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Abstract 

 

The quality-by-design concept is a new regulatory paradigm for pharmaceutical 

development, while the response surface method (RSM) is a promising approach for 

understanding design parameters for drug formulations. RSM aims to provide a visual 

image to support statistical design and analysis of experiments. However, neither 

contour plots nor 3D surface plots that have commonly been used can completely 

visualize interactions between the parameters within the design space, due to their 

limited dimensionality. This article presents a visualization technique that can 

simultaneously display the responses to multi-dimensional factors by mapping 

N-dimensional data onto unique x-y coordinates, re-defined by recursive slice-and-dice 

subdivision of the 2D plane. The applicability of the technique was confirmed using 

published data on the design of nasal drug formulations. 

 

Keywords: Design of experiments; Response surface method; Data visualization; 

Formulation design; Design space; Nasal drug formulations
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1. Introduction 

 

In light of the Quality Vision requirements set forth by the ICH, regulatory 

paradigms for pharmaceutical development are changing from quality-by-testing (QbT) 

to quality-by-design (QbD) (Food and Drug Administration CDER, 2004a). QbD is a 

systematic, risk-based approach to attaining desirable quality through careful evaluation 

of all attributes that influence product quality, from early development through the 

entire product lifecycle. The QbD approach not only reduces or eliminates compliance 

actions, penalties and recalls of products but also simplifies regulatory acceptance of 

post-approval manufacturing changes (Food and Drug Administration CDER, 2004b).  

Design of experiments (DOE) is a structured and organized technique to determine 

the factors that may influence a product or process. DOE overcomes the problem 

associated with one-component-at-a-time experiments that cannot clarify interactive 

effects between factors. Response surface method (RSM) designs, including the central 

composite design and Box-Behnken design, are DOE methods that fit mathematical 

equations to experimental data to determine a set of design parameters that optimize a 

response. A mathematical model can provide an understanding of input-output 

relationships through a visual image of the response surface, such as contour plots or 3D 

surface plots. Recently, the importance of DOE and RSM technologies has been 

increasingly emphasized by advocates of the QbD concept in pharmaceutical 

development (Guo, 2008; Shah, 2007). 

This article presents a novel visualization technique, named HyperDEC 

(Hyper-Dimensionally Embedded Cuboids), which helps us comprehensively 
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understand the effects of design parameters on the properties of drug formulations. 

HyperDEC overcomes the limitation of contour plots or 3D surface plots, which cannot 

simultaneously display the effects of more than two variables. HyperDEC maps 

N-dimensional data onto a 2D rectangular region defined by recursive slice-and-dice 

subdivision of the x-y plane. We have recently proposed data visualization techniques, 

called HeiankyoView, that display hierarchically structured data using colored icons and 

nested rectangular frames, and demonstrated their effectiveness in extracting 

information on the structure-activity relationship of aqueous solubility (Yamashita, 

2006) and cytochrome P450-mediated drug metabolism (Yamashita, 2008). 

HeiankyoView and HyperDEC are similar in displaying hierarchically structured data 

but differ critically in spatial arrangement of icons. The effectiveness of HyperDEC was 

investigated by applying it to the data of Dayal et al. (2005) regarding the formulation 

of a nasal drug delivery system. 

 

 

2. Theory of HyperDEC 

 

HyperDEC maps N-dimensional data onto a 2D rectangular region defined by 

recursive slice-and-dice subdivision of the x-y plane. Figure 1 shows a 4-dimensional, 

5-level plot, where x3-x4 subgraphs are embedded into an x1-x2 graph. Thus, 

4-dimensional data, e.g., (0,0,2,2), (1,4,2,3), and (3,1,1,3), are placed in a unique 

position in the x-y absolute coordinate system. 

Here, we derive a general solution for the x-y position, x-width (ps), and y-height 

(qs) of the data object that corresponds to the vector  1 2 1 2, , , , ,k k sa    a  a    a  
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where 0,1, ,  1ia n  . In the recursive slice-and-dice procedure, odd-numbered 

discretizations are conducted vertically while even-numbered discretizations are done 

horizontally. As shown in Fig. 2, let us assume that the original position, x-width, and 

y-height before (2k–1)
th

 discretization are (x2k–2, y2k–2), p2k–2, and q2k–2, respectively and 

that the object was divided into n pieces with a space size of 2 2 2 1

1

 



k kp m

n
 for each. 

When the (2k–1)
th

 element of the vectorial data is a2k–1, relationships between x2k–2 and 

x2k–1 and between y2k–2 and y2k–1 are: 

2 2 2 1
2 1 2 2 2 1 1
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Relationships in x-width and y-height are: 

 2 2
2 1 2 11
  k

k k

p
p m

n
 

2 1 2 2 k kq q  

On the other hand, horizontal slicing at the 2k
th

 discretization gives: 

2 2 1k kx x  
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When the original position, x-width, and y-height are (x0, y0), p0, and q0, respectively, 

these recursive formulae give: 

if s ( 2 1t  ) is an odd number, 
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1

2 1 2 2 2 1 2 2 2 2
0 0

1 1

1 , 1
1 1

t t
k k k k k k

k k

a p m a q m
x   y

n n n n


   

 

    
             
   

x-width: 2 1
0

1

1
t

k

k

m
p

n






  

y-height: 

1
2

0

1

1
t

k

k

m
q

n






  

if s ( 2t ) is an even number, 
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Gradual reduction of the spacings, i.e., mi, for every dimension enables us to 

discriminate between nested hierarchical data objects. The technique is an extension of 

the dimensional stacking technique (LeBlanc, 1990) that involves discretization and 

recursive embedding of a pair of dimensions. The unique features of HyperDEC include 

filtering of interesting factors or data and simultaneous representation of two response 

variables with the heat color and z-height of cuboidal graphic objects. 

The software product was developed in the Java programming language (Java SE 

6) with Java bindings for OpenGL (JOGL) API. In addition to zooming, panning and 

rotating, functions that allow the selection of data objects on a graphical user interface 

were implemented in the software. 
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3. Features of HyperDEC 

 

Figure 3 shows a typical example of HyperDEC images, together with the 

conventional contour plots that are widely used for understanding input-output 

relationships in DOE studies. As a simple case, assume here that responses are 

displayed as a function of four variables. To create a contour plot, two explanatory 

variables are selected as variables of interest, while other explanatory variables are held 

constant. When the constant variables are changed in a systematic, stepwise manner, 

responses with respect to all explanatory variables can be computed. Figure 3B is a 

systematic arrangement of all contour plots, which provides essentially the same 

information as the HyperDEC image shown in Fig. 3A, which consists of nested 

dimensions. 

Visualization of all information does not always aid understanding of a relationship. 

As the dimensionality increases, the visual image becomes more complex, even if the 

dimensions are arranged in an orderly manner. Filtering of a graphics image is a useful 

technique to extract information about its contents by highlighting regions of interest. In 

the HyperDEC images, a set of data varying in one dimension only are aligned either 

horizontally or vertically at regular intervals. Figure 3C shows the images for the 

selection of each of two variables. Because this figure retains the same image structure 

as Fig. 3A, it is effective in discussing the effects of selected variables from a global 

perspective. In addition, plots having differing constant variables can be generated 

simply by changing the data objects that are highlighted. Contour plots such as those 

shown in Fig. 3D are easy to interpret, but present limited information, due to their lack 
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of flexibility. Thus, the graphic filtering technique of HyperDEC allows us to 

investigate the effect of each variable easily without altering the data structure, leading 

to an unbiased, systematic understanding of the characteristics of the response 

functions. 

 

 

4. Application to a DOE study of nasal drug formulation 

4.1. Data Source 

Data were taken from the publication of Dayal et al. (2005). They investigated the 

influence of changes in physicochemical properties on nasal formulation performance 

using a 5-factor, 3-level Box-Behnken experimental design on the combined responses 

of viscosity, droplet size distribution and drug release. The factors investigated were the 

amounts of components in a model drug formulation comprised of hydroxyurea (HU; 

0–4%), hydroxyethylcellulose (HEC; 0–4%), polyethylene oxide (PEO; 0–4%), sodium 

chloride (NaCl; 0–30%), and calcium chloride (CaCl2; 0–30%). According to their 

Box-Behnken designs, the authors prepared a total of 44 formulation combinations and 

assessed their physicochemical properties. In the present analysis, quadratic regression 

equations approximating the data were used for graphic representation. 

 

4.2. Visualization of the relationships between formulation variables and aerosol 

droplet size 

Figure 4 shows a screen capture image of HyperDEC, where the effect of all five 

formulation factors on the droplet size of nasal aerosols is displayed. Both color and 

z-height of the bars indicate droplet size. The viewer control panel on the right allows 
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the user to zoom, move and rotate the image object and to filter out uninteresting 

elements. The focus on data objects can be changed through the graphic user interface. 

Such functions implemented in HyperDEC allow the acquisition of both global and 

local characteristics of the data structure simultaneously. 

Graphic filtering was carried out to provide better understanding of the HyperDEC 

image (Fig. 5). Here, the levels of both NaCl and HU were set to be medians (15% and 

2%, respectively): hence, it provided a graphic image with clusters of data objects that 

were located in the center of each of the corresponding inner subgraphs. The innermost 

dimension indicates CaCl2 level, while the outermost left-right and bottom-top 

dimensions indicate HEC and PEO levels, respectively. When the image is scanned 

from bottom to top, the z-height of data objects becomes higher, indicating that PEO 

increases the droplet size, regardless of the levels of HEC and CaCl2. In contrast, the 

influence of HEC on the droplet size is not as simple. When the image is scanned from 

left to right, the z-height of data object clusters changes from a positive linear to a flat or 

gently parabolic pattern. This indicates that the effect of CaCl2 on the droplet size 

becomes less significant with an increase in HEC: in other words, the effect of HEC on 

the droplet size is dependent on the CaCl2 level. 

Dayal et al. (2005), who published original data, mentioned that the addition of 

CaCl2 to PEO shows a mild parabolic relationship in the droplet size of aerosols, with a 

reduction at low concentrations (10~15%) of CaCl2. As indicated in Fig. 5, however, 

PEO does not exhibit non-linear interaction with other ingredients. Moreover, the 

parabolic relationship that occurs with the addition of CaCl2 is observed only in the 

presence of moderate or higher levels of HEC: in the absence of HEC, the addition of 

CaCl2 exhibits a positive linear relationship with the droplet size. Comprehensive 
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re-evaluation using HyperDEC concludes that CaCl2 interacts with HEC but not 

markedly with PEO. 

  

4.3. Simultaneous visualization of effects on droplet size and solution viscosity 

An additional feature of HyperDEC is the ability to represent two different 

response variables simultaneously using the color temperature and z-height of data 

objects (Fig. 6). In Fig. 6, the color temperature indicates the viscosity of the solution, 

while the z-height indicates aerosol droplet size. Each dimension of the image is the 

same as in Fig. 5. When the color temperature in Fig. 6A is considered, it is found that 

addition of HEC and PEO increases the viscosity of the solution but, as indicated by the 

color temperature in the innermost dimension, CaCl2 has minimal affect on the solution 

viscosity. At the highest PEO level (the top of the outermost graph), NaCl (the 

bottom-top dimension of inner subgraphs) appears to reduce the solution viscosity. 

When both the color and z-height are compared, the relationship between the viscosity 

and droplet size can be explored. In general, as the PEO and HEC levels increase, both 

color temperature and z-height of data objects become higher (Fig. 6A). However, when 

both PEO and CaCl2 are at their highest levels (4% and 30%, respectively), the color of 

the data objects becomes more red but the z-height becomes lower with an increase in 

HEC (Fig. 6B). Thus, under these conditions, HEC increases the solution viscosity but 

decreases the droplet size. It should be noted that smaller and more viscous droplets are 

better in terms of both spatial distribution and residence time in the nose. Thus, such a 

visual image would assist in the optimization of a formula for nasal spray formulations. 
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5. Discussion 

 

Data visualization is an increasingly important area of technology research and 

development. One needs to manage massive amounts of data collected from various 

sources and optimize engineering and manufacturing processes. Data visualization 

techniques offer an intuitive way to acquire knowledge from complex data and transfer 

information to other people. An important issue for data visualization techniques is how 

to visualize data objects containing multidimensional information. One way to visualize 

multidimensional data in a two-dimensional (2D) or three-dimensional (3D) space is to 

reduce data dimensionality. Principal component analysis and partial least squares 

methods are widely used dimensionality reduction methods, where linear combinations 

of variables are explored systematically to explain the largest amount of variation in the 

original data set. Reduction of dimensionality by these methods is primarily based on 

collinearity of variables. However, these methods are ineffective in the present study 

because the formulation variables are independent of one another. Many 

multi-dimensional visualization techniques, such as Parallel Coordinates (Inselberg, 

1985) and Star Glyphs (Andrew, 1972), are intended to visualize all attributes of data 

but not to identify multi-dimensional causal relationships. On the other hand, 

nested-graph methods, such as Worlds-within-Worlds (Feiner, 1990) and dimensional 

stacking (LeBlanc, 1990), may be useful for detecting multi-dimensional relationships. 

HyperDEC is an extension of dimensional stacking, the features of which include 

filtering of interesting factors and simultaneous representation of two response variables 

using cuboidal objects. In particular, as described in the preceding sections, the graphic 
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filtering functions implemented in HyperDEC allowed us to systematically investigate 

the effects of each explanatory variable on the response. 

In common with conventional response surface methodologies, HyperDEC 

displays the results of simulations using a model function fitted to experimental data. In 

the present study, the application of HyperDEC was exemplified by a quadratic equation 

given by Dayal et al. (2005). In practice, any theoretical models, including artificial 

neural networks and spline functions, are compatible with HyperDEC, due to the input 

file for HyperDEC being simply an Extensive Markup Language (XML) format, where 

numerical simulation data are hierarchically structured. Moreover, adoption of the XML 

format makes HyperDEC flexible and extensible so that it can display various kinds of 

information in addition to response variables, e.g. confidence limits for individual data 

points. HyperDEC can also allot two different sets of data to both color and z-height of 

image data objects, further enhancing its capability. 

In conclusion, we have developed a novel data visualization technique for the 

simultaneous display of a multi-factor response surface. Data visualization provides an 

intuitive understanding of the statistical evaluations obtained by the DOE and assists in 

the selection of important controllable parameters, i.e., design parameters from results 

of exploratory experiments. We believe HyperDEC will be a useful tool for identifying 

the design space for drug formulations under the QbD concept. 

 

 

6. Acknowledgment 

This research was supported in part by Grant-in-Aids for Scientific Research from 

the Ministry of Education, Culture, Sports, Science and Technology, Japan. 



 – 13 – 

 

References 

 

Andrews, D.F. (1972). Plots of high dimensional data. Biometrics, 28, 125.  

Dayal, P. Pillay, V., Babu, R.J., Singh, M. (2005). Box-Behnken experimental design in 

the development of a nasal drug delivery system of model drug hydroxyurea: 

characterization of viscosity, in vitro drug release, droplet size, and dynamic 

surface tension. AAPS PharmSciTech. 6, E573. 

Feiner, S., Beshers, C. (1990). Worlds within worlds: metaphors for exploring 

n-dimensional virtual worlds. Proceedings of the 3rd Annual ACM SIGGRAPH 

Symposium on User Interface Software and Technology, ACM, New York, pp. 

76-83. 

Food and Drug Administration CDER (2004a). Pharmaceutical cGMPs for the 21st 

century: A risk-based approach. http://www.fda.gov/cder/gmp/gmp2004/ 

GMP_finalreport2004.htm. 

Food and Drug Administration CDER (2004b). Guidance for Industry: Q8 

Pharmaceutical Development. http://www.fda.gov/cder/guidance/6746fnl.htm. 

Guo, C., Stine, K.J., Kauffman, J.F., Doub, W.H. (2008). Assessment of the influence 

factors on in vitro testing of nasal sprays using Box-Behnken experimental design. 

Eur. J. Pharm. Sci. 35, 417. 

Inselberg, A. (1985). The plane with parallel coordinates. Visual Comp. 1, 69. 

LeBlanc, J., Ward, M.O., Wittels, N. (1990). Exploring N-dimensional databases. in: 

Kaufman, A. (Ed.), IEEE Visualization: Proceedings of the 1st conference on 

Visualization ’90, IEEE Computer Society Press, Los Alamitos, pp. 230–237. 



 – 14 – 

Shah, R.B., Zidan, A.S., Funck, T., Tawakkul, M.A., Nguyenpho, A., Khan, M.A. 

(2007) Quality by design: characterization of self-nano-emulsified drug delivery 

systems (SNEDDs) using ultrasonic resonator technology. Int. J. Pharm. 341, 189. 

Yamashita, F., Itoh, T, Hara, H., Hashida, M. (2006). Visualization of large-scale 

aqueous solubility data using a novel hierarchical data visualization technique. J. 

Chem. Inf. Modeling. 46, 1054. 

Yamashita, F., Hara, H., Itoh, T., Hashida, M. (2008). Novel hierarchical classification 

and visualization method for multiobjective optimization of drug properties: 

application to structure-activity relationship analysis of cytochrome P450 

metabolism. J. Chem. Inf. Modeling. 48, 364. 



 – 15 – 

 

FIGURE CAPTIONS 

 

Figure 1. An example of the HyperDEC plot, consisting of 4 dimensions (x1 to x4) and 5 

levels (0 to 4 for each dimension). x3-x4 subgraphs are embedded into an x1-x2 graph. 

 

Figure 2. Slice-and-dice method for mapping multi-dimensional data onto the x-y 

coordinate plane. 

 

Figure 3. Comparison of a HyperDEC image with contour plots: A, a 4-dimensional, 

5-level HyperDEC image; B, systematic arrangement of contour plots following 5x5 

parameter scan simulation; C, filtered HyperDEC images for combinations of any two 

dimensions; D, contour plots for combinations of any two dimensions. In Figs. 3C and 

3D, two constant variables are set at half the maximum values for each. Figures 3B and 

3D were created using the subplot and contour f functions implemented in MATLAB 

7.6 (The MathWorks, Inc., MA). 

 

Figure 4. A screen shot of HyperDEC. Results of the design-of-experiments (DOE) 

study of a nasal spray formulation (Dayal et al., 2005) were represented as a HyperDEC 

image. Formulation variables comprise HEC, PEO, HU, NaCl and CaCl2. Both the color 

temperature and z-height of data objects indicate the droplet size, while their x-y 

positions are determined by the levels of each formulation variable. Each dimension of 

these images and its scale are the same as in Fig. 5. 
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Figure 5. Graphic filtering of the HyperDEC image representing the droplet size of a 

nasal spray formulation. From the graphic image in Fig. 4, only data objects having the 

median levels of HU (2%) and NaCl (15%) are highlighted. The ranges of HEC, PEO, 

HU, NaCl and CaCl2 for simulation were 0–4%, 0–4%, 0–4%, 0–30% and 0–30%, 

respectively. 

 

Figure 6. HyperDEC images representing the solution viscosity (color) and droplet size 

(z-height) of nasal spray formulations: A, All data objects are represented; B, Data 

objects having the highest level of CaCl2 in the absence or highest level of PEO are 

highlighted. Each dimension of these images and its scale are the same as in Fig. 5. 



x4

x2

(3,1,1,3)

(1,4,2,3)

x3

x1

(0,0,2,2)

Figure 1



2 2 2 1

1

k kp m

n

 



 2 2 2 11k kp m

n

 

2 2kp 

2 2kq 

 
  

 
   

 

2 2 2 1
2 1 2 2 2 1 1

1

k k
k k k

p m
x x a

n n
 2 1 2 2k ky y

 
  2 2

2 1 2 11k
k k

p
p m

n
 2 1 2 2k kq q




 
   

 

2 2 2
2 2 1 2 1

1

k k
k k k

q m
y y a

n n

2 2 1k kx x

  2 2
2 21k
k k

q
q m

n

2 2 1k kp p

2 2kq 

2 1kp 

2 2kp 

2 2 2 2( , ) k kx y 2 1 2 1( , ) k kx y 2 1 2 1( , ) k kx y

 2 2 21k kq m

n

 

2 2 2

1

k kq m

n





2 2( , )k kx y

(A) (2k–1)-th discretization (B) 2k-th discretization

Figure 2



x2

x3

x4

x1 x2 x3

x2

x3

x4

x1

x4

x3

x1
x3

x2

x4

x2

x1

(A)

(B)

(C)

(D)

Figure 3



Figure 4



HECHU

CaCl2

P
E

O

N
a
C

l

z-height: droplet size

color: droplet size

Figure 5



(A) (B)

z-height: droplet size

color: solution viscosity

Figure 6


