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We report a new progress in elucidating the mechanism of the unidirectional movement of a
linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized
here is that a potential field is entropically formed for the protein on the filament immersed in
solvent due to the effect of the translational displacement of solvent molecules. The entropic
potential field is strongly dependent on geometric features of the protein and the filament, their
overall shapes as well as details of the polyatomic structures. The features and the corresponding
field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein,
hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first
step, we propose the following physical picture: The potential field formed along the filament for the
protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with
the binding, and the directed movement is realized by repeated switches from one of the fields to the
other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between
a large solute and a large body using the three-dimensional integral equation theory. The solute is
modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set
of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed
by two sets of connected large hard spheres. The solute and the filament are immersed in small hard
spheres forming the solvent. The major findings are as follows. The solute is strongly confined
within a narrow space in contact with the filament. Within the space there are locations with sharply
deep local potential minima along the filament, and the distance between two adjacent locations is
equal to the diameter of the large spheres constituting the filament. The potential minima form a
ringlike domain in model 1 while they form a pointlike one in model 2. We then examine the effects
of geometric features of the solute on the amplitudes and asymmetry of the entropic potential field
acting on the solute along the filament. A large aspherical solute with a cleft near the solute-filament
interface, which mimics the myosin motor domain, is considered in the examination. Thus, the two
fields in our physical picture described above are qualitatively reproduced. The factors to be taken
into account in further studies are also discussed. © 2010 American Institute of Physics.
[doi:10.1063/1.3462279]

I. INTRODUCTION

Modern biology has shown that the so-called motor pro-
teins play crucially important roles in a number of biological,
motile processes. Both rotatory- and linear-motor proteins
are known to exist. The latter is considered in the present
article. Three different families of linear-motor proteins have
been identified and well studied at the single-molecule level:
kinesins,' dyneins,2 and myosins.3 The linear-motor proteins
share the following common features: They move in one
direction along the filaments, similar in function to railway
tracks, which possess periodic structures. They repeat the
biochemical cycle comprising the binding of adenosine triph-
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osphate (ATP) to the motor domain (i.e., the head) of the
protein, hydrolysis of ATP into adenosine diphosphate
(ADP)+Pi, and release of Pi and ADP*™® Many of them
have two-headed structures. However, it has been found that
even a single-headed kinesin’ or a single myosin
head,>!10:+11:12 [i.e., myosin subfragment 1 (S1)] exhibits the
unidirectional movement. Hence, the two-headed structures
are not essential in the unidirectional movement, and the
fundamental physics can be extracted by means of studies for
a single linear-motor protein head. Although the mechanism
of the unidirectional movement has been investigated exten-
sively, it still remains rather mysterious. A commonly ac-
cepted hypothesis is the lever-arm model."® Models based on
a biased Brownian motion in a potential field formed for the
protein have also been described.®! 04111214716 Thore §g an
interesting study17 arguing that the Brownian motion is spa-
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tially asymmetrical for a mesoscopic particle embedded in a
fluid if the particle is not in equilibrium with the fluid and its
shape is nonspherical. In the present article, we are con-
cerned with a physical origin of the potential field for the
biased Brownian motion.

A typical example of the linear-motor proteins is myosin
moving along filamentous actin (F-actin). F-actin possesses a
double helical structure formed by two sets of connected
G-actin molecules.'®" On the basis of the results of experi-
mental studies,*™® it is inferred that the following cycle is
repeated: (1) Myosin (a head of myosin) is strongly bound to
a rigor binding site of F-actin in the absence of the ATP or
ADP binding to myosin; (2) upon the ATP binding to myo-
sin, myosin is only weakly bound to F-actin, and the directed
movement of myosin occurs by a biased Brownian motion;
(3) the hydrolysis of ATP into ADP+Pi occurs in the course
of the Brownian motion; (4) after the release of Pi, myosin is
bound to another rigor binding site of F-actin moderately
strongly; (5) the binding becomes strong after the release of
ADP. It has been argued that the electrostatic attractive inter-
action plays an essential role in the rigor binding of myosin
to F-actin.'®* However, this argument conflicts with the ex-
perimental data that the binding of myosin to F-actin accom-
panies positive changes in entropy and enthalpyﬂ’23 (i.e., the
binding is entropically driven). In our opinion, the direct
interaction (or the screened electrostatic interaction) between
myosin and F-actin has been treated as the dominant factor
while the roles of water have caught much less attention.
Here we suggest a completely different concept that the uni-
directional movement of the linear-motor proteins is con-
trolled primarily by the entropic effect originating from the
translational displacement of water molecules.

The entropic excluded-volume effect plays critical roles
in biological systems.24’26 Many biological processes are
controlled by the interactions between macromolecules and
by those of macromolecules with macromolecular com-
plexes. The macromolecules and complexes generate ex-
cluded volumes for smaller particles forming the solvent
(i.e., volumes of the spaces which the centers of solvent par-
ticles cannot enter). When the macromolecules approach
each other, for instance, the excluded volumes overlap, lead-
ing to an increase in the total volume available to the trans-
lational displacement of solvent particles. That is, the num-
ber of accessible configurations of the solvent that coexist
with the macromolecules in the system increases and a cor-
responding entropy gain occurs. Thus, an attractive force is
induced between macromolecules at small se:para'[ions.27’28
The entropic forces are largely influenced by the overall
shape of macromolecules and macromolecular complexes as
well as their detailed polyatomic structures. It should be em-
phasized that the entropic effect is omnipresent.

We believe that the most important concept relevant to
the behavior of a linear-motor protein is the following: For a
large sphere on a wall, geometric features of the wall induce
entropic force (or potential) acting on the large sphere in a
specific direction along the wall. *+##731 For example, the
large sphere is locally repelled from a step edge,32 attracted
to a corner, and moved from a convex surface to a concave
one (see Fig. 1). Further, it is difficult for the large sphere to
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FIG. 1. Entropic force (or potential) acting on a large sphere. It reflects
geometric features of the wall. The large sphere and the wall generate the
excluded volumes. The large sphere tends to be moved so that the overlap of
the excluded volumes marked in black can increase. The large sphere is
locally repelled from a step edge (a), attracted to a corner (b), and moved
from a convex surface to a concave one (c). If the large sphere is well
separated from the wall, there is no overlap of the excluded volumes, which
is entropically unfavorable for the solvent.

get well separated from the wall. To elucidate the concept,
theoretical studies dealing with large bodies with simple ge-
ometries immersed in small particles have been reported in
literature.”**>?°3! In these studies, the hard-body models are
employed for the large bodies and small particles. In the
hard-body models, all the accessible system configurations
share the same energy, and the system behavior is purely
entropic in origin: They allow us to investigate the entropic
effect exclusively. In biological systems, the solvent is water
characterized by hydrogen bonds. However, in the entropic
gain upon the solute contact and related processes, the trans-
lational entropy predominates over the rotational
entropy.25’26’33735 The basic physics of the entropic effect
considered here can be captured by modeling water as hard
spheres in many cases, as long as the diameter and number
density are set at the values of water.”?® We note that due to
the hydrogen-bonding water can exist as a dense liquid de-
spite its quite a small molecular size, leading to an excep-
tionally large entropic effect.

A problem revealed by earlier works is the
following. The effect of the density structure of small
spheres near the big bodies is essential, making the entropic
interaction rather complicated. Between large spheres, for
example, the induced interaction exhibits a great variation
with the period which is close to the diameter of small
spheres, and attractive and repulsive regions appear alter-
nately. The details of the entropic effect are strongly depen-
dent on geometric characteristics of the particular system
considered.”******" These properties cannot be reproduced
by the simple Asakura—Oosawa theory,27’28 which gives only
a much shorter-ranged, monotonically changing attractive
force. Thus, it is challenging to investigate the entropic effect
for a new system using an elaborate statistical-mechanical
theory.

In the conventional view,48 only the water in the close
vicinity of the solute surface is considered, and the water-
entropy effect is argued primarily in terms of the solute-
water orientational correlation, changed hydrogen-bonding
network of water, and restriction of the rotational freedom of
water molecules. We emphasize that the water-entropy effect

24,25,29-31,36-47
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considered in the present study, which reaches a far larger
length scale, 220344 g substantially different from the con-
ventionally argued one and much largelr.3 4

We have a new physical picture of the unidirectional
movement of a linear-motor protein along a filament. A po-
tential field is formed for the protein on the filament due to
the water-entropy effect. The entropic potential field is
strongly dependent on geometric features of the protein and
the filament, their overall shapes as well as details of the
polyatomic structures. The features and the corresponding
field are judiciously adjusted by the binding of ATP to the
protein, hydrolysis of ATP into ADP+Pi, and release of Pi
and ADP. Although the picture should be somewhat compli-
cated in its details, in the present article we propose the
following outline as the first step: The potential field formed
along the filament for the protein without the binding of ATP
or ADP+Pi to it is largely different from that for the protein
with the binding, and the directed movement is realized by
repeated switches from one of the fields to the other. To
illustrate it, we report the results of theoretical analyses per-
formed for actomyosin (i.e., myosin and F-actin) as a typical
example. A single myosin head (S1) is considered. The spa-
tial distribution of the entropic potential between a large sol-
ute and a large body is calculated using the three-
dimensional (3D) integral equation theory.>*3*#47:30-52 Tpe
solute is modeled as a large hard sphere. Two model fila-
ments are considered as the body: Model 1 is a set of one-
dimensionally connected large hard spheres and model 2 is a
double helical structure formed by two sets of connected
large hard spheres. The solute and the filament are immersed
in small hard spheres forming the solvent. It is found that the
solute is strongly confined within a narrow space in contact
with the filament. Within the space there are locations with
sharply deep local potential minima along the filament. The
distance between two adjacent locations is equal to the di-
ameter of the large spheres constituting the filament. The
results from models 1 and 2 are compared to discuss the role
of the double helical structure. Further, by considering a
large aspherical solute with a cleft near the solute-filament
interface, we show that geometric features of the solute have
large effects on the amplitudes and asymmetry of the en-
tropic potential field acting on the solute along the filament.

In the present study, we concentrate on the entropic com-
ponent of the solvation of solutes. Further, in our model the
effects due to the specific protein-water interactions (e.g.,
electrostatic and van der Waals interactions) are not taken
into account. It should be noted, however, that the entropic
potential field is much more influenced by geometric charac-
teristics of the proteins as shown in our earlier works. 232653
By “geometric characteristics” we mean overall shapes as
well as polyatomic structures. We investigate the effects of
overall shapes as the first step. Those of polyatomic struc-
tures including their flexibility are to be examined in a future
work.

The rest of the present article is organized as follows.
The preliminary physical picture of the unidirectional move-
ment of myosin along F-actin is described in Sec. II. As a
matter of fact, the picture has been developed on the basis of
not only the experimentally available information but also
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the results of our theoretical calculations presented in
Sec. IV. However, we believe that it is more appealing to
describe the picture first. In Sec. II, the behavior of myosin
expected from the picture is compared with the experimental
result by single-molecular measurements for g1 B1041L12
The model and theory employed are explained in Sec. III.
We examine the calculation results from the two different
models of the filament in Sec. IV. The effects of geometric
features of the large solute are also argued in the light of the
results of further model calculations. The basic characteris-
tics of the two different potential fields in our physical pic-
ture are qualitatively reproduced. Section V concludes the
article with final discussion and summary.

Il. PHYSICAL PICTURE FOR MECHANISM OF
UNIDIRECTIONAL MOVEMENT OF MYOSIN
ALONG F-ACTIN

A. Summary of experimental observations

Clues to the mechanism of the unidirectional movement
of myosin (S1) along F-actin are in the following experimen-
tal observations. If there is no ATP in aqueous solution, myo-
sin keeps binding to a rigor binding site of F-actin and does
not move.”* ™% In the presence of ATP, the cycle illustrated in
Fig. 2 is repeated:“"8 the binding of ATP to myosin, hydroly-
sis of ATP into ADP+Pi, release of Pi, and release of ADP.
In each cycle comprising the four changes, the system free
energy is lowered by the free-energy change arising from the
hydrolysis of ATP in aqueous solution, state 1—state 5.
Geometric features (i.e., overall shape and details of the
polyatomic structure) of myosin without the ATP or ADP
+Pi binding to it in states 1, 4, and 5 are largely different
from those of myosin with the binding in states 2 and 348
Myosin becomes only weakly bound to F-actin upon the ATP
binding,zz’23 allowing a biased Brownian motion. The motion
continues until myosin is bound to another rigor binding site
after the release of Pi. During the motion, myosin steps back
and forth stochastically along F-actin. According to the ex-
perimental result by single-molecular measurements for
S1, 31042 the typical step size is ~5.3 nm that is almost
equal to the size of G-actin, 5.5 nm. In one cycle mentioned
above, myosin makes a movement consisting of 1-5 steps
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FIG. 3. Our preliminary physical picture of directed movement of myosin
along F-actin.

(1 step with the highest probability and ~2.5 steps on the
average). In one cycle myosin moves by the distance which
lies in the range from 5 to 30 nm. Last, it is worthwhile to
emphasize that the binding of myosin to F-actin is entropi-
cally driven.'

B. Two principal entropic potential curves

The outline of our physical picture, which is based on
the experimental observations and on the results of our the-
oretical calculations presented in Sec. IV, is illustrated in Fig.
3. We concentrate on the entropic effect originating from the
translational displacement of water molecules. Myosin,
which is entropically confined within a narrow space in con-
tact with F-actin, feels the entropic potential field along
F-actin. Since the structure of F-actin is periodic, the field is
also periodic. The field is strongly dependent on geometric
features of myosin, and it exhibits a large change upon the
ATP binding to myosin. The fields felt by myosin without the
ATP or ADP+Pi binding to it and by myosin with the bind-
ing correspond to curve 1 drawn in black and to curve 2
drawn in red, respectively. The two oscillatory curves should
be fairly complicated, but they are simplified in the illustra-
tion. The most important feature required for curve 1 is that
it has locations with sharply deep potential minima corre-
sponding to the rigor binding sites of F-actin. It is not essen-
tial whether curve 1 is asymmetrical or not for each period.
Since at least one of the curves should be asymmetrical,
curve 2 is asymmetrical if curve 1 is assumed to be sym-
metrical as shown in Fig. 3. The amplitudes of curve 2 are
considerably smaller than those of curve 1. In both curves 1
and 2, the distance between two adjacent local potential
minima is equal to the size of G-actin, 5.5 nm.

In our picture, the unidirectional movement of myosin
along F-actin is reached by the following three principal
steps:

T Myosin without the ATP or ADP (i.e., nucleotide)
binding to it is highly stabilized on a location with the
sharply deep local potential minimum of curve 1 [see
(a) in Fig. 3]: Myosin can hardly move.

(I)  The geometric features of myosin are changed by the
ATP binding, which leads to the change in the poten-
tial field from curve 1 to curve 2. Myosin is no more
stabilized on the location in step I [see (b)]. Along the
negative slope of curve 2 [(b)— (c)], myosin moves
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to a new location with the local potential minimum
[see (¢)].

(IIT)  The hydrolysis of ATP and the release of Pi occur. The
original geometric features of myosin are recovered
and the potential field returns to curve 1. Myosin is no
more stabilized on the location in step II [see (d)].
Along the negative slope of curve 1 [(d)— (e)], myo-
sin moves to the nearest location with the deep local
potential minimum [see (e)]. (The release of ADP oc-
curs before the ATP binding to myosin.)

Myosin tends to be trapped on a location with the local
potential minimum of curve 2. However, sufficiently small
amplitudes of curve 2 allow a biased Brownian motion of
myosin, and it sometimes exhibits different movements:
It moves backward [(b) — (f) — (g)], it moves forward to a
farther location with the local potential minimum [e.g., (b)
—(c)—(h)— ()], or it makes essentially no movement
[(b)—(j)—(a)]. The most probable route should be (a)
—(b)— (c)—(d)— (e). Thus, the unidirectional movement
of myosin is certainly realized. However, myosin appears to
move only by 5.5 nm on the average in one cycle. This
behavior is not quite consistent with the experimental result
that in one cycle myosin moves by the distance which lies in
the range from 5 to 30 nm.>104H12 The consistency is ob-
tained if, for example, a component such as —ax (x is the
distance along F-actin and a>0 is the slope) is added to
curve 2. Such a component could effectively be incorporated
by accounting for the details neglected in the present picture
as discussed in Sec. II C.

Aqueous solution consisting of water molecules, ATP, Pi,
and ADP is referred to as the solvent. As explained in Sec.
III B, an entropic potential of curve 1 represents “the free
energy of the solvent in the case where myosin without the
ATP or ADP+Pi binding is on a location of F-actin” relative
to “the free energy of the solvent in the case where myosin
without the ATP or ADP+Pi binding is infinitely separated
from F-actin.” Likewise, an entropic potential of curve 2
represents “the free energy of the solvent in the case where
myosin with the ATP or ADP+Pi binding is on a location of
F-actin” relative to “‘the free energy of the solvent in the case
where myosin with the ATP or ADP+Pi binding is infinitely
separated from F-actin.” We emphasize that curves 1 and 2
have different reference values of the solvent free energy:
The reference value in curve 2 is lower than that in curve 1
by the free-energy change upon the ATP or ADP+Pi binding
to myosin whose absolute value should be larger than “the
entropic potential at (b)” minus “the entropic potential at
(a).” Therefore, the actual free energy of the solvent de-
creases upon the ATP binding to myosin. Further, the free
energy of the solvent exhibits small but significant decreases
in each of the succeeding changes illustrated in Fig. 2: It is in
the order state 2>>state 3 >state 4> state 5. It follows that
the reference value of the solvent free energy continues to
decrease. Thus, the curve of the actual free energy of the
solvent continues to exhibit a parallel, downward shift. When
myosin moves from (a) to another location such as (e), (g),
or (i) in one cycle, the system free energy is lowered by the
free-energy change arising from the hydrolysis of ATP in
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aqueous solution, state 1—state 5. However, the unidirec-
tional movement is not influenced by the changes in the ref-
erence value of the solvent free energy because it is governed
by the derivative of the potential curve with respect to x
multiplied by —1 (i.e., the entropic force in the x-direction).

C. Further discussion

As mentioned in Sec. II B, the behavior of myosin in the
physical picture is not quite consistent with the experimental
result that in one cycle myosin can move by the distance
which is substantially longer than 5.5 nm. 1412 Thig
problem could be solved if we consider that geometric fea-
tures of myosin and the potential curve undergo small but
significant changes as the hydrolysis of ATP proceeds
(state 2—state 3) and upon the release of ADP (state 4
—state 5). In a strict sense, myosin with the ATP binding in
state 2, myosin with the ADP+Pi binding in state 3, and
myosin with the ADP binding in state 4 are more or less
different from one another in terms of geometric
features™ "% and the potential field felt by myosin. It fol-
lows that at least four curves should be considered. More-
over, any change from one curve to the next one occurs not
abruptly but gradually. There is one more factor which can
be substantial: Geometric features of the portion of F-actin
near myosin are different from those of the rest and variable
during each cycle.59

The biased Brownian motion is described by the entropic
force (i.e., the derivative of the entropic potential with re-
spect to x multiplied by —1). When the force is positive,
myosin is driven to move in the positive direction along the
x-axis. Myosin can move by the distance which is substan-
tially longer than 5.5 nm if the following is satisfied: As
myosin moves via the biased Brownian motion, the entropic
force acting on myosin exhibits an upward shift (i.e., a shift
in the positive direction). Thus, the change in geometric fea-
tures of myosin and the portion of F-actin near myosin, shift
of the entropic force, and movement of myosin are strongly
coupled. This view seems to be similar to that proposed by
Terada et al." although their physical interpretation is differ-
ent from ours emphasizing the water-entropy effect.

The outline of the unidirectional movement can be de-
scribed by the physical picture illustrated in Fig. 3, pending
further analyses accounting for the details discussed above
which enhance the unidirectional property of the movement
(i.e., which expands the distance by which myosin can move
on the average in one cycle). The directed movement is re-
alized by repeated switches from one of the potential fields
to the other. Similar pictures&m""l1’12’14716 have already been
suggested. However, in some of them, the potential curves
are drawn simply as the input and their physical origins are
rather ambiguous. In the others, the physical explanations on
the curves are given but they are not relevant to the water-
entropy effect considered here. In the present work, the basic
characteristics of the curves are qualitatively reproduced us-
ing an elaborate statistical-mechanical method with a firm
physical basis emphasizing the water-entropy effect. (In Sec.
IV C, we argue how the change from curve 1 to curve 2 is
provided by the water-entropy effect.) Our picture is thus
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FIG. 4. Two models considered for the filament: One-dimensionally con-
nected large hard spheres (a) and double helical structure formed by two sets
of connected large hard spheres (b). The dotted line indicates x/ds=1.2 (see
Fig. 10). The position of an element sphere becomes farther from us as the
color approaches blue, and the position becomes closer to us as the color
approaches red.

different from the previously suggested models. The picture
is consistent with the experimental evidence that the binding
of myosin to F-actin is entropically driven.”'™

Ill. MODEL AND THEORY
A. Model

We start with simple models accounting for only overall
shapes of the protein and the filament as their geometric
features. Our major concern is to analyze the spatial distri-
bution of the entropic potential between a large solute and a
large body immersed in small spheres with diameter dg form-
ing the solvent. ATP, Pi, and ADP are not considered because
their concentrations are significantly small. The solute and
the body correspond to a head of myosin and F-actin, respec-
tively. The solute is modeled as a large hard sphere with
diameter di. (We also consider large, aspherical solutes to
examine the effects of geometric features of the solute: see
Sec. IV C for more details.) As the body two model filaments
are considered, model 1 is a set of one-dimensionally con-
nected large hard spheres (i.e., unit spheres) with diameter
dg [Fig. 4(a)] and model 2 is a double helical structure
formed by two sets of connected large hard spheres with
diameter d [Fig. 4(b)]. The numbers of the unit spheres are
10 and 20 in models 1 and 2, respectively. The unit sphere
corresponds to G-actin. Model 2 is more realistic than model
1 as a simplified model of F-actin. The neighboring unit
spheres are in contact with one another, and there are no
overlaps. In the present study, dg and dg are set at S5ds.
Setting dy and d at realistically large values (~20dg) (Refs.
18, 19, and 60) gives rise to unacceptably large computer-
storage requirements. However, the qualitative aspects of our
physical picture of the unidirectional movement are not
likely to be altered because 5dg is large enough to provide
useful information on the entropic potential as evidenced in
carlier works,+2%-30-3847

B. Three-dimensional integral equation theory

Solute i of arbitrary geometry is immersed at infinite
dilution in small spheres with diameter dgq forming the sol-
vent. The Ornstein—Zernike (OZ) equation in the Fourier

24,30,44,47,50-52
space is expressed by

Downloaded 18 Oct 2010 to 130.54.110.32. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



045103-6 Amano et al.

Wis(kyoky k) = psCis k. k. k) Hgs (k) (1)
and the hypernetted-chain (HNC) closure
equation24’30’44’47’50—52 is written as

C[S(-x’yiz) = exp{— uiS(x»y»Z)/(kBT)}eXp{WiS(x’y’Z)}
- Wis(X,y’Z) - 1. (2)

Here, the subscript “S” denotes the solvent, w=h—c, c is the
direct correlation function, /4 is the total correlation function,
u is the potential, p is the bulk density, kg is Boltzmann’s
constant, and 7 is the absolute temperature. The values of dg
and pg are set at those of water under the normal condition:
psds®=0.7317. The capital letters (C, H, and W) represent
the Fourier transforms. Hgg(k) (k2=kx2+ky2+kzz) calculated
using the radial-symmetric HNC theory for spherical par-
ticles is part of the input data. We emphasize that the OZ
equation is exact.****" On the other hand, the bridge func-
tion is neglected in the HNC closure equation. However, it
has been verified that the 3D-OZ-HNC theory gives quanti-
tatively reliable results.>*?%3

The numerical procedure is briefly summarized as fol-
lows: (1) u;5(x,y,z) is calculated at each 3D grid point, (2)
w;s(x,y,z) is initialized to zero, (3) ¢;5(x,y,z) is calculated
from Eq. (2), and ¢;s(x,y,2) is transformed to C;s(k,,k,, k)
using the 3D fast Fourier transform (3D-FFT), (4)
Wis(ky,ky,k.) is calculated from Eq. (1), and Wig(k,,k,,k,) is
inverted to wig(x,y,z) using the 3D-FFT, and (5) steps (3)
and (4) are repeated until the input and output functions for
wis(x,y,z) become identical within convergence tolerance.
On grid points where a solvent particle and the solute over-
lap, exp{—u;s(x,y,z)/ (kgT)} is zero. On those where a sol-
vent particle is in contact with the solute, it is set at 0.5, and
otherwise it is unity. The grid spacing (Ax, Ay, and Az) is set
at 0.1ds, and the grid resolution (N,XN,XN,) is 1024
X 512X 512. It has been verified that the spacing is suffi-
ciently small and the box size (N,Ax,N,Ay,N.Az) is large
enough for the correlation functions at the box surfaces to be
essentially zero. 04

We consider solutes 1 and 2. Solute 1 is a large body, the
filament illustrated in Fig. 4(a) or Fig. 4(b). Solute 2 is a
large sphere with diameter dg. First, the solute 1-solvent cor-
relation functions [the Fourier transform of the direct corre-
lation function is denoted by Cys(k,,k,,k,)] are calculated by
following the procedure described above (i=1). Second, the
solute 2-solvent correlation functions [the Fourier transform
of the total correlation function is denoted by H,g(k)] are
calculated using the radial-symmetric HNC theory for
spherical particles. The entropic potential between solutes 1
and 2 is described by the potential of mean force by assum-
ing that the solvent particles are always in equilibrium with
each configuration of the two solutes. This assumption is
justified because in the real system the hydration structure
steadies in picoseconds, while the movement of myosin oc-
curs in milliseconds." Hereafter, solutes 1 and 2 are referred
to as “filament” and “large solute,” respectively.

The potential of mean force between the two solutes
®,,(x,y,z) are then obtained from
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FIG. 5. Distribution of the entropic potential field formed for the large
spherical solute near the filament on the cross section expressed by z=0 in
model 1. The potential becomes lower as the color approaches thick blue,
and the potential becomes higher as the color approaches thick red. The
numbers given are scaled by kg7. The maximum and minimum values of the
potential scaled by kg7 are also given. The center of the large solute cannot
enter the domain drawn in white.

(DIZ(x’y’Z)/(kBT) = ulZ(-x’yaZ)/(kBT) - WIZ(xsy’Z)’ (3)

where wi,(x,y,z) is calculated by inverting Wiy(k,,k,, k)
given by

WlZ(szky, kz) = pSCIS(kx’ky’kz)H2S(k) . (4)

The values of @, which are not on the grid points are esti-
mated using the linear interpolation.

The physical meaning of ®,(x,y,z) can be understood
from

D 5(x,y,2) = F(x,y,2) — F(o0,%0,%) (5)
and

g12(x,y,2) = exp{— P 5(x,y,2)/(kgT)},g12(%,,%) = 1.
(6)

Here, the x-, y-, and z-axes are taken and the origin of the
coordinate system is chosen as illustrated in Fig. 4(a) or Fig.
4(b), F(x,y,z) is the free energy of the solvent in the case
where the large solute is at the position (x,y,z), and
g1a(x,y,z) the pair distribution function.

Due to the hard-body models, all the accessible system
configurations share the same energy and the behavior of
®,,(x,y,z) is purely entropic in origin. Hereafter, ®,(x,y,z)
is referred to as the entropic potential. —9®,(x,y,z)/ dx, for
example, represents the entropic force in the x-direction. A
great advantage of the 3D integral equation theory is that the
spatial distribution of ®;, is obtained from only a single
calculation,z“‘30 which is in marked contrast with the usual
computer simulation.

IV. RESULTS AND DISCUSSION
A. Entropic potential formed in model 1

The large solute considered in this section is spherical.
The distribution of the entropic potential on the cross section
expressed by z=0 is shown in Fig. 5. It is apparent that the
solute is strongly confined within a narrow space in contact
with the filament. There are routes through which the solute
can come in contact with the filament from the bulk (e.g., the
route indicated by the broken line with the highest free-
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FIG. 6. Potential curve (bottom) formed for the large spherical solute along
the trajectory where it is always in contact with the filament of model 1
(top). The y-coordinate of the center of the solute along the trajectory is also
shown (middle).

energy barrier of ~1.3kgT). However, once the solute enters
the narrow space, it cannot be released to the bulk because
the barrier in the opposite direction is much higher.

Figure 6 shows the potential curve formed for the large
solute along the trajectory where it is always in contact with
the filament. There are locations with sharply, deep local
potential minima where the solute is in contact with two unit
spheres of the filament. The distance between two adjacent
locations equals the unit-sphere diameter dg. The solute is
trapped on these locations and can hardly move. Hence, the
locations can be identified as the rigor binding sites for myo-
sin on F-actin. When the solute is entropically bound to a
rigor binding site, the free energy of the solvent decreases to
a large extent (by ~8.1kgT).

The distribution of the entropic potential on the cross
section expressed by x=0 is shown in Fig. 7. There is a
spherical shell within which the potential is negative and
quite large, and the large solute can freely rotate around the
long axis. Namely, the deep local potential minima men-
tioned above form a ringlike domain. Again, it is observed
that the solute cannot escape from the narrow space in con-
tact with the filament due to a high free-energy barrier.
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FIG. 7. Distribution of the entropic potential field formed for the large
spherical solute near the filament on the cross section expressed by x=0 in
model 1. The potential becomes lower as the color approaches thick blue,
and the potential becomes higher as the color approaches thick red. The
maximum and minimum values of the potential scaled by kg7 are also
given. The center of the large solute cannot enter the domain drawn in
white.
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FIG. 8. Distribution of the entropic potential field formed for the large
spherical solute near the filament on the cross section expressed by z=0 in
model 2. The potential becomes lower as the color approaches thick blue,
and the potential becomes higher as the color approaches thick red. The
numbers given are scaled by k7. The maximum and minimum values of the
potential scaled by kgT are also given. The center of the large solute cannot
enter the domain drawn in white.

B. Entropic potential formed in model 2

The large solute considered in this section is spherical.
The distribution of the entropic potential on the cross section
expressed by z=0 is shown in Fig. 8. Although the distribu-
tion is more complicated than that in Fig. 5, it exhibits quali-
tatively the same feature: The solute is strongly confined
within a narrow space in contact with the filament. There are
routes through which the solute can come in contact with the
filament from the bulk (e.g., the routes indicated by the bro-
ken line and by the dotted line with the highest free-energy
barriers of ~1.0kgT and ~1.3kgT, respectively). Model 2
provides more such routes than model 1. However, once the
solute enters the narrow space, it cannot be released to the
bulk because the barrier in the opposite direction is much
higher.

Figure 9 shows the potential curve formed for the large
solute along the trajectory where it is always in contact with
a set of connected unit spheres in harmony with the helical

“TE Q(L
00

4.6
253

253

<
o
o xR
o o
/

o %
D S

©
o

Entropic Potential/(k;T)

0.0 50 100 150 200
x/dg

FIG. 9. Potential curve (bottom) formed for the large spherical solute along
the trajectory where it is always in contact with a set of connected unit
spheres in harmony with the helical structure in model 2 (top). The
y-coordinate of the center of the solute along the trajectory is also shown
(middle).
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FIG. 10. Distribution of the entropic potential field formed for the large
spherical solute near the filament on the cross section expressed by x
=1.2dg in model 2. The potential becomes lower as the color approaches
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red. The numbers given are scaled by kg7. The maximum and minimum
values of the potential scaled by kg7 are also given. The center of the large
solute cannot enter the domain drawn in white.

structure. There are the locations with sharply deep local
potential minima where the solute is in contact with two unit
spheres of the filament. The distance between two adjacent
locations is equal to the unit-sphere diameter dg, although
along the x-axis it is slightly smaller than dg. The large sol-
ute is trapped on the locations and can hardly move. The
locations can be identified as the rigor binding sites for myo-
sin on F-actin.

Figure 10 shows the distributions of the entropic poten-
tial on the cross sections expressed by x=1.2dg [see Fig.
4(b)]. The large solute cannot rotate around the long axis due
to the presence of high free-energy barriers. For example, the
barrier of ~5.5kgT (this is the highest one) must be over-
come for the route indicated by the solid line. Thus, the deep,
local potential minima mentioned above form a pointlike do-
main. This is a clear difference between the results from
models 1 and 2. Again, it is observed that the solute can
come in contact with the filament from the bulk, for ex-
ample, through the route indicated by the broken line whose
highest barrier is ~1.3kgT (we note that the barrier in the
opposite direction is much higher).

C. Effect of geometric features of large solute

On the basis of the results from models 1 and 2, we can
conclude that the double helical structure of F-actin plays
significant roles: There are more routes through which the
solute can come in contact with the filament from the bulk,
and the large solute cannot rotate around the long axis. How-
ever, curve 1 shown in Fig. 3 and the curves plotted in Figs.
6 and 9 share qualitatively the same characteristics: They are
periodic and possess the sharp valleys with deep local poten-
tial minima on which the large solute is trapped. The basic
characteristics of curve 1 have qualitatively been reproduced
by our model calculations based on statistical mechanics.
The remaining problem is the qualitative reproduction of
curve 2.

As described in Sec. II, the essential characteristics re-
quired for curve 2 are the sufficiently high asymmetry for
each period and smaller amplitudes in comparison to those of
curve 1. A question then arises: How is the change from
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FIG. 11. Large aspherical solutes considered for mimicking myosin which is
bound to F-actin only weakly. Three-dimensional visualization (a). Dimen-
sions of the solutes (b). Solute A: [,=1.0ds, lg=1.5ds, l-=1.5ds, I
=1.0ds, and Iy=2.0ds. Solute B: [,=0.9ds, lz=1.6ds, lc=1.4ds, Ip=1.1ds,
and /;=2.0ds. Solutes A and B are symmetrical and asymmetrical about the
y-axis, respectively. Solute A on the filament (c). The position becomes
farther from us as the color approaches blue, and the position becomes
closer to us as the color approaches red. The dotted arrow indicates the
trajectory.

curve 1 to curve 2 provided? It is definite that the potential
curve becomes asymmetrical for each period when the large
solute and/or the unit sphere in the filament have aspherical
shape. In the case of actomyosin, the large solute and the
filament correspond to myosin and F-actin, respectively. In
the present version of our physical picture, the shape of
G-actin (the unit sphere in the filament) is assumed to remain
virtually unchanged upon the ATP binding to myosin, and the
change in the shape of myosin near the myosin/F-actin inter-
face is the most important factor featuring curve 2. It is ex-
perimentally known that myosin with the ATP or ADP+Pi
binding in states 2 and 3 has a cleft near the myosin/F-actin
interface>®7 (this cleft is closed in myosin without the
binding in states 1, 4, and 5).

Here we present results of simple example calculations.
With model 1 for the filament, two large aspherical solutes
(solutes A and B) are considered as illustrated in Fig. 11.
Solute A is symmetrical about the y-axis while solute B is
asymmetrical. Each of the solutes has a cleft near the solute-
filament interface, which is based on the experimental
evidence™®7® mentioned above. As observed in Fig. 11(c),
when either of them contacts the filament, the decrease in the
total excluded volume is smaller than in the case of the
spherical large solute. That is, myosin is bound to F-actin
only weakly. When the solute is aspherical, the calculation
procedure for the entropic potential is more complex as ex-
plained in our earlier publication.44 The orientation of the
solute is fixed for simplification [see Fig. 11(c)]. Figure 12
shows the potential curve for one period formed for each of
solutes A and B along the trajectory where it is always in
contact with the filament. The curves in Figs. 12(a) and 12(b)
are for solutes A and B, respectively. For the symmetrical
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FIG. 12. Potential curve formed for each of the two large aspherical solutes
shown illustrated in Fig. 11 along the trajectory where it is always in contact
with the filament of model 1. The curves in (a) and (b) are for the large
aspherical solutes A and B, respectively.

solute, the potential curve for one period is still symmetrical,
but the amplitudes are smaller in comparison to those for the
spherical solute. For the asymmetrical solute, the potential
curve for one period is also asymmetrical, and the ampli-
tudes are smaller in comparison to those for the spherical
solute. The basic characteristics of curve 2 are qualitatively
reproduced in Fig. 12(b).

In the real system, F-actin and myosin possess the poly-
atomic structures. When myosin is strongly bound to a rigor
binding site of F-actin, their interface should be tightly
packed. When ATP is bound to myosin, the structure of myo-
sin undergoes a large change. As a result, the tight packing of
the interfaces is lost, giving rise to the cleft. When the tight
packing of myosin and ATP occurs, the packing of myosin
and F-actin is inevitably loosened. The former should be
more important for increasing the water entropy.

V. CONCLUDING REMARKS

We have described a new progress toward elucidating
the mechanism of the unidirectional movement of a linear-
motor protein along a filament by considering actomyosin as
an example system. The new idea introduced is that, thanks
to the entropic effect arising from the translational displace-
ment of water molecules, the protein is confined within a
narrow space in contact with the filament and the movement
of the protein can be controlled by adjusting its geometric
features. On the basis of the experimental observations
known for a single myosin head (myosin subfragment 1: S1)
and F-actin,®'**'"1? a5 well as the results of the present
theoretical analyses, we have proposed the physical picture
illustrated in Fig. 3 as the first step: The entropic potential
field for the protein without the ATP or ADP+Pi binding to it
is judiciously different from that for the protein with the
binding, and the directed movement is realized by repeated
switches from one of the fields to the other. This unidirec-
tional property should be enhanced if we account for the
following: (i) Myosin with the ATP binding in state 2, myo-
sin with the ADP+Pi binding in state 3, and myosin with the
ADP binding in state 4 (see Fig. 2) are more or less different
in terms of geometric features;*"® (ii) the gradual change
in geometric features of myosin and the portion of F-actin
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near myosin, shift of the entropic force acting on myosin,
and movement of myosin are strongly coupled.

The qualitative aspects of curve 1 in Fig. 3 have been
reproduced using the 3D integral equation theory combined
with hard-body models. Myosin is strongly confined within a
narrow space in contact with F-actin. Locations with sharply
deep local potential minima, which correspond to the rigor
binding sites for myosin on F-actin, are entropically formed.
The minima occur when myosin is in contact with two
G-actin molecules of the filament. Therefore, the distance
between two adjacent rigor binding sites is equal to the size
of G-actin. This result is in agreement with the experimental
data *10+!112%0 The double helical structure of the filament
considered in model 2 plays the following roles: There are
more routes through which the solute can come in contact
with the filament from the bulk, and the large solute cannot
rotate around the long axis.

The physical factors causing the change in the entropic
potential field from curve 1 to curve 2 in Fig. 3 have been
argued with simple example calculations using the 3D inte-
gral equation theory. The potential curve formed for a large
solute along a filament becomes asymmetrical when the as-
phericity is given to the solute shape. (In the real system
myosin  without the nucleotide binding is also
aspherical,s’6’57’58 giving rise to asymmetry of curve 1. How-
ever, as explained in Sec. II B, it is not important whether
curve 1 is asymmetrical or not.) Upon the ATP binding to
myosin, the overall shape of myosin becomes highly aspheri-
cal and at the same time a cleft is formed near the myosin/
F-actin interface. Due to the cleft, the decrease in the total
excluded volume for water molecules upon the contact of
myosin to F-actin becomes smaller, leading to smaller differ-
ences between the potential minimum and maximum. In this
way the potential curve possesses high asymmetry and
smaller amplitudes for each period as curve 2.

The unidirectional movement in the real system could be
accomplished by the interplay of multiple physical factors
including previously suggested ones. To the best of our
knowledge, this is the first time that the water-entropy effect
is pointed out as an imperative factor missing in earlier
works. Our concept is consistent with the experimental evi-
dence that the binding of myosin to F-actin is entropically
driven.?™ Further, an experimental measurement> has
shown that the entropic gain upon the binding of myosin
without the nucleotide to F-actin is as large as that upon the
binding of myosin with ADP and much larger than that upon
the binding of myosin with ATP. This is also in complete
accord with curves 1 and 2 illustrated in Fig. 3.

In the real system, dg/dg and dg/dg are much larger than
5, the value considered in the present calculations. We note
that the water-entropy effect becomes stronger with increas-
ing dg/dg and/or dg/dg. The electrostatic interaction, which
would be significantly strong in pure water, is largely
screened by the counterions in aqueous solution under the
physiological condition containing ~0.15M NaCL® As a
consequence, the water-entropy effect is expected to be
dominantly large in comparison with the other effects. We
have succeeded in elucidating the microscopic mechanisms

. . 2526,34,52,53,61 25.26,35,62-64 26,65
of protein folding,”">"""~"""" pressure,”""" heat,”™
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and cold**%%¢7 denaturating of proteins, and pressure-
induced coil-helix transition of an alanine-based peptide68
using our theoretical method wherein the water-entropy ef-
fect is treated as the key factor. The conventional view look-
ing at only the water in the close vicinity of the protein
surface is not capable of providing the success.

Our concept is consistent with the experimental result
that the binding of myosin to F-actin is substantially weak-
ened at low temperatures.23 The reason is the following. We
have recently elucidated the mechanism of cold denaturation
of a prote:in.26’66’67 Upon protein folding, the total volume
available to the translational displacement of water mol-
ecules becomes larger, leading to an increase in the number
of accessible configurations of water and the water entropy.
This effect driving a protein to fold has been shown to be-
come considerably less powerful at low temperatures, caus-
ing the denaturation. Likewise, upon the binding of myosin
to F-actin, the total volume available to the translational dis-
placement of water molecules becomes larger, leading to an
increase in the water entropy. As in the case of cold denatur-
ation, the effect driving myosin to bind to F-actin becomes
considerably less powerful at low temperatures, which weak-
ens the binding.

It is often emphasized that the electrostatic attractive in-
teraction plays an essential role in the binding of myosin to
F-actin.'®*® However, before the binding the charged groups
of myosin and of F-actin are stabilized in water by the elec-
trostatic attractive interactions with water molecules. Such
stabilization is lost upon the binding. This loss, which is
usually referred to as the dehydration penalty, can be even
larger. In fact, it is experimentally known that the binding
accompanies a positive change in enthalpy,ﬂ"23

The polyatomic structures of myosin and F-actin are not
taken into consideration in the present study. Nevertheless, a
significant amount of interesting information is revealed us-
ing the 3D integral equation theory combined with simple
models focusing the overall shapes alone: The present study
sheds new light on the mechanism of the unidirectional
movement of a linear-motor protein along a filament. In the
near future, we intend to move on the analyses pursuing the
issue described in Sec. II C, accounting for the polyatomic
structures of myosin and F-actin, and allowing myosin to
change its orientation when the potential curve is drawn. In
such studies treating myosin and F-actin with polyatomic
structures and realistic sizes, our hybrid34’35’49’53’64770 of the
integral equation theory and the morphometric approachﬂ’72
is expectedly a practical tool. The effects of the enthalpic
component of the solvation of solutes are also to be exam-
ined.
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