3.19 for all cases. Among the natural ground cases, the accumulated viscoplastic shear strain in 

Case N1 is distributed in a whole area of the Ac2-L layer beneath the filling zone with a maximum 

value of about 4%, with no apparent localization, as shown in Figure 3.19(a). For Case N2, however, 

the application of structural degradation parameters leads to evident strain localization with a 

maximum value of about 11%, as shown in Figure 3.19(b). This value increases to about 18% for 

Case N3, as can be seen in Figure 3.19(c), in the same area as for Case N2.  For the improved ground 

case, in general, smaller levels of viscoplastic shear strain develop compared with those in the natural 

ground case, N3, even though significant strain localization is already observed in layer Ac2 beneath 

the back slope with a maximum value of about 6%, as illustrated in Figure 3.19(d). 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.19. Viscoplastic shear strain contours 10 years after EOC for different cases; (a) Case N1,       

(b) Case N2, (c) Case N3, and (d) the improved ground case (legend unit: %). 
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3.6.5. Lode Angle 

The variations of Lode angle for natural ground case N3 and the improved ground case at various 

stages of construction are presented in Figures 3.20 and 3.21. All the natural ground cases indicate 

similar feature in the distribution of Lode angle. In general, the large value of Lode angle corresponds 

to the location of the large surface settlement, which implies the high risk of failure under the 

extension mode. For the natural ground case N3 after 9 months, as shown in Figure 3.20(a), the large 

value of Lode angle is developed around the right hand side of the super levee demonstrating the 

ground level heave nearby. After the short-term consolidation, 22 months, the larger value of Lode 

angle is observed on the top of the super levee indicating the location of the large settlement, as 

shown in Figure 3.20(b). In 10 years of consolidation after EOC, the large value of the Lode angle is 

seen on the upper layer of the super levee corresponding to the location of the maximum settlement 

atop the super levee, as shown in Figure 3.20(d). For the improved ground case, however, since the 

improvement techniques are employed, the large value of lode angle is developed in a quite smaller 

zone on the top of the super levee after the long-term consolidation within 10 years, as shown in 

Figure 3.21(d). 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.20. Lode angle for Case N3 at various steps; (a) 9 months, (b) 22 months, (c) 27 months (EOC), 

and (d) 10 years after EOC (legend unit: degree). 
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(a)  

(b)  

(c)  

(d)  

Figure 3.21. Lode angle for the improved ground case at various steps; (a) 9 months, (b) 22 months,        

(c) 27 months (EOC), and (d) 10 years after EOC (legend unit: degree). 

 

3.6.6. Excess Pore Water Pressure 

The excess pore water pressure distribution contours are presented in Figures 3.22 to 3.25 for natural 

ground cases N1, N2, and N3 and the improved ground case at various stages of construction. Due to 

the high permeability of the embankment materials and also the upper layers of the ground, the excess 

pore water pressure mostly develops in the clay layers beneath the super levee. For the natural ground 

cases, all three cases present rather similar excess pore water pressure variations during the 

construction period, namely, 27 months. In these cases, the excess pore water pressure is generated 

with a maximum value of approximately 87 kPa in 9 months, mainly in the Ac2 layer and slightly in 

the lower clay layer, Ac1, as shown in Figures 3.22(a), 3.23(a), and 3.24(a). After the short-time 

consolidation, the excess pore water pressure slowly dissipates to a maximum value of about 50 kPa 

in 22 months at the deeper layers, as shown in Figures 3.22(b), 3.23(b), and 3.24(b). Following the 

construction, the excess pore pressure builds up to a maximum value of about 50 kPa in 27 months, as 

illustrated in Figures 3.22(c), 3.23(c), and 3.24(c). During the long-term consolidation, however, 

different responses are observed among the natural ground cases. In Case N1, as shown in Figure 

3.22(d), after 10 years of consolidation the excess pore water pressure reaches down to a value of 

about 25 kPa, which is widely distributed in layer Ac2 and the layers below it. For Case N2, as shown 

in Figure 3.23(d), giving consideration to the structural degradation of soft clay layers results in the 
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(a)  

(b)  

(c)  

(d)  

Figure 3.22. Excess pore water pressure contours for Case N1 at various steps; (a) 9 months,                  

(b) 22 months, (c) 27 months (EOC), and (d) 10 years after EOC (legend unit: kPa). 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.23. Excess pore water pressure contours for Case N2 at various steps; (a) 9 months,                  

(b) 22 months, (c) 27 months (EOC), and (d) 10 years after EOC (legend unit: kPa). 
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buildup of excess pore pressure after the construction, in the area corresponding to the strain-localized 

region. The amount of the generated excess pore water pressure after the construction in the strain-

localized region for Case N3 becomes even higher (Figure 3.24(d)), since the larger structural 

degradation parameters are assigned. In sensitive soft clay, the pore water pressure increases or 

becomes stagnant after the completion of the embankment construction, due to the collapse or the 

rearrangement of the initial clay structure. This anomalous buildup of pore water pressure is 

associated with the increase in viscoplastic strain and subsequent localization. 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.24. Excess pore water pressure contours for Case N3 at various steps; (a) 9 months,                  

(b) 22 months, (c) 27 months (EOC), and (d) 10 years after EOC (legend unit: kPa). 

 

In the improved ground case, the excess pore water pressure distribution is changed by the sand 

drains and the DM-wall installation. After the first phase of construction in 9 months, as shown in 

Figure 3.25(a), excess pore water pressure is only generated beneath the super levee with a maximum 

value of about 78 kPa. Due to the sand drain installation, the excess pore water pressure is only 

generated under the embankment construction zone. The presence of sand drains significantly 

prevents the spreading of the generated pore water pressure to other parts located outside the 

embankment loading zone. On the other hand, the installation of DM walls under the main levee 

provides a low-permeability zone over the clay layers, which prolongs the drainage paths and 
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decelerates the dissipation times in that region. During the short-time consolidation, the generated 

amount is somewhat dissipated and reaches a maximum value of about 30 kPa, as shown in Figure 

3.25(b). Continuing the construction, this value increases to about 34 kPa, as can be seen in Figure 

3.25(c), and after 10 years of consolidation the excess pore water pressure almost dissipates 

completely, as illustrated in Figure 3.25(d). In the improved ground case, as the characteristics of the 

clay layers have been improved by the pre-loading process, almost no build-up of pore water pressure 

is observed after the construction of the embankment. 

 

(a)  

(b)  

(c)  

(d)  

Figure 3.25. Excess pore water pressure contours for the improved ground case at various steps;             

(a) 9 months, (b) 22 months, (c) 27 months (EOC), and (d) 10 years after EOC (legend unit: kPa). 

 

3.7. Concluding Remarks 

The consolidation analysis of a super levee construction project in Torishima, Osaka City, Japan was 

conducted using an elasto-viscoplastic constitutive model. As the first phase, the effect of the 

destructuration of sensitive soft clay, by structural degradation and the strain dependency of the shear 

modulus, were studied in terms of the consolidation behavior of the super levee construction on a 

natural (unimproved) ground through three cases. The structural degradation was found to have an 

excessive effect on the after-construction responses of the pore water pressure and the associated 
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strain localization. On the other hand, the strain dependency of the elastic shear modulus, as another 

aspect of destructuration in soft clay, was found to affect the behavior at an earlier stage of loading 

which appears as relatively large deformations during the construction process, and therefore, during 

consolidation. 

In the second phase of the analysis, the consolidation analysis of the super levee construction 

was carried out on an improved ground, according to the details of the ground-improvement 

techniques which have been performed on the site of the project. The field monitored data during the 

preloading process, prior to super levee construction, was used to obtain the appropriate soil 

parameters after the improvement. The performance of sand drains, in shortening the drainage paths 

and accelerating the consolidation rates, was clearly observed through the settlement profiles and the 

excess pore water pressure contours. The effect of DM walls was observed as reducing the overall 

settlements beneath the main levee, and also as creating a low-permeability top layer over the clay 

layers which decelerate the dissipation rate beneath the main levee. It was found that even after 

ground improvements, large relative displacements are observed in the ground level and atop the 

super levee. The predicted large relative settlements atop the super levee in the improved case were 

found to be consistent to the recent field observed data after the construction (Oka 2009), in terms of 

the location and the approximation of the settlement quantities. In addition, the rather large strain 

localization mainly occurred in the area of the SCP/SD installation, where it is under the highest 

influence of embankment loading. Consequently, the unevenness of the ground-improvement 

techniques under the two parts of the super levee, and also the inadequacy of the preloading process in 

terms of the height/location of temporary fill material and the preloading duration, can be expressed 

as the main cause of subsidence in this case even after ground improvements were made. In order to 

construct a large-scale river embankment for the mitigation of flood disaster, it is necessary to 

carefully estimate unequal settlement of ground. 
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Chapter 4 

CYCLIC ELASTO-VISCOPLASTIC MODEL 

AND SIMULATION OF SOFT CLAY UNDER 

CYCLIC TRIAXIAL CONDITIONS  

 

4.1. Introduction 

The behavior of soft clay under cyclic loading conditions is of considerable importance in the 

dynamic analysis of multilayered ground. This behavior includes the interaction between the sand 

layer and the clay layer, the total settlement of both layers, and the effect of the clay layer on 

liquefaction. In order to accurately predict the behavior of the natural ground foundation during 

earthquakes, ocean wave storm, traffic vibrations, and any other similar phenomena, it is necessary to 

employ the constitutive models which properly reproduce the dynamic behavior of clay layers. The 

prediction of soft clays is rather complex due to the time-dependent and cyclic behaviors. This 

becomes even more complicated as the destructuration and microstructural changes in the soil 

particles are taken into consideration. Several viscoplastic constitutive models have been proposed to 

describe the rheological behavior of clay under static loading conditions (e.g., Adachi and Oka 1982, 

Dafalias 1982, Katona 1984, Matsui and Abe 1985, Kaliakin and Dafalias 1990, Kimoto and Oka 

2005). However, few viscoplastic constitutive models are available for the analysis under dynamic 

loading conditions (e.g., Oka 1992, Modaressi nad Laloui 1997, Oka et al. 2004a, Maleki and 

Cambou 2009). Oka (1992) developed a cyclic elasto-viscoplastic constitutive model for clay based 

on nonlinear kinematic hardening rule (Chaboche and Rousselier 1983). Later on, Oka et al. (2004a) 
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proposed a cyclic viscoelastic-viscoplastic model by incorporating the viscoelastic feature into the 

constitutive equations, in which the behavior of clay can be described not only in the range of middle 

to high level of strain, but also in the range of low level of strain. Despite the ability of these models 

to explain the deformation characteristics under cyclic loading conditions, the effect of structural 

degradation of clay particles was disregarded. Taking into account the structural degradation and 

microstructural changes, a cyclic elasto-viscoplastic model was developed based on the nonlinear 

kinematic hardening rules for the changes in both the stress ratio and the mean effective stress 

(Hoizumi 1996, Watanabe et al. 2007). In order to improve the prediction of the behavior during 

cyclic loading process, the nonlinear kinematic hardening rule for changes in viscoplastic volumetric 

strain was included into the model (Sawada 2008). 

In this chapter, a cyclic elasto-viscoplastic constitutive model for water-saturated soils is 

presented. The element test simulations are conducted by integration of the constitutive equations on 

soft clay specimen characterized by the material parameters of Nakanoshima clay, and the results are 

compared with the experimental data from the cyclic and the monotonic triaxial tests. Then, the 

parametric studies are performed to evaluate the performance of the constitutive model. Finally, 

modeling of Osaka soft clay samples (Torishima clay) is carried out under undrained cyclic triaxial 

conditions to obtain the material parameters for the future dynamic analyses. 

 

4.2. Cyclic Elasto-Viscoplastic Model for Water-Saturated Soils 

The cyclic elasto-viscoplastic constitutive model is derived following the concept of structural 

degradation in the elasto-viscoplastic model (Kimoto and Oka 2005) incorporated with the nonlinear 

kinematic hardening rules (Armstrong and Frederick 1966, Chaboche and Rousselier 1983). The 

model considers the structural degradation of the soil skeleton by the shrinkage of both the 

overconsolidation boundary surface and the static yield surface with respect to the accumulation of 

viscoplastic strain. The model is derived based on an overstress type of viscoplasticity theory and the 

non-associated flow rule. The nonlinear kinematic hardening rule is adopted in addition to the 

viscoplastic strain dependency of elastic shear modulus.  

The model is modified here from the preceding formulations, presented in Sawada (2008), in 

terms of the inclusion of the kinematic hardening rule for volumetric strain. This term appears in the 

definition of the static yield function and consequently in the material function. In the current 

reformulation, the volumetric strain hardening has been appropriately included in the definition of the 

static yield function by replacing mbσ ′ with maσ ′ . Moreover, a new formulation is introduced here for 
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the degradation of the elastic shear modulus as a function of the mean effective stress and the 

accumulated viscoplastic shear strain from the initial state. 

In the adopted constitutive model, Terzaghi’s effective stress for water-saturated soil is used as 

ij ij ijpσ σ δ′= +                                                                  (4.1) 

where ijσ  is the total stress tensor, ijσ ′
 is the effective stress tensor, p  is the pore water pressure, and 

ijδ  is Kronecker’s delta. In addition, total strain rate tensor ijε  is assumed to be divided into two parts, 

namely, 

e vp
ij ij ijε ε ε= +                                                                  (4.2) 

where e
ijε  denotes the elastic strain rate tensor and vp

ijε  is the viscoplastic strain rate tensor. The elastic 

strain rate tensor is expressed as 

1
2 3(1 )

e m
ij ij ij

m

S
G e

ε
σκ

δ
σ

′
= +

′+
                                                 (4.3) 

in which G is the elastic shear modulus, ijS  is the deviatoric stress tensor ( ijij m ijS σ σ δ′ ′= − ), mσ ′  is 

the mean effective stress, and the superimposed dot denotes the time differentiation. κ is the swelling 

index and e is the void ratio. The degradation of elastic shear modulus G as a function of strain will be 

presented in the next section. In the present study, the initial void ratio e0 is used in Equation (4.3) for 

simplicity. 

 

4.2.1. Overconsolidation Boundary Surface 

An overconsolidation boundary surface bf  is defined as the boundary in the stress space between the 

normally consolidated (NC) region and the overconsolidated (OC) region by 

( )* *
(0) ln 0b m m mbf Mη σ σ′ ′= + =                                                   (4.4) 

where 0 bf <  indicates the overconsolidated region and 0 bf ≥  shows the normally consolidated 

region. *
(0)η  is the relative stress ratio defined by 
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( )( ) ( )( ){ }
1

* * * * * 2
(0) 0 0ij ijij ijη η η η η= − −                                                  (4.5) 

in which subscript (0) denotes the initial state before deformation and *
ijη  is the stress ratio tensor. 

mbσ ′  controls the size of the OC boundary surface. 
*
mM  is the value of * * *

ij ijη η η=  when the 

volumetric strain increment changes from compression to swelling. The stress ratio at triaxial 

compression state *
mcM  and the stress ratio at the extension state *

meM  can be obtained by the internal 

frictional angleφ  as 

* 2 6sin
3 3 sin  mcM

φ
φ

=
−

                                                          (4.6) 

* 2 6sin
3 3 sin  meM

φ
φ

=
+

                                                           (4.7) 

To describe the structural degradation of clay, strain softening with the accumulated viscoplastic 

strain is introduced in addition to strain hardening with the viscoplastic volumetric strain as 

01
exp( )vp

mb ma v

e
σ σ ε

λ κ
+′ ′=
−

                                                      (4.8) 

where maσ ′  is assumed to decrease with an increase in viscoplastic strain with 

( )exp( )ma maf mai maf zσ σ σ σ β′ ′ ′ ′= + − −                                              (4.9) 

in which z is the accumulation of the second invariant of the viscoplastic strain rate given by  

0

  ;    
t

vp vp
ij ijz zdt z ε ε= =∫                                                         (4.10) 

In Equation (4.9), maiσ ′  and mafσ ′  are the initial and the final values for maσ ′ , respectively. β is a 

parameter that stands for the changing rate of maσ ′ , while the proportion of maf main σ σ′ ′=  provides 

the degree of possible collapse of the soil structure at the initial state. 
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4.2.2. Static Yield Function 

Static yield function is obtained by considering the nonlinear kinematic hardening rule for the changes 

in the stress ratio, in the mean effective stress, and in the viscoplastic volumetric strain, as  

* * *
1( )

ln ln 0mk m
y ms

my mk

f M yχ

σ σ
η

σ σ
′ ′

= + + − =
′ ′

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

                                        (4.11) 

( )( ){ }
1

* * * * * 2
ij ij ij ijχη η χ η χ= − −                                                     (4.12) 

in which mkσ ′ is the unit value of the mean effective stress, *
1my  is the scalar kinematic hardening 

parameter, and ( )s
myσ′

 denotes the static hardening parameter. *
ijχ is so-called back stress parameter, 

which has the same dimensions as stress ratio *
ijη .  

Incorporating the strain softening for the structural degradation, the hardening rule of ( )s
myσ′

 can 

be expressed as 

( )( ) ( )
 exp( )maf mai mafs s

my myi
mai

zσ σ σ β
σ σ

σ

′ ′ ′+ − −
′ ′=

′
                                       (4.13) 

 

4.2.3. Viscoplastic Potential Function 

In the same manner as for the static yield function, viscoplastic potential function pf  is given by 

* * *
1ln ln 0mk m

p m
mp mk

f M yχ

σ σ
η

σ σ
′ ′

= + + − =
′ ′

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

                                         (4.14) 

The dilatancy coefficient *M  is defined separately for the normally consolidated region (NC) 

and the overconsolidated region (OC) as  

   ( )
*

*

* *

                  :NC region

  :OC region
m

m mc m

M
M

Mσ σ
=

′

⎧⎪
⎨
⎪⎩

                                              (4.15) 
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where mcσ ′  is the mean effective stress at the intersection of the overconsolidation boundary surface 

and mσ ′  axis, which is defined by 

       
* *

(0) (0)

*
 exp ij ij

mc mb
mM

η η
σ σ′ ′=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                     (4.16) 

in addition, *
mσ  denotes the mean effective stress at the intersection of the surface, which has the same 

shape as bf , and is given by 

       
*

*
*  expm m

mM
χη

σ σ ′=
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                        (4.17) 

 

4.2.4. Kinematic Hardening Rules 

The evolution equation for the nonlinear kinematic hardening parameter *
ijχ is given by  

( )* * * *vp vp
ij ij ijd B A de dχ χ γ= −                                                     (4.18) 

where *A and *B  are material parameters, vp
ijde is the viscoplastic deviatoric strain increment tensor, 

and  
vp vp vp

ij ijd de deγ = is the viscoplastic shear strain increment tensor. *A is related to the stress ratio 

at failure, namely, * *
fA M= , and *B is proposed to be dependent on the viscoplastic shear strain as 

( ) ( )* * * * *
max 1 ( ) 1exp vp

f nB B B C Bγ= − − +                                                (4.19) 

in which *
1B  is the lower boundary of *B , fC is the parameter controlling the amount of reduction, 

*
( )
vp
nγ is the accumulated value of the viscoplastic shear strain between two sequential stress reversal 

points in the previous cycle. *
maxB is the maximum value of parameter *B , which is defined following 

the proposed method by Oka et al (1999) as 

*
0

* *
max 0

* *
( ) max ( )

                   :Before reaching failure line

 :After reaching failure line
1 vp vp

n n r

B

B B
γ γ

=

+

⎧
⎪
⎨
⎪
⎩

                            (4.20) 
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where *
0B is the initial value of *B , *

( ) max
vp
nγ is the maximum value of *

( )
vp
nγ in past cycles, and *

( )
vp
n rγ is the 

viscoplastic reference strain.  

In order to improve the predicted results under cyclic loading conditions, the scalar nonlinear 

kinematic hardening parameter *
1my is introduced as  

( )* * * *
1 2 2 1

vp vp
m v m vdy B A d y dε ε= −                                                     (4.21) 

where *
2A and *

2B  are material parameters, vp
vdε is the increment of the viscoplastic volumetric strain 

tensor. The values of *
2A and *

2B are determined by data-adjusting method from the laboratory test data. 

The degradation of the elastic shear modulus from the beginning of loading can be expressed by 

its dependency on the accumulated viscoplastic shear strain vpγ  as 

( )( )
0

01
m

rvp
m

G
G

σ
σα γ

′
=

′+
                                                        (4.22) 

where r and α are the strain-dependent parameters, which can be determined from the laboratory test 

results. In this study, based on the experimental results, 0.4r = is chosen. 

 

4.2.5. Viscoplastic Flow Rule 

Based on the overstress type of viscoplastic theory first adopted by Perzyna (1963), viscoplastic strain 

rate tensor vp
ijε  is defined as 

   ( ) pvp
ij ijkl y

kl

f
C fε

σ
∂

= Φ
′∂

                                                      (4.23) 

)( )(Φ    : 0 
Φ  

0            : 0
y y
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f f
f

f
=

≤

>⎧⎪
⎨
⎪⎩

                                                  (4.24) 

( )ijkl ij kl ik jl il jkC a bδ δ δ δ δ δ= + +                                                  (4.25) 
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where  are Macaulay’s brackets, )(Φ yf
 
is the rate-sensitive material function, and ijklC  is a fourth 

order isotropic tensor. a and b in Equation (4.25) are material constants. The material function )(Φ yf
 

is determined as  

)( * * *
 1Φ  exp  ln lnmk m

y m m
ma mk

f m M yχ

σ σ
σ η

σ σ
′ ′

′ ′= + + −
′ ′
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⎜ ⎟⎨ ⎬

⎪ ⎪⎝ ⎠⎩

⎞
⎜ ⎟
⎝ ⎠ ⎭

                             (4.26) 

in which m′  is the viscoplastic parameter. Finally, by combining Equations (4.23) to (4.26) 

viscoplastic deviatoric strain rate vp
ije  and viscoplastic volumetric strain rate vp

ijε  can be expressed as 

* * *
1 1 *

* *

 exp ln lnvp mk m
ij m

ma m

ij ij

k

e C m M yχ
χ

σ σ
η

χ
η
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+ −
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                          (4.27) 
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where 1 2C b=  and 2 3 2C a b= +  are the viscoplastic parameters for the deviatoric and the volumetric 

strain components, respectively. 
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4.3. Simulation of Triaxial Behavior of Nakanoshima Clay 

4.3.1. Material Parameters 

In the proposed constitutive model, the material parameters can be determined by conventional tests, 

physical-property tests, or triaxial compression tests. For some parameters, as will describe later, the 

data-adjusting method can be employed. The initial void ratio can be calculated with the specific 

gravity of the soil particles, the water contents, and the bulk density based on the results of tests 

conducted on undisturbed samples. The compression index and swelling index can be calculated as 

the slope of the e-ln p relation during the isotropic consolidation and swelling tests, respectively. The 

initial elastic shear modulus is calculated from the slope of stress-strain relation curve at the early 

stage of loading. The stress ratios at the compression and the extension state are calculated from the 

internal friction angle using Equations (4.6) and (4.7). Viscoplastic parameters m’ is determined from 

undrained triaxial compression tests conducted at different strain rates. By having m’, the other 

viscoplastic parameters, C1 and C2, are obtained from Equations (4.27) and (4.28) in the monotonic 

triaxial stress state. In the lack of the adequate laboratory test data, the viscoplastic parameters C1 and 

C2 are determined by date-adjusting method from the existing experimental results. The rest of the 

parameters are conventionally determined by the data-adjusting method through the comparison of the 

simulated results with the experimental values. However, there are often some empirical relations 

which can be used to determine the parameters for the first trial. Following the procedures and using 

the proposed cyclic elasto-viscoplastic constitutive model, the material parameters of the 

Nakanoshima clay are determined and listed in Table 4.1. 

The soil samples, which are used for the cyclic triaxial test and the monotonic test, appear to be 

slightly different. Therefore, different sets of parameters are obtained for each sample. Comparing the 

initial void ratio of the samples, the cyclic sample has smaller void ratio, which emphasizes the stiffer 

behavior compared with the sample for monotonic test. Accordingly, the values of the hardening 

parameter and the structural parameters have been determined in a manner that more softening 

behavior can be reproduced for the monotonic sample.  

The results of the stress-strain relation and stress path for the simulation and for the cyclic 

triaxial test are presented in Figure 4.1. The stress-strain relations of the simulated results demonstrate 

a good tendency with the experimental data, in terms of the strain levels in both compression and 

extension sides and the number of cycles. The simulated result of stress paths, on the other hand, does 

not show such a good agreement with the experimental data. This might be attributed to the different 

mechanism of measurement for the pore water pressure during the experiments, which is based on the 

average values of the whole specimen, while in the simulation the results of the one-point response is 

considered.  
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Table 4.1. Material parameters of Nakanoshima clay, for the cyclic and the monotonic test conditions. 

 Cyclic test Monotonic test 

Initial void ratio e0 1.373 1.573 

Compression index λ 0.2173 

Swelling index κ 0.0344 

Initial elastic shear modulus (kPa)  G0 22670 

Initial mean effective stress (kPa) 0mσ ′ 200 

Stress ratio at compression M*
mc 1.143 

Stress ratio at extension M*
me 1.061 

Viscoplastic parameter m’ 22.7 

Viscoplastic parameter (1/s) C1 1.00×10-5 

Viscoplastic parameter (1/s) C2 3.30×10-6 

Structural parameter  maf main σ σ′ ′= 0.325 

Structural parameter β 3.7 5.7 

Hardening parameter B*
0 105 

Hardening parameter B*
1 1.0 

Hardening parameter Cf 5 75 

Reference value of viscoplastic strain (%) γvp*
(n)r 3.5 

Strain-dependent parameter  α 10 1 

Scalar hardening parameter A*
2 5.1 

Scalar hardening parameter B*
2 2.6 
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Figure 4.1. Stress paths and stress-strain relations under cyclic triaxial conditions: (a) experimental 

results, (b) simulated results. 
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The results of the simulation under monotonic triaxial conditions are illustrated in Figure 4.2, in 

which the symbols show the experimental values and the solid lines represent the simulated results. 

The simulated results for stress-strain relation and stress path provide good agreement with the 

experimental data. Efforts are made for adjusting the parameters such as the structural parameters, the 

hardening parameters, and the strain-dependent parameter, so that the best possible agreement can be 

achieved between the simulation and the experimental results. 
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Figure 4.2. Stress paths and stress-strain relations under the monotonic triaxial conditions. 

 

4.3.2. Effect of the Current Reformulation 

As mentioned earlier, the constitutive equations are reformulated here from the previous ones 

presented in Sawada (2008). In Sawada’s formulation the hardening rule of ( )s
myσ′

 has been given by 
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By which, the definition of the material function becomes as 
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This formulation includes the effect of volumetric strain twice, as in the mbσ ′  and in the kinematic 

hardening parameter *
1my . This additional inclusion has been corrected in the new formulation by 
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eliminating the term of  01
exp( )vp

v

e
ε

λ κ
+
−

 from Equation (4.29) which leads to the replacement of mbσ ′  

with maσ ′ , in the material function formulation, as presented in Equation (4.13) and (4.26). 

The effect of the new correction of the kinematic hardening rule for the volumetric strain is 

studied using the material parameters of Nakanoshima clay as listed in Table 4.1. The results of the 

simulation are shown in Figure 4.3 for the cyclic triaxial conditions and in Figure 4.4 for the 

monotonic triaxial loading. For the cyclic triaxial loading, the correction of the constitutive equations 

leads to notable changes in the stress-strain relations, of which more softening behavior is observed 

after the correction. When the effect of viscoplastic volumetric strain is considered in the material 

function as term of mbσ ′ , the value )(Φ yf reduces and smaller values are obtained for strain 

components at a specific level of stress. Subsequently, the accumulative strain decreases and more 

hardening behavior achieves at the same stress level. For the monotonic loading, the application of the 

new correction results in less changes compared with the cyclic results, although slightly softening 

behavior with reduction in the values of peak stress are observed in both stress-strain relations and 

stress paths. 
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Figure 4.3. The simulated results for stress paths and stress-strain relations under cyclic triaxial 

conditions: (a) Sawada’s formulation, (b) current formulation. 
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Figure 4.4. Stress paths and stress-strain relations under monotonic triaxial conditions for Sawada’s 

formulation and the current formulation. 

 

4.3.3. Effect of the Linear Evolution Equation for
*

1my  

In the adopted formulation, the nonlinear equation has been applied for the scalar kinematic hardening 

rule for the changes in the viscoplastic volumetric strain. However, the linear evolution equation for 

the scalar kinematic hardening parameter *
1my can be expressed as 

( )* * *
1 2 2

vp
m vdy B A dε=                                                        (4.31) 

In order to evaluate the effect of nonlinearity of evolution equation for *
1my , the undrained cyclic 

and monotonic triaxial simulations are conducted by the material parameters of Nakanoshima clay. 

The results of the linear and the nonlinear evolution equations for *
1my are presented in Figure 4.5 for 

the cyclic and monotonic triaxial conditions. For the stress-strain relation and stress path under the 

monotonic loading, the effect of the linear evolution equation is insignificant as the results for both 

linear and nonlinear cases are exactly the same. For the stress-strain relation of cyclic specimen, the 

linear equation results in one cycle more at similar level of strain in the stress-strain relation, which 

implies the slightly higher hardening effect for the linear case. 

The variations of the scalar kinematic hardening rule *
1my  , for the linear and nonlinear evolution 

equations, are presented in Figures 4.6 and 4.7 for the cyclic and monotonic cases, respectively. The 

variations of *
1my  for the cyclic loading case are slightly larger for the linear evolution equation, but 

for the monotonic case, the results are nearly similar for both linear and nonlinear evolution equations. 
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The variations of viscoplastic volumetric strain versus *
1my  are plotted in Figure 4.8 for the cyclic and 

monotonic loading conditions. It is seen that the effect of the linear evolution equation of *
1my on the 

viscoplastic volumetric strain is insignificant for both cases under undrained loading conditions. 

In order to assess the effect in the drained loading conditions, a simple drained consolidation test 

with one reloading process is simulated using the linear and the nonlinear evolution equations. The 

material parameters of the Nakanoshima cyclic sample are used in the simulation. Figure 4.9 shows 

the variation of the total volumetric strain versus the mean effective stress for the linear and the 

nonlinear evolution equations. In the drained conditions, the influence of the nonlinear evolution 

equation of *
1my becomes more distinct, inasmuch as larger volumetric strain is developed by taking 

the nonlinear equation compared to the linear evolution equation. 
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Figure 4.5. The simulated results for the linear and the nonlinear evolution equations of *
1my ,                   

for the monotonic loading (above) and the cyclic triaxial loading conditions (below). 
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Figure 4.6. The variation of *
1my  for the linear and the nonlinear evolution equations, under cyclic triaxial 

loading conditions. 
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Figure 4.7. The variation of *
1my  for the linear and the nonlinear evolution equation, under monotonic 

loading conditions. 
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Figure 4.8. Viscoplastic volumetric strain vs. *
1my  for the linear and the nonlinear evolution equations, 

under cyclic loading (above) and under monotonic loading conditions (below). 
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Figure 4.9. The variations of volumetric strain under drained consolidation for the linear and                  

the nonlinear evolution equations. 
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4.3.4. Effect of the Hardening Parameter fC  

The Nakanoshima clay sample, which is used for the monotonic loading case, demonstrated rather 

more softer behavior compared with the cyclic test sample. Therefore different value for the 

hardening parameters, in particular fC , is allocated for the monotonic sample. Three cases are 

considered herein with different values of the hardening parameter fC  equal to 5, 45, and 75. For the 

other material parameters the values as listed in Table 4.1 are assigned. The simulated results of the 

stress-strain relations and stress paths for the monotonic and the cyclic loading conditions are 

presented in Figures 4.10 and 4.11, respectively. By taking the larger values for fC , more softening 

behavior in stress-strain relations is observed for both cyclic and monotonic loading cases, which 

results in a better agreement between the simulated results and the experimental values under 

monotonic loading conditions.  
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Figure 4.10. Stress paths and stress-strain relations under monotonic loading for different values of fC .  

 

The variations of *B  for the different values of fC  , under the monotonic and the cyclic loading 

conditions, are illustrated in Figures 4.12 and 4.13, respectively. The variation in *B for the monotonic 

case is quite smooth, while for the cyclic loading case the variations in *B has more perturbation 

following the variation of the viscoplastic shear strains. However in both loading cases, by increasing 

the fC  the reduction rate of *B increases which results in more softening behavior and consequently 

larger deformations. 

 



104 
 

-6 -5 -4 -3 -2 -1 0 1 2 3 4
-200

-100

0

100

200

0 100 200 300 400
-200

-100

0

100

200

-6 -5 -4 -3 -2 -1 0 1 2 3 4
-200

-100

0

100

200

0 100 200 300 400
-200

-100

0

100

200

-6 -5 -4 -3 -2 -1 0 1 2 3 4
-200

-100

0

100

200

0 100 200 300 400
-200

-100

0

100

200

N=38.5

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Axial strain (%)

Mmc=1.4

 Mean effective stress (kPa)

Mme=1.3

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

N=31.5

Nakanoshima clay

Cf = 45

Nakanoshima clay

Cf =5

N=38.5

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Axial strain (%)

Mmc=1.4

 Mean effective stress (kPa)

Mme=1.3

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Nakanoshima clay

Cf = 75

N=27.5

(c)

(b)

(a)

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Axial strain (%)

Mmc=1.4

 Mean effective stress (kPa)

Mme=1.3

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

 

Figure 4.11. Stress paths and stress-strain relations under cyclic loading for different values of fC . 
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Figure 4.12. The variation of *B under monatomic loading for different values of fC .  



105 
 

0 10 20 30 40 50
0

20

40

60

80

100

120

0 10 20 30 40 50
0

20

40

60

80

100

120

0 10 20 30 40 50
0

20

40

60

80

100

120

 

 

B
*

No of cycles

Nakanoshima clay

Cf = 45

Nakanoshima clay

Cf =5

 B
*

No of cycles

Nakanoshima clay

Cf =75

N=27.5

(c)

(b)

N=31.5

(a)

N=38.5

 

 

B
*

No of cycles  

Figure 4.13. The variation of *B under cyclic loading for different values of fC .  
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4.3.5. Effect of the Strain-Dependent Parameter α  

In the constitutive equations, the degradation of the elastic shear modulus G is introduced as the 

function of the mean effective stress and the accumulated viscoplastic shear strain from the initial 

state, given by 

( )( )
0

01
m

rvp
m

G
G

σ
σα γ

′
=

′+
                                                      (4.32) 

in which the strain-dependent parameter α  is determined from the experimental results by data-

adjusting method. To evaluate the effect of the strain-dependent parameter α , three cases are 

considered using the material parameters as listed in Table 4.1. For parameter α , however, three 

different values equal to 1, 10, and 20 are assigned. The simulation results for monotonic and cyclic 

loading conditions are illustrated in Figures 4.14 and 4.15 as stress paths and stress-strain relations. 

The effect of the variation of α  on the stress path results is insignificant for the monotonic case, 

while for the cyclic case slightly changes in observed due to the variation of α . For stress-strain 

relations, the larger values of α results in faster degradation of G and softer behavior. Of course this 

influence is more evident for the cyclic case as the values of the accumulated shear strain is higher 

compared with those of monotonic case. 

Figures 4.16 and 4.17 demonstrate the variation of G for different values of α  under both the 

cyclic and monotonic loading conditions. The larger values of α leads to higher degradation of the 

elastic shear modulus and consequently larger deformations at similar level of shearing. 
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Figure 4.14. Stress paths and stress-strain relations under monotonic loading for different values of α .  
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Figure 4.15. Stress paths and stress-strain relations under cyclic loading for different values of α .  
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Figure 4.16. The variation of G under cyclic triaxial conditions for different values of α . 
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Figure 4.17. The variation of G under monotonic triaxial conditions for different values of α . 
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4.4.  Simulation of Cyclic Triaxial Behavior of Osaka Soft Clay 

In order to obtain the dynamic characteristics of Osaka soft clay layer at Torishima super levee site 

(see Section 3.2 for further details), cyclic triaxial tests have been performed on the soft clay 

specimen from Ac2 layer. One borehole has been drilled with 86 mm diameter reaching down to 

about 20m below the ground surface. Undisturbed samplings have been obtained from the Ac2-U and 

Ac2-M sub-layers. The undrained cyclic triaxial tests were accomplished on the soft clay specimens 

with different cyclic stress ratios ( )02 mCSR q σ ′=  equal to 0.370, 0.311, and 0.250. Figure 4.18 shows 

the experimental results of the undrained cyclic triaxial tests on the samples from Ac2-U layer, named 

as T-1, with different cyclic stress ratios. The results for the samples obtained from Ac2-M layer, 

which are named as T-2, are presented in Figure 4.19 for different cyclic stress ratio as the stress-

strain relations and stress paths. 

The simulations of the cyclic triaxial tests are conducted to obtain the material parameters of the 

soft clay specimens using the cyclic elasto-viscoplastic constitutive model. The material parameters of 

soft clay specimens are listed in Table 4.2. The conventional characteristic parameters such as the 

initial void ratio, the swelling index, the compression index, and the viscoplastic parameter m’ are 

obtained from the representative material parameters of the corresponding layer as presented in 

Chapter 2. While for the rest of the parameters, the data-adjusting method and comparison of the 

simulated results with the cyclic triaxial test data are utilized. The simulated results for the Ac2-U 

layer specimens are presented in Figure 4.20, and for the Ac2-M layer specimens are shown in Figure 

4.21. Efforts were made to determine the parameters so that the simulated results provide the closest 

trend to the experimental data under different level of cyclic shearing in terms of the strain amplitude 

and number of cycles in the stress-strain relations. Nonetheless, the simulated results show some 

dissimilarity with the experimental results, particularly in the higher level of cyclic shearing. This 

might be attributed to the differences between the loading conditions in the laboratory tests and in the 

simulation. Furthermore, the simulated results represent the behavior of a realistic clay sample 

regardless of the boundary effect and size, while the experimental data show the response of the 

samples which may have been disturbed during the sampling process, and also have an inherent 

heterogeneity. Therefore, it is inevitable to have such dissimilarity between the simulated results and 

experiments, particularly when an individual set of parameters are employed for the samples under 

different cyclic stress ratios. 

The cyclic shear ratio versus number of cycles curve which provides the cyclic resistibility of 

clay samples at a specific level of double strain amplitude, i.e., DA= 5% or DA= 10%, are plotted in 

Figure 4. 22 and the values are listed in Table 4.3 for both experimental and simulation results. The 

simulation results demonstrate rather higher number of cycles at the same shearing level compared 
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with the experimental results. However, considering the overall shape and curve slope, the simulated 

results present good agreement with the experimental data. 

 

Table 4.2. Material parameters of soft clay layer Ac2 in Torishima. 

 T-1(Ac2-U) T-2 (Ac2-M) 

Test No. 
#1: CSR=0.370 #1: CSR=0.370 
#2: CSR=0.250 #2: CSR=0.250 
#4: CSR=0.311 #4: CSR=0.311 

Initial void ratio e0 1.25 1.65 

Compression index λ 0.341 0.593 

Swelling index κ 0.019 0.027 

Normalized initial shear modulus 0 mG σ ′ 75.2 58.95 

Stress ratio at compression M*
mc 1.24 1.18 

Stress ratio at extension M*
me 0.94 0.915 

Viscoplastic parameter m’ 24.68 28.2 

Viscoplastic parameter (1/s) C1 1.00×10-5  1.00×10-5 

Viscoplastic parameter (1/s) C2 3.83×10-6 1.85×10-6 

Structural parameter  maf main σ σ′ ′= 0.30 0.325 

Structural parameter β 3.6 3.8 

Hardening parameter B*
0 100 180 

Hardening parameter B*
1 40 3 

Hardening parameter Cf 10 3 

Reference value of viscoplastic strain (%) γvp*
(n)r 1.25 1.25 

Strain-dependent parameter  α 10 20 

Scalar hardening parameter A*
2 5.9 5.9 

Scalar hardening parameter B*
2 1.8 1.8 

  

 

Table 4.3. Number of cycles at DA= 5% and DA=10% at different CSR, for Torishima soft clays. 

T-1(Ac2-U) T-2(Ac2-M) 

DA=5% DA=10% DA=5% DA=10% 

Experiment: 
CSR= 0.370 0.5 1.5 3 5 
CSR= 0.311 2 4 17 25 
CSR= 0.250 36 43 135 154 

Simulation: 
CSR= 0.370 2.5 4 6 8 
CSR= 0.311 7 9.5 18 24 
CSR= 0.250 26 38.5 125 142 
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Figure 4.18. Cyclic triaxial test results as stress-strain relations and stress paths for Ac2-U samples (T-1) 

under different cyclic stress ratios. 
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Figure 4.19. Cyclic triaxial test results as stress-strain relations and stress paths for Ac2-M samples (T-2) 

under different cyclic stress ratios. 
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Figure 4.20. Simulated results of stress-strain relations and stress paths for Ac2-U samples (T-1),      

under different cyclic stress ratios. 
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Figure 4.21. Simulated results of stress paths and stress-strain relations for Ac2-M samples (T-2),      

under different cyclic stress ratios. 
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Figure 4.22. CSR-N curves for the experimental and the simulation results for Ac2-U and Ac2-M samples. 

 

4.5. Concluding Remarks 

A cyclic elasto-viscoplastic constitutive model was presented in this chapter following the nonlinear 

kinematic hardening rules and considering the effect of the structural degradation. The model was 

modified here from the preceding formulations, presented in Sawada (2008), in terms of the inclusion 

of the kinematic hardening rule for volumetric strain. The effect of the reformulation was found to be 

as more softening behavior in the stress-strain relations and thus more deformation at the same 

shearing level. The performance of the model was then verified through the modeling of soft clay 

specimens under undrained cyclic and monotonic triaxial conditions. Furthermore, the effect of the 

linear and nonlinear evolution equations for the kinematic hardening parameter *
1my was studied. The 

consideration of linear evolution equation has shown insignificant influence in the simulated results 

using the material parameter of Nakanoshima clay under undrained loading condition. However, the 

effects appeared to be more significant under drained loading conditions such as cyclic compression 

test. From the parametric study on the hardening parameter fC  and the strain-dependent parameterα , 

it was found that by increasing fC  the reduction rate of *B increases, which results in more softening 

behavior and consequently larger deformations. Moreover, the larger values of α  leads to higher 

degradation of the elastic shear modulus and consequently larger deformations at the same level of 

shearing. 
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Chapter 5 

DYNAMIC ANALYSIS OF SOFT SOIL 

DEPOSITS USING FINITE DEFORMATION 

THEORY  

 

5.1. Introduction 

Large deformations often take place during the strong ground motions, which may bring about 

extensive damages to the infrastructures and overlying buildings. In the dynamic analysis of a 

multilayered ground, besides the presence of sand layers and susceptibility to liquefaction, the large 

deformations of soft clay layers need to be considered as a possible cause to failure. In order to obtain 

precise results in the finite element analysis of such problems, which involve the geometric 

nonlinearity, the formulation based on the finite deformation theory should be employed. Several 

numerical codes have been developed for the analysis of large deformation problems induced by 

liquefaction, which have been equipped with robust constitutive models for sand. However, the 

influence of soft clay layers in the dynamic analysis of such problems has been either omitted, or 

considered insufficiently by adopting a simple constitutive model for representing the clay behavior.  

In this study, the numerical program entitled LIQCA3D-FD (Oka et al. 2001), which has been 

developed for three-dimensional analysis of dynamic problems in the context of large deformations, is 

extended to include a cyclic elasto-viscoplastic constitutive model for analysis of clayey materials 

under dynamic loading conditions. For that purpose, the cyclic elasto-viscoplastic model, as presented 
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in Chapter 4, is applied. In addition, the preceded finite element formulations (Oka 2002) are 

modified for the viscoplastic materials within the framework of finite deformation theory. The new 

numerical program, entitled COMVI3D-DY10, is used for the analysis of strain localization under 

dynamic loading conditions on soft clay specimen characterized by the cyclic elasto-viscoplastic 

constitutive model parameters. Several cases are considered to study the effects of the mesh size and 

the drainage boundaries on the shear band development. Furthermore, the dynamic analysis of the 

Torishima super levee on a stratified ground, which consists of sandy layers and soft clay layers, is 

conducted using the developed numerical program. In order to obtain the material parameters of upper 

sand layer in Torishima site, the simulation of sand specimens is carried out using the cyclic elasto-

plastic constrictive model (Oka et al. 1999). The cyclic elasto-viscoplastic constitutive model is 

assigned for the clay layers, while the cyclic elasto-plastic constitutive model is applied for the sandy 

layers. An input wave based on an earthquake record is applied in the horizontal direction and the 

behavior of the system is studied in terms of liquefaction potential and deformation responses through 

two different cases as the natural ground case and the improved ground case.  

 

5.2. Dynamic FEM Formulations Based on Finite Deformation Theory 

The dynamic finite element formulation for a Biot’s type mixture is presented within the framework 

of the finite deformation theory and updated Lagrangian method. The equations are modified here 

from the preceded formulations, presented by Oka (2002), to include the viscoplastic-related 

configurations such as the tangent stiffness method and the relaxation stress tensor. 

For the dynamic analysis of a coupled scheme based on the Biot’s type two phase mixture theory, 

there are several methods according to the nature and number of unknown variables, such as; u-p 

(displacement-pore water pressure) formulation, u-w-p (displacement-relative acceleration-pore water 

pressure) formulation, and etc. (Zienkiewicz et al. 1980). In the u-p formulation method, acceleration 

of soil skeleton and pore pressure are taken as independent variables, while in the u-w-p formulation, 

acceleration of soil skeleton, relative acceleration as difference between accelerations of soil skeleton 

and pore fluid, and pore pressure are independent variables. In the cases with low permeability and 

low frequency for input motion, the relative acceleration is negligible and the u-p formulation can be 

sufficiently applied for the analysis (Zienkiewicz and Bettes 1982). Barends (1991) concluded that the 

relative acceleration could be negligible in the case with permeability lower than 1 cm/sec. 
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5.2.1. General Setting 

In the current study, the u-p formulation in updated-Lagrangian frame is employed with the Jaumann 

rate of Cauchy stress rate tensor. The grain particles in the soil skeleton are assumed to be 

incompressible. The distribution of porosity in the soil and the distribution of body force in space are 

assumed to be smooth. An isoparametric 20-node hexahedron element with a reduced Gaussian 

(2×2×2) integration is adopted for displacement, velocity, and acceleration of the solid skeleton in 

three-dimensional analysis, while the pore water pressure is defined at the eight corner nodes of the 

element. Figure 5.1 shows the 20-node hexahedron elements with numbering order and Gauss points 

for the soil skeleton and the pore water pressure. 

 

20-node hexahedron element 
for the soil skeleton

8-node hexahedron element 
for the pore water pressure

Gauss points
1 2

34

5
6

8 7

9

10

1112

13
14

15

16

17
18

19
20

1 2

3
4

5
6

8 7

 
Figure 5.1. Isoparametric 3D elements for the soil skeleton and the pore water pressure. 

 

5.2.2. Definition of Partial Stresses for a Two-Phase Mixture 

In the theory of the two-phase mixture, the mixture is expressed by the superposition of two phases, 

namely, the solid phase and the fluid phase. The solid phase and the fluid phase represent the soil 

skeleton and the distributed pore fluid, respectively. The apparent densities of the soil and the fluid 

phases are given by the following relations 

S Fρ ρ ρ= +                                                                  (5.1) 

(1 ) S Fn nρ ρ ρ= − +                                                            (5.2) 

(1 )S Snρ ρ= −                                                                 (5.3) 

F Fnρ ρ=                                                                    (5.4) 
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where ρ  is the density of the fluid saturated soil, Sρ  is the density of the soil particles, Fρ  is the 

density of the pore fluid, Sρ  and Fρ  are the apparent densities of the solid and the fluid phases, 

respectively, and n  is the porosity. 

The total Cauchy’s stress is given by  

   
S F

ij ij ijT T T= +                                                                (5.5) 

where S
ijT is the partial stress of solid phase, and F

ijT is the partial stress of the fluid phase. Based on 

the principle of effective stress by Terzaghi and by considering that extension is positive even for the 

pressure p , the effective Cauchy’s stress tensor is obtained as 

ij ij ijpT T δ= +′                                                                (5.6) 

where ijδ is the Kronecker’s delta, p is the pore water pressure and 

   i
F

ij jnpT δ=                                                                 (5.7) 

Hence, from Equations (5.5) and (5.6),  

   (1 )ij ij
S

ijpT T n δ′= + −                                                         (5.8) 

 

5.2.3. Equations of Motion for a Two-Phase Mixture Theory 

The equations of motion for solid and fluid phases are given by 

   

2

( )
S
jS w

i
j

iS S
i

F S
i i

n
a b

x

T

k
v vγ

ρ ρ
∂

= + +
∂

−                                             (5.9) 

   

2

( )
F
jF w

i
j

iF F
i

F S
i i

n
a b

x

T

k
v vγ

ρ ρ
∂

= − +
∂

−                                          (5.10) 

in which S
iv is the velocity of soil skeleton, F

iv is the velocity of pore fluid, ib is the body force, k  is 

the coefficient of permeability and wγ  is the unit density of pore fluid.  

By summation of Equations (5.9) and (5.10), we obtain 
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( )
S F

S S F F S F
i i i

j j

ji jia a b
x x

T T
ρ ρ ρ ρ

∂ ∂
+ = + + +

∂ ∂
                                    (5.11) 

Using Equations (5.1), (5.4) and (5.9), the above equation becomes 

( )S F S F
i i i

j
i

j

iT
a n a a b

x
ρ ρ ρ

∂
− − = +

∂
                                              (5.12) 

Considering the u-p formulation, the term S F
i ia a− can be disregarded. Therefore, the equations of 

motion for two-phase mixture are obtained as 

 jiS
i i

j

b
x

T
aρ ρ

∂
= +

∂
                                                           (5.13) 

 

5.2.4. Continuity Equation of Pore Fluid 

Mass of material ( )M t in domain V at time t is given by 

( )( ) ,
V

iM t x t dVρ= ∫                                                         (5.14) 

where ( ),ix tρ is the density at time t , and ix is the position vector of the material point of domain V. 

Outflow SJ of the mass from closed surface S at time t is  

( ) ( ), ,S
S

i iJ x t v x t dSρ= ∫                                                      (5.15) 

in which ( ),iv x t is the velocity vector. 

From the mass conservation law, SJ in Equation (5.15) is equal to the change in ( )M t in 

Equation (5.14). Hence, 

( ) ( ) ( ), , ,
V S

i i i
d

x t dV x t v x t ndS
dt

ρ ρ= −
⎧ ⎫
⎨ ⎬
⎩ ⎭
∫ ∫                                       (5.16) 

Using the Gauss’s theorem, Equation (5.16) can be rewritten in a local form, namely,  
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( ) ( ) ( ){ },
, , 0i

i i
x t

x t v x t
t

ρ
ρ

∂
+ ∇ =

∂
                                         (5.17) 

which is a general mass conservation law. 

Applying Equation (5.17) to the solid and the fluid phases of the mixture, we obtain 

( )
0

S SS
i

i

v

t x

ρρ ∂∂
+ =

∂ ∂
                                                     (5.18) 

( )
0

F FF
i

i

v

t x

ρρ ∂∂
+ =

∂ ∂
                                                    (5.19) 

From Equation (5.3), Equation (5.18) becomes 

( ) ( )
( ){ } ( ){ }11

1 1 0
SS S
iS S S

i
i i

n vn
n n v

t t x x
ρ ρ

ρ ρ
∂ −∂ − ∂ ∂

+ − + + − =
∂ ∂ ∂ ∂

               (5.20) 

and from Equation (5.4), Equation (5.19) becomes  

{ } ( ) 
0

FF F
iF F F

i
i i

n vn
n n v

t t x x
ρ ρ

ρ ρ
∂∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

                                 (5.21) 

Multiplying Equation (5.17) by F Sρ ρ  and by the addition of Equation (5.21), we obtain  

( ) ( ){ }

( )

1

1 0

F S S
i iF F F i

i i

F F F S S
F S
i iS

i i

n v vn vn
t t x x

n v n v
t x t x

ρ ρ ρ

ρ ρ ρ ρ ρ
ρ

∂ −∂ − ∂∂
+ + +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + − + =

∂ ∂ ∂ ∂

⎧ ⎫
⎨ ⎬
⎩ ⎭
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                             (5.22) 

Upon dividing Equation (5.22) by Fρ , we obtain 

( )1
0

F F S S
S F Si
ii i iF S

i i i

nw n
D v v

x t x t x
ρ ρ ρ ρ

ρ ρ
−∂ ∂ ∂ ∂ ∂

+ + + + + =
∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                      (5.23) 

where  

S
S i
ii

i

v
D

x
∂

=
∂

                                                                 (5.24) 
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( )F S
i i iw n v v= −                                                           (5.25) 

By assuming the incompressibility of the grain particles in the soil and the pore water, Sρ  and Fρ are 

equal to zero. The assumption of smooth distribution of the porosity in the soil leads to 0in x∂ ∂ = . 

Therefore, Equation (5.25) is rewritten as  

0Si
ii

i

w
D

x
∂

+ =
∂

                                                            (5.26) 

From Equation (5.4), Equation (5.10) becomes 

   

F
F F Fw

i i i
j

ij n
a w b

x k

T γ
ρ ρ

∂
= − +

∂
                                            (5.27) 

Since  

    
( )F

j i

ij nT p
x x

∂ ∂
=

∂ ∂
                                                        (5.28) 

holds from Equation (5.7), Equation (5.27) can be rewritten from Equations (5.1) and (5.28) by 

following the assumptions, as 

   
F S Fw

i i i
i

p
a w b

x k
γ

ρ ρ
∂

= − +
∂

                                                 (5.29) 

By taking the derivative of Equation (5.29), with respect to ix , 

   

2

2

S
F Fi w i i

i i i i

a w bp
x x k x x

γ
ρ ρ

∂ ∂ ∂∂
= − +

∂ ∂ ∂ ∂
                                             (5.30) 

From Equations (5.26) and (5.30), we obtain 

   

2

2

S
F S Fi w i

ii
i i i

a bp
D

x x k x
γ

ρ ρ
∂ ∂∂

= + +
∂ ∂ ∂

                                             (5.31) 

Considering the smooth distribution of the body force in space, 0i ib x∂ ∂ = . Therefore, the continuity 

equation of pore fluid is resulted as   
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2

2
0

S
F Si w

ii
i i

a p
D

x x k
γ

ρ
∂ ∂

− − =
∂ ∂

                                                   (5.32) 

 

5.2.5. Discretization of the Equations of Motion for the Two-Phase Mixture 

The following simple expressions are used without notice: S
i ia a= , S S

i i iv v u= = , and S
ij ijD D= . In the 

present study, an updated-Lagrangian method is employed to discretize the governing equations. The 

equations of motion for two-phase mixture, Equation (5.13), are expressed by the nominal stress with 

respect to the reference time state as 

( ) , 0i i ji ja bρ − − Π =                                                     (5.33) 

where ijΠ  is the total nominal stress tensor with respect to the reference configuration, such as the 

area and the normal vector of the reference surface, and the reference configuration is now taken at 

time t. 

The boundary conditions for the solid and fluid phases are assumed as follows: 

- For the solid skeleton:  

- 0 0i it t= on the stress boundary 1Γ , 

- 0u u= = on the displacement boundary 2Γ . 

- For the pore fluid: 

- p p= on the boundary 3Γ , 

- 0ip x∂ ∂ = on the boundary 4Γ . 

in which it  stands for the nominal stress vector and − indicates the prescribed value. The total 

boundary is obtained as 1 2 3 4Γ = Γ + Γ = Γ + Γ . 

It is worth to mention that the utilization of the rate form of the equations of motion may lead to 

divergent results because of the accumulation of the digitizing errors within the calculation steps. 

Therefore, unlike the quasi-static case formulations as in Chapter 2, the total form of the equations is 

adopted here. 
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From the virtual work theorem, a weak form of Equation (5.33) can be given by multiplying the 

virtual velocity by the equation. Hence, 

( ){ } ( )
0 0

, 0 0 0i i ji j i i i i
V

a b v dV t t v dρ δ δ
Γ

− − Π + − Γ =∫ ∫                               (5.34) 

By integrating in parts and using Gauss’s divergence theorem, we obtain 

( )
0 0 0 0 0

, , ,,ji j i ji i ji i j ji j i ji i jj
V V V V

v dV v dV v dV n v d v dVδ δ δ δ δ
Γ

Π = Π − Π = Π Γ − Π∫ ∫ ∫ ∫ ∫        (5.35) 

where jn is an outward unit normal vector of the surface Γ . Surface traction 0 it can be expressed by 

nominal stress ijΠ as    

 0 i ji jt n= Π                                                              (5.36) 

and by definition of velocity gradient tensor, we obtain 

,ij i jL vδ δ=                                                             (5.37) 

Hence, from Equations (5.35) to (5.37), Equation (5.34) becomes 

0 0 0 0

00 0i i ji ij i i i i
V V V

a v dV L dV t v d b v dVρ δ δ δ ρ δ
Γ

+ Π = Γ +∫ ∫ ∫ ∫                                (5.38) 

Then by transferring the configuration to the current one at time t t+ ∆  , we have  

| 0i i ji t t ij i i i i
V V V

a v dV L dV t v d b v dVρ δ δ δ ρ δ+∆
Γ

+ Π = Γ +∫ ∫ ∫ ∫                              (5.39) 

where |ji t t+∆Π is the nominal stress at time t t+ ∆ expressed by  

( )| | |ji t t ji t ji ji t jit+∆Π = Π + ∆Π = Π + ∆ Π                                           (5.40) 

Moreover, from the time derivation of Nanson’s theorem we have 

ˆj
ji ki

k

X
J S
x

∂
Π =

∂
                                                           (5.41) 

ˆ
ki ki kp ip pp kiS T T L L T= − +                                                      (5.42) 
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in which, J is the Jacobean. ijT is the Cauchy stress tensor, ijT is the rate type of the Cauchy stress 

tensor, and ijL  is the velocity gradient tensor. 

The relation between the Cauchy stress tensor and the Cauchy’s effective stress tensor is given as 

 ij ij ijT T pδ′= +                                                             (5.43) 

The time rate of the Cauchy stress tensor is given as   

ij ij ijT T pδ′= +                                                            (5.44) 

By substituting the above equations in to Equation (5.41), we have 

( ) ( ) ( )
( )

( )

ˆ

    

ˆ    

ji ij ij kk ij ij ik ik jk

ij kk ij ik jk ij kk ij ik jk

ji ij kk ij ik jk

S T p L T p T p L

T L T T L p L p p L

S p L p p L

δ δ δ

δ δ δ

δ δ δ

′ ′ ′= + + + − +

′ ′ ′= + − + + −

′= + + −

                               (5.45) 

in which, effective nominal stress rate tensor ˆ
ijS ′ , is defined as 

ˆ
ji ij kk ij ik jkS T L T T L′ ′ ′ ′= + −                                                    (5.46) 

The following relations are obtained by substituting Equation (5.40) into Equation (5.39) 

( )| 0i i ji t ij ji ij i i i i
V V V V

a v dV L dV t L dV t v d b v dVρ δ δ δ δ ρ δ
Γ

+ Π + ∆ Π = Γ +∫ ∫ ∫ ∫ ∫            (5.47) 

Considering Equation (5.41), when time t  tends to time t t+ ∆ , the term j

k

X
J
x

∂

∂
becomes identity 

matrix; therefore,  

 ˆ ˆj
ji ij ki ij ki ij

kV V V

X
L dV J S L dV S L dV

x
δ δ δ

∂
Π

∂
= =∫ ∫ ∫                                    (5.48) 

Replacing the above equation into Equation (5.47), we obtain 

( )| 0
ˆ

i i ji t ij ji ij i i i i
V V V V

a v dV L dV t S L dV t v d b v dVρ δ δ δ δ ρ δ
Γ

+ Π + ∆ = Γ +∫ ∫ ∫ ∫ ∫             (5.49) 

by substituting Equation (5.45) into the above equation, we have  
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( ) ( ) ( )

( ) ( ) ( )
|

0                                                   

i i ji t ij ij ij ik jk ij ij kk ij
V V V V V

ij ij kk ij ik jk ij
V V

i i i i
V

a v dV L dV t T L dV t T L L dV t T L L dV

t p L dV t L p p L L dV

t v d b v dV

ρ δ δ δ δ δ

δ δ δ δ δ

δ ρ δ
Γ

′ ′ ′+ Π + ∆ − ∆ + ∆

+ ∆ + ∆ −

= Γ +

∫ ∫ ∫ ∫ ∫

∫ ∫

∫ ∫

      (5.50) 

Since 0ij ijT Wδ′ = , we have 

ij ij ij ijT L T Dδ δ′ ′=                                                          (5.51) 

ij ij iiL Dδ δ δ=                                                              (5.52) 

From the above equations, we obtain 

 

( ) ( ) ( )

( ) ( ) ( )

0                                                      

i i ij ij ik jk ij ij kk ij
V V V V

kk kk ij ik jk ij
V V

i i i i ij ij
V V

a v dV t T D dV t T L L dV t T L L dV

t p D dV t L p p L L dV

t v d b v dV T L dV

ρ δ δ δ δ

δ δ δ δ

δ ρ δ δ
Γ

′ ′ ′+ ∆ − ∆ + ∆

+ ∆ + ∆ −

= Γ + −

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫

              (5.53) 

Taking acceleration vector { }Na , velocity vector { }Nv , and pore water pressure { }Np as three 

unknown variables at nodal points, Equation (5.53) can be written in matrix form as 

{ } { } ( ) { } { } ( ) { } [ ]{ }

( ) { } { } ( ) ( ) ( ) ( ) { } [ ]{ }

{ } { } { } { } { } { }0                               

T T T
S

V V V

T T T

V V V

T T T

V V

v a dV t D T dV t L D L dV

t L T dV trD t tr D pdV t L U L dV

v t d v b dV L T dV

ρ δ δ δ

δ δ δ

δ ρ δ δ
Γ

′+ ∆ + ∆

′+ ∆ + ∆ + ∆

= Γ + −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

           (5.54) 

where [ ]{ }S ik jkD L T L′= − , and [ ]{ } kk ij ik jkU L L p p Lδ δ= − .  

The following definitions can be set as 

{ } [ ]{ }ND B v=                                                            (5.55) 

{ } [ ]{ }Nv N v=                                                             (5.56) 

{ } [ ]{ }L NL N v=                                                            (5.57) 
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{ } [ ]{ }Na N a=                                                            (5.58) 

{ } { }T
v NtrD B v=                                                         (5.59) 

{ } { }T
h Np N p=                                                          (5.60) 

The Jaumann rate of effective Cauchy’s stress tensor îjT ′  is objective and is given by 

   îj ij ik kj ik kjT T T W W T′ ′ ′ ′+ −=                                                 (5.61) 

in which ijW is spin tensor. 

For the elasto-viscoplastic materials, the constitutive equation is described using the Jaumann 

rate of Cauchy stress tensor îjT ′
 and stretching tensor ijD as 

     ˆ ( )e vp
ij ijkl kl klT C D D′ = −                                                     (5.62) 

where e
ijklC  is the elastic tangential stiffness matrix and vp

ijD  is the viscoplastic stretching tensor, 

which is related to the total stretching tensor as 

e vp
ij ij ijD D D= +                                                          (5.63) 

where e
ijD  is the elastic stretching tensor defined as 

1
2 3(1 )

e m
j

m
ijij iD S

T
G e T

κ
δ

′
= +

′+
                                               (5.64) 

 in which ijS  is the deviatoric stress tensor rate ( ij ij m ijS T T δ′ ′−= ). Viscoplastic stretching tensor vp
ijD  

is given by 

     ( ) pvp
ij ijkl y

kl

f
D C f

T

∂
= Φ

′∂
                                                 (5.65) 

where are Macaulay’s brackets; ( ) ( )y yf fΦ = Φ , if 0yf >  and ( ) 0yfΦ = , if 0yf ≤ . 

 

 

The tangent stiffness method (Pierce et al. 1984) is implemented here to determine the 

viscoplastic stretching tensor. Hence, Equation (5.62) can be rewritten in matrix form as 
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{ } [ ]{ } { }T̂ C D Q′ = −                                                        (5.66) 

where [ ]C  is the tangential stiffness matrix and { }Q  is the relaxation stress vector.  

The substitution of Equation (5.61) into Equation (5.66) gives 

   { } [ ]{ } { } { }T C D Q W′ ′= − +                                                (5.67) 

in which { }W ′
 
is the vector defined as { } ik kj ik kjW W T T W′ ′ ′= − . 

Therefore, the Equation (5.54) can be written as 

[ ]{ } ( ) [ ] [ ]( ){ } ( )[ ]{ }
{ } { } ( ){ } ( ){ }*

N L N v N

W Qt

M a t K K v t K p

F S t T t T

+ ∆ + + ∆

= − − ∆ + ∆
                                (5.68) 

where 

[ ] [ ] [ ]T

V

M N N dVρ= ∫                                                       (5.69) 

[ ] [ ] [ ][ ]T

V

K B C B dV= ∫                                                      (5.70) 

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ] { }{ }T T T

L L S L L L L
V V V

T
vK N D N dV N U N dV N T B dV′= + +∫ ∫ ∫                     (5.71) 

[ ] { }{ }T
v v h

V

K B N dV= ∫                                                      (5.72) 

{ } [ ] { }T

W
V

T B W dV′= ∫                                                       (5.73) 

{ } [ ] { }T

Q
V

T B Q dV= ∫                                                        (5.74) 

{ } [ ] { } [ ] { }0

T T

V

F N t d N b dVρ
Γ

= Γ +∫ ∫                                          (5.75) 

{ } [ ] { }* T

Lt
V

S N T dV= ∫                                                       (5.76) 
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The Rayleigh damping [ ]R , which is proportional to nodal velocity vector, is applied in the 

formulation. The Rayleigh damping can be described by the linear combination of mass matrix [ ]M  

and stiffness matrix[ ]K  as 

 [ ] [ ] [ ]0 1R M Kα α= +                                                     (5.77) 

in which 0α and 1α are the constant values. Using the Rayleigh damping [ ]R , the discretized 

equations of motion are obtained as 

   
[ ]{ } [ ] [ ]( ) [ ]{ }{ } ( )[ ]{ }

{ } { } ( ){ } ( ){ }*                                                    
N L N v N

W Qt

M a t K K R v t K p

F S t T t T

+ ∆ + + + ∆

− − ∆ + ∆=
               (5.78) 

 

5.2.6. Discretization of the Continuity Equations  

Using the relation i i iia x D∂ ∂ = in the continuity equation for pore fluid leads to 

   , 0F w
ii ii iiD p D

k
γ

ρ − − =                                                      (5.79) 

By multiplying Equation (5.79) by a Galerkin weighted function as { }hW N= , a weak for of the 

continuity equation is obtained as 

, 0F w
ii ii ii

V V V

D W dV p W dV D W dV
k

γ
ρ − − =∫ ∫ ∫                                     (5.80) 

Using Gauss’s divergence theorem, we have 

, , , ,ii i i
V V

i ip W dV p W n d p W dV
Γ

Γ= −∫ ∫ ∫                                           (5.81) 

Hence, Equation (5.80) in the matrix form becomes 

{ } { } { } { }
3 4

, , ,

TF T Tw
ii i i ii i

V V V

T TW D dV W p dV W D dV W n p d
k

γ
ρ

Γ +Γ

+ − = Γ∫ ∫ ∫ ∫            (5.82) 

Herein, the right-hand side of Equation (5.82) becomes zero in the case of either impermeable or 

drained boundary conditions. Definitions include the following: 
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{ } { }T
h Np N p=                                                             (5.83) 

{ } { }, ,i h i Np N p= ⎡ ⎤⎣ ⎦                                                           (5.84) 

{ } { }T
ii v ND B v=                                                             (5.85) 

{ } { }T
ii v ND B a=                                                             (5.86) 

Finally, the discretized form of the continuity equation for pore fluid is given by 

[ ] { } [ ] { } [ ]{ } 0T TF w
v N v N h NK a K v K p

k
γ

ρ − + =⎛ ⎞
⎜ ⎟
⎝ ⎠

                                (5.87) 

in which 

[ ] { }{ }v
V

TT
h vK dVN B= ∫                                                      (5.88) 

[ ] , ,

T

h h i h i
V

K N N dV= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫                                                    (5.89) 

 

5.2.7. Time Discretization of the Governing Equations by Newmark’s β Method 

Using Newmark’s β method, the displacement and the velocity of the soil skeleton can be 

approximated as 

{ } { } ( ){ } ( ) { } ( ) { } { }( )
2

2

2N N N N N Nt t t t t t t t

t
u u t v a t a aβ

+∆ +∆

∆
= + ∆ + + ∆ −                  (5.90) 

{ } { } ( ){ } { } { }( )N N N N Nt t t t t t t
v v t a a atγ

+∆ +∆
= + ∆ + −∆                             (5.91) 

where t∆ is the time increment and β  and γ are the Newmark’s parameters.  

For the rate of pore pressure, a backward finite difference method is used as 

{ } { } { }N Nt t t
N t t

p p
p

t
+∆

+∆

−
=

∆
                                                  (5.92) 
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Considering the equations of motion and continuity at time t t+ ∆ , and applying Equations (5.90) and 

(5.91) to Equations (5.79) and (5.87), the discretized governing equations are  

[ ] ( ) [ ] [ ]( ) [ ]{ }
[ ]

[ ]
[ ]

{ }
{ }

{ } { } [ ] [ ]( ) [ ]{ } ( ){ } { }{ }
[ ] { } ( ){ } ( ){ }

[ ] ( ){ } { }{ }

*

1

1

      
1

L v Nt t t t t t t t t t t t

T h N t tt t
w v t t

L N Nt t t tt t t t t tt

v N W Qt tt t t

Tw
v N Nt tt t

M t t K K R K a

t K p
K

g k

F S t K K R t a v

K p t T t T

K t a v
k

γ

γγ

γ

γ γ

+∆ +∆ +∆ +∆ +∆ +∆

+∆+∆
+∆

+∆ +∆ +∆ +∆

+∆

+∆

+ ∆ ∆ + +

∆
−

− − ∆ + + ∆ − +

+ − ∆ + ∆
=

∆ − +

⎡ ⎤
⎢ ⎥ ⎧ ⎫⎪ ⎪⎢ ⎥ ⎨ ⎬

⎧ ⎫⎢ ⎥ ⎪ ⎪⎩ ⎭⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦
⎧
⎪
⎪
⎨

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎫
⎪
⎪⎪ ⎪
⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

   (5.93) 

where the acceleration vector and the pore water pressure at the nodal points are unknown variables. 

 

5.2.8. Tangent Stiffness Method 

In this section, the nonlinear relation between the Jaumann rate of Cauchy’s stress and the stretching 

tensor for elasto-viscoplastic materials is derived using the tangent stiffness method proposed by 

Pierce et al. (1984). The tangent stiffness method was developed for rate dependent materials based 

on a one-step forward gradient time integration scheme. This method results in more stability and 

accuracy for step sizes much larger than that can be employed with the Euler method. A parameter, 

termedθ , has been introduced in this method, which can range from 0 to 1, with 0θ =  corresponding 

to a simple Euler time integration scheme. Through the numerical examples on materials ranging from 

elastic-nonlinearly viscous behavior to nearly rate independent behavior, Pierce et al. (1984) found 

that the method is stable and accurate for the values of θ  between 0.5 and 1.0.  

As shown earlier, the total stretching tensor is divided to the elastic stretching tensor e
ijD and the 

viscoplastic stretching tensor vp
ijD , in which the viscoplastic stretching tensor is given by 

( ) pvp
ij ijkl y

kl

f
D C f

T

∂
= Φ

′∂
                                                     (5.94) 
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Material function )(Φ yf  is assumed to dependent on the effective Cauchy stress tensor ijT ′ , and the 

kinematic hardening parameters *
1my  and *

ijχ . Therefore, the time derivative of material function is 

written as 

  ( ) * *
1* *

1
y ij m ij

ij m ij

f T y
T y

χ
χ

∂Φ ∂Φ ∂Φ′Φ = + +
′∂ ∂ ∂

                                              (5.95) 

The rate of effective Cauchy stress is related to the Jaumann rate of Cauchy stress as  

  îj ij ik kj ik kjT T T W W T′ ′ ′ ′+ −=                                                   (5.96) 

where ijW is the spin vector.  

Using two arbitrary scalars, A  and B , and a symmetric tensor ijU , we can write 

  

( )

( )

( )( )

ˆ

          

          

ij ij ik kj ik kj
ij ij

ij ik kj ik kj
ij ij

ij ij ij ik kj ik kj
ij

T T T W W T
T T

T T W W T
T T

T AU B T W W T
T

δ

∂Φ ∂Φ ′ ′ ′= + −
′ ′∂ ∂

∂Φ ∂Φ′ ′ ′= + −
′ ′∂ ∂

∂Φ ′ ′ ′= + + −
′∂

                             (5.97) 

in which, ( ) 0ij ik kj ik kjAU W T T W′ ′− + = and ( ) 0ij ik kj ik kjB W T T Wδ ′ ′− + = , therefore 

  îj ij
ij ij

T T
T T

∂Φ ∂Φ ′=
′ ′∂ ∂

                                                        (5.98) 

Finally, by substituting Equation (5.98) into Equation (5.95), we have 

  ( ) * *
1* *

1

ˆ
y ij m ij

ij m ij

f T y
T y

χ
χ

∂Φ ∂Φ ∂Φ′Φ = + +
′∂ ∂ ∂

                                           (5.99) 

Using the tangent stiffness parameter θ yields 

   ( )1 t t tθ θ +∆Φ = − Φ + Φ                                                     (5.100) 

in which 
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   t t t t tt+∆Φ = Φ + ∆Φ = Φ + ∆ Φ                                             (5.101) 

Applying Equations (5.99), (5.100), and (5.101), we obtain 

  ( ) * *
1* *

1

ˆ1 t t ij m ij
ij m ij

T t y t t
T y

θ θ χ
χ

∂Φ ∂Φ ∂Φ′Φ = − Φ + Φ + ∆ + ∆ + ∆
′∂ ∂ ∂

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

                 (5.102) 

The constitutive equation is described using the Jaumann rate of Cauchy stress tensor îjT ′
 and 

stretching tensor ijD as 

( )ˆ

     

e vp
ij ijkl kl kl

pe
ijkl kl klmn

mn

T C D D

f
C D C

T

′ = −

∂
= − Φ

′∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                     (5.103) 

And, the kinematic hardening parameters, *
1my  and *

ijχ , are given by 

( )* * * *
1 2 2 1

vp vp
m kk m kky B A D y D= −                                                     (5.104) 

( )
1

* * * * 2vp vp vp
ij ij ij mn mnB A D D Dχ χ′ ′ ′= −

⎧ ⎫
⎨ ⎬
⎩ ⎭

                                            (5.105) 

where vp
ijD′ is the viscoplastic deviatoric stretching tensor, and vp

kkD  is the viscoplastic volumetric 

stretching tensor. According to the cyclic elasto-viscoplastic constitutive equations and if  we assume 

ijklC is a fourth order isotropic tensor, the viscoplastic volumetric and deviatoric stretching tensor are 

obtained as 

pvp
kk kkij

ij

f
D C

T

∂
= Φ

′∂
                                                       (5.106) 

1
3

pvp
ij ijkl

kl

vp vp
ij kk ij

f
D D D C

S
δ

∂
′ = Φ

∂
− =                                           (5.107) 

Substituting the above equations into Equation (5.102) results in 
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( ) ( ) ( )

( )

* * *
2 2 1*

1
1

* * * 2
*

1

     

e vp vp vp
t t ijkl kl kl kk m kk

ij m

vp vp vp
ij ij mn mn

ij

C D D t B A D y D t
T y

B A D D D t

θ θ

χ
χ

∂Φ ∂Φ
Φ = − Φ + Φ + − ∆ + − ∆

′∂ ∂
∂Φ ′ ′ ′+ − ∆
∂

⎧⎪
⎨
⎪⎩

⎫⎧ ⎫ ⎪
⎨ ⎬ ⎬
⎩ ⎭ ⎪⎭

          (5.108) 

  * * *
2 2 1*

1
1

2
* * *

*

     

     

pe e
t ijkl kl ijkl klmn

ij ij mn

p p
kkij m kkij

m ij ij

p p p
ijkl ij mnpq mnrs

ij kl pq rs

f
C D t t C C

T T T
f f

t B A C y C
y T T

f f f
t B A C C C

S S S

θ θ

θ

θ χ
χ

∂∂Φ ∂Φ
Φ = Φ + ∆ − ∆ Φ

′ ′ ′∂ ∂ ∂
∂ ∂∂Φ
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and finally 
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in which, 
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Thus, substituting Equation (5.111) into Equation (5.94) results in 
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Combining Equations (5.103) and (5.112), we obtain 
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Thereby, tangential stiffness matrix tan
ijklC  and relaxation stress ijQ are defined as 
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Then, the Equation (5.113) can be rewritten as 

tan
îj ijkl kl ijT C D Q′ = −                                                      (5.116)  

 

5.2.8.1. Differential Components 

The differential components of material function derivation are calculated according to the material 

function definition and chain rule. As explained earlier, material function is determined as 
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Substituting Equation (5.123) and Equations (5.128) to (5.130) into Equation (5.125) 
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in which the second term of right-hand side equation can be rewritten as 
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When * 0ppχ = at initial state, *
ppχ is constantly zero. Therefore, Equation (5.131) becomes 
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Since the static yield function yf  and the viscoplastic potential function pf  have the same shape, 

we have 
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5.3. Dynamic Strain Localization of Osaka Soft Clay  

Strain localization or shear banding is a phenomenon in materials under shearing, in which plastic 

deformations localize into finite narrow bands of intense straining. The phenomenon is described as a 

precursor to fracture and, in general, as a characteristic feature of inelastic deformations. Strain 

localization is observed in a wide range of materials including single-phase solids and multiphase 

fluid-saturated materials such as soils. The analytical solution of strain localization has been 

previously conducted as material instability in rate-independent solids within a theoretical framework 

by Hadamard (1903), Rice (1976), and others. The instability and ensuing ill-posedness of initial and 

boundary value problems were found to preclude meaningful analyses in rate-independent materials. 

Under quasi-static loading conditions, the instability appears as an ellipticity loss in the rate 

equilibrium equations, while under dynamic loading conditions wave speeds become imaginary. In 

the numerical solutions, on the other hand, the instability exhibits inherent mesh dependence and 

spurious length scale effects (Needleman 1988, Loret and Prevost 1991). 

In order to overcome this type of difficulty, various methods have been proposed which can be 

summarized into three approaches as described by Oka et al. (2002a). The first approach is the 

introduction of viscoplastic effects in the numerical analysis. The viscoplasticity can be expressed by 

either assuming a viscoplastic constitutive model for material behavior, or a viscoplasticity 

regularization procedure within the numerical analysis, which is applied for inviscid constitutive 

model (e.g., Cormeau 1975, Needleman 1989, and Prevost and Loret 1990). The second method is 

applying higher order strain gradients into the constitutive model (e.g., Aifantis 1984, Mühlhaus and 

Aifantis 1991, de Borst and Sluys 1991, Aifantis et al. 1999, and Hutchinson 2001). In localization of 

multiphase materials, shear band development is mostly affected by the interaction between solid and 

fluid, in terms of time sequence of band formation and the way of their appearance. Hence, the third 

method is to incorporate a Darcy type of soil-fluid interaction, which can alleviate the instability 

problem in multiphase materials by delaying the onset of material instability (e.g., Rice 1975, Loret 

and Prevost 1991, Oka et al. 1995, and Schrefler et al. 1996).  

The consideration of rate dependency has been found to eliminate significantly the instability 

and subsequent influences in the analysis of strain localization problems under both quasi-static and 

dynamic loading conditions. When material rate dependence or viscosity is accounted for, there is no 

loss of ellipticity in the incremental equilibrium equations, wave speeds remain real, and consequently, 

the pathological mesh size effects do not occur (Needleman 1988). Furthermore, the inelastic response 

of geomaterials, such as clays, is inevitably rate dependent; therefore, the viscoplasticity can be 

effectively employed in the analysis, providing a satisfactory framework to capture localized shear 

banding.  
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From the numerical point of view, the strain localization of geomaterials has been widely studied 

under quasi-static and dynamic loading conditions. Under quasi-static deformations, Oka et al. (1994, 

1995, 2000, 2002a, and 2005) have studied the shear band development of water-saturated clays by 

using an elasto-viscoplastic constitutive model. The Biot’s type two-phase mixture theory was 

adopted in the formulation to reduce the material instability problems. It was found that the shear 

band development and the following strain localization could be effectively simulated through the 

finite element analysis using the elasto-viscoplastic model, for both normally consolidated and over 

consolidated water-saturated clays.  

The aim of the present study is to extend the finite element analysis of shear banding in elasto-

viscoplastic clays to the analysis under dynamic transient loading conditions. The development of 

shear bands is examined numerically in a three-dimensional geometry without resorting to the usual 

bifurcation or stability analysis. The cyclic elasto-viscoplastic model is adopted to simulate the 

behavior of clay under dynamic loading conditions. The compelled step acceleration is applied on the 

upper nodes of the domain providing axial displacements pertinent to dynamic loading conditions. 

The finite element simulations are conducted in plane strain conditions by constraining the 

deformations in a three-dimensional problem. The shear band development is studied through the 

distributions of the strain and the mean effective stress in the specimen at various steps of shearing. 

 

5.3.1. Problem Description 

The finite element mesh and the boundary conditions for the localization analysis of Torishima soft 

clay sample are shown in Figure 5.2. The simulation is performed using a three-dimensional mesh 

system under plane strain conditions, for which the constrained deformation conditions are assigned 

for Y direction. The size of the specimen is assumed as 10 m in width by 20 m in height. As 

mentioned earlier in Section 5.2.1, a 20-node hexahedron element with a reduced Gaussian integration 

is used for the finite element analysis, by which the appearance of a spurious hourglass mode and 

shear locking can be eliminated. The mesh pattern of 10×20 (200 elements) is considered as the 

default mesh configuration in the analysis. The displacement boundary conditions are adjusted so as 

the symmetric conditions can be provided. The constrained boundary conditions at the corners of the 

specimen are applied to trigger the localization at a fixed location. All the boundaries are assumed as 

impermeable, while the pore fluid is allowed to flow within the specimen. The vertical nodal 

acceleration is applied at the top nodes of the domain providing the vertical compelled displacement 

atop the specimen. The applied acceleration rises from zero to a maximum value of 3.5 gal within 0.1 

sec, and remains constant afterward until 12.5 sec, as illustrated in Figure 5.2. The applied 

acceleration results in an overall axial strain of about 13.5% within 12.5 sec. 
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Figure 5.2. Size of the specimen, boundary conditions, and applied acceleration profile. 

 

The material parameters of Torishima clay Ac2-U are used in the analysis, as listed in Table 5.1. 

The time increment is determined satisfying two criteria to achieve stable time steps. The first 

criterion is based on the stable time-step estimates (CFL condition) for explicit time-marching 

schemes, of which for a four-node square element with side lengths h1 and h2, the critical time-step 

estimate is obtained as 

     [ ]1 2
max

1
min ,critt t h h
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∆ ≤ ∆ =                                               (5.139) 

where cmax is the maximum wave speed. In the current study, having the 20-node hexahedron element 

with side lengths l1, l2, and l3, and taking the longitudinal wave velocity Vp as the maximum wave 

speed, the critical time step is given by  
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The latter criterion is from the stability of Newmark-β method, by which the stable solution is 

accomplished,  
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Using both time increment constraints, the time step ∆t=0.001s is allocated for the analysis. 

 

Table 5.1. Material parameters of Torishima clay Ac2-U and other inputs for the analysis. 

Initial void ratio e0 1.250 

Coefficient of permeability k/γw 5.87×10-11 

Coefficient of earth pressure at rest K0 1.0 

Overconsolidation ratio OCR 1.00 

Density (t/m3) ρ 1.70 

Compression index λ 0.341 

Swelling index κ 0.019 

Initial elastic shear modulus (kPa)  G0 15040 

Initial mean effective stress (kPa) 0mσ ′ 200 

Stress ratio at compression M*
mc 1.24 

Viscoplastic parameter m’ 24.68 

Viscoplastic parameter (1/s) C1 1.00×10-5 

Viscoplastic parameter (1/s) C2 3.83×10-6 

Structural parameter (kPa) '
mafσ  60 

Structural parameter β 3.6 

Hardening parameter B*
0 100 

Hardening parameter B*
1 40 

Hardening parameter Cf 10 

Reference value of plastic strain (%) γvp*
(n)r 1.25 

Strain-dependent parameter  α 10 

Scalar hardening parameter A*
2 5.9 

Scalar hardening parameter B*
2 1.8 

Newmark’s parameter  β  0.3025 

Newmark’s parameter  γ 0.6 

Rayleigh damping parameter α0 0.0 

Rayleigh damping parameter α1 0.01 

 

5.3.2. Numerical Results and Discussion 

5.3.2.1. Shear Banding Progress 

The shear band development is studied through the evaluation of the results for the axial strain, the 

accumulated viscoplastic shear strain, the viscoplastic volumetric strain, and the mean effective stress, 

as well as the deformed mesh. The axial strain contours at various levels of the overall axial strain are 

shown in Figure 5.3, in addition to the accumulated viscoplastic shear strain and the viscoplastic 

volumetric strain contours. The strain localization emerges from the trigger points at the corner of the 

specimen, which eventually narrows to four distinct diagonal bands by increasing the compelled 

displacement. The shear bands occur at an angle of about 45°. This pattern is also observed in the 
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distribution of the accumulated viscoplastic shear strain and the viscoplastic volumetric strain. The 

deformed meshes at several strain levels are depicted in Figure 5.4, in which the deformation is 

clearly observed at the end of loading as the bulking in the specimen. The distributions of the mean 

effective stress and the pore water pressure are displayed in Figure 5.5 at various levels of overall 

strain. The mean effective stresses reduce along the shear bands by progress of the axial displacement, 

while the pore water pressure appears to increase along the shear bands.  

 

10 % (at 10.5 sec)7.5 % (at 9 sec)Axial strain = 2.5 % (at 5.5 sec) 12.5% (at 12 sec)5 % (at 7.5 sec)

10 %7.5 %Axial strain = 2.5 % 12.5%5 %

10 %7.5 %Axial strain = 5 % 12.5%  

Figure 5.3. Distributions of axial strain (above), accumulated viscoplastic shear strain (center), and 

viscoplastic volumetric strain (below), (legend unit: %). 
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12.5 %10 %7.5 %Axial strain = 0 % 5 %  
Figure 5.4. Deformed meshes of the specimen at various strain levels. 

 

10 %7.5 %Axial strain = 5 % 12.5%

10 %7.5 %Axial strain = 5 % 12.5%  
Figure 5.5. Distributions of the mean effective stress (above), and the pore water pressure (below)             

at various strain levels, (legend unit: kPa). 

 

5.3.2.2. Effect of Drainage Boundary 

The effect of the drainage boundaries is studied by considering a partially drained case for which the 

drainage boundaries are set at the top and bottom of the specimen. Figure 5.6 shows the accumulated 

viscoplastic shear strain contours for the partially drained case, which is compared with the undrained 

case results at several levels of the axial strain. Due to the rapid rate of applied loading and low 

permeability of the Torishima clay, the effect of drainage boundary on the strain localization appears 
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to be insignificant, although in the partially drained case, large viscoplastic strains are concentrated  

near the drainage boundary. 

 

12.5%10 %7.5 %Axial strain = 5 %

10 %7.5 %Axial strain = 5 % 12.5%  
Figure 5.6. Distributions of accumulated viscoplastic shear strain for the undrained case (above), and the 

partially drained case (below), (legend unit: %). 

 

5.3.2.3. Mesh-Size Dependency 

In order to evaluate the mesh-size sensitivity of the numerical results, three extra square mesh patterns 

are considered besides the defaults mesh pattern for the localization analyses. The pattern of 5×10 (50 

elements) is considered as the coarser mesh, and 20×40 (800 elements) and 25×50 (1250 elements) 

are assumed as the finer meshes, as illustrated in Figure 5.7. The deformed mesh and the distribution 

of the accumulated viscoplastic shear strain for these four cases are depicted in Figure 5.8 at the end 

of loading. Taking the finer mesh size leads to a higher level of strain localization, and narrows the 

width of the shear band since the shear bands span across the smaller elements. In the finer meshes, 

i.e., 800 elements and 1250 elements patterns, the shear banding is observed in the same shape and 

angle as for 200 elements pattern, emanating from the corners of the specimen and finally localizing 

into four diagonal bands. In the case with 50 elements, however, the strain is localized into a wider 

band across the specimen, of which a high level of localized strain is observed in the center of the 

specimen.  
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5×10=50 elements 20×40=800 elements 25×50=1250 elements  

Figure 5.7. Additional mesh patterns to study mesh-size dependency. 

 

20×4010×205×10 25×50

20×4010×205×10 25×50  

Figure 5.8. Deformed meshes and localization of the viscoplastic shear strain for different mesh patterns 

at the end of loading (legend unit: %). 
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The stress-strain relations and stress paths for these four cases are compared in Figure 5.9, where 

the average deviator stress is plotted versus the average axial strain and the average mean effective 

stress, respectively. The average values are obtained by computing the average of stresses over all the 

elements in each case. All the cases demonstrate rather similar tendency in stress-strain relations and 

stress paths, although slight differences are observed among stresses during softening after the peak 

stress point. In the coarser mesh pattern, the deviator stresses after the peak point tend to decrease 

more rapidly in comparison with those in the finer meshes. Nonetheless, the results appear to be 

convergent by mesh refinement after 200 elements, in view of the fact that the differences become 

smaller between the stresses in 200 elements case and 800 elements case, and also the stresses in 800 

elements case and 1250 elements case are nearly the same. This fact is clearly perceived in Figure 

5.10, which shows the average deviator stresses at various levels of strain versus number of the 

elements in the mesh configurations. 
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Figure 5.9. Stress-strain relations and stress paths for different mesh patterns. 

 

It has been shown by many researchers that the consideration of material rate dependence 

substantially eliminates the pathological mesh sensitivity under quasi-static and/or dynamic loading 

conditions (e.g., Needleman 1988, Loret and Prevost 1991, etc.). However, the mesh-size dependency 

is somewhat observed in simulation results like any other finite element analyses. For the stress-strain 

relations of clay under quasi-static loading, Oka et al. (1995) have reported a slightly more softening 

response in a finer mesh configuration. In the latter work by Oka et al. (2002a), the mesh size effects 

were found to be insignificant on the stress-strain relations, whereas all the cases with different mesh 

configurations have shown identical values. In the present study, however, a slightly more hardening 

behavior is observed by taking a finer mesh configuration under dynamic loading conditions. Since 
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the constitutive model and loading conditions are different from the preceding works, this behavior 

might be explained. Moreover, deformation mechanism of the specimen caused by the material 

parameters under the current state of dynamic loadings, as well as the applied boundary conditions 

and constrained trigger points at the corners, might account for in this regard. The aspect ratio of the 

specimen, also, has a significant influence on the stress-strain behaviors in the 3D analysis of dynamic 

shear banding, as pointed out by Zbib and Jubran (1992). Accordingly, further studies have to be 

carried out to evaluate the effect of above-mentioned reasons on the dynamic strain localization of 

soft clays.  

Despite the slight differences in stress-strain relations for different mesh configurations, 

convergency of the results verifies the suitability of current analysis at an acceptable level of mesh-

size dependency. In addition, considering the overall shape of the shear bands and the stress-strain 

relations, the case with 200 elements gives results consistent with the finer meshes in a significantly 

shorter computation time, which implies adequacy of the 200 elements pattern to resolve the 

localization phenomenon for soft clay under dynamic loading conditions. 
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Figure 5.10. Average deviator stresses at various strain levels for different mesh patterns. 



149 
 

5.4. Dynamic Analysis of a Large-Scale Levee on Soft Soil Deposits 

The dynamic analysis of the Torishima super levee on the multilayered ground foundation (see 

Section 3.2 for more details) is conducted to evaluate the behavior of such a large-scale embankment 

on stratified foundation during the earthquake. Due to the existence of saturated loose sand layers, 

liquefaction is expected to occur in the unimproved zone. Furthermore, the soft clay layers are likely 

to have some influences on the dynamic behavior of the system. The dynamic analyses are performed 

in two cases as the natural ground case and the improved ground case. For the improved ground case, 

the proposed procedures, as described in Section 3.5, are employed to model the improved ground 

techniques in plane strain conditions. The material parameters for the sand layer As2 and soft clay 

layer Ac2 are designated from the laboratory test results and in particular from the cyclic triaxial test 

simulation results. For the other layers, the parameters compatible with those used in the 

consolidation analysis (Chapter 3) are assigned. However, for some additional model parameters, the 

available values from similar sites are properly chosen.  

In this section, at first the cyclic elasto-plastic model, which used for simulation of sandy layers, 

is presented. The simulations of the undrained cyclic triaxial tests on the sand specimens obtained 

from the As2 layer are then performed to determine the material parameters for the As2 layer. The 

dynamic simulations of the Torishima super levee are conducted under plane strain conditions using 

the developed numerical program. The full shape of the super levee after construction is considered 

for the dynamic analysis. The cyclic elasto-plastic constitutive model is adopted for the granular 

layers, while for the clay layers the cyclic elasto-viscoplastic constitutive model (see Section 4.2 for 

further details) is used.  

 

5.4.1. Cyclic Elasto-Plastic Constitutive Model 

The cyclic elasto-plastic model based on the nonlinear kinematic hardening rule, developed by Oka et 

al. (1999), is explained in this section with a modification on the dilatancy coefficient *M . In the 

formulation of the present constitutive model, the following assumptions are applied: 

1- Elasto-plastic theory, 

2- Generalized non-associated flow rule, 

3- Overconsolidation boundary surface, 

4- Nonlinear kinematic hardening rule, 
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5- Degradation of the plastic strain-dependent shear modulus, 

6- Fading memory of the initial anisotropy. 

The overconsolidation boundary surface is defined in the similar way as for the cyclic elasto-

viscoplastic model, with  

    ( )* *
(0) ln 0b m m mbf Mη σ σ′ ′= + =                                                 (5.142) 

( )( ) ( )( ){ }
1

* * * * * 2
(0) 0 0ij ijij ijη η η η η= − −                                                (5.143) 

where *
ijη is the stress ratio defined as *

iij j mSη σ ′= , *
(0)ijη is the value of *

ijη at the end of 

consolidation, mσ ′ is the mean effective stress, ijS is the deviatoric stress tensor and *
mM  is the value of 

the stress ratio expressed by * *
ij ijη η when the maximum volumetric strain during shearing takes place 

and which could be called the phase transformation stress ratio. The condition 0 bf <  means that the 

stress state stays in the overconsolidated (OC) region and 0 bf ≥  means that the stress state is the 

normally consolidated (NC) region. mbσ ′ follows an evolutional equation as 

  
1

pmb
v

mb

d
d

e
σ λ κ

ε
σ

′ −
=

′ +
                                                      (5.144) 

The integration of the above equation gives 

01
exp( )p

mb mbi v

e
σ σ ε

λ κ
+′ ′=
−

                                                  (5.145) 

where mbiσ ′ is the initial value of mbσ ′ , which is determined based on the volume change characteristics 

of soils by the quasi overconsolidation ratio as *
0mbi mOCR σ σ′ ′= .  

Furthermore, mcσ ′ , which is the mean effective stress at the intersection of the overconsolidation 

boundary surface and mσ ′  axis, is defined as 

(
*

*
0)exp( )mc mb
mM

η
σ σ′ ′=                                                       (5.146) 
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* * *
(0) (0) (0)ij ijη η η=                                                         (5.147) 

The yield function for changes in the stress ratio is denoted as 

  *
1 0y kf χη −= =                                                               (5.148) 

( )( ){ }
1

* * * * * 2
ij ij ij ijχη η χ η χ= − −                                                   (5.149) 

where k is a parameter which controls the size of the elastic region and *
ijχ is the nonlinear kinematic 

hardening parameter which has the same dimension as the stress ratio *
ijη . The evolution equation for 

the hardening parameter is defined by 

( )* * * *p p
ij ij ijd B A de dχ χ γ= −                                                     (5.150) 

 
p p p

ij ijd de deγ =                                                            (5.151) 

in which *A and *B  are material parameters, p
ijde  is the plastic deviatoric strain increment tensor, and 

pdγ is the plastic shear strain increment tensor. *A is related to the stress ratio at failure, namely, 

* *
fA M= , and *B is proposed to be dependent on the viscoplastic shear strain as 

( ) ( )* * * * *
max 1 ( ) 1exp vp

f nB B B C Bγ= − − +                                                (5.152) 

in which *
1B  is the lower boundary of *B , fC is the parameter controlling the amount of reduction, 

*
( )
p
nγ is the accumulated value of the plastic shear strain between two sequential stress reversal points in 

the previous circle. *
maxB is the maximum value of parameter *B , which is defined following the 

proposed method by Oka et al. (1999) as 

*
0

* *
max 0

* *
( ) max ( )

                   :Before reaching failure line

 :After reaching failure line
1 p p

n n r

B

B B
γ γ

=

+

⎧
⎪
⎨
⎪
⎩

                            (4.153) 

where *
0B is the initial value of *B , *

( ) max
p
nγ is the maximum value of *

( )
p
nγ in past cycles, and *

( )
p
n rγ is the 

plastic reference strain.  
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In the other method proposed by Oka et al. (2004b) the definition of *
maxB is given by 

*
0

* *
max 0

* *

             :Before reaching failure line

 :After reaching failure line
1 p p

apc apr

B

B B
γ γ

=

+

⎧
⎪
⎨
⎪
⎩

                            (5.154) 

in which, *p
apcγ is the accumulated plastic shear strain after reaching the failure line, and *p

aprγ is the 

plastic reference strain. 

The same type of equation is also applied for the degradation function of the elastic shear modulus, in 

which *
( )
E
n rγ and *E

aprγ are used as the reference values instead of *
( )
p
n rγ and *p

aprγ . 

For changes in the mean effective stress, the following yield function is applied 

  ( )* *
2 ln 0y m m mm dk y Rf M σ σ′ ′ − −= =                                           (5.155) 

where *
my is the scalar kinematic hardening parameter, mkσ ′  is the unit value of the mean effective 

stress, and dR  is a scalar variable. The scalar kinematic hardening parameter *
my can be decomposed 

into two terms as 

   * * *
1 2m m myd dy dy+=                                                         (5.156) 

The evolution equations for the scalar kinematic hardening parameter are assumed to be nonlinear for 
*

1my and linear for *
2my , which are given by 

   ( )* * * *
1 2 2 1

p p
m v m vy B A d yd dε ε= −                                                (5.157) 

   * *
2 2

p
m vy H dd ε=                                                           (5.158) 

where *
2A , *

2B and *
2H are the material parameters. For cyclic behavior under undrained condition, the 

changes in the mean effective stress are insignificant; hence, the second yield function can be 

disregarded for simplicity. 

The plastic potential function is assumed as follow: 

   ( )* * ln 0m mpg Mχη σ σ′ ′= + =                                           (5.159) 
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The dilatancy coefficient *M  is defined separately for the normally consolidated region (NC) and the 

overconsolidated region (OC). According to the new modification, the dilatancy coefficient is 

obtained as  

   ( )
*

*

* *

                  :NC region

  :OC region
m

m mc m

M
M

Mσ σ
=

′

⎧⎪
⎨
⎪⎩

                                              (5.160) 

where *
mσ  denotes the mean effective stress at the intersection of the surface, given by 

       
*

*
*  expm m

mM
χη

σ σ ′=
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                     (5.161) 

  The generalized flow rule for the constitutive model using a fourth rank isotropic tensor ijklH , is 

expressed as   

       p
ij ijkl

kl

g
d Hε

σ
∂

=
′∂

                                                       (5.162) 

       ( )ijkl ij kl ik jl il jkH a bδ δ δ δ δ δ= + +                                        (5.163) 

where p
ijdε  is the plastic strain increment tensor and kldσ ′ is the effective stress increment tensor. a 

and b in Equation (5.163) are material constants. 

The stress-dilatancy relation is obtained from the generalized flow rule as 

       ( )* **
p

v
p

v

d
D M

d χ

ε
γ

η= −                                                      (5.164) 

in which * 3 2 1D a b= +  is the dilatancy parameter which controls the ratio of the plastic deviatoric 

increment to the plastic deviatoric strain increment. The variation of *D is given by 

       ( ) 0* * * *
0

n

mD D M M=                                                      (5.165) 

where *D and 0n are the material parameters. 

During the cyclic loading in soils, the effect of the initial anisotropy decreases. The 

overconsolidation boundary surface depends on the initial anisotropy of soil. This means that the 
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existence of the initial anisotropy influences the shape of the overconsolidation boundary surface. 

Therefore, the initial anisotropy is assumed to fade during the cyclic loading. To consider this, 

coefficient ζ is used in definition of mcσ ′ as 

       
*

(0)
*

 expmc mb
mM

η
σ σ ζ′ ′=

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                  (5.166) 

       ( )* exp d cumCζ γ= −                                                      (5.167) 

where *
cumγ is the accumulative plastic shear strain from the initial condition, and dC  is a constant that 

controls the rate of disappearance of anisotropy. 

 

5.4.2. Simulation of Cyclic Triaxial Behavior of Torishima Sand Specimens 

The simulation of the cyclic triaxial tests on the sand specimens from As2 layer in Torishima super 

levee site are carried out to find the representative model parameters. The laboratory tests were 

performed on the specimens obtained at two different depths within the As2 layer; thereby the layer 

As2 is divided into two individual sub-layers, namely, As2-U and As2-L. The samples were obtained 

through the undisturbed tube sampling from two boreholes drilled in the Torishima super levee site. In 

addition to the basic laboratory tests for physical properties, the undrained cyclic triaxial tests were 

conducted on the sand samples at different levels of cyclic stress ratio CSR, which is defined 

as 02 mCSR q σ ′= .  

The experimental results of the cyclic triaxial tests are plotted in Figures 5.11 and 5.12, as the 

stress-strain relations, stress paths, and excess pore pressure ratio versus number of cycle curves, for 

the As2-U layer samples and As2-L layer samples, respectively.  Following the cyclic triaxial test, the 

cyclic test simulations are performed for different levels of cyclic stress ratio by integration of the 

cyclic elasto-plastic constitutive equations under undrained triaxial conditions. The material 

parameters are determined following the proposed method by Oka et al. (1999) and the data-adjusting 

method. Due to the lack of classical consolidation tests to determine the swelling and compression 

indexes, the following equation is used for the first approximation of the swelling index κ, based on 

the assumed Poisson’s ratio and the initial elastic shear modulus, 

       
( )( )

( )
0

0
0

3 1-2 1
 

2 1 m

e
G

υ
κ σ

υ
+ ′=

+
                                                   (5.168) 
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The initial elastic shear modulus is approximated from the slope of the stress-strain relation at the 

earlier stage of loading. The stress ratios at compression and extension are roughly calculated from 

the failure line in stress path. Nonetheless, the data-adjusting method is mainly used to determine the 

exact value of the parameters. The representative material parameters for As2-U and As2-L layers are 

listed in Table 5.2. 

Figures 5.13 and 5.14 show the corresponding simulated results for the specimens from As2-U 

and As2-L layer, respectively. Attempts are made to obtain a suitable set of parameters representing 

the characteristic of each layer. Although the obtained specimens from each layer are tested under 

similar conditions, some inconsistency emerges in the experimental results, probably due to the 

sample disturbance and sensitivity, which cannot be encountered in the simulations. Consequently, 

slightly disagreement with the experimental results is observed in the simulated results when an 

individual set of parameters is employed for all the specimens of each layer under different levels of 

CSR. For the excess pore pressure ratio in the simulated results, as the calculation of pore water 

pressure is not directly included in the constitutive equations, the reduction ratio of the mean effective 

stress is considered instead. Thereby, the simulated results show different response in the excess pore 

pressure ratio, particularly during the rise time before the onset of cyclic mobility. 

The liquefaction resistance curves of the sand samples from As2 sub-layers are depicted in 

Figure 5.15 for the experiment and the simulation. The liquefaction resistance of sand is determined 

as the number of the cycles in which the sand is being liquefied. The liquefaction is defined by either 

the excess pore pressure ratio ( )0u w mR P σ ′= , or the double amplitude strain (DA) criterion. In Table 

5.3, the number of cycles are presented for DA= 5%, DA= 10%, and Ru= 95%. The simulated results, 

in general, show larger number of cycles at high level of CSR, which results in a steeper liquefaction 

strength cure compared with the laboratory test data.  



156 
 

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-150

-100

-50

0

50

100

150

0 50 100 150 200 250
-150

-100

-50

0

50

100

150

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
-150

-100

-50

0

50

100

150

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-150

-100

-50

0

50

100

150

0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
-150

-100

-50

0

50

100

150

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
-150

-100

-50

0

50

100

150

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-150

-100

-50

0

50

100

150

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-150

-100

-50

0

50

100

150

 

 
D

ev
ia

to
r s

tre
ss

 (k
Pa

)

Axial strain (%)

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Mean effective stress (kPa)

 

 

Ex
es

s p
or

e 
w

at
er

 p
re

ss
ur

e 
ra

tio
  (

R u)

No of cycles

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Mean effective stress (kPa)

 
 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Axial strain (%)

 

 

Ex
es

s p
or

e 
w

at
er

 p
re

ss
ur

e 
ra

tio
  (

R u)

No of cycles

 
 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Mean effective stress (kPa)

 

 

Ex
es

s p
or

e 
w

at
er

 p
re

ss
ur

e 
ra

tio
  (

R u)

No of cycles

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Mean effective stress (kPa)

As2-U # 3
C.S.R.= 0.197

As2-U # 3
C.S.R.= 0.197

As2-U # 2
C.S.R.= 0.230

As2-U # 2
C.S.R.= 0.230

As2-U # 1
C.S.R.= 0.251

As2-U # 1
C.S.R.= 0.251

As2-U # 1
C.S.R.= 0.251

As2-U # 2
C.S.R.= 0.230

As2-U # 3
C.S.R.= 0.197

As2-U # 4
C.S.R.= 0.180

As2-U # 4
C.S.R.= 0.180

As2-U # 4
C.S.R.= 0.180

 
 

Ex
es

s p
or

e 
w

at
er

 p
re

ss
ur

e 
ra

tio
  (

R u)

No of cycles

N=121

N=52

N=16

N=5.0

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Axial strain (%)

 

 

D
ev

ia
to

r s
tre

ss
 (k

Pa
)

Axial strain (%)

 

Figure 5.11. Cyclic triaxial test results on As2-U samples under different levels of cyclic stress ratio.
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Figure 5.12. Cyclic triaxial test results on As2-L samples under different levels of cyclic stress ratio. 
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Table 5.2. Material parameters of sand layer As2 in Torishima. 

 As2-U As2-L 

Test No. 

#1: CSR=0.251 #1: CSR=0.229 
#2: CSR=0.230 #2: CSR=0.211 
#3: CSR=0.197 #3: CSR=0.199 
#4: CSR=0.180 #4: CSR=0.188 

Initial void ratio e0 0.623 0.81 

Compression index λ 0.0875 0.870 

Swelling index κ 0.0068 0.0064 

Normalized initial shear modulus 0 mG σ ′ 175.5 185.5 

Initial mean effective stress (kPa) 0mσ ′ 183 197 

Failure stress ratio at compression M*
f c 1.36 1.36 

Phase transformation stress ratio at compression M*
mc 1.12 1.12 

Failure stress ratio at extension M*
f e 1.0 1.0 

Phase transformation stress ratio at extension M*
me 0.81 0.81 

Anisotropy control parameter Cd 2000 2000 

Parameter of dilatancy  D*
0 2.75  1.15 

Parameter of dilatancy n0 4.75 5.75 

Hardening parameter B*
0 3000 3500 

Hardening parameter B*
1 5 5 

Hardening parameter Cf 15 10 

Reference value of plastic strain (%) γp*
(n)r 0.33 0.27 

Reference value of elastic strain (%) γE*
(n)r 1.9 2.15 

 

 

Table 5.3. Number of cycles at different CSR for experiment and simulation. 

As2-U As2-L 

CSR = 0.251 0.230 0.197 0.180 0.230 0.211 0.199 0.188 

Experiment:     
DA= 5% 3 7 36 83 4 12 38 129 

DA= 10% 5 14 52 121 7 28 61 151 

Ru= 95% 4 6 32 78 4 11 35 123 

Simulation:     
DA= 5% 7 12 32 73 18.5 29 62 109 

DA= 10% 8 17 49 87 20.5 34 65 112 

Ru= 95% 7 9 33 78 16 29 61 107 
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Figure 5.13. Simulated results of As2-U samples under different levels of cyclic stress ratio. 
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Figure 5.14. Simulated results of As2-L samples under different levels of cyclic stress ratio. 
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Figure 5.15. Liquefaction resistance curves for the experimental and the simulated results based on 

different criteria. 
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5.4.3. Problem Geometry and Boundary Conditions 

The geometry of the FEM model and the boundary conditions are depicted in Figure 5.16. The 

simulations are accomplished using a three-dimensional mesh system under plane strain conditions, 

for which the unit length is considered in the third dimension and the deformations in that direction 

are restricted. Fully saturated conditions with drainage boundaries only at the top are assumed. The 

assumption of fully saturated conditions, for both embankment and ground layers, refers to a worst-

case scenario in which earthquake occurs after the heavy rainfall. For the displacement boundaries, 

the displacements at the bottom are fixed in all directions assuming the rigid base at a depth of 40 m, 

and for the both side boundaries, the free movement conditions only in the vertical direction are 

assumed. The effective stress conditions immediately after the construction of the super levee are 

considered as the initial configuration. The initial stress state is computed by the static elasto-

perfectly-plastic analysis using the Drucker-Prager type material model. 

 

120 m120 m 168.5 m 40 m

1:51:29

8.2

40 m

8.1 m

Drainage boundary

Impervious boundaryImpervious boundary  

Figure 5.16. Geometry and boundary conditions of 3D finite element model for the dynamic analysis. 

 

The material parameters for the natural ground case are summarized in Tables 5.4 and 5.5. The 

cyclic elasto-viscoplastic model is adopted for the clayey layers, while for the granular layers, 

including the embankment layers, the cyclic elasto-plastic constitutive model is allocated. The 

additional material parameters for the improved ground case are listed in Tables 5.6 and 5.7. The 

effect of each ground improvement technique is considered following the same procedures as those 

proposed for the consolidation analyses in Chapter 3. For the deep mixing parts, the linear elastic 

behavior is assumed and relevant parameters are assigned. For the SCP/SD installed zones, the 

horizontal permeability matching procedure is employed with the same assumptions as those used for 

the consolidation analysis after parameter calibration process. However, the drain spacing in the 

dynamic simulation is increased to 4B R= , in order to reduce the overall number of nodes in the 

mesh and consequently to optimize the computation time. 
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For the input ground motion, as illustrated in Figure 5.17, a wave with a maximum acceleration 

of 509 gal is assumed based on a NS component of an earthquake record on Port Island, Kobe City 

during the 1995 Kobe (Great Hanshin) Earthquake, and applied in the horizontal direction. The major 

shock occurs in 10 sec and after that, the simulation is carried on until 20 sec to evaluate the post-

quake responses. In the dynamic analyses, an initial stiffness dependent type of Rayleigh damping is 

adopted with the attenuation constant equal to 0.9%. In addition, a direct integration scheme of the 

Newmark’s β method is employed, for which the values of 0.3025 and 0.6 are applied for β  and γ , 

respectively.  

 

Table 5.4. Material parameters of cyclic elasto-viscoplastic model for the natural ground case. 

 Ac2-U Ac2-M Ac2-L (1) Ac1 (1) Dc (1) 

Initial void ratio  e0 1.25 1.65 1.42 1.30 1.20 

Coefficient of permeability   k/γw (m4/kN.s) 5.87×10-11 3.93×10-11 2.74×10-11 1.63×10-10 5.40×10-11 

Compression index   λ 0.341 0.593 0.652 0.326 0.217 

Swelling index   κ 0.019 0.027 0.014 0.0326 0.0217 

Density   ρ (t/m3) 1.7 1.6 1.66 1.6 1.8 
Normalized initial shear modulus 

0 0mG σ ′  75.2 58.95 65 88.5 128.25 

Phase transformation stress ratio  M*
m 1.24 1.18 1.12 1.12 1.30 

Failure stress ratio  M*
f 1.24 1.18 1.12 1.12 1.30 

Viscoplastic parameter  m’ 24.68 28.2 21.25 20 20 

Viscoplastic parameter  C1 (1/s) 1.00×10-5 1.00×10-5 1.00×10-5 1.00×10-6  1.00×10-7 

Viscoplastic parameter  C2 (1/s) 3.83×10-6 1.85×10-6 8.99×10-6 3.00×10-7 1.16×10-8 
Structural parameter  

maf main σ σ′ ′=  0.30 0.325 0.30 0.35 0.35 

Structural parameter  β 3.6 3.8 4.0 3.0 3.0 

Hardening parameter  B*
0 100 180 200 200 350 

Hardening parameter  B*
1 40 3 5 5 50 

Hardening parameter  Cf 10 3 5 5 5 
Reference viscoplastic strain  *

( )
vp
n rγ  (%) 1.25 1.25 1.25 1.5 -- 

Strain-dependent parameter  α 10 20 20 10 -- 

Scalar hardening parameter   A*
2 5.9 5.9 5.9 5.9 5.9 

Scalar hardening parameter  B*
2 1.8 1.8 1.8 1.8 1.8 

Quasi-overconsolidation ratio  OCR* 1.00 1.00 1.00 1.20 1.9 
(1) The material parameters for these layers are properly chosen from the existing data due to the lack of 

cyclic tests. 
(2) 

0

*

mai m
OCRσ σ′ ′= ×  
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Table 5.5. Material parameters of cyclic elasto-plastic model for the natural ground case. 

 Em2 (1) Em1(1) B1(1) As2-U As2-L As1(1) Dg (1) 

Initial void ratio   e0 0.8 0.8 0.93 0.623 0.81 0.9 0.9 

Coefficient of permeability k/γw (m4/kN.s) 1.0×10-6 1.0×10-6 1.0×10-6 3.9×10-7 1.1×10-6 5.6×10-7 1.0×10-6 

Compression index  λ 0.03 0.03 0.0025 0.0875 0.087 0.01 0.01 

Swelling index   κ 0.002 0.002 0.0015 0.0068 0.0064 0.003 0.003 

Density   ρ (t/m3) 1.8 1.75 1.75 1.8 1.8 1.8 1.9 
Initial shear modulus

0 0mG σ ′  251 215 150 175.5 185.5 512 541 

Phase transformation stress ratio  M*
m 0.909 0.909 0.99 1.12 1.12 0.909 0.909 

Failure stress ratio   M*
f 1.15 1.14 1.28 1.36 1.36 1.158 1.336 

Anisotropy control parameter  Cd 2000 2000 2000 2000 2000 2000 2000 

Parameter of dilatancy  D*
0 1.0 1.0 2.5 2.75 1.15 1 -- 

Parameter of dilatancy  n0  4.0 4.0 4.5 4.75 5.75 6 -- 

Hardening parameter  B*
0 3000 2850 2750 3000 3500 3800 3000 

Hardening parameter  B*
1 7.5 7 5 5 5 70 5 

Hardening parameter  Cf 0 0 10 15 10 0 0 
Reference plastic strain *

( )
p
n rγ (%) 0.25 0.25 0.25 0.33 0.27 0.5 -- 

Reference elastic strain *
( )
E
n rγ (%) 1.0 1.0 1.0 1.9 2.15 1.0 -- 

Quasi-overconsolidation ratio  OCR* 1.00 1.00 1.00 1.00 1.00 1.20 1.50 

(1) The material parameters for these layers are properly chosen from the existing data due to the lack of 
cyclic tests. 

 

 

 

Table 5.6. Elastic model parameters of the deep mixing parts for the improved ground case. 

 DMW/Sand DMW/Clay B1-DM As2-DM Ac2-U-DM 

Initial void ratio   e0 0.72 0.72 0.8 0.72 1.25 
Coefficient of permeability  k/γw 1.0×10-9 5.87×10-12 7.14×10-7 5.26×10-8 4.3×10-11 

Lame’s constant λ  (kPa)  121732 121732 40560 42098 40470 

Lame’s constant µ  (kPa) 81155 81155 27040 28065 26980 

Density   ρ (t/m3) 2.0 2.0 1.875 1.9 1.85 
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Table 5.7. Additional material parameters for the improved ground case. 

 B1-SCP As2-U-
SCP 

As2-L-
SD 

Ac2-U-
SD Ac2-L-SD Ac2-L-SD As1-SD 

Initial void ratio   e0 0.93 0.623 0.81 1.25 1.65 1.42 0.9 

Coefficient of permeability  kx/γw 1.42×10-6 5.54×10-7 1.56×10-6 8.3×10-11 5.58×10-11 3.9×10-11 7.95×10-7 

Compression index  λ 0.0025 0.0875 0.087 0.341 0.593 0.652 0.01 

Swelling index   κ 0.0015 0.0068 0.0064 0.019 0.027 0.014 0.003 

Density   ρ (t/m3) 1.75 1.8 1.8 1.7 1.6 1.66 1.8 
Initial shear modulus

0 0mG σ ′  450 438.75 185.5 75.2 58.95 65 512 

PT stress ratio  M*
m 0.99 1.12 1.12 1.24 1.18 1.12 0.909 

Failure stress ratio   M*
f 1.28 1.36 1.36 1.24 1.18 1.12 1.158 

Viscoplastic parameter  m’ -- -- -- 24.68 28.2 21.25 -- 

Viscoplastic parameter  C1 (1/s) -- -- -- 1.00×10-7 1.00×10-7  1.00×10-7  -- 

Viscoplastic parameter  C2 (1/s) -- -- -- 3.83×10-8 1.85×10-8 8.99×10-8 -- 
Structural parameter

maf main σ σ′ ′=  -- -- -- 0.30 0.325 0.30 -- 

Structural parameter  β -- -- -- 3.6 3.8 4.0 -- 

Anisotropy control parameter  Cd 2000 2000 2000 -- -- -- 2000 

Parameter of dilatancy  D*
0 2.5 2.75 1.15 -- -- -- 1 

Parameter of dilatancy  n0  4.5 4.75 5.75 -- -- -- 6 

Hardening parameter  B*
0 3750 4000 3500 100 180 200 3800 

Hardening parameter  B*
1 5 5 5 40 3 5 70 

Hardening parameter  Cf 5 5 10 10 3 5 0 
Reference plastic strain *

( )
p
n rγ (%) 0.25 0.33 0.27 1.25 1.25 1.25 0.5 

Reference elastic strain *
( )
E
n rγ (%) 1.0 1.9 2.15 -- -- -- 1.0 

Strain-dependent parameter  α -- -- -- 10 20 20 -- 

Scalar hardening parameter   A*
2 -- -- -- 5.9 5.9 5.9 -- 

Scalar hardening parameter  B*
2 -- -- -- 1.8 1.8 1.8 -- 

kx: Equivalent horizontal permeability. 
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Figure 5.17. Input earthquake wave. 
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5.4.4. Analysis Results and Discussion 

The dynamic analysis results are presented for the natural (unimproved) ground case and the 

improved ground case, as the time histories of displacements in both vertical and horizontal directions, 

the acceleration responses, and the excess pore pressure responses, at the center of each subsurface 

layer and some nodes over the ground level and atop the super levee. In addition, the distribution 

contours of the vertical strain, the accumulated plastic/viscoplastic shear strain, the excess pore water 

pressure, and the effective stress reduction ratio (ESDR) are exhibited at several steps of the 

simulation. The locations of the reference points for the nodal outputs at several sections are 

schematically depicted in Figure 5.18 with respect to the dimensions from the boundaries.  
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Figure 5.18. Location of the reference points for the nodal outputs within the sketch of the super levee and 

ground layers. 

 

5.4.4.1. Effective Stress Decreasing Ratio (ESDR) 

The effective stress decreasing ratio is defined as 01 m mESDR σ σ′ ′= − , where mσ ′ is the mean effective 

stress, and 0mσ ′ is the initial mean effective stress. Liquefaction occurs when ESDR is equal to one. 

Figures 5.19 and 5.20 demonstrate the effective stress decreasing ratio contours at several steps of the 

computation, namely, at 5, 7.5, 10, and 20 sec, for the natural (unimproved) ground case and the 

improved ground case, respectively.  

In the natural ground case, by progress of the ground motion at 5 sec, as shown in Figure 5.19(a), 

the values of the ESDR start to increase in the upper sandy layers, B1 and As2, beneath the super 

levee, and in the super levee layers. Simultaneously, the reduction of effective stress appears in the 

deeper layers, e.g. As1, in the areas on the left and right side of the super levee. In those areas, the 
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initial effective stresses are smaller than those areas underneath the super levee; therefore, the 

reduction of the effective stress occurs faster. The reduction of ESDR accelerates by progress of the 

ground motion. At the end of the major ground motion, at 10 sec as shown in Figure 5.19(c), the 

upper sand layers B1 and As2, and most parts of the super levee layers nearly liquefy. In addition, the 

deep sand layer As1 shows remarkable values of ESDR about 0.8, indicating the threshold of the 

liquefaction in that layer. The other layers such as Ac2-U and Ac2-L demonstrate the values of about 

0.5. After the main shock, the liquefied zones develop throughout the upper layers. At the end of the 

analysis, at 20 sec as shown in Figure 5.19(d), the liquefaction is observed in almost the whole part of 

B1 and As2, and in the entire part of the super levee, as well as in As1 layer on the left and right side 

of the super levee. In the superficial parts of B1 layer, on the left and right side of the super levee, the 

value of ESDR is about 0.6 after 20 sec.  

 

(a)  

(b)  

(c)  

(d)  

Figure 5.19. Effective stress decreasing ratio contours for the natural ground case at several times;        

(a) 5 s, (b) 7.5 s, (c) 10 s, and (d) 20 s. 

 

In the improved ground case, as shown in Figure 5.20, the accomplishment of the ground 

improvement techniques significantly prevents the occurrence of liquefaction in the subsurface strata 

beneath the super levee. However, liquefaction is still observed in almost the whole part of the super 

levee due to its initial saturated conditions, and in the ground layers on the left and right side of the 

super levee, in the similar manner as for the natural ground case. In As2 layer in the gap between the 

deep mixing and the SCP/SD installation zone, the high values of the ESDR indicates high risk of 
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liquefaction and the resultant large deformations, which may emerge as the large relative settlements 

on the surface. 

 

 

(a)  

(b)  

(c)  

(d)  

Figure 5.20. Effective stress decreasing ratio contours for the improved ground case at several times;        

(a) 5 s, (b) 7.5 s, (c) 10 s, and (d) 20 s. 

 

5.4.4.2. Excess Pore Water Pressure (EPWP) Responses  

The residual EPWP contours at the end of the analysis, at 20 sec, are presented in Figure 5.21 for the 

natural and the improved ground cases. The contours show the value of excess pore water pressure on 

each element, which is determined by averaging the values at the surrounding nodes of each element. 

In the natural ground case, the residual EPWP is developed in the ground layers mostly under the 

super levee. The highest value of EPWP is observed at As1 layer beneath the main levee, and in the 

area away from the super levee (i.e., on the left and right side of the super levee). In the improved 

ground case, however, as the sand drains have been installed, the residual EPWP is reduced 

throughout the ground layers within the SCP/SD installation zone. Nonetheless, the similar values of 

EPWP, as those for the natural ground case, are observed in the As1 layer and in the adjacent clay 

layers, beneath the main levee as well as on the left and right side of the super levee. High level of the 

residual EPWP after the earthquake indicates a high potential of large deformations, which will be 

induced by the ensuing consolidation of the ground strata. Therefore, a relatively long-term analysis 
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of the system after the liquefaction must be considered for the comprehensive evaluation of the 

deformations. 

In order to have a better comparison of the excess pore pressure responses in both cases, the time 

histories of the excess pore pressure responses at the corresponding nodes along Sections II and V are 

illustrated, respectively, for the natural ground case in Figures 5.22 and 5.23, and for the improved 

ground case in Figures 5.24 and 5.25. In general, the buildup of the excess pore water pressure with a 

positive value is observed in all the layers in both cases, except for the natural ground case in the deep 

layers, in which negative pore pressure is slightly generated during the motion. At Points J and M, 

which located on the drainage boundary, the value of the EPWP is zero. Moreover, for the improved 

ground case, at Point B, which coincides with the position of the sand mat on the ground level, the 

EPWP is equal to zero. The excess pore pressure responses show a fluctuation with an increasing 

trend during the quake and a while after. It nearly becomes stagnant with a residual value after about 

15 sec. 

 

(a)  

(b)  

Figure 5.21. Distribution of the residual EPWP after 20 sec, for (a) the natural ground and (b) the 

improved ground case, (legend unit: kPa). 

 

Comparing the EPWP results for the natural ground case and the improved ground case in 

Section II (i.e., Figures 5.22 and 5.24), which represents the SCP/SD installation zone for the 

improved case, the improved ground case demonstrates rather larger values of excess pore pressure at 

the corresponding nodal points, particularly within the sandy layers. Due to the sand drains 

installation and shortening the drainage paths in the lower layers, the migration of the pore water 

increases toward the sand drains resulting higher value of EPWP in the nearby soil layers. In addition, 

more fluctuation is observed at the nodes near sand drains. 
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For the nodes along Section V (Figures 5.23 and 5.25), which represents the deep mixing part 

and the underlying area, significant differences are observed in the excess pore pressure responses at 

the center of deeper layers, between the natural ground case and the improved ground case. In the 

improved ground case, as the deep mixing walls have been installed under the main levee, the 

generated excess pore pressure is blocked in the lower layers, which makes a higher level of pore 

pressure generation in those layers. Furthermore, in the layers within the deep mixing installation 

zone, the value of the excess pore pressure is significantly smaller compared with the corresponding 

nodes in the natural ground case.   
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Figure 5.22. EPWP profiles for the natural ground case along Section II at the center of each subsurface 

layer and at some points in the super levee. 
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Figure 5.23. EPWP profiles for the natural ground case along Section V at the center of each subsurface 

layer and at some points in the super levee. 
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Figure 5.24. EPWP profiles for the improved ground case along Section II at the center of each subsurface 

layer and at some points in the super levee. 
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Figure 5.25. EPWP profiles for the improved ground case along Section V at the center of each subsurface 

layer and some points in the super levee. 

  

5.4.4.3. Acceleration Responses 

The acceleration responses at the center of each ground layer and at some reference points along 

Section I and III are presented respectively for the natural ground case in Figures 5.26 and 5.27, and 

for the improved ground case in Figures 5.28 and 5.29. In Section I, where located on the left side of 

the super levee, both cases exhibit exactly similar responses at the corresponding nodes. In section III, 

which represents the SCP/SD installation zone for the improved ground case, the results are rather 

similar in both cases, although slight differences are observed at the nodes nearby the sand drains. 

Indeed, the improved ground case has different configuration due to the partially ground improvement, 
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which results in different response to the input motion. At the current section, for instance, the 

installation of the sand drains causes slightly more attenuation in the acceleration responses, which 

might be attributed to the higher excess pore pressure buildup in the surrounding soil layers. 
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Figure 5.26. Acceleration responses at the center of each ground layers and super levee layers for the 

natural ground case along Section I. 

 

Considering the responses along depth, the deep dense layers Dc and Dg demonstrate the same 

responses as the input motion. In the upper layers, i.e., Ac1, As1 and Ac2-L, the amplification during 

the main shock is observed, while aftershock behavior is almost without any fluctuation and similar to 

the input motion. In the Ac2-M layer and the above layers, the acceleration response emerges as 

attenuation during the main shock (within 10 sec). By comparing the acceleration responses along 

depth at Section I and III, as shown in Figures 5.26 and 5.27, it is found that the presence of the super 

levee results in more amplification in the deeper ground layers and more attenuation in the upper 

ground layers, due to the difference in the predominant vibrational mode at each section. 
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Figure 5.27. Acceleration responses at the center of each ground layers and super levee layers for the 

natural ground case along Section III. 
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Figure 5.28.Acceleration responses at the center of each ground layers and super levee layers for the 

improved ground case along Section I. 
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Figure 5.29. Acceleration responses at the center of each ground layers and super levee layers for the 

improved ground case along Section III. 

 

 

5.4.4.4. Horizontal Displacements 

The horizontal displacements versus time at the center of the ground layers and at some reference 

points in the super levee along Section IV are plotted in Figures 5.30 and 5.31 for the natural ground 

case and for the improved ground case, respectively. Both cases demonstrate similar feature in the 

fluctuation of the horizontal displacement during the major shock within 10 sec. However, the 

improved ground case results show smaller range of variation in comparison with the natural ground 

case. In the natural ground case, the liquefaction-induced lateral deformation emerges after the main 
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shock in the upper ground layers and in the super levee layers. The residual horizontal displacement 

of about 95 cm is observed at Point L atop the super levee, at the end of the analysis. This value at the 

center of B1 layer is about 30 cm. In the improved ground case, the liquefaction-induced lateral 

movement is significantly reduced, inasmuch as the residual horizontal displacement diminishes to a 

value about 30 cm at Point L, and to about 5 cm at the center of B1 layer.  
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Figure 5.30. Horizontal displacement profiles along Section IV for the natural ground case. 
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Figure 5.31. Horizontal displacement profiles along Section IV for the improved ground case. 

 

5.4.4.5. Vertical Displacements 

The time histories of vertical displacement along Section I and V are illustrated for the natural ground 

case in Figures 5.32 and 5.33 and for the improved ground case in Figures 5.34 and 5.35. Both cases 

show similar feature in the vertical displacement variation along depth. The vertical displacements at 

the center of the deeper layers, such as Dc, Dg, Ac1 and As1, are almost zero. In the upper layers, 

however, the displacement increases as the depth of the layer decreases. The large value of vertical 

displacement is developed in the layers near ground surface and in the super levee. 

 



180 
 

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

 Dc layer; GL.-36 m

 

 
V

er
tic

al
 d

is
pl

ac
m

en
t (

cm
)

Time (sec)

 Ac1 layer; GL.-30.05 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Ac2-L layer; GL.-20.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Ac2-U layer; GL.-12.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 As2-L layer; GL. -9.2 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 As2-U layer; GL.-3.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 B1 layer; GL.-1.1 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Point A; GL. 0.0 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Dg layer; GL.-32.9 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 As1 layer;GL.-25.7 m
 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Ac2-M layer; GL.-16.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

Figure 5.32. Vertical displacement profiles along Section I for the natural ground case. 

 

At Section I, the vertical displacement is generally developed as upward movement in the ground 

layers, in which the displacement increases in the upper layers and the maximum heave is observed on 

ground surface at Point A with a maximum value of about 12 cm in both cases. At section V, the 

vertical displacement is observed mainly as the settlement in the layers. In the upper layers, the 

settlement increases due to the liquefaction, of which the maximum settlement is observed at Point M, 

atop the super levee, with a value of about 70 cm for the natural ground case. For the improved 

ground case, however, due to the installation of deep mixing walls in that section, the settlement 

substantially decreases, inasmuch as the settlement atop the main levee centerline at Point M is 

reduced to 40 cm, and in the other ground layers, the settlement is insignificant. 
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Figure 5.33. Vertical displacement profiles along Section V for the natural ground case. 

 



182 
 

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

0 5 10 15 20
-75

-50

-25

0

25

 Dc layer; GL.-36 m

 

 
V

er
tic

al
 d

is
pl

ac
m

en
t (

cm
)

Time (sec)

 Ac1 layer; GL.-30.05 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Ac2-L layer; GL.-20.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Ac2-U layer; GL.-12.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 As2-L layer; GL. -9.2 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 As2-U layer; GL.-3.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 B1 layer; GL.-1.1 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Point A; GL. 0.0 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Dg layer; GL.-32.9 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 As1 layer;GL.-25.7 m
 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

 Ac2-M layer; GL.-16.95 m

 

 

V
er

tic
al

 d
is

pl
ac

m
en

t (
cm

)

Time (sec)

Figure 5.34. Vertical displacement profiles along Section I for the improved ground case. 
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Figure 5.35. Vertical displacement profiles along Section V for the improved ground case. 

 

5.4.4.6. Vertical Strain 

The vertical strain distributions for the natural ground case and the improved ground case are 

presented in Figures 5.36 and 5.37 at several steps of analysis. In the natural ground case, the 

localization of the vertical strain is appeared as the compression with positive values around the top of 

the main levee and as the extension with negative values around the left- and right-side toe of the 

super levee. The overall feature of the vertical movements is appeared as the settlement beneath the 

super levee and ground heaves on the left and right side of the super levee. The values of the vertical 

strain in the localized areas increase by progress of the motion, and it reaches to the highest value at 

20 sec. In the improved ground case, the localization of vertical strain follows the same feature as for  
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(a)  

(b)  

(c)  

(d)  

Figure 5.36. Vertical strain distribution contours for the natural ground case at various times;                

(a) 5 s, (b) 7.5 s, (c) 10 s, and (d) 20 s. (legend unit: %). 

 

(a)  

(b)  

(c)  

(d)  

Figure 5.37. Vertical strain distribution contours for the improved ground case at various times;             

(a) 5 s, (b) 7.5 s, (c) 10 s, and (d) 20 s (legend unit: %). 
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the natural ground case. The vertical strain is localized in the toes of the super levee, as well as around 

the top of the main levee. However, the progress of the strain localization inside the super levee is 

smaller, since the deep mixing walls have been installed underneath the main levee. 

 

5.4.4.7. Accumulated Plastic/Viscoplastic Shear Strain 

The distribution contours of the accumulated plastic/viscoplastic shear strain at several steps of 

analysis are shown in Figures 5.38 and 5.39 for the natural ground case and the improved ground case, 

respectively. In the natural ground case, the accumulated plastic/viscoplastic shear strain is localized 

throughout of the upper sand layers B1 and As2 and in the upper part of Ac2-U layer. In addition, the 

strain localization is observed in some parts of the super levee and on the ground surface beside the 

super levee. At the end of the analysis, at 20 sec, the high levels of localization are observed in the B1 

layer beneath the super levee and on the super levee sides. In the improved ground case, the strain 

localization is developed in back slope part of the super levee, on the surface ground by both sides of 

the super levee, and notably around the right toe of the super levee over the DMM installation zone. 

 

(a)  

(b)  

(c)  

(d)  

Figure 5.38. Accumulated plastic/viscoplastic shear strain contours for the natural ground case at          

(a) 5 s, (b) 7.5 s, (c) 10 s, and (d) 20 s, (legend unit: %). 
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(a)  

(b)  

(c)  

(d)  

Figure 5.39. Accumulated plastic/viscoplastic shear strain contours for the improved ground case at       

(a) 5 s, (b) 7.5 s, (c) 10 s, and (d) 20 s, (legend unit: %). 

 

5.5. Concluding Remarks 

In order to simulate the large deformation problems under dynamic loading conditions, a FEM-based 

computer program was developed considering the finite deformation theory for a two-phase mixture. 

The cyclic elasto-viscoplastic model as described in previous chapter was adopted to represent the 

characteristic behavior of clay material. Furthermore, the cyclic elasto-plastic model was employed 

for the sandy layers to simulate properly the liquefaction phenomenon in those layers. The u-p 

formulation with the updated Lagrangian scheme was presented for the dynamic analysis.  

Newmark’s β method was employed for the discretization the governing equations in time. The 

nonlinear relation between the stress and the stretching tensor for the elasto-viscoplastic materials was 

then derived using the tangent stiffness method.  

The dynamic strain localization, as an example of large deformation problem, was studied on 

clay specimen characterized by Torishima Ac2-U layer parameters. The mesh pattern of 10×20 (200 

elements) was assumed as the default mesh. The shear band developing process was studied through 

the evaluation of the results for the axial strain, the accumulated viscoplastic shear strain, the 

viscoplastic volumetric strain, and the mean effective stress, in addition to the deformed mesh. 

Comparing the partially drained and undrained cases, the presence of drainage boundaries have not 
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shown significant effects, due to the rapid rate of loading and also the low permeability of the clay. 

Considering the mesh-size dependency, the results for different mesh configurations showed 

consistency in terms of the overall shape of deformation and stress-strain behavior. Furthermore, 

convergency in the stress-strain relations was manifested through the mesh refinement. 

Finally, the dynamic analysis of the Torishima super levee was conducted through the natural 

ground case and the improved ground case. Fully saturated conditions were assumed for both 

embankment and ground layers. This assumption refers to a worst-case scenario in which earthquake 

occurs after the heavy rainfall. This scenario is most likely to happen in Japan due to the high risk of 

heavy rains and large magnitude earthquakes. After 20 sec of an earthquake with a maximum 

acceleration of 509 gal, the onset of the liquefaction, with the criterion of ESDR equal to 1, was 

observed in the upper sand layers of the ground, in the deep sand layer, and in the most parts of the 

super levee due to its initial saturation, for the natural ground case. Consequently, large deformations 

occurred in the super levee and nearby ground surface, with a maximum settlement of about 70 cm at 

the crest of the super levee, and with a maximum lateral movement of about 95 cm atop the back 

slope of super levee. However, based on the large amounts of residual excess pore pressure within the 

subsurface layers after 20 sec of motion, it is anticipated to develop much more deformations 

following the pore pressure dissipation during the subsequent consolidation.  

In the improved ground case, the liquefaction beneath the super levee was substantially mitigated 

by installation of the SCP/SD and the deep mixing walls. Nonetheless, in the whole part of the super 

levee, due to its initial fully saturated conditions, and in the gap between the deep mixing part and 

SCP/SD installation zone, high level of ESDR was observed indicating the occurrence of liquefaction 

in those areas. This emphasizes the necessity of improvement in the super levee layers in addition to 

the ground layers. The improvement of the super levee materials can be accomplished by choosing the 

appropriate fill materials and proper compaction during the construction. Moreover, the 

complementary improvement techniques, such as drain installation or cement mixing methods, can be 

employed for that purpose. 
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Chapter 6 

CONCLUSION AND RECOMMENDATION 

FOR FUTURE STUDY  

 

6.1. Summary and Conclusions 

In the current research, the numerical analyses of the Torishima super levee in Osaka City, Japan, 

were carried out in the framework of finite deformation theory, with a particular focus on the behavior 

of sensitive soft clay layers. The numerical analysis was divided into two main parts; i.e., the long-

term consolidation analysis and the dynamic analysis. The large-scale levee has been constructed in 

downstream of the Yodo River, on multilayered soft soil deposits. At first, the behavior of soft clay 

specimens under triaxial conditions was studied through the elasto-viscoplastic modeling considering 

the destructuration. The effects of destructuration were investigated by comparing the predicted 

results with the experimental data from undrained triaxial compression tests. The effects of 

destructuration were then evaluated in a boundary value problem, as the consolidation analysis of an 

embankment construction on one-layer soft clay foundation. The construction procedure of the 

embankment was taken into account following the assumed loading profile. The finite element 

formulations based on the finite deformation theory were adopted for the numerical simulations, 

whereby the large deformations induced by the embankment construction on soft soil deposit can be 

properly taken into account. The staged construction procedure of the embankment was applied to 

appropriately simulate the construction sequence in which the stiffness and the consolidation of the 

embankment are considered in addition to the embankment loading.  
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Afterwards, the consolidation analysis of the Torishima super levee was conducted as the natural 

ground and the improved ground cases, by which the effects of the destructuration aspects and the 

effects of each improvement techniques were properly studied. As the second part, for the dynamic 

analysis, a cyclic elasto-viscoplastic model was presented and its performance was verified through 

the cyclic and monotonic triaxial test simulations. Based on the finite deformation theory, the finite 

element formulations for dynamic analysis were derived and explained in detail. A finite element 

based computer program was developed which incorporates the cyclic elasto-viscoplastic constitutive 

model for clays and the elasto-plastic constitutive model for sands. The localization analysis of the 

soft clay specimen was carried out under dynamic loading conditions using the developed code. 

Finally, the dynamic analysis of the Torishima super levee was accomplished through the natural 

ground case and the improved ground case. The following conclusions are drawn from the present 

study. 

In Chapter 2, from the modeling of Osaka soft clay specimen and the comparison with 

experimental results, it was found that the consideration of the destructuration of sensitive soft clay, as 

the structural degradation and the strain-dependent shear modulus, significantly improves the 

predicted responses. Although consideration of the structural degradation leads to a substantial 

improvement, in terms of strain softening and post-peak responses, the strain-dependent shear 

modulus was applied to reproduce more precise behavior, particularly before the peak stress in the 

stress-strain relations. In the consolidation analysis of an embankment on soft clay foundation, the 

results clarified the effects of these considerations of which large strain and consequent deformations 

developed due to the structural degradation during consolidation. Moreover, the buildup of pore 

pressure after the completion of the construction was observed in the narrow zone close to the 

embankment; this is similar to the field-measured evidence reported by Mesri and Choi (1979), 

Leroueil et al. (1979), Mitchell (1986), etc. Considering the strain dependency of the shear modulus, 

however, larger strain and larger displacements developed not only during the consolidation, but also 

during the construction of the embankment. 

In Chapter 3, as the first phase of the consolidation analyses of the super levee construction, by 

comparing the results of the natural (unimproved) ground cases, the same outcomes as those in 

Chapter 2 are obtained for the effect of the destructuration aspects. The structural degradation was 

found to have a significant effect on the after-construction responses of the pore water pressure and 

the associated strain localization. On the other hand, the strain dependency of the elastic shear 

modulus, as another aspect of destructuration in soft clay, was found to affect the behavior at an 

earlier stage of loading, which appears as relatively large deformations during the construction 

process, and therefore, during consolidation. As the second phase of the consolidation analyses, by 

comparing the results of the improved ground case with the natural ground case, the performance of 
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each ground improvement techniques were evaluated. The performance of sand drains, in shortening 

the drainage paths and accelerating the consolidation rates, was clearly observed through the 

settlement profiles and the excess pore water pressure contours. The effect of DM walls was observed 

as reducing the overall settlements beneath the main levee, and also as creating a low-permeability top 

layer over the clay layers which decelerate the dissipation rate beneath the main levee. It was found 

that even after ground improvements, large relative displacements are observed in the ground level 

and atop the super levee. Consequently, in order to construct a large scale river embankment for flood 

disaster mitigation, it is necessary to carefully estimate unequal settlement of ground. 

In Chapter 4, the cyclic elasto-viscoplastic model was reformulated in terms of the inclusion of 

the kinematic hardening rule for volumetric strain. Through the triaxial test simulation of 

Nakanoshima clay by integration of the cyclic elasto-viscoplastic constitutive equations, the effect of 

the reformulation was found to be as more softening behavior in the stress-strain relations and 

consequently more deformation at the same shearing level. Furthermore, the consideration of linear 

evolution equation for the kinematic hardening parameter for volumetric strain has shown 

insignificant influence in the simulated results using the material parameter of Nakanoshima clay 

under undrained loading condition. However, the effects appeared to be more significant under 

drained loading conditions such as cyclic compression test. 

In Chapter 5, the shear band developing under dynamic loading conditions was clearly observed 

within the strain distribution and the mean effective stress contours. Assuming partially drained 

conditions have notably not affected the strain localization results, since the applied loading was very 

fast and the adopted permeability coefficient for the clay was very low. Considering the mesh-size 

dependency, the results showed a higher level of strain localization within narrow width for the finer 

mesh size, since the shear bands span across the smaller elements. In addition, from the dynamic 

analyses of the super levee in the unimproved and improved ground cases, the ground improvement 

techniques is found to be efficient on the prevention of the liquefaction beneath the super levee. 

Nonetheless, the high potential of liquefaction in the super level layers and in the gap between the 

DM part and SCP/SD installation zone clearly indicates the inadequacy of the current ground 

improvement scheme. 

 

6.2. Recommendations for Construction Guideline of Super Levee  

A comprehensive study on the behavior of a super levee construction on soft ground was carried out 

in terms of the long-term consolidation analysis and the dynamic analysis. From the analysis results, 
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following recommendations are given for design and construction of super levees on soft deposits, 

which can be employed to revise the existing guideline. 

1. The long-term consolidation analyses have shown a significant influence of the 

destructuration of sensitive soft clay layers on the long-term behavior of super levee, which 

appears as the strain localization and anomalous response of pore water pressure. Therefore, it 

is necessary to properly take into account the degradation of sensitive soft clay in the design 

analysis of super levees. 

2. The consolidation analysis of the improved ground case has shown quite significant strain 

localization and ensuing surface deformations even after ground improvement. The strain 

localization is mainly developed in the upper part of soft clay layer Ac2, wherein the SCP/SD 

has been installed. Based on the super levee geometry, the highest influence of the 

embankment loading is applied on that region. It seems that the improvement techniques and 

in particular the preloading process have not been sufficient to improve the characteristic 

properties of the soft clay in that region. The preloading scheme show a gap between the toe 

of the main levee and the location of the temporary fills. Consequently, a revision on the 

preloading scheme is recommended for the future construction sites.   

3. In the settlement profiles for the super levee construction on improved ground, relatively 

large displacements are observed following the unsymmetrical geometry of the super levee. 

The heterogeneity conditions and subsequent relative deformations become escalated due to 

the inequality of the ground improvement techniques in the strengthening of ground layers. 

Thus, it is recommended to avoid any intense changes in the ground condition induced by 

ground improvement. The ground improvement should be consistent with the applied loading 

of the embankments construction. 

4. To predict the superficial cracks and settlements atop the super levee, it is recommenced to 

monitor the ground level settlements during the construction and a while after completing the 

construction. The settlements on the top of the super levee are in correspondence with the 

ground level profiles; hence, any large relative displacement in the ground level potentially 

leads to the surface deformations, which emerge as the local superficial cracks due to the 

weakness of embankment materials. 

5. From the dynamic analysis of the super levee, it was found that the super levee layers are 

highly susceptible to liquefaction and the consequent large deformations. Hence, the special 

attentions should be paid to the selection of fill materials for the super levee layers in terms of 

the grain size distribution and the relative density, by which the liquefaction potential can be 
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mitigated. In addition, the complementary improvement techniques can be considered as 

another option for liquefaction mitigation. 

 

6.3. Recommendations for Future Work 

Besides the accomplishment of the major objectives, there are many areas of this study which have 

yet to be fulfilled or improved. Following recommendations are made to advance the research on this 

subject. 

All the analyses herein were performed under fully saturated conditions assuming two-phase 

mixture theory, despite the partially saturated conditions in the upper parts of the super levee layers. 

For the dynamic and consolidation analyses, this assumption can be adequately employed since the 

ground layers, which play the major role on the consolidation and dynamic behavior, are located 

below the water table, and are fully saturated. However, for the other analyses such as rainfall 

infiltration and seepage, the multi-phase formulations should be employed considering the unsaturated 

parts of the embankment layers. 

In the analysis of the improved ground case, the limited ground settlement data during the 

preloading process was the only available data that can be applied for the parameter calibration of the 

improved zone. It is desirable to provide more in situ monitoring data, by which the simulation results 

can be properly verified. 

In the dynamic strain localization analysis of soft clay samples, it is recommended to continue 

the analysis evaluating the effect of other relevant aspects, such as geometry, material parameters, and 

loading conditions, on the shear banding phenomenon.  

In the present work, the dynamic analysis of the super levee has been performed regardless the 

presence of the building and structures on the super levee. However, it is worthwhile to conduct the 

analysis including the building and structural elements such as deep piles and foundations, and to 

evaluate the effect of strong ground motion on the structures and on the soil-structure interactions.  

In addition, in order to evaluate the vulnerability of the super levee during the worst-case 

scenario of earthquake, it is required to consider the effect of various input ground motions, in terms 

of the durations and the peak accelerations. Furthermore, it is desirable to conduct a post-liquefaction 

analysis to evaluate the final values of the liquefaction-induced deformations. 
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