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by Takayuki Yamada

This doctoral thesis presents a new level set-based topology optimization method,

which can adjust the geometrical complexity of obtained optimal configurations, that

uses a fictitious interface energy based on the concept of the phase field model. The

novel aspects of this method are the incorporation of level set-based boundary ex-

pressions and the fictitious interface energy in the topology optimization problem,

and the replacement of the original topology optimization problem with a procedure

to solve a reaction-diffusion equation.

First, background information concerning the structural optimization field is given,

and the features of level set-based optimization methods are explained. The history

of how I developed the new level set-based topology optimization method is discussed,

and the objective of this thesis is described.

Next, a topology optimization problem is formulated based on level set-based

structural boundary expressions, and the method of regularizing the optimization
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problem by introducing a fictitious interface energy is explained. The reaction-

diffusion equation that updates the level set function is derived and an optimization

algorithm is then constructed. The optimization algorithm uses the Finite Element

Method and Finite Difference Method to solve the equilibrium equations and the

reaction-diffusion equation when updating the level set function.

A number of optimum design examples are presented, namely, minimum mean

compliance problems, the optimum design of compliant mechanisms, lowest eigenfre-

quency maximization problems, and thermal problems, to demonstrate the versatility

and effectiveness of the presented topology optimization method.

The thesis ends with a personal statement concerning my journey up to the

present, and goals for the future.
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Chapter 1

Introduction

1.1 Structural optimization

Structural optimization has been successfully used in many industries such as auto-

motive industries. Structural optimization can be classified into sizing[1, 2], shape[3,

4, 5, 6, 7] and topology optimization [8, 9, 10, 11], the last offering the most po-

tential for exploring ideal and optimized structures. As the most flexible structural

optimization, topology optimization allows changes not only in shape but also in the

topology of target structures, and is potentially the most useful type of optimization

when seeking to create high-performance structural configurations. Topology opti-

mization has been extensively applied to a variety of structural optimization problems

such as the stiffness maximization problem [8, 12], vibration problems [13, 14, 15],

optimum design problems for compliant mechanisms [16, 17], and thermal problems

[18, 19, 20], after Bensdøe and Kikuchi [8] first proposed the so-called Homogenization

Design Method. The basic concepts of topology optimization are (1) the extension of

a design domain to a fixed design domain, and (2) replacement of the optimization

problem with material distribution problem, using the characteristic function [21].

A homogenization method [8, 11, 22, 23, 24] is utilized to deal with the extreme
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discontinuity of material distribution and to provide the material properties viewed

in a global sense as homogenized properties. The Homogenization Design Method

(HDM) has been applied to a variety of design problems. The density approach [25],

also called the SIMP (Solid Isotropic Material with Penalization) method [26, 27], is

another currently used topology optimization method, the basic idea of which is the

use of a fictitious isotropic material whose elasticity tensor is assumed to be a function

of penalized material density, represented by an exponent parameter. Bendsøe and

Sigmund [28] asserted the validity of the SIMP method in view of the mechanics of

composite materials. The phase field model based on the theory of phase transitions

[29, 30, 31, 32] is also used as another approach toward regularizing topology opti-

mization problems and penalizing material density [33, 34, 35, 36, 37, 38]. In these

methods, by adding a Cahn-Hilliard-type penalization functional [29] to an objective

functional, the topology optimization problem is regularized and the material density

penalized. The phase field model utilized in certain structural optimization meth-

ods employs a regularization technique based on the imposition of some degree of

shape smoothness, but these methods also yield optimal configurations that include

grayscales.

In addition to the above conventional approaches, a different type of method,

called the evolutionary structural optimization (ESO) method [15, 39], has been pro-

posed. In this method, the design domain is discretized using a finite element mesh

and unnecessary elements are removed based on heuristic criteria so that the optimal

configuration is ultimately obtained as an optimal subset of finite elements.

Unfortunately, the conventional topology optimization methods tend to suffer from

numerical instability problems [40, 41], such as mesh dependency, checkerboard pat-

terns and grayscales. Several methods have been proposed to mitigate these instabil-

ity problems, such as the use of high-order finite elements [40] and filtering schemes

[41]. Although various filtering schemes are currently used, they crucially depend on
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artificial parameters that lack rational guidelines for determining appropriate a priori

parameter values. Additionally, optimal configurations can include highly complex

geometrical structures that are inappropriate from an engineering and manufactur-

ing standpoint. Although a number of geometrical constraint methods for topology

optimization methods have been proposed, such as the perimeter control method

[42] and member size control method [43, 44], the parameters and the complexity of

obtained optimal configurations are not uniquely linked. Furthermore, geometrical

constraint methods often make the optimization procedure unstable. Thus, a geo-

metric constraint method in which the complexity of the optimal configuration can

be set uniquely, and which also maintains stability in the optimization procedure, has

yet to be proposed.

1.2 Level set method

A different approach is used in level set-based structural optimization methods that

have been proposed as a new type of structural optimization method. Such methods

implicitly represent target structural configurations using the iso-surface of the level

set function, which is a scalar function, and the outlines of target structures are

changed by updating the level set function during the optimization process. The level

set method was originally proposed by Osher and Sethian [45] as a versatile method

to implicitly represent evolutional interfaces in an Eulerian coordinate system. The

evolution of the boundaries with respect to time is tracked by solving the so-called

Hamilton-Jacobi partial differential equation, with an appropriate normal velocity

that is the moving boundary velocity normal to the interface. Level set methods are

potentially useful in a variety of applications, including fluid mechanics [46, 47, 48],

phase transitions [49], image processing [50, 51, 52] and solid modeling in CAD [53].

In level set-based structural optimization methods, complex shape and topological
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changes can be handled and the obtained optimal structures are free from grayscales,

since the structural boundaries are represented as the iso-surface of the level set

function. Although these relatively new structural optimization methods overcome

the problems of checkerboard patterns and grayscales, mesh dependencies have yet

to be eliminated.

1.3 Level set-based structural optimization

Sethian and Wiegmann [54] first proposed a level set-based structural optimization

method where the level set function is updated using an ad hoc method based on

the Von Mises stress. Osher and Santosa [55] proposed a structural optimization

method where the shape sensitivity is used as the normal velocity, and the structural

optimization is performed by solving the level set equation using the upwind scheme.

This proposed method was applied to eigen-frequency problems for an inhomoge-

neous drum using a two-phase optimization of the membrane where the mass density

assumes two different values, while the elasticity tensor is constant over the entire

domain.

Belytschko et al. [56] proposed a topology optimization using an implicit function

to represent structural boundaries and their method allows topological changes by in-

troducing the concept of an active zone where the material properties such as Young’s

modulus are smoothly distributed. Wang et al. [57] proposed a shape optimization

method based on the level set method where the level set function is updated using

the Hamilton-Jacobi equation, also called the level set equation, based on the shape

sensitivities and the proposed method was applied to the minimum mean compliance

problem. Wang and Wang [58] extended this method to a multi-material optimal

design problem using a “color” level set method where m level set functions are used

to represent 2m different material phases. Allaire et al. [59] independently proposed
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a level set-based shape optimization method where the level set function is updated

using smoothed shape sensitivities that are mapped to the design domain using a

smoothing technique. A simple “ersatz material” approach was employed to compute

the displacement field of the structure, and optimal configurations were obtained for

the minimum compliance problem for both structures composed of linear elastic and

non-linear hyperelastic material, and compliant mechanism structural design prob-

lems. Allaire and Jouve [60] also extended their method to lowest eigen-frequency

maximization problems and minimum compliance problems having multiple loads.

Leitao and Scherzer [61] also proposed a shape optimization method using the level

set-based structural boundary expressions. In this method, Tikhonov regularization

method are introduced for regularizing the optimization problem.

Recently, numerous extensions of the level set-based method have been presented,

such as the use of different expressions [62], the use of a specific numerical method

such as meshless methods [63], the use of mathematical approaches in the optimization

scheme [64], and other applications, such as optimum design of multiphysics actuators

and thermo-elastic problems [65, 66, 67, 68, 69].

The above level set-based structural optimization methods can be said to be a

type of shape optimization method, since the shape boundaries of target structures

are evolved from an initial configuration by updating the level set equation using

shape sensitivities. Therefore, topological changes that increase the number of holes

in the material domain are not permitted, although topological changes that decrease

the number of holes are allowed. As a result, the obtained optimal configurations

strongly depend on the given initial configuration. To provide for the possibility of

topological changes, Allaire et al. [70] introduced the bubble method [71] to a level

set-based shape optimization method using topological derivatives [72, 73, 74]. In

Allaire’s method [70], structural boundaries are updated based on smoothed shape

sensitivities using the level set equation and holes are introduced during the opti-
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mization process. Appropriate optimal configurations were obtained using several

different initial configurations, however parameter setting with respect to the intro-

duction of holes during the optimization process was difficult and potentially affected

the obtained optimal configurations.

Wang et al. [75] proposed an extended level set method for a topology optimization

method based on one of their previously proposed methods [57]. In their method

[75], an extended velocity which has a non zero value in the material domain is

introduced and the level set function is not reinitialized to maintain the property of

a signed distance function. Topological changes including the introduction of holes

in a material domain are therefore allowed, however the extended velocity cannot

be logically determined, since the level set equation is derived based the boundary

advection concept. As a result, it is difficult to define appropriate extended velocities

and the definition of the extension velocities in large measure determines the shape

of the obtained optimal structures.

In level set-based shape optimization methods using the Hamilton-Jacobi equa-

tion, the level set function must be re-initialized to maintain the signed distance

characteristic of the function. This re-initialization operation [76, 53, 46] is not an

easy task, and a number of level set-based topology optimization methods that do

not depend on boundary advection concepts have been proposed recently. Wang and

Wang [77] proposed a topology optimization based on the level set method using a

superposition of Multiquadratic Radial Basis Functions (RBFs). Although topologi-

cal changes that include the introduction of holes in the material domain are allowed,

the method requires artificial parameters to represent the level set function, which

greatly affect the obtained optimal configurations. Wei and Wang [64, 65] proposed

a piecewise constant level set method used in their topology optimization method. In

this method, an objective functional is formulated as the sum of a primary objective

functional and a structural perimeter, which regularizes the optimization problem.
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However, obtained optimal configurations can differ dramatically depending on the

initial configuration, since the setting of certain parameters of the constraint func-

tional for the piecewise constant level set function greatly affects the updating of the

level set function.

1.4 Motivation and objective

This thesis presents a topology optimization method using a level set model incorpo-

rating a fictitious interface energy derived from the phase field concept, to overcome

the numerical problems mentioned above. The presented method, a type of topol-

ogy optimization method, also has the advantage of allowing not only shape but also

topological changes. In addition, the presented method allows the geometrical com-

plexity of the optimal configuration to be qualitatively specified, a feature resembling

the perimeter control method, and does not require re-initialization operations during

the optimization procedure.

1.5 Thesis organization

In the following chapters, a topology optimization problem is formulated based on

the level set method, and the method of regularizing the optimization problem by

introducing a fictitious interface energy is explained. The reaction-diffusion equa-

tion that updates the level set function is then derived. Here, we use the ersatz

material approach to compute the equilibrium equations of the structure on an Eu-

lerian coordinate system. Next, an optimization algorithm for the proposed method

is constructed using the Finite Element Method. The proposed topology optimiza-

tion method is then applied to the minimum mean compliance problem, the opti-

mum design problem of compliant mechanisms, the lowest eigenfrequency problem

the thermal problems. In addition, to confirm the validity and utility of the proposed
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topology optimization method, several numerical examples are provided for both two-

and three-dimensional cases.
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Chapter 2

Optimization method

2.1 Introduction

This chapter presents a new formulation of topology optimization method using level

set-based structural boundary expressions and a fictitious interface energy, which is

derived from concept of the phase field method. In the method, the level set function is

updated using a reaction-diffusion equation, and not required re-initialization process

[53, 78]. Note that in conventional methods [57, 59], the level set function is updated

based on the Hamilton-Jacobi equation, since the structural optimization method is

formulated based on the boundary advection concept.

This chapter is organized as follows: first, I briefly discuss the topology opti-

mization problem and incorporating level set-based structural boundary expressions.

Second, the topology optimization problem is regularized by incorporating a fictions

interface energy. Next, a method updating the design variables is constructed. That

is, the topology optimization problem is replaced by solving a reaction-diffusion equa-

tion.
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2.2 Topology optimization problem

Consider a structural optimization problem that determines the optimal configuration

of a domain filled with a solid material, i.e., a material domain Ω that denotes the

design domain, by minimizing an objective functional F under a constraint functional

G concerning the volume constraint, described as follows:

inf
Ω

F (Ω) =

∫
Ω

f(x)dΩ (2.1)

subject to G(Ω) =

∫
Ω

dΩ − Vmax ≤ 0, (2.2)

where Vmax is the upper limit of the volume constraint and x represents a point located

in Ω. In conventional topology optimization methods [8], a fixed design domain D,

composed of a material domain Ω such that Ω ⊂ D, and another complementary

domain representing a void exists, i.e., a void domain D \Ω is introduced. Using the

characteristic function χΩ ∈ L∞ defined as

χΩ(x) =


1 if x ∈ Ω

0 if x ∈ D \ Ω,

(2.3)

the above structural optimization problem is replaced by a material distribution

problem, to search for an optimal configuration of the design domain in the fixed

design domain D as follows:

inf
χΩ

F (χΩ(x)) =

∫
D

f(x)χΩ(x)dΩ (2.4)

subject to G(χΩ(x)) =

∫
D

χΩ(x)dΩ − Vmax ≤ 0. (2.5)

In the above formulation, topological changes as well as shape change are allowed

during the optimization procedure.
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However, it is commonly accepted that topology optimization problems are ill-

posed because the obtained configurations expressed by the characteristic function can

be very discontinuous. That is, since the characteristic function χ is defined as a sub-

set of a bounded Lebesgue space L∞ which is only assured integrability, the obtained

solutions may be discontinuous anywhere in the fixed design domain. To overcome

this problem, the design domain is relaxed using various regularization techniques

such as the homogenization method [22, 23, 24]. In the homogenization method,

microstructures that represent the composite material status are introduced. In two-

scale modeling, microstructures are continuously distributed almost everywhere in the

fixed design domain D. The regularized and sufficiently continuous physical prop-

erties are obtained as the homogenized properties. Burger and Stainko [38], Wang

and Zhou [33, 37] and Zhou and Wang [35, 34] proposed an alternative regulariza-

tion method using the Tikhonov regularization method [79]. In these methods, by

adding a Cahn-Hilliard-type penalization functional [29] to an objective functional,

the topology optimization problem is regularized and the material density penalized.

The phase field model utilized in certain structural optimization methods employs a

regularization technique based on the imposition of some degree of shape smoothness,

but these methods also yield optimal configurations that include grayscales.

In these regularization techniques, the existence of grayscales is allowed in the ob-

tained optimal configurations. Although such grayscales can be interpreted as being

micro-porous in the physical sense, they are problematic in the engineering sense since

such obtained optimal solutions are difficult to interpret as practical designs that can

be manufactured. Furthermore, the optimal configurations obtained by conventional

topology optimization methods can include highly complex structures that are also

inappropriate from an engineering and manufacturing standpoint. To mitigate these

problems, a method using a perimeter constraint [42] and methods using a density

gradient constraint [43, 44] have been proposed. In the former, however, the obtained
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results crucially depend on artificial parameters that require appropriate, but elu-

sive, values to obtain desired results. And in the latter, use of the density gradient

constraint increases grayscales. Also, methods employing perimeter or density gra-

dient constraints are poor at adjusting the geometrical complexity of the obtained

optimal configurations, since the relation of the geometrical complexity of the config-

uration and the optimization parameters cannot be uniquely determined. Hitherto, a

method that allows the geometrical complexity of obtained optimal structures to be

manipulated has not been proposed.

On the other hand, level set-based structural optimization methods have been

proposed [45, 57, 59]. In these methods, the level set function φ(x) is introduced to

represent a boundary ∂Ω between the material and void domains as shown in Figure

2.1. That is, the boundary is expressed using the level set function φ(x) as follows:

Ω

ϕ(x) 

∂Ω

ϕ(x)=0 

Figure 2.1: Level set function


φ(x) > 0 for ∀x ∈ Ω \ ∂Ω

φ(x) = 0 for ∀x ∈ ∂Ω

φ(x) < 0 for ∀x ∈ D \ Ω.

(2.6)

Using the above level set function, an arbitrary topology as well as shape of the
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material domain Ω in domain D can be implicitly represented, and level set bound-

ary expressions are free of grayscales. In level set-based methods, the evolution of

the boundaries with respect to fictitious times is tracked by solving the so-called

Hamilton-Jacobi partial differential equation (explained below), with an appropriate

normal velocity that is the velocity of the moving boundary normal to the interface.

However, as Allarie et al. [59] discussed, this problem is basically ill-posed, and in

order to regularize the structural optimization problems, certain smoothness, geomet-

rical, or topological constraint, such as a perimeter constraint [42] must be imposed.

Furthermore, topological changes that increase the number of holes in the material

domain may not occur, although topological changes that decrease the number of

holes are allowed. As a result, the obtained optimal configurations strongly depends

on the given initial configuration.

2.3 Regularization technique

In this research, to overcome the above major problems in the conventional topology

optimization methods and level set-based structural optimization methods, It is pre-

sented a new level set-based topology optimization method using a fictitious interface

energy based on the phase field model.

In the proposed approach, first, the definition of the level set function is modified

per the following equation to introduce the fictitious interface energy in the phase

field model to regularize the topology optimization problem:


1 ≥ φ(x) > 0 for ∀x ∈ Ω \ ∂Ω

φ(x) = 0 for ∀x ∈ ∂Ω

0 > φ(x) ≥ −1 for ∀x ∈ D \ Ω.

(2.7)

It is assumed that the distribution of the level set function φ must have the same
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property of distribution as the phase field variable in the phase field method. Based on

this assumption, the level set function φ has upper and lower limit constraints imposed

in Equation (2.7). In addition, in sufficiently distant regions from the structural

boundaries, the value of the level set function must be equivalent to 1 or −1.

Here, by adding a fictitious interface energy term derived from the concept of the

phase field model to the objective functional, the regularized topology optimization

problem is described using the relaxed characteristic function that is a function of

the level set function, defined as follows:

inf
φ

FR(χφ(φ), φ) =

∫
D

f(x)χφ(φ)dΩ +

∫
D

1

2
τ | ∇φ |2 dΩ (2.8)

subject to G(χφ(φ)) =

∫
D

χφ(φ)dΩ − Vmax ≤ 0, (2.9)

where FR is a regularized objective functional and χφ(φ) ∈ L2 is a sufficiently smooth

characteristic function, since the level set function φ is assumed to be continuous and

is formulated as

Φ = {φ(x)|φ(x) ∈ H1(D)}. (2.10)

As a result, the former optimization problem is replaced with a problem to minimize

the energy functional, which is the sum of the objective functional and the fictitious

interface energy, where τ > 0 is a regularization parameter representing the ratio of

the fictitious interface energy and the objective functional.

Note that the fictitious interface energy term here is equivalent to the so-called

Chan-Hilliard energy, and it plays a very important role in regularizing the opti-

mization problem. By introducing this term, the optimization problem is sufficiently

relaxed and the obtained optimal configurations have sufficient smoothness. The

optimization problem also becomes numerically stable. It is well-known that the

Chan-Hilliard energy converges exactly to the perimeter. As a result, our optimal

configurations are obtained under an implicitly imposed geometrical constraint. This
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regularization is called the Tikhonov regularization method, and details concerning its

theoretical background are available in the literature [79, 80]. It is possible to control

the degree of complexity of obtained optimal structures by adjusting the value of the

regularization parameter τ . Strictly speaking, the regularization technique employed

here is a perimeter constraint method, just as regularization techniques applied to the

original topology optimization method implicitly impose geometric constraints. Note

that Leitao and Scherzer [61] proposed a shape optimization method incorporating

the Tikhonov regularization method and level set method, however the basic concept

of their method differs from ours, which is a topology optimization method.

Next, the optimization problem represented by (2.8) and (2.9) is reformulated

using Lagrange’s method of undetermined multipliers. Let the Lagrangian be F̄ and

the Lagrange multiplier of the volume constraint be λ. The optimization problem is

then formulated as

inf
φ

F̄R(χφ(φ), φ) =

∫
D

f(x)χφ(φ)dΩ

+ λ

(∫
D

χφ(φ)dΩ − Vmax

)
+

∫
D

1

2
τ | ∇φ |2 dΩ (2.11)

=

∫
D

f̄(x)χφ(φ)dΩ − λVmax +

∫
D

1

2
τ | ∇φ |2 dΩ, (2.12)

where the density function of the Lagrangian f̄(x) is such that f̄(x) = f(x)+λ. The

optimal configuration will be obtained by solving the above optimization problem.

Next, the necessary optimality conditions (KKT-conditions) for the above opti-

mization problem are derived as follows:

〈dF̄R(χφ(φ), φ)

dφ
, Φ

〉
= 0, λG(χφ(φ)) = 0, λ ≥ 0, G(χφ(φ)) ≤ 0, (2.13)

where the notation
〈dF̄R(χφ(φ),φ)

dφ
, Φ

〉
represents the Fréchet derivative of the regular-

ized Lagrangian F̄R with respect to φ in the direction of Φ. The level set function
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describing the optimal configurations satisfies the above KKT conditions. Conversely,

solutions obtained by Equation (2.13) are optimal solution candidates, but obtaining

this level set function directly is problematic. Here, the optimization problem is re-

placed by a problem of solving time evolutional equations, which will provide optimal

solution candidates.

2.4 The time evolutional equations

Let a fictitious time t be introduced, and assume that the level set function φ is also

implicitly a function of t, to represent structural changes in the material domain Ω

over time. In past level set-based structural optimization method research [57, 59],

the outline of target structures is updated by solving the following time evolutional

equation:

∂φ(x, t)

∂t
+ VN(x, t) | ∇φ(x, t) |= 0 in D (2.14)

where VN(x, t) is the normal velocity function, which is given as a smoothed shape

derivative of material domain Ω since the above equation represents shape changes

during fictitious optimization process times. Therefore, level set-based structural op-

timization methods using Equation (2.14) are essentially shape optimization methods.

That is, only the shape boundary of the material domain evolves during the optimiza-

tion process, and topological changes that generate holes in the material domain do

not occur. As a result, the initial configuration settings profoundly affect the obtained

optimal configuration.

To provide for the possibility of topological changes, Allaire et al. [70] proposed a

method for introducing holes using topological derivatives, a concept that is basically

the same as the bubble method [71] where the optimal position at which a hole is

to be introduced is analytically derived. However, in Allaire’s method, the obtained

optimal structure depends on the setting of various parameters and it can be difficult
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to stably obtain optimal structures. Especially in problems where heat conduction

and structural configuration are coupled, or static electric field, heat conduction and

structural configuration are coupled, They encountered situations where convergence

was poor and stably obtained optimal structures were elusive [69].

A new update method is developed in this research to replace the use Equation

(2.14). Here, It is assumed that variation of the level set function φ(t) with respect

to fictitious time t is proportional to the gradient of the Lagrangian F̄ , as shown in

the following:

∂φ

∂t
= −K(φ)

dF̄R

dφ
in D, (2.15)

where K(φ) > 0 is a coefficient of proportionality. Substituting Equation (2.12) into

Equation (2.15), I obtain the following:

∂φ

∂t
= −K(φ)

(dF̄ (χφ)

dφ
− τ∇2φ

)
in D. (2.16)

Here, note that the derivatives
dF̄ (χφ)

dφ
equivalent to the topological derivatives [72,

81, 82] defined as

DT F̄ := lim
ε→0

F̄ (Ωε,x) − F̄ (Ω)

|ξ(ε)|
, (2.17)

where Ωε,x = Ω − B̄ε is the material domain with a hole, B̄ε is a sphere of radius

ε centered at x and ξ is a function that decreases monotonically so that ξ(ε) → 0

as ε → 0, because the objective functional F is formulated using the characteristic

function χφ. As a result, in our method, topological changes that increase the number

of holes are allowed, since they are equivalent to the sensitivities with respect to

generating structural boundaries in the material domain. In future work, I hope to

discuss the theoretical connection between the characteristic function and topological

derivatives in detail. On the other hand, the level set-based structural optimization
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method proposed by Wang et al. [57] is essentially a type of shape optimization

method, since the sensitivities have non-zero values only on the structural boundaries.

Furthermore, It is assumed that the boundary condition of the level set func-

tion is a Dirichlet boundary condition on the non-design boundary, and a Neumann

boundary condition on the other boundaries, to represent the level set function in-

dependently of the exterior of the fixed design domain D. Then, the obtained time

evolutionary equation with boundary conditions are summarized as follows:



∂φ

∂t
= −K(φ)

(dF̄ (χφ)

dφ
− τ∇2φ

)
in D

∂φ

∂n
= 0 on ∂D \ ∂DN

φ = 1 on ∂DN .

(2.18)

Note that Equation (2.18) is a reaction-diffusion equation, and that the proposed

method ensures the smoothness of the level set function.

Next, the time derivative of the regularized Lagrangian F̄R is obtained using Equa-

tion (2.12) and (2.15) as follows:

dF̄R

dt
=

∫
D

dF̄R

dφ

∂φ

∂t
dD

=

∫
D

dF̄R

dφ

(
−K(φ)

dF̄R

dφ

)
dD

( ...(2.15)
)

= −
∫

D

K(φ)
(dF̄R

dφ

)2

dD ≤ 0. (2.19)

The above equation implies that when the level set function is updated based on

Equations (2.16), the sum of the original Lagrangian F̄ and the fictitious interface

energy decreases monotonically.
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2.5 Conclusions

This chapter presents a new formulation of topology optimization method using level

set boundary expressions. The topology optimization problem is regularized using

Tikhonov regularization method, that is, a fictions interface energy term is incor-

porated to the objective functional. Based on the formulation, KKT conditions is

derived and the topology optimization is replaced by solving a reaction-diffusion equa-

tion.
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Chapter 3

Numerical implementations

3.1 Introduction

In almost level set-based shape optimization methods, scheme of the Hamilton-Jacobi

equation is discretized in the spatial direction using the Finite Difference Method

[57, 59], since re-initialization techniques based on the Finite Element Method is very

complicated. A design domain can be not discretized using nonstructural mesh, since

the Finite Difference Method is used.

This chapter presents a numerical implementation method of above formulated

topology optimization problem using Finite Element Method and a scheme of the

system of the reaction-diffusion equation is presented. In addition, a finite element

analysis method based on the level set-boundary expressions.

3.2 Optimization algorithms

The flowchart of the optimization procedure is shown in Fig. 3.1. As this figure

shows, the initial configuration is first set. In the second step, the equilibrium equa-

tions are solved using the Finite Element Method. In the third step, the objective

functional is computed. Here, the optimization process is finished if the objective
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Initialize level set function ϕ(x)

Compute objective functional

Convergence ? End
Yes

No

Solve equilibrium equation using the FEM

Compute sensitivities respect to objective functional

Update level set function ϕ(x) using the FEM

Figure 3.1: Flowchart of optimization procedure

24



functional has converged, otherwise the sensitivities with respect to the objective

functional are computed. In the fourth step, the level set function φ is updated based

on Eq.(2.18) using the Finite Element Method. Here, the Lagrange multiplier λ is

estimated to satisfy the following:

G(φ(t + ∆t)) = 0. (3.1)

In addition, the volume constraint is handled using the augmented Lagrangian method

[83, 84, 85].

3.3 Scheme of the system of time evolutionary equa-

tions

This section presents develop a scheme for a system of time-evolutionary equations

(2.18). First, I introduce a characteristic length L and an extended parameter C to

normalize the sensitivities, and Equations (2.18) can then be replaced by dimension-

less equations as follows.



∂φ

∂t
= −K(φ)

(
C dF̄

dφ
− τL2∇2φ

)
in D

∂φ

∂n
= 0 on ∂D \ ∂DN

φ = 1 on ∂DN ,

(3.2)

where C is defined as

C =
c
∫

D
dΩ∫

D
| dF̄

dφ
| dΩ

. (3.3)
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Next, Equations (3.2) are discretized in the time direction using the Finite Difference

Method as follows:

φ(t + ∆t)

∆t
− K(φ(t))τL2∇2φ(t + ∆t) = −K(φ(t))C

dF̄

dφ
+

φ(t)

∆t

φ = 1 on ∂DN

∂φ

∂n
= 0 on ∂D/∂DN ,

(3.4)

where ∆t is the time increment. Next, the above equations are translated to a weak

form as follows, so they can be discretized using the Finite Element Method.



∫
D

φ(t+∆t)
∆t

φ̃dD +
∫

D
∇T φ(t + ∆t)

(
τL2K(φ(t))∇φ̃

)
dD

=
∫

D

(
−K(φ(t))C dF̄

dφ
+ φ(t)

∆t

)
φ̃dD

for ∀φ̃ ∈ Φ̃

φ = 1 on ∂DN ,

(3.5)

where Φ̃ is the functional space of the level set function defined by

Φ̃ = {φ(x)|φ(x) ∈ H1(D) with φ = 1 on ∂DN}. (3.6)

Discretizing Equation (3.5) using the Finite Element Method, the following equation

is derived: 
T Φ(t + ∆t) = Y

φ = 1 on ∂DN ,

(3.7)

26



where Φ(t) is the nodal value vector of the level set function at time t and T and Y

are described as follows:

T =
e⋃

j=i

∫
Ve

(
1

∆t
NTN + ∇TNK(φ(t))τL2∇N

)
dVe (3.8)

Y =
e⋃

j=i

∫
Ve

(
−K(φ(t))C

dF̄

dφ
+

φ(x, t)

∆t

)
NdVe, (3.9)

where e is the number of elements and
⋃e

j=i represents the union set of the elements, j

is the number of elements and N is the interpolation function of the level set function.

The upper and lower limit constraints of the level set function are not satisfied

when the level set function is updated based on Eq. (3.7). To satisfy the constraints,

the level set function is replaced based on the following rule after updating the level

set function.

if ‖φ‖ > 1 then φ = sign(φ) (3.10)

3.4 Approximated equilibrium equation

In this research the ersatz material approach is used [59]. That is, the equilibrium

Equation (3.11) is approximated by Equation (3.12).

∫
D

ε(u) : E : ε(v)χdΩ =

∫
Γt

t · vdΓ +

∫
D

b · vχdΩ (3.11)∫
D

ε(u) : E : ε(v)Ha(φ)dΩ =

∫
Γt

t · vdΓ +

∫
D

b · vHa(φ)dΩ, (3.12)
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where Ha(φ) is the Heaviside function approximated as

Ha1(φ) =


d (φ < 0)

1 (0 ≤ φ)

(3.13)

or

Ha2(φ) =


d (φ < −w)(

1
2

+ φ
w

(
15
16

− φ2

w2

(
5
8
− 3

16
φ2

w2

)))
(1 − d) + d (−w < φ < w)

1 (w < φ),

(3.14)

where w represents the width of transition and d > 0 represents the ratio of ma-

terial constants, namely, the Young’s modulus values between the void and material

domains. Parameter d is introduced to ensure stable analyses of the fixed design do-

main when using the Finite Element method. In this research, the volume constraint

function G(Ω) which is defined by Equation (2.9) is also approximated, as follows:

G(φ) =

∫
D

Hg(φ)dΩ − Vmax. (3.15)

As shown in the following equation, Hg(φ) is the smoothed Heaviside function whose

width of transition is 2, since as shown in Equation (2.7), the level set function values

range from −1 to 1.

Hg(φ) =



0 (φ = −1)

1

2
+

φ

2

(
15

16
− φ2

4

(5

8
− 3

64
φ2

))
(−1 < φ < 1)

1 (φ = 1)

(3.16)
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Note that intermediate regions between the material and void domains are not al-

lowed in the approximation with respect to the material distribution (3.12), which

eliminates grayscales completely. In the approximation with respect to the volume

calculation (3.15), intermediate regions are allowed for numerical stability. Elimi-

nation of grayscales is important when using the equilibrium equations but is not

important in the volume calculation.

3.5 Conclusions

This chapter presented a numerical implementation for presented level set-based

topology optimization method. First of all, optimization algorithms is presented

based on the flowchart. Next, numerical scheme the system of reaction-diffusion equa-

tions using the Finite Element Method is presented. In addition, scheme for solving

an equilibrium equation based on the level set-boundary expressions is presented.
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Chapter 4

The minimum mean compliance

problem

4.1 Introduction

This cheaper presents an minimum mean compliance problem [8], which is most

familiar application in shape and topology optimization field. First, the objective

functional and the constraint functionals are formulated. Next, the sensitivities are

derived using the adjoint variable method. Note that the adjoint problem is not

necessary, since the minimum mean compliance problem is self adjoint problem. Fi-

nally, several numerical examples are show to confirm the validity and usefulness of

presented method.

4.2 Formulation

Consider a material domain Ω where the displacement is fixed at boundary Γu and

traction t is imposed at boundary Γt. A body force b may also be applied throughout

the material domain Ω. Let the displacement field be denoted as u in the static
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equilibrium state. The minimum compliance problem is then formulated as follows:

inf
φ

F1(χ) = l(u) (4.1)

subject to a(u,v) = l(v) (4.2)

for ∀v ∈ U u ∈ U

G(χ) ≤ 0 (4.3)

where the notations in the above equation are defined as

a(u,v) =

∫
D

ε(u) : E : ε(v)χφdΩ (4.4)

l(v) =

∫
Γt

t · vdΓ +

∫
D

b · vχφdΩ (4.5)

G(χ) =

∫
D

χdΩ − Vmax, (4.6)

where ε is the linearized strain tensor, E is the elasticity tensor, and

U = {v = viei : vi ∈ H1(D) with v = 0 on Γu}. (4.7)

Next, the sensitivity of Lagrangian F̄1 for the minimum mean compliance problem is

derived. The Lagrangian F̄1 is the following:

F̄1 = l(u) + a(u,v) − l(v) + λG. (4.8)
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The sensitivity can be simply obtained using the adjoint variable method by

〈dF̄1

dφ
, Φ

〉
=

〈∂l(u)

∂u
, δu

〉〈∂u

∂φ
, Φ

〉
+

〈∂a(u,v)

∂u
, δu

〉〈∂u

∂φ
, Φ

〉
+

〈∂a(u,v)

∂φ
, Φ

〉
+λ

〈∂G

∂φ
, Φ

〉
(4.9)

=
〈∂

∫
D
(ε(u) : E : ε(v) + λ)χφdΩ

∂φ
, Φ

〉
, (4.10)

where the adjoint field is defined as follows:

a(v,u) = l(u) for ∀u ∈ U v ∈ U. (4.11)

4.3 Numerical examples

4.3.1 Two-dimensional minimum mean compliance prob-

lems

In this subsection, several numerical examples are presented to confirm the utility and

validity of proposed optimization method for two and three dimensional minimum

compliance problems. In these examples, the isotropic linear elastic material has

Young’s modulus = 210 GPa, Poisson’s ratio = 0.31 and parameter d in approximated

Heaviside function (3.13) is set to 1×10−3. Figure 4.1 shows the fixed design domain

and the boundary conditions of model A and Figure 4.2 shows the same for model B.

Effect of the initial configurations

First, using model A, I examine the effect of different initial configurations upon the

resulting optimal configurations. The regularization parameter τ is set to 1 × 10−4,

parameter c is set to 0.5 and the characteristic length L is set to 1m. Parameter K(φ)
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Figure 4.1: Fixed design domain and boundary conditions of model A

Fixed design domain D

0
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ΓuΓu

Figure 4.2: Fixed design domain and boundary conditions of model B
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is set to 1, the upper limit of the volume constraint Vmax is set to 40% of the volume of

the fixed design domain and parameter d in approximated Heaviside function (3.13)

is set to 1 × 10−3.

The fixed design domain is discretized using a structural mesh and four-node

quadrilateral plane stress elements whose length is 6.25 × 10−3m. Figure 4.3 shows

four cases and their obtained optimal configurations, each using a different initial

configuration. The initial configuration for Case 1 has the material domain filled

with material; for Case 2, the initial configuration has two holes; for Case 3, the

initial configuration has many holes; and for Case 4, the initial configuration has

material filling the material domain in the upper half of the fixed design domain. In

all cases, the optimal configurations are smooth, clear and nearly the same. That is,

an appropriate optimal configuration was obtained for all initial configurations. It

is confirmed that the dependency of the obtained optimal configurations upon the

initial configurations is extremely low.

Effect of finite element mesh size

Second, using model A, I examine the effect of the finite element mesh size upon the

resulting optimal configurations. The regularization parameter τ is set to 8 × 10−5,

parameter c is set to 0.2, the characteristic length L is set to 1m, parameter K(φ) is

set to 1, the upper limit of the volume constraint Vmax is set to 40% of the volume of

the fixed design domain and parameter d in approximated Heaviside function (3.13) is

set to 1× 10−3. The initial configurations in all cases have the material domain filled

with material in the Fixed design domain. The fixed design domain is discretized

using a structural mesh and four-node quadrilateral plane stress elements. I examine

three cases whose degree of discretization is subject to the following mesh parameters:

80×60, 160×120 and 320×240. Figure 4.4 shows the optimal configuration for each

case. Again, all obtained optimal configurations are smooth, clear and practically

34



Initial configuration Step 10 Step 50 Optimal configuration
(a) Case 1

Initial configuration Step 10 Step 50 Optimal configuration
(b) Case 2

Initial configuration Step 10 Step 50 Optimal configuration
(c) Case 3

Initial configuration Step 10 Step 50 Optimal configuration
(d) Case 4

Figure 4.3: Initial configurations, intermediate results and optimal configurations
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(a) 80×60 mesh (b) 160×120 mesh (c) 320×240 mesh

Figure 4.4: Optimal configurations: (a) 80×60 mesh; (b) 160×120 mesh; (c) 320×240
mesh

identical. That is, an appropriate optimal configuration can be obtained regardless

of which degree of discretization was used here. It is confirmed that dependency

with regard to the finite element mesh size is extremely small provided that the finite

element size is sufficiently small.

Effect of the regularization parameter τ

I now examine the effect that different regularization parameter τ values have upon

the resulting optimal configurations. In model A, parameter c is set to 0.5, the

characteristic length L is set to 1m, parameter K(φ) is set to 1, the upper limit of

the volume constraint Vmax is set to 40% of the volume of the fixed design domain

and parameter d in approximated Heaviside function (3.13) is set to 1 × 10−3. The

initial configuration in all case has the material domain filled with material in the

fixed design domain. The fixed design domain is discretized using a structural mesh

and four-node quadrilateral plane stress elements whose length is 6.25 × 10−3m. I

examine four cases where the regularization parameter τ is set to 5× 10−4, 5× 10−5,

3 × 10−5 and 2 × 10−5, respectively. Figure 4.5 shows the optimal configuration for

each case.

Next, using model B, parameter c is set to 0.5, the characteristic length L is

set to 1m, and the upper limit of the volume constraint Vmax is set to 50% of the

volume of the fixed design domain. The initial configurations again have the material
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 4.5: Optimal configurations: (a) τ = 5 × 10−4; (b) τ = 5 × 10−5; (c) τ =
3 × 10−5; (d) τ = 2 × 10−5

domain filled with material in the fixed design domain. The fixed design domain is

discretized using a structural mesh and four-node quadrilateral plane stress elements

whose length is 6.25×10−3m. I examine four cases where the regularization parameter

τ is set to 5×10−4, 2×10−4, 1×10−4 and 1×10−5, respectively. Figure 4.6 shows the

optimal configuration for each case. The obtained optimal configurations are smooth

and clear and it can be confirmed that the use of the proposed method’s τ parameter

allows the complexity of the optimal structures to be adjusted at will.

Effect of the proportional coefficient K(φ)

Next, I now examine the effect that different definitions of proportionality coefficient

K(φ) have upon the resulting optimal configurations, using four initial configurations.

The fixed design domain and boundary condition are shown in Figure 4.7. The

isotropic linear elastic material has Young’s modulus = 210 GPa, Poisson’s ratio

= 0.31 and parameter d and w in approximated Heaviside function (3.14) is set to

1 × 10−3 and 1, respectively. Parameter c is set to 0.5, the characteristic length L is

set to 1m, regularization parameter τ is set to 5 × 10−4 and the upper limit of the

volume constraint Vmax is set to 40% of the volume of the fixed design domain. The

fixed design domain is discretized using a structural mesh and four-node quadrilateral

plane stress elements. I examine three cases, where the coefficient of proportionality
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Initial configuration

Initial configuration

Step 10

Step 10

Step 50

Step 50

Optimal configuration

Optimal configuration

(a) Case 1

(b) Case 2

Initial configuration

Initial configuration

Step 10

Step 10

Step 50

Step 50

Optimal configuration

Optimal configuration

(c) Case 3

(d) Case 4

Figure 4.6: Initial configurations, intermediate results and optimal configurations:
(a) τ = 5 × 10−4; (b) τ = 2 × 10−4; (c) τ = 1 × 10−4; (d) τ = 1 × 10−5

Fixed design domain D

2.0m

1m

t
Γu

Figure 4.7: Fixed design domain and boundary conditions of model C
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K(φ) is set as follows:

Kcos(φ) =
1

2
+ cos

(π

2
φ
)

(4.12)

Ksin(φ) = 1 +
1

2
sin

(π

2
φ
)

(4.13)

K1(φ) = 1 (4.14)

Figure 4.8 shows the different initial and optimal configurations for each case. In all

Initial configuration K(φ) = Kcos
(a) Case 1

K(φ) = Ksin K(φ) = K1

Initial configuration K(φ) = Kcos
(b) Case 2

K(φ) = Ksin K(φ) = K1

Initial configuration K(φ) = Kcos
(c) Case 3

K(φ) = Ksin K(φ) = K1

Initial configuration K(φ) = Kcos
(d) Case 4

K(φ) = Ksin K(φ) = K1

Figure 4.8: Initial configurations and optimal configurations

cases, the optimal configurations are smooth, clear and nearly the same. That is,

an appropriate optimal configuration was obtained for all three definitions of K(φ),

and it is confirmed that the dependency of the obtained optimal configurations upon

these definitions is extremely low.
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4.3.2 Three-dimensional minimum mean compliance prob-

lems

Effect of the regularization parameter τ

First, I now examine the effect that different values of the regularization parameter τ

have upon the resulting optimal configurations in a three dimensional design problem.

The isotropic linearly elastic material has Young’s modulus = 210 GPa and Poisson’s

ratio = 0.31. Figure 4.9 shows the fixed design domain and boundary conditions.

Parameter c is set to 0.5, the characteristic length L is set to 1m, and the upper limit

Γ

0.4m

0.1m

Fixed design domain D

Non-design domain

Γu
Γu

1.0m

2.0m

Symmetric boundary 

Figure 4.9: Fixed design domain and boundary conditions for three dimensional de-
sign problem

of the volume constraint Vmax is set to 40% of the volume of the fixed design domain.

The initial configurations have the material domain filled with material in the fixed

design domain. The fixed design domain is discretized using a structural mesh and

eight-node hexahedral elements whose length is 1×10−2m. I examine two cases where

the regularization parameter τ is set to 2×10−4 and 2×10−5, respectively. Figure 4.10

shows the optimal configuration for each case. The obtained optimal configurations

are smooth and clear, and I can be confirmed that the use of the proposed method’s
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(a) Case 1

(b) Case 2

Figure 4.10: Optimal configurations: (a) τ = 2 × 10−4; (b) τ = 2 × 10−5

τ parameter allows the complexity of the optimal structures to be adjusted at will

for the three-dimensional case as well.

Discretization using a nonstructural mesh

Second, I show a design problem of a mechanical part model where a nonstructural

mesh is employed. The isotropic linear elastic material has Young’s modulus = 210

GPa and Poisson’s ratio = 0.31. The regularization parameter τ is set to 5 × 10−5,

parameter c is set to 0.5, the characteristic length L is set to 1m, and the upper

limit of the volume constraint Vmax is set to 45% of the volume of the design domain.

The initial configurations have the material domain filled with material in the fixed

design domain. Figure 4.11 shows the fixed design domain, boundary conditions

and obtained optimal configuration. As shown, the obtained optimal configuration

obtained by the proposed method is smooth and clear when a unstructublue mesh is
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Fixed design domain D
Non-design domain 1

Non-design domain 2

(a) Design domain and boundary conditions (b)   Optimal configuration

Figure 4.11: Fixed design domain, boundary conditions and optimal configuration for
a mechanical part model
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used.

Uniform cross-section surface constraint

Next, I consider the use of a uniform cross-section surface constraint, which is im-

portant from a manufacturing standpoint. A geometrical constraint can easily be

imposed by using an anisotropic variation of the regularization parameter τ . That

is, if a component in the constraint direction of regularization parameter τ is set to

a large value, the level set function will be constant in the constraint direction. As

a result, in this scenario, obtained optimal configurations will reflect the imposition

of a uniform cross-section surface constraint. Here, I show the effect that a uniform

cross-section surface constraint has upon the obtained optimal configuration for a

three-dimensional case. The isotropic linear elastic material has Young’s modulus =

210 GPa and Poisson’s ratio = 0.31. Figure 4.12 shows the fixed design domain and

boundary conditions. Parameter c is set to 0.5, the characteristic length L is set to

Fixed design domain D

Γu

Γu
0.05m

0.15m

Symmetric boundary 

Non-design domain

2.0m

x1

x3
x2

Figure 4.12: Fixed design domain and boundary conditions

1m, and the upper limit of the volume constraint Vmax is set to 30% of the volume

of the design domain. The initial configurations have the material domain filled with

material in the fixed design domain. The fixed design domain is discretized using

43



a structural mesh and eight-node hexahedral elements whose length is 1 × 10−2m.

Case (a) has an isotropic regularization parameter τ = 4 × 10−5 as a non-uniform

cross-section surface case. Case (b) has anisotropic component coefficients of the reg-

ularization parameter applied, where τ = 4× 10−5 in direction x1 and x2, and τ = 4

in direction x3, so that a uniform cross-section constraint is imposed in direction x3.

Figure 4.13 shows the optimal configuration for the two cases. The obtained optimal

(a) Non-uniform cross-section surface (b) Uniform cross-section surface

Figure 4.13: Optimal configurations: (a) Non-uniform cross-section surface; (b) Uni-
form cross-section surface

configurations are smooth and clear, and it can be confirmed that our method can

successfully impose a uniform cross-section surface constraint.

4.4 Conclusions

This chapter presents that a minimum mean compliance problem is applied to the

presented level set-based topology optimization method and the several numerical

examples are shown. It is confirmed that smooth and clear optimal configurations

were obtained using the proposed topology optimization method, which also allows

control of the geometrical complexity of the obtained optimal configurations. The

obtained optimal configurations show minimal dependency upon the finite element
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size or initial configurations. In addition, it is showed that uniform cross-section

surface constraints can easily be imposed by using an anisotropic variation of the

regularization parameter τ
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Chapter 5

The optimum design problem of

compliant mechanisms

5.1 Introduction

Compliant mechanisms are a new type of mechanism that is intentionally designed

to be flexible, to achieve a specified motion as a mechanism. Such mechanisms are

widely applied in MEMS (Micro-Electro Mechanical Systems) since they are easily

miniaturized and can be fabricated monolithically or from only a few parts [86, 87].

Moreover, compliant mechanisms can be used as thermal actuators by intentionally

designing configurations that exploit thermal expansion effects in elastic materials

when appropriate portions of the mechanism structure are heated or are subjected

to an electric potential. Actuators of this type can provide comparatively large dis-

placements and/or large forces at lower voltages, compared with electrostatic and

piezoelectric actuators, and their advantages are increasingly exploited [87]. Such ac-

tuators are used in many micro-devices, such as monolithic silicon integrated optical

micro-scanners [88], electrothermal vibromotors [89] and inchworm motors [90].

Several structural design methods for compliant actuators have been proposed.
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Kwon et al. [90] and Setevenson et al. [91] developed design methods based on simple

mechanics theory for the design of a thermoelastic linkage actuator and a bidirectional

ring thermal actuator, respectively. Que et al. [92] obtained an optimal shape for

a V-shaped electrothermal actuator based on sizing optimization using simple beam

theory. Park et al. [93] designed rotary and linear actuators based on combinations of

certain numbers of bent-beam electrothermal actuators. Chen et al. [94] performed

sizing optimizations for an electrothermal microactuator using a Taguchi matrix.

Wang et al. [95] designed cascade thermal actuator beams and performed parametric

studies to investigate the best dimensional combinations. However, the methods used

in the above research may not always provide high performance configurations, due

to the relatively small number of design variables and parameter settings employed.

On the other hand, Sigmund [17] and Nishiwaki et al. [16] successfully applied

topology optimization to the design of compliant mechanisms. However, topology

optimization often suffers from numerical problems [40, 41] such as grayscales and

hinges, and although several methods (e.g. [96, 97]) have been proposed to mitigate

these problems, these depend on complex parameter settings. Several methods that

attempt to minimize these problems have been proposed, such as the use of high-order

finite elements [40], filtering schemes [41], and the perimeter control method [42]. Al-

though certain filtering schemes, and the perimeter control method, are now popular

means of avoiding these numerical problems, these methods crucially depend on arti-

ficial parameters for which there is no rational guideline for determining appropriate

a priori parameter values.

To overcome above problems, this chapter present a new optimum design method

of compliant mechanisms using presented topology optimization method. The out-

line of this chapter is as follows. First, an optimization problem is formulated that

addresses the design of compliant mechanisms. Based on this formulation, the sen-

sitivities are derived using adjoint variable method. Finally, several design examples
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are provided to confirm the usefulness of the presented topology optimization method.

5.2 Formulation

First, I clarify the design requirements of a compliant mechanisms, and formulate

the objective function that can achieve the design requirements. Consider a material

domain Ω for the compliant mechanisms where the displacement is fixed at boundary

Γu. It is assumed that material domain Ω consists of an isotropic linearly elastic

material.

In this chapter, I intend to design a compliant mechanisms that starts to deform

in the direction of dummy vector tout at boundary Γout in order to work as a mech-

anisms when traction tin is applied at boundary Γin. To implement this function

of the compliant mechanisms, the following two design specifications must be met:

(a) sufficient flexibility to permit actuation, and (b) sufficient stiffness to maintain

the structural shape when undergoing reaction traction caused by the presence of a

workpiece.

Next, the objective function that can achieve the above design requirements is

formulated using the mutual energy concept. Let us consider the two static equilib-

rium states. In both cases, the boundary Γu is fixed. Furthermore, in Case (1), a

non-structural distributed spring representing the stiffness of the workpiece is located

at boundary Γout, with a spring constant per unit length in the two-dimensional prob-

lem, or per unit area in three dimensions, of k, where the other boundary of the spring

is fixed. In Case (2), traction tout is imposed at boundary Γout. The displacement

fields in Case (1) and Case (2) are described as u1 and u2, respectively.

Using the above two equilibriums, first, the objective function to achieve design

requirement (a) is formulated. Here, It is introduced the mutual mean compliance
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formulated as,

l2(u1) =

∫
Γout

tout · u1dΓ. (5.1)

This mutual mean compliance can be interpreted as a measure of the deformation u1

at boundary Γout when traction tin is applied at boundary Γin and by maximizing

l2(u1), sufficient flexibility concerning design requirement (a) is obtained. Note that

for the design of the compliant mechanisms here, the goal is to maximize the displace-

ment at the output port, and a specified deformation path is not required. Therefore,

using the mean compliance for the objective functional is appropriate, because max-

imizing the mutual mean compliance is equivalent to maximizing the displacement

in the direction given by fictitious traction vector tout.The mutual mean compliance

derived from the energy norm is a physical criterion which is mathematically guar-

anteed to have a finite value during the optimization process, because solving the

structural problem is equivalent to solving equilibrium equations expressed in a weak

form, that is, to solving an energy balance equation.

Next, design requirement (b) is considered. In previous research work for the

design of piezoelectric actuators based on the topology optimization method [98],

the mean compliance computed according to the reaction force from the workpiece

is simultaneously minimized as the mutual mean compliance is maximized, using a

multi-objective optimization formulation. If this idea is applied to the design of a

compliant mechanism, the mean compliance for a case having traction −t, repre-

senting the reaction force from the workpiece at boundary Γout, is regarded as the

objective function for design requirement (b), and both maximization of the mutual

mean compliance and minimization of the mean compliance are simultaneously per-

formed using the multi-objective function proposed in [16]. In this thesis, sufficient

stiffness for archiving design requirement (b) is implicitly taken into account. That

is, as a design setting, a non-structural distributed spring is located at boundary Γout,

and sufficient stiffness at boundary Γout is obtained by maximizing the mutual mean
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compliance in Eq. (5.1), since this maximization provides a reaction force from the

spring due to the deformation u2 at boundary Γout, and as a result, the stiffness is

automatically maximized. Furthermore, the magnitude of the displacement and the

stiffness at Γout can be simultaneously adjusted by changing the value of the spring

constant, k. That is, by setting larger values for k, higher stiffness against the reaction

force is obtained while the deformation u2 at boundary Γout is decreased. Conversely,

by setting smaller spring constant values, a larger deformation u2 at boundary Γout

is obtained while the stiffness against the reaction force is decreased.

Thus, the optimization problem is formulated, where a minus sign is prefixed

to the objective function to transform the maximization problem to a minimization

problem.

inf
φ

F2(χ) = l2(u1) (5.2)

subject to a(u1,v) = l1(v) (5.3)

for ∀v ∈ U u ∈ U

G(χ) ≤ 0, (5.4)

where the notations in the above equation are defined as

l1(v) =

∫
Γin

tin · vdΓ (5.5)

l2(v) =

∫
Γout

tout · vdΓ, (5.6)

where tout is a dummy traction vector representing the direction of the specified

deformation at output port Γout. Based on Sigmund’s formulation, a non-structural

distributed spring is located at boundary Γout, and sufficient stiffness at boundary

Γout is obtained by maximizing the mutual mean compliance, since this provides a

reaction force from the spring due to the deformation at boundary Γout, which serves
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to automatically maximize the stiffness.

Next, the sensitivity of Lagrangian F̄2 for the design of compliant mechanisms is

derived. The Lagrangian F̄2 is the following:

F̄2 = l2(u1) + a(u1,v) − l1(v) + λG. (5.7)

The sensitivity can be simply obtained using the adjoint variable method by

〈dF̄1

dφ
, Φ

〉
=

〈∂l2(u1)

∂u1

, δu1

〉〈∂u1

∂φ
, Φ

〉
+

〈∂a(u1,v)

∂u1

, δu1

〉〈∂u1

∂φ
, Φ

〉
+

〈∂a(u1,v)

∂φ
, Φ

〉
+λ

〈∂G

∂φ
, Φ

〉
(5.8)

=
〈∂

∫
D
(ε(u1) : E : ε(v) + λ)χφdΩ

∂φ
, Φ

〉
, (5.9)

where the adjoint field is defined as follows:

a(v,u1) = l2(u1) for ∀u1 ∈ U v ∈ U. (5.10)

5.3 Numerical examples

5.3.1 Two-dimensional compliant mechanism design problem

Next, our proposed method is applied to the problem of finding an optimum design for

a compliant mechanism. The isotropic linear elastic material has Young’s modulus

= 210 GPa and Poisson’s ratio = 0.31. Figure 5.1 shows the fixed design domain

and boundary conditions. Parameter c is set to 0.5, characteristic length L is set

to 100µm, regularization parameter τ is set to 1 × 10−4 and the upper limit of the

volume constraint Vmax is set to 25% of the volume of the fixed design domain. The

approximated Heaviside function (3.14) is used. Parameter d is set to 1 × 10−3 and

w is set to 1. The initial configurations have the material domain filled with material
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Fixed design domain Dtin

tout

tout

Γu

Γu

100µm

20µm

10
µm

10
0µ

m

Figure 5.1: Fixed design domain for a two-dimensional compliant mechanism

in the fixed design domain. The fixed design domain is discretized using a structural

mesh and four-node quadrilateral elements whose length is 0.5µm. Figure 5.2 shows

the optimal configuration and the deformed shape. As shown, the obtained optimal

configuration is smooth and clear, and it can be confirmed that the obtained optimal

configuration deforms in the specified direction.

5.3.2 Three-dimensional compliant mechanism design prob-

lem

I applied the proposed method to a three-dimensional compliant mechanism design

problem and consider the use of a uniform cross-section surface constraint. The

isotropic linear elastic material has Young’s modulus = 210 GPa and Poisson’s ratio =

0.31. Figure 5.3 shows the fixed design domain and boundary conditions. Parameter

c is set to 0.5, characteristic length L is set to 100µm and the upper limit of the

volume constraint Vmax is set to 20% of the volume of the fixed design domain. The
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(a)   Optimal configuration (b)   Deformed shape

Figure 5.2: Configurations of the two-dimensional compliant mechanism (a) Optimal
configuration; (b) Deformed shape

tout
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m
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Γu

Γu

x1

x3
x2

Figure 5.3: Fixed design domain for a three-dimensional compliant mechanism
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approximated Heaviside function (3.14) is used, parameter d is set to 1× 10−3 and w

is set to 1. The initial configurations have the material domain filled with material

in the fixed design domain. The fixed design domain is discretized using a structural

mesh and eight-node hexahedral elements whose length is 1µm. Case (a) has an

isotropic regularization parameter τ = 1×10−4 as a non-uniform cross-section surface

case. Case (b) has anisotropic component coefficients of the regularization parameter

applied, where τ = 1 × 10−4 in directions x1 and x3, and τ = 5 × 10−1 in direction

x2, so that a uniform cross-section constraint is imposed in direction x2. Figure 5.4

shows the optimal configurations. As shown, the obtained optimal configurations are

smooth and clear, and it can be confirmed that our method can successfully impose

a uniform cross-section surface constraint.

5.4 Conclusions

This chapter presented a topology optimization method for compliant mechanisms,

based on the presented method. First of all, design requirements for the design of

compliant mechanisms were clarified, the objective function was formulated based on

the mutual energy concept and the optimization problem was formulated using this

objective functional. Based on the formulation, the sensitivities are derived using

adjoint variable method. Finally, two design problems were provided to examine

the characteristics of the resulting optimal configurations. It was confirmed that the

optimal configurations are free from hinge structures.
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(a) Non-uniform cross-section surface

(b) Uniform cross-section surface

Figure 5.4: Configurations of the three-dimensional the compliant mechanisms: (a)
Non-uniform cross-section surface (b) Uniform cross-section surface
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Chapter 6

The lowest eigenfrequency

maximization problem

6.1 Introduction

In mechanical structures, dynamic characteristics, especially vibration characters are

crucial factors to determine the dynamic performance. For example, the lowest eigen-

frequency is a measure for evaluation of dynamic stability. The higher dynamic per-

formance can be obtained by maximizing the lowest eigenfrequency [13, 14].

On the other hand, a mechanical structure with high dynamic performance, such

as mechanical resonators [99] and vibro motors [100], can be designed by utilizing

resonance phenomena. The optimum design methods of such mechanical structures

were proposed based on the conventional topology optimization methods.

This chapter present a new topology optimization method for the lowest eigenfre-

quency maximization problem based on the presented method. The outline of this

chapter is follows. First, the objective functional formulated, and the sensitivities are

derived based on the formulation and adjoint variable method. Two design examples

are provided to confirm the presented topology optimization method.
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6.2 Formulation

Consider a fixed design domain D with fixed boundary at Γu. The material domain

Ω is filled with a linearly elastic material. The objective functional for the lowest

eigenfrequency maximization problem can be formulated as follows:

inf
φ

F3 = −
( q∑

k=1

1

ω2
k

)−1

= −
( q∑

k=1

1

λk

)−1

, (6.1)

where ωk is the k-th eigenfrequency, λk is k-th eigenvalue and q is an appropriate

number of eigenfrequencies from the lowest eigen-mode. Therefore, the topology

optimization problem, including the volume constraint, is formulated as follows:

inf
φ

F3 = −
( q∑

k=1

1

λk

)−1

(6.2)

subject to G ≤ 0 (6.3)

a(uk,v) = λkb(uk,v) (6.4)

for ∀v ∈ U, uk ∈ U, k = 1, ..., q, (6.5)

where the above notation b(uk,v) is defined in the following equation,

b(uk,v) =

∫
Ω

ρuk · vdΩ, (6.6)

where uk is the corresponding k-th eigenmode and ρ is the density.

Next, the sensitivity of Lagrangian F̄3 for the design of compliant mechanisms is

derived. The Lagrangian F̄3 is the following:

F̄3 = −
( q∑

k=1

1

λk

)−1

+

q∑
k=1

(
a(uk,vk) − λkb(uk,vk)

)
+λG. (6.7)

57



The sensitivity can be simply obtained using the adjoint variable method by

〈dF̄3

dφ
, Φ

〉
=

( q∑
k=1

1

λk

)−2
[
−

q∑
k=1

1

λ2
k

(〈∂a(uk,v)

∂φ
, Φ

〉
−λk

〈∂b(uk,v)

∂φ
, Φ

〉)]

+ λ
〈∂G

∂φ
, Φ

〉
, (6.8)

where the adjoint field is defined as follows:

a(uk,v) = λkb(uk,v) for ∀u ∈ U v ∈ U. (6.9)

6.3 Numerical example

6.3.1 Two-dimensional design problem

Finally, the proposed method is applied to the lowest eigenfrequency maximization

problem. The isotropic linear elastic material has Young’s modulus = 210 GPa, Pois-

son’s ratio = 0.31 and mass density = 7, 850kg/m3. Figure 6.1 shows the fixed design

domain and boundary conditions for the two-dimensional lowest eigenfrequency max-

imization problem.

Fixed design domain D

Concentrated mass M

0
.5

m

1.0m

Fixed design domain D

Figure 6.1: Fixed design domain for the two-dimensional the lowest eigenfrequency
maximization problem
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As shown, the right and left sides of the fixed design domain are fixed and a

concentrated mass M = 1kg is set at the center of the fixed design domain. The

fixed design domain is discretized using a structural mesh and four-node quadrilateral

elements whose length is 5 × 10−3m. Parameter c is set to 0.5, characteristic length

L is set to 1m, K(φ) is set to 1 and the upper limit of the volume constraint Vmax is

set to 50% of the volume of the fixed design domain. The Approximated Heaviside

function (3.13) is used, and parameter d is set to 1 × 10−2. I examine three cases

where parameter τ is set to 1.0×10−4, 1.0×10−5, and 1.0×10−6, respectively. Figure

6.2 shows the obtained optimal configurations．The obtained optimal configurations

(a) Case 1 (b) Case 2 (c) Case 3(a) Case 1 (b) Case 2 (c) Case 3

Figure 6.2: Optimal configurations for the two-dimensional lowest eigenfrequency
maximization problem: (a) regularization parameter τ = 1.0×10−4; (b) regularization
parameter τ = 1.0 × 10−5; (c) regularization parameter τ = 1.0 × 10−6

are smooth and clear, and it can be confirmed that the use of the proposed method’s

τ parameter allows the complexity of the optimal structures to be adjusted at will

for the lowest eigenfrequency maximization problem as well.

6.3.2 Three-dimensional design problem

Figure 6.3 shows the fixed design domain and boundary conditions for a three-

dimensional lowest eigenfrequency maximization problem. The isotropic linear elastic

material has Young’s modulus = 210 GPa, Poisson’s ratio = 0.31, mass density =

7, 850kg/m3 and a concentrated mass M = 80kg is set at the center of the fixed

design domain. The fixed design domain is discretized using a structural mesh and
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Γu

Γu

Concentrated mass

Figure 6.3: Fixed design domain for the three-dimensional lowest eigenfrequency
maximization problem
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eight-node hexahedral elements whose length is 1× 10−3m. Parameter c is set to 0.5,

characteristic length L is set to 1m, K(φ) is set to 1 and the upper limit of the volume

constraint Vmax is set to 30% of the volume of the fixed design domain. The Approx-

imated Heaviside function (3.13) is used, and parameter d is set to 1 × 10−2. Figure

6.4 shows the optimal configurations. As shown, the obtained optimal configurations

Figure 6.4: Optimal configurations of the three-dimensional lowest eigenfrequency
maximization problem

are smooth and clear.

6.4 Conclusion

This chapter presented the lowest eigenfrequency maximization problem based on the

presented level set-based topology optimization method. First of all, the objective

functional was formulated, and the sensitivities were derived using adjoint variable

method. Finally, two- and three-dimensional design problems were provided to exam-

ine the characteristics of the resulting optimal configurations. It was confirmed that

obtained optimal configurations are clear and smooth and the geometrical complexity

can be qualitatively specified by changing a regularization parameter τ .
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Chapter 7

Thermal problems

7.1 Introduction

This chapter discusses a level set-based topology optimization method for maximizing

thermal diffusivity in problems that deal with generic heat convection boundaries and

include design-dependent boundary conditions.

For structural designs of heat engines such as diesel engines and steam turbines,

maximization of thermal diffusivity in certain portions of the structure is an im-

portant factor that can enable reduction in operating temperatures and increased

product durability. One way to obtain design solutions incorporating maximizations

of thermal diffusivity and stiffness is to apply a topology optimization method.

However, when conventional topology optimization methods are used, the ob-

tained optimal configurations may include grayscales since the optimal configura-

tions are represented as density distributions in the fixed design domain. Moreover,

highly complex configurations such as checkerboard patterns may exist in the op-

timal solutions, and such complex configurations are problematic in an engineering

sense. Furthermore, in conventional topology optimization methods using these reg-

ularization techniques, structural boundaries cannot be explicitly defined. Therefore,
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optimization problems that incorporate design-dependent boundary conditions, such

as heat convection boundary conditions and pressure load problems, cannot be easily

handled, since the boundary conditions must be assigned along structural boundaries

in such design problems. Although Gao et al. [101] proposed a topology optimization

method for heat conduction problems including design dependent effects using ESO

(Evolutionary Structural Optimization), heat convection effects were not considered.

Iga et al. [20] proposed a topology optimization method for maximizing thermal

diffusivity using a homogenization design method, and included design-dependent

boundary conditions, however in this method, shape dependencies with respect to

heat transfer coefficients were considered based on an ad hoc procedure, where it

was assumed that the shape dependencies could be replaced by the average value

of the near-density value, and that the heat transfer coefficients were a function of

this average value. Yoon and Kim proposed a topology optimization method for

thermal problems considering design-dependent boundary conditions with respect to

heat transfer boundaries, using the Element Connectivity Parameterization (ECP)

[102] method, however theoretical discussions with respect to continuum mechanics

were not provided. For pressure load problems, Chen and Kikuchi [103] proposed a

structural topology optimization method considering pressure loads, where such loads

were implicitly imposed on the structural boundaries via fictitious fluid elements in

the void domain, without setting pressure loads on structural boundaries directly, so

that design-dependent effects concerning pressure loads could be treated during the

optimization procedure.

This chapter presents a level set-based topology optimization method for generic

thermal problems that takes into account design-dependent boundary conditions due

to heat convection, based on the level set method and the concept of the phase field

theory. First, an optimization problem is formulated for generic thermal problems,

using the concept of total potential energy. Based on the formulations, the sensitivities
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are derived using adjoint variable method. Finally, several numerical examples are

provided to confirm the utility of the proposed topology optimization method.

7.2 Formulation

First of all, a steady-state thermal problem is considered. Suppose that an an ar-

bitrary linear thermal conductor occupies domain Ω in the fixed design domain D.

The temperature ut = T0 is prescribed at boundary Γt, a heat flux q is imposed at

boundary Γq and a heat convection load consisting of heat convection coefficient h

and ambient temperature ut = Tamb is imposed at structural boundary Γh. As shown

in the following equations, the thermal problem of maximizing the temperature dif-

fusivity of the structure is formulated as a problem to maximize the total potential

energy Π(ut) [20]. Note that in the formulation of the objective functional below,

a minus sign is added to reformulate the maximization problem as a minimization

problem.

inf
φ

F4 = −Π(ut) = −
(

1

2
a(ut, ut) − l(ut)

)
(7.1)

subject to a(ut, vt) = l(vt) (7.2)

for ∀vt ∈ U ut ∈ Ut

G(Ω(φ)) ≤ 0 (7.3)

where items in the above equations are defined as follows:

a(ut, vt) =

∫
D

∇utκ∇vtχΩdΩ −
∫

Γh(φ)

hutvtdΓ (7.4)

l(vt) =

∫
Γq

qvtdΓ +

∫
D

QvtdΩ −
∫

Γh(φ)

TambvtdΓ (7.5)

G(Ω(φ)) =

∫
D

χΩdΩ − Vmax (7.6)
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In addition, κ is the thermal conduction tensor, Vmax is the upper limit of the volume

constraint and Ut is a subset of a Sobolev space in which admissible temperatures are

defined as

Ut = {vt ∈ H1(D) with vt = T0 on Γt} (7.7)

Next, KKT-conditions for the above optimization problem, and the sensitivities,

are derived. Let F̄ be a Lagrangian formulated as

F̄4 = −1

2
a(ut, ut) + l(ut)

+ a(ut, vt) − l(vt) + λG(Ω(φ)) (7.8)

where λ is the Lagrange multiplier and vt is the adjoint temperature field. The

KKT-conditions are then derived as

dF̄4

dφ
= 0, a(ut, vt) − l(vt) = 0,

λG = 0, λ ≥ 0, G ≤ 0 (7.9)

Here, the adjoint equation is defined as

a(vt, ut) = l(ut) for ∀ut ∈ Ut vt ∈ Ut (7.10)

Using equilibrium Equation (7.2) and substituting Equation (7.8) into Equation

(7.10), I have

F̄4 =
1

2
a(ut, vt) + λG(Ω(φ))

(7.11)
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Therefore, the derivative of F̄4 is given by

〈dF̄4

dφ
, Φ

〉
=

1

2

〈∂a(ut, vt)

∂φ
, Φ

〉
+λ

〈∂G

∂φ
, Φ

〉
, (7.12)

.

7.3 Numerical examples

Several example problems concerning heat conduction, internal heat generation and

heat convection are now presented to confirm the utility of the proposed level set-

based topology optimization method. The thermal conductivity is set to 148W/m ·K

for all of the following examples.

7.3.1 Heat conduction problem

I first consider a heat conduction problem, and Figure 7.1 shows the fixed design

domain and boundary conditions. As shown, the fixed design domain has a prescribed

temperature of 25◦C at the center of the bottom line and a heat flux q = 1.0W/m

is provided at left and right segments of the top line. The fixed design domain is

discretized into four-node elements 1 × 10−4m in length. The upper limit of the

volume constraint Vmax is set to 30% of the fixed design domain and parameter K

is set to 1. The regularization parameter τ is set to 5 × 10−3, parameter c is set to

0.5 and the characteristic length L is set to 1 × 10−2m. Here, I examine the effect

that different initial configurations have upon the resulting optimal configurations, as

shown in Figure 7.2. Case 1 is an initial configuration with no holes, Case 2 has four

holes initially, and Case 3 has many holes to begin with. Figure 7.2 shows the initial,

intermediate and optimal configurations for these three cases. It can be confirmed

that proposed method is a type of topology optimization method since topological

changes occur during the optimization procedure, such as the introduction of holes
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Fixed design domain D -2
m

Γq

1×10-3m

q

1×10-3m

q

Γq

Fixed design domain D

1×10-2m

1
×1

0
-

Γt

1×10-3m

Figure 7.1: Fixed design domain and boundary conditions of the heat conduction
problem

in Case 1, and changes in the number of holes in Cases 2 and 3. In addition, the

obtained optimal configurations are clear, smooth and nearly the same, indicating

that a clear and smooth optimal configuration can be obtained regardless of the

initial configuration for the cases here.

7.3.2 Internal heat generation problem

Second, I consider an internal heat generation problem. Figure 7.3 shows the fixed

design domain and boundary conditions. As shown, a central segment of the top

line of the fixed design domain has a prescribed temperature of 25◦C. In addition, an

internal heat generation output of 1.0×10−7W/m2 is uniformly applied over the fixed

deign domain. The fixed design domain is discretized into four-node elements whose

length is 2.5 × 10−5m. The upper limit of the volume constraint Vmax is set to 40%

of the fixed design domain. Parameter K is set to 1, parameter c is set to 0.5 and

the characteristic length L is set to 1 × 10−2m. I shall examine how various values
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Initial configuration Step 5 Step 10 Step 30 Optimal configuration

Initial configuration Step 5 Step 10 Step 30 Optimal configuration

(a) Case 1

(b) Case 2

Initial configuration Step 5 Step 10 Step 30 Optimal configuration

(c) Case 3

Figure 7.2: Configurations of the heat conduction problem: (a) Initial configuration
with no holes; (b) Initial configuration with four holes; (c) Initial configuration with
many holes.
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Fixed design domain D

1
×1

0
-2

m

Γt

2×10-3m

1×10-2m

Figure 7.3: Fixed design domain and boundary conditions of the internal heat gen-
eration problem.

of the regularization parameter τ affect the resulting optimal configurations. The

regularization parameter τ settings for the cases are Case 1: τ = 1.0 × 10−6; Case 2:

τ = 5.0× 10−6; Case 3: τ = 1.0× 10−5 and Case 4: τ = 5.0× 10−5. Figure 7.4 shows

the optimal configurations of these cases. In all cases, fin shapes extended from

the boundary Γt in order to diffuse the internal heat from the fixed design domain.

The width of the fin shapes are thickest in the neighborhood of the boundary Γt,

effectively conducting heat there, indicating that the obtained optimal configurations

can be considered reasonable and proper. Furthermore, all optimal configurations

are again clear and smooth. It is observed that the proposed method yields optimal

configurations that have different degrees of geometrical complexity in response to

different set values of the regularization parameter τ .

7.3.3 Heat convection problem

Now I consider two- and three-dimensional heat convection problems that include

design-dependent boundary conditions. Figure 7.5 shows the fixed design domain
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.4: Optimal configurations of the internal heat generation problem: (a) Reg-
ularization parameter = 1.0 × 10−6; (b) Regularization parameter = 5.0 × 10−6; (c)
Regularization parameter = 1.0 × 10−5; (d) Regularization parameter = 5.0 × 10−5.

and boundary conditions of the two-dimensional heat convection problem. As shown,

the curved segment at the lower left of the fixed design domain has a prescribed tem-

perature of 50◦C. In addition, I impose design-dependent heat convection boundary

conditions on the structural boundaries. That is, a heat convection load consisting

of heat convection coefficient h = 100W/m·K and ambient temperature Tamb = 25◦C

is set over the entire fixed design domain. The fixed design domain is discretized

into four-node elements whose average length is 3.5× 10−5m. The upper limit of the

volume constraint Vmax is set to 40% of the fixed design domain. Parameter K is set

to 1, parameter c is set to 0.5 and the characteristic length L is set to 1 × 10−2m.

First, I examine how different values of the regularization parameter τ affect the re-

sulting optimal configurations. The regularization parameter τ settings for the cases

are Case 1: τ = 1.0 × 10−6; Case 2: τ = 5.0 × 10−6; Case 3: τ = 1.0 × 10−5 and

Case 4: τ = 5.0 × 10−5. Figure 7.6 shows the optimal configurations of these cases.

It can be confirmed that appropriate fin shapes appear and maximize the heat con-
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m

Fixed design domain D

Heat convection coefficient h

Ambient temperature Tamb

1×10-2m

1
×1

0
-

5×10-3m

5
×1

0
-3

m

Ambient temperature Tamb

Γt

Figure 7.5: Fixed design domain and boundary conditions of the two-dimensional
heat convection problem

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.6: Optimal configurations of two-dimensional heat convection problem, con-
sidering shape dependencies with respect to regularization parameter τ : (a) Regu-
larization parameter = 1.0 × 10−6; (b) Regularization parameter = 5.0 × 10−6; (c)
Regularization parameter = 1.0 × 10−5; (d) Regularization parameter = 5.0 × 10−5.
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vection effect from the structural boundaries of the optimal configurations. For cases

requiring maximal thermal diffusivity by heat conduction, the optimal configurations

should be free of holes, so I again confirm that the obtained optimal configurations

can be considered reasonable and proper. In addition, all optimal configurations are

clear and smooth. It is observed that the proposed method yields optimal configu-

rations that have different degrees of geometrical complexity, in response to different

set values of the regularization parameter τ .

Next, I examine how different values of the heat convection coefficient h affect

the resulting optimal configurations. The regularization parameter is set to τ =

1.0 × 10−5 for all cases. The heat convection coefficient h settings for the cases

are Case 1: h = 1.0 × 105; Case 2: h = 2.0 × 104; Case 3: h = 1.0 × 104 and

Case 4: h = 1.0 × 102. Figure 7.7 shows the optimal configurations for these cases

and I again observe that fin shapes appear. The optimal configurations here show

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.7: Optimal configurations of two-dimensional heat convection problem, con-
sidering shape dependencies with respect to heat convection coefficient h: (a) Heat
convection coefficient = 1.0 × 105; (b) Heat convection coefficient = 2.0 × 104; (c)
Heat convection coefficient = 1.0 × 104; (d) Heat convection coefficient = 1.0 × 102.

that lower heat convection coefficients tend to increase the length of heat convection
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boundary Γh and higher heat convection coefficients tend to minimize the distance

between the temperature prescribed boundary Γt and heat convection boundary Γh.

Therefore, when considering design-dependent heat convection loads, it is important

to recognize that the optimal configurations are strongly influenced by the value of

the heat convection coefficient.

Last, I consider a three-dimensional case and Figure 7.8 shows the fixed design

domain and boundary conditions. The fixed design domain has a prescribed tempera-

ture of 80◦C on boundary Γt. In addition, I impose design-dependent heat convection

boundary conditions on the structural boundaries, where a heat convection load con-

sisting of heat convection coefficient h = 1 × 103W/m2K and ambient temperature

Tamb = 25◦C is set over the entire fixed design domain. The fixed design domain is

discretized into eight-node elements whose average length is 5 × 10−4m. The upper

limit of the volume constraint Vmax is set to 50% of the fixed design domain. Param-

eter K is set to 1, parameter c is set to 0.5 and the characteristic length L is set to

1×10−2m and the regularization parameter has τ = 1.0×10−5. Figure 7.8 shows the

obtained optimal configuration, which is smooth and clear.

7.4 Conclusions

It was constructed that a new level set-based topology optimization method for ther-

mal problems, and achieved the following: First of all, a new level set-based topology

optimization method that can deal with design-dependent boundary conditions was

constructed, based on level set boundary expressions. The optimization problem for

generic thermal problems was formulated using the concept of total potential en-

ergy and the sensitivities were derived based on the formulation and adjoint variable

method. Finally, the numerical examples presented confirmed that the proposed

method yields clear and smooth optimal configurations for structural designs consid-
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Figure 7.8: Fixed design domain and optimal configurations of three-dimensional heat
convection problem.
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ering heat conduction, internal heat generation and heat convection, and that the

geometrical complexity of the optimal structures can be qualitatively specified by

changing regularization parameter τ in the formulation of the objective functional.
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Chapter 8

Conclusions

This thesis proposed a new topology optimization method incorporating level set

boundary expressions based on the concept of the phase field method and applied

it to minimum mean compliance problems, optimum compliant mechanism design

problems, lowest eigenfrequency maximization problems and thermal problems. I

achieved the following:

(1) A new topology optimization method was formulated, incorporating level set

boundary expressions, where the optimization problem is handled as a problem to

minimize the energy functional including a fictitious interface energy. Furthermore, a

new method for solving the optimization problem using a reaction-diffusion equation

was proposed.

(2) Based on the proposed topology optimization method, minimum mean compliance

problems, optimum design problem of compliant mechanisms, lowest eigenfrequency

maximization problems and thermal problems were formulated, and an optimization

algorithm was then constructed. A scheme for updating the level set function using

a time evolutional equation was proposed.

(3) Several numerical examples were provided to confirm the usefulness of the pro-

posed topology optimization method for the various problems examined in this thesis.

76



It was confirmed that smooth and clear optimal configurations were obtained using

the proposed topology optimization method, which also allows control of the geo-

metrical complexity of the obtained optimal configurations. The obtained optimal

configurations show minimal dependency upon the finite element size or initial con-

figurations. In addition, we showed that uniform cross-section surface constraints can

easily be imposed by using an anisotropic variation of the regularization parameter

τ .
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