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Abstract 

   Bending vibration of flexible structures can be suppressed passively using piezoelectric electromechanical 

transducers and optimally tuned LR circuits. Since these systems include both mechanical and electrical 

elements, the governing equations consist of electrically coupled equations of motion. This paper describes a 

new method for deriving the governing equations that describe a system’s vibration suppression based on the 

equilibrium of force principle and using an equivalent mechanical model of a piezoelectric element. Both series 

and parallel LR circuits are considered in the modeling approach. The optimum values for a mechanical 

vibration absorber can be formulated by using the two fixed points method. However, exact optimal values for 

the resistances of the LR circuits have not been formulated in the research literature thus far, and approximate 

values have been used. Analytical formulations are derived in this paper, and optimum values of the LR circuits 

are presented, not only in displacement, but also in terms of velocity and acceleration. The effects of the stiffness 

of the adhesive bond between the host structure and piezoelectric element, the dielectric loss in a piezoelectric 

element, and the internal resistance of an inductor are considered in the theoretical analysis. The effectiveness of 

the described analytical method is validated through simulations and experiments. 
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1. Introduction 

   Suppression of bending vibration using piezoelectric elements has attracted the attention of many researchers. 

Typically, thin ceramic plates of piezoelectric material are used because this configuration requires minimal 

additional space and they are easy to install. In contrast, vibration suppression devices such as mechanical 

vibration absorbers usually need a significant amount of space and require a system level integration approach. 

Both active vibration control [1, 2] and passive vibration suppression [3-7] using piezoelectric elements have 

been investigated in the research literature. Several hybrid methods [8-11] have also been proposed. Active 



vibration control is often more effective than passive vibration suppression for a given device size, but they 

suffer from stability problems. In principle, passive methods are stable and offer a higher degree of simplicity in 

their implementation. For these reasons, passive vibration suppression using tuned LR circuits is the focus of this 

paper.  

   In previous works, it has been shown that both series and parallel LR circuits are effective in passively 

absorbing vibration using piezoelectric elements [4, 6]. Fundamental characterization of piezoelectric vibration 

absorbers and passive LR circuits has been shown; however, significant work remains in specific areas. In 

particular, the characteristics of the piezoelectric elements have not been thoroughly included in the derivation of 

governing equations, and as a result, the mechanism for how the controlling force is generated by LR circuits has 

not been illustrated in detail. In addition, accurate formulations for obtaining optimum values for the resistances, 

which agree with the two fixed points method [12], have not been derived thus far. The differences in 

performance between series and parallel LR circuits should be investigated more closely. In the research 

literature, the optimum LR values for the circuits were derived only with respect to displacement even though 

the vibration of the host structure is often evaluated in terms of velocity or acceleration. Finally, the results of 

pure theoretical analysis and experiment often do not agree well in the research literature, especially in terms of 

the equivalent stiffness ratio of the piezoelectric element and the optimum value of resistance. To address these 

issues, this paper derives the governing equations by using a new equivalent mechanical model of a piezoelectric 

element. An equivalent model of a piezoelectric element proposed previously consists of frequency-dependent 

elements [13]; however, the proposed equivalent model consists of frequency-independent elements. Using the 

two fixed points method, accurate formulations for the optimum values of the LR circuits are derived, not only in 

terms of displacement but also in terms of velocity and acceleration. Using these formulations, the performance 

and optimum values of series and parallel LR circuits are compared theoretically. Finally, the dielectric loss of a 

piezoelectric element, internal resistance of the inductor, and stiffness of the adhesive bond are modeled 

theoretically. The effectiveness of the theoretical analysis is verified in simulations and experiments. 

 

2. Theoretical analysis 

2.1. Piezoelectric constitutive equations and equivalent mechanical model 

   Piezoelectric elements generate electrical voltage when they are strained. This phenomenon is called the 

piezoelectric effect. The inverse piezoelectric effect occurs when a piezoelectric element strains in response to an 

applied voltage. A piezoelectric element can be used as both a sensor and an actuator by using these responses. 

Piezoelectric elements can be categorized into several types according to the directions of polarization and strain. 

There is no essential difference between them and general formulations will be developed throughout this work. 

A plate type of piezoelectric elements used in this paper is usually used for bending vibration suppression. As 

shown in Fig. 1, directions of polarization and strain of the plate type are perpendicular to each other. The 

piezoelectric constitutive equations are given as 
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Fig. 1. Schematic diagram of a plate type piezoelectric element. 
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where 
1S  is the strain, 

1T  is the stress, 
3E  is the electrical field, 

3D  is the electrical displacement, 11

Es  is 

the elastic compliance defined as the reciprocal of Young's modulus, 
31d  is the piezoelectric constant, and 33

Tε  

is the electrical permittivity. The subscripts 1 and 11 denote the longitudinal direction, 3 and 33 the thickness 

direction, and 31 that the electrical displacement is the thickness direction and the strain is the longitudinal 

direction. The superscripts E  and T  denote the values which are obtained under constant electrical field and 

constant stress, respectively. The strain in width direction and the mass of the piezoelectric element are ignored 

here for simplicity. Equations (1) and (2) describe the inverse piezoelectric effect and piezoelectric effect, 

respectively. Equations (1) and (2) can be transformed into the following equations: 
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where 
1F  is the force, 

3V  is the voltage, 1x  is the displacement, 
3q  is the charge, pE  is the Young's 

modulus defined as reciprocal of 11

Es , pl , pw , and pt  are the length, width, and thickness, respectively. 

Equations (3) and (4) are simplified as 
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where pk  is the longitudinal mechanical stiffness, pθ  is the elemental electromechanical coupling coefficient, 

and 
p

TC  is the capacitance under constant stress. From Eqs. (9) and (10), capacitance under constant strain is 

defined as follows. 
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where the superscript S  denotes that the value is obtained under constant strain. Substituting Eq. (14) into Eq. 



(10) gives 
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From Eqs. (9) and (15), the equivalent mechanical model is drawn as Fig. 2 (a). Here 
p1 SC  is the spring 

constant, 
pθ  is the area ratio between the upper and right pistons, 3V  is the force, 

3q  is the displacement. The 

values of 
p

SC , 
pθ , 3V , and 

3q  are equal to the values of 
p

SC , pθ , 
3V , and 

3q , respectively. The left half of 

the equivalent model (a) is the mechanical stiffness given by Eq. (11), and the right half shows the electrical 

properties of the transducer used to convert between mechanical and electrical energy. The volume in the 

cylinder is constant, and the pressure in the cylinder is uniform. The cylinder is fixed, and does not move. The 

equivalent mechanical model (a) can be transformed into the mechanical model (b). In this paper, the equivalent 

mechanical models (a) and (b) shown in Fig. 2 are referred to subsequently as imaginary equivalent mechanical 

model and the perfect equivalent mechanical model, respectively. The stiffness of the electrical part is written as  
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Equation (16) implies that the stiffness of the electrical part is proportional to the stiffness of the mechanical part. 

The original and equivalent mechanical models, when electrical impedance 
eZ  is coupled to the piezoelectric 

element, are shown in Fig. 3. The electrical impedance 
eZ  is shown as the mechanical impedance eZ  in the 

imaginary equivalent mechanical model and transformed into the mechanical impedance 
mZ  in the perfect 
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Fig. 2. Equivalent mechanical models of a piezoelectric element: (a) imaginary model and (b) perfect model. 
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Fig. 3. Original and equivalent mechanical models of a piezoelectric element with electrical impedance: (a) 

original model, (b) imaginary model, and (c) perfect model. 



equivalent mechanical model. The mechanical impedance 
mZ  is written as follows. 

 2 2

m e p e pZ Z θ Z θ  . (17) 

The lower end of the equivalent stiffness 
zk  in Fig. 3 (b) is free when the electrodes of the piezoelectric 

element are shorted, and fixed when the electrodes are opened. When the electrodes are shorted, the electrical 

property of the piezoelectric element does not have any physical effect. 

2.2. Governing equations 

   An example model of for application of vibration suppression using a piezoelectric element and electrical 

impedance 
eZ  is shown in Fig. 4. In this case, the cantilever is the host structure that is experiencing vibration 

suppression, and it is excited by external force 
ef . The piezoelectric element is attached to the host structure 

with an adhesive bond. Vibration suppression using a tuned LR circuit can suppress only a single vibration mode. 

Therefore the frequency range considered in this analysis is around the natural frequency of the targeted 

vibration mode, and the other vibration modes are ignored in theoretical analysis. In this case, their influences 

are small. The equation of motion when the electrodes of the piezoelectric element are shorted is written as 

follows.  
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Fig. 4. A model of vibration suppression using a piezoelectric element and electrical impedance. 



where ξ  is the modal displacement, 
bρ  and pρ  are the densities of the beam and the piezoelectric element, 

respectively, 
bE  is the Young's modulus of the beam, 

bl , 
bw , 

bt  are the length, width, and thickness of the 

beam, respectively, 
nt  is the distance between the neutral axis and the adverse side of the beam within the range 

where the piezoelectric element is attached, 
lx , 

rx , 
fx  are the distance between the clamped end and the left 

and right endpoints of the piezoelectric element and the point where the external force is added, respectively, ψ  

is the shape function of the targeted vibration mode. The x  axis is the longitudinal direction and the origin is at 

the clamped end. The variable z  denotes the distance from the neutral axis. Since this cantilever is thin, the 

shear deformation and rotary inertia of the cantilever are ignored. As written in Eq. (19), the shape function ψ  

used in this paper is normalized as the modal mass M  becomes 1. When the electrodes are shorted, the 

electrical property of the piezoelectric element does not affect the system. The equation of motion (18) is derived 

from the simple mechanical model shown in Fig. 5. Here the cylinder is fixed in space, and the area ratio 
kθ  is 

written as 
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Because pk  and 
zk  are in the proportional relation from Eq. (16), the imaginary and perfect equivalent 

mechanical models when the electrodes of the piezoelectric element are shunted by the electrical impedance 
eZ  

are drawn as Fig. 6. From these equivalent mechanical models, the governing equations are written as follows. 
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Fig. 5. Equivalent mechanical model of the targeted vibration mode with a short-circuited piezoelectric element. 
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Fig. 6. Equivalent mechanical models of the targeted vibration mode with a piezoelectric element shunted by 

electrical impedance eZ : (a) imaginary model and (b) perfect model. 
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where Θ  is the modal electromechanical coupling coefficient, and given as follows. 

 p kΘ θ θ . (30) 

2.3. Passive vibration suppression using a LR circuit 

   Models for passive vibration suppression using series and parallel LR circuits are shown in Fig. 7. Electrical 

impedances of the series and parallel LR circuits are written as 
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where j  is the imaginary unit, ω  is the excitation frequency, L  is the inductance, and R  is the resistance. 

The perfect equivalent mechanical models are depicted in Fig. 8. Compared to a typical mechanical vibration 

absorber, the positions of the dashpots are different. From Eqs. (28), (29) and (31), the nondimensional 

compliance is derived as 
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Fig. 7. Schematic diagrams of passive vibration suppression using series and parallel LR circuits: (a) series LR 

circuit and (b) parallel LR circuit. 
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Fig. 8. Perfect equivalent mechanical models of passive vibration suppression using series and parallel LR 

circuits: (a) series LR circuit and (b) parallel LR circuit. 
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Here Ξ  and 
eF  are the complex amplitude of ξ  and 

ef , respectively. From Eq. (32), the magnitudes of the 

nondimensional compliance 
Cu , mobility 

Mu , and accelerance 
Au  are given as follows. 
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2.3.1. Optimum tuning in compliance 

   The two fixed points method [12] is common for finding the optimum natural frequency ratio and the 

resistance ratio of the additional one degree of freedom system that minimizes the maximum amplitude in the 

frequency domain. The two fixed points method is often used in optimum tuning of mechanical vibration 

absorbers because of its simplicity; it is also applied to the optimum tuning of the series and parallel LR circuits 

in this paper.  

   Because the magnitude of the nondimensional compliance (43) has two fixed points that are independent of 

the resistance ratio, the optimum natural frequency ratio is determined so that amplitudes at the two fixed points 

become equal, and the optimum resistance ratio is derived so that amplitude is maximized at the two fixed 

points. 

   The optimum natural frequency ratio in the magnitude of the nondimensional compliance (43) is given for 

the condition that the amplitudes at two fixed points―given by A and B―are equal. 
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The nondimensional frequencies of the two fixed points are given as 
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The amplitudes at the two fixed points are derived as follows. 
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The optimum resistance ratios at the two fixed points are given as 
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where the prime '  denotes g  . Aδ  and Bδ  are not equal; however, the difference is minute. The 

arithmetic average, geometric average, and root mean square of Aδ  and Bδ  can all be used as the optimum 

resistance ratio because the difference between them is small enough to be ignored. In this paper, the optimum 



resistance ratio is defined by root mean square because of simplicity of the expression. 
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As indicated by Eqs. (53) and (57), both optimum natural frequency ratio and optimum resistance ratio are 

determined only by the equivalent stiffness ratio β . 

2.3.2. Optimum tuning in mobility 

   Optimum values of the series and parallel LR circuits in terms of the magnitude of the nondimensional 

mobility can be derived by the two fixed points method as well as in terms of the magnitude of the 

nondimensional compliance. The optimum natural frequency ratio, the nondimensional frequencies of the two 

fixed points, the amplitudes at the two fixed points, and the optimum resistance ratio are given as follows. 
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2.3.3. Optimum tuning in accelerance 

   Optimum values of the series and parallel LR circuits for the magnitude of the nondimensional accelerance 

can be derived by the two fixed points method as well as for the magnitude of the nondimensional compliance. 

The optimum natural frequency ratio, the nondimensional frequencies of the two fixed points, the amplitudes at 

the two fixed points, and the optimum resistance ratio are given as follows. 
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2.3.4. Optimum values of the inductance and the resistance 

   Using the optimum natural frequency ratio optf  and the optimum resistance ratios Soptδ  and Poptδ , the 

optimum values of the inductance and the resistance are formulated as follows. 
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 , (66) 
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2.4. Comparison between series and parallel LR circuits 

2.4.1 Performance comparison 

   The vibration suppression performance is evaluated based on the amplitude at the two fixed points because 

the amplitude at these points is maximized. The amplitudes at the two fixed points for the compliance, mobility, 

and accelerance are given by Eqs. (55), (60), and (64), respectively. The amplitudes are evaluated by using only 

the equivalent stiffness ratio β  as an independent variable. The relationship between the amplitude at the two 

fixed points and the equivalent stiffness ratio β  is shown in Fig. 9. The amplitude of a series LR circuit is 

smaller than that of a parallel LR circuit for the compliance and mobility, and they are equal in the accelerance. 

The amplitudes of series and parallel LR circuits are almost equal when the value of the equivalent stiffness ratio  
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Fig. 9. The relationship between the amplitude at the two fixed points and the equivalent stiffness ratio: (a) in 

compliance, (b) in mobility, and (c) in accelerance. 

 

β  is much smaller than 1. 

   The performance of a typical mechanical vibration absorber is evaluated based on the mass ratio. By contrast, 

the performance of vibration suppression using piezoelectric elements uses the stiffness ratio because the 

electrical properties of a piezoelectric element correspond to a spring in the equivalent mechanical model. 

However, the mass ratio can also be used in vibration suppression with piezoelectric elements and LR circuits. 

From Eqs. (37), (41), and (66), the equivalent mass ratio is given as follows. 
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LΘ β
μ

M f
  . (68) 

The optimum natural frequency ratio optf  approaches 1, and so the values of the mass and stiffness ratios are 

nearly equal. The performances of mechanical and electrical vibration absorbers can be compared by using the 

mass and stiffness ratios. 

   From Eqs. (32)-(34), the stiffness and damping added by the additional electrical system are evaluated by 

SβG  and 
PβG . This paper defines added stiffness ratio 

Kγ  and added damping ratio 
Dγ  as follows. 
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As an example, 
Kγ  and 

Dγ  with 0.030β   are shown in Fig. 10. In this example, optimum values of LR 

circuits in the compliance were adopted. The results of a typical mechanical vibration absorber (MVA) using the 

same stiffness ratio are also shown in Fig. 10. Around the natural frequency, the added stiffness ratio of a series 

LR circuit is larger than that of a parallel LR circuit, and the added damping ratios are nearly equal. These are 

the reasons that the performance of a series LR circuit is small degree better than that of a parallel LR circuit in 

terms of the compliance and mobility. The added stiffness ratios approach β  when g  becomes large. The  
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Fig. 10. Frequency characteristics of the added stiffness and damping ratios of series and parallel LR circuits and 

a typical mechanical vibration absorber using 0.030β  : (a) added stiffness ratio and (b) added damping ratio. 

 

added damping ratio of a series LR circuit approach Sopt optβδ f  when g  becomes small. A series LR circuit 

gives damping to the main system in the frequency range less than the natural frequency. 

2.4.2 Comparison of optimum values of inductance 

   Inductance should be tuned so that the system has an electrical resonance. In this case, the resonance 

frequency of the electrical system is nearly equal to the natural frequency of the main system. This represents an 

optimal condition. Because the added stiffness of a series LR circuit is larger than that of a parallel LR circuit, as 

shown in Fig. 10 (a), the optimum natural frequency ratio of a series LR circuit is larger than that of a parallel 

LR circuit. As a result, the optimum values of the inductance of a series LR circuit are smaller; however, the 

difference is usually small because of the smallness of the equivalent stiffness ratio β . 

2.4.3 Comparison of optimum values of resistance 

   In general, the equivalent stiffness ratio is much smaller than 1. In this case, the ratio of optimum values of 

the resistances is given as 

 Sopt Popt Sopt Sopt Popt

Sopt p Popt Popt p

1 1 1 1 1 1 1
: 2 : 4 :1

2S S
R R δ δ δ

f C Ω δ f C Ω
  , (71) 

where SoptR  and P optR  are the optimum resistances of series and parallel LR circuits, respectively, and Soptf  

and Poptf  are the optimum natural frequency ratios of series and parallel LR circuits, respectively. Soptδ  and 

Poptδ  are given by Eqs. (57), (61), and (65), and they are usually much smaller than 1; therefore, P optR  is much 

larger than SoptR . 

   Since the electrical resonance of the additional electrical system suppresses vibration of the host structure, 

the current which flows back and forth between the inductance and the capacitance should be large. In the 

method using a series LR circuit, the amplitude of electrical charge becomes large if the resistance is small. By 

contrast, the amplitude of electrical charge for the method using a parallel LR circuit becomes large if the 

resistance is large. These are the reasons that P optR  is much larger than SoptR . 



2.4.4 Summary of comparison 

   A series LR circuit is usually superior to a parallel LR circuit in terms of performance; however, there are 

some exceptions. When the value of 
p

SC  is large and SoptR  is small, the performance is greatly decreased 

because of the variation in the value of the resistance. In other words, the performance of a parallel LR circuit is 

more robust than that of a series LR circuit because P optR  is very large. The same thing is adopted for the value 

of Ω . The circuit should be chosen in consideration of not only performance but also robustness. 

2.5 Dielectric loss of a piezoelectric element and internal resistance of an inductor 

   In practice piezoelectric elements dissipate some energy due to dielectric loss. This phenomenon is caused by 

the relaxation time of polarization. As shown in Fig. 11 (a), the dielectric loss can be expressed by a parallel 

resistance 
CR  in the equivalent circuit. 

CR  is given as follows. 

 
p
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C T

R
ωC δ

 , (72) 

where δ  is the dielectric loss factor. When 
CR   , there is no energy loss.  

   Similarly, inductors also dissipate energy because they have not only inductance but also internal resistance. 

As shown in Fig. 11 (b), the internal resistance can be expressed by a series resistance 
LR . 

   If the dissipated energy due to 
CR  and 

LR  is very small, they are negligible. However, sometimes the 

influence of 
CR  and 

LR  cannot be ignored. The models of passive vibration suppression, including 
CR  and 

LR , are shown in Fig. 12. The influence of 
CR  and 

LR  is identical to the resistances in the parallel and series 

LR circuits, respectively. The nondimensional compliance then is given as  

 

 

 

2

S2

st

2

P2

1
series

1

1
parallel

1

g βGΞ

Ξ

g βG


  

 

  

, (73) 

 
   

2

1
S2 2 2

1 1

2

1 4 2C C

g jδ fg
G

δ δ f g j δ δ fg

 


   
, (74) 

 

p

TC CR

L

LR

(a) (b)

 

Fig. 11. Equivalent circuit including the dielectric loss of the piezoelectric element and the internal resistance in 

the inductor: (a) dielectric loss of the piezoelectric element and (b) internal resistance in the inductor. 
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Fig. 12. Schematic diagrams of passive vibration suppression including 
CR  and 

LR : (a) series LR circuit and 

(b) parallel LR circuit. 
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In this case, it is impossible to derive the optimum values of the circuit theoretically by use of the two fixed 

points method because there are no fixed points in Eq. (73). However, the values can be estimated approximately. 

The practical models are intermediates between the two ideal models shown in Fig. 7. Therefore, the optimum 

values in the practical models are expected to be close to the optimum values in the ideal models. From Eqs. (53), 

(58), and (62), the optimum natural frequency ratios in the practical models are expected to approach 1. The total 

resistance ratios in the practical models are defined as follows. 

 
 

 

S

T

P

series

parallel

L C

L C

δ δ δ
δ

δ δ δ

  
 

 

. (80) 

From Eqs. (57), (61), and (65), the optimum resistance ratios in the ideal models are almost equal although the 

values of the resistances are significantly different. It suggests that the optimum resistance ratio does not depend 

on the position of the resistance. Therefore, the total resistance ratios in the practical models should be tuned to 

be close to the optimum resistance ratios in the ideal models. The value of the resistance, which should be used 

in the experiment, can be estimated when the resistance ratios Cδ  and Lδ  are given. If C Lδ δ  is larger than 

the optimum resistance ratio, LR circuits can not be optimally tuned. Therefore, piezoelectric elements and 

inductors with small resistance ratios should be chosen. 

2.6 Effect of stiffness of adhesive bond 

   Piezoelectric elements are attached to the target with adhesive bonds. In the preceding subsections, 

piezoelectric elements were assumed to be fixed to the host structure, and the effect of the adhesive bond was 

ignored. However, the stiffness of the adhesive bond is generally not large enough to be ignored. The elemental 

imaginary and perfect equivalent mechanical models including the stiffness of adhesive bonds are shown in Fig. 



13. Here 
a1k  is the stiffness of the adhesive bond, and 

a1x  is the displacement of the connecting point between 

the adhesive bond and the piezoelectric element. From these equivalent mechanical models, the equilibria of 

force are given as follows. 
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Equations (81)-(83) are equivalently transformed into the following equations. 
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The equivalent mechanical models are transformed into Fig. 14. Here pC  is given as  
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From Eq. (86), the apparent elastic compliance is defined as follows on the assumption that length, width, and 
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Fig. 13. Elemental equivalent mechanical models with the stiffness of the adhesive bond: (a) imaginary model 

and (b) perfect model. 
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Fig. 14. Simplified elemental equivalent mechanical models with the stiffness of the adhesive bond: (a) 

imaginary model and (b) perfect model. 

 

thickness of the piezoelectric element are constant. 
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Apparently the value of the elastic compliance is varied by the stiffness of the adhesive bond; however, the 

values of the piezoelectric constant 
31d  and the electrical permittivity 33

Tε  are not varied at all. It is difficult to 

predict the value of 
a1k  accurately because the value depends on not only the longitudinal shear strength of the 

adhesive bond but also the amount and the distribution of the adhesive bond. From Eq. (90), the apparent 

Young’s modulus of the piezoelectric element is decreased, and the decrease causes performance deterioration. 

Therefore, the longitudinal shear strength of the adhesive bond should be high. 

2.7 Effect of restraint in width direction 

   In the preceding subsections, the properties of the piezoelectric element in the width direction are ignored for 

simplicity. If the Poisson’s ratio of the piezoelectric element is very small and the piezoelectric element is not 

bound in width direction, there is no issue. However, the Poisson’s ratio is generally not so small, and 

piezoelectric elements are usually restrained not only in the longitudinal direction but also in the width direction 

by the adhesive bond. To formulate the properties of the attached piezoelectric element accurately, the restraint in 

width direction must be taken into consideration. As shown in Fig. 15 (a), the restraint of the piezoelectric 

element in width direction can be expressed by the stiffness of the adhesive bond a2k  as well as in longitudinal 

direction. Since the effect of the restraint in longitudinal direction has already been studied in the preceding 

subsection, only the effect of the restraint in width direction should be investigated in this subsection. The 

restraint model (in width direction only) is shown in Fig. 15 (b). The piezoelectric constitutive equations are 

given as, 
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where pν  is Poisson’s ratio. The piezoelectric element was assumed to be isotropic in longitudinal and width  
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Fig. 15. Theoretical models of a piezoelectric element restrained by stiffness of the adhesive bond: (a) full 

restraint model and (b) restraint model only in width direction. 

 

directions. The subscript 2 denotes the width direction. Equations (91)-(93) are transformed as follows. 
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From Eqs. (96)-(98), the elastic compliance, the piezoelectric constant, and the electrical permittivity in Eqs. (1) 

and (2) are turned into 11

Es , 
31d  , and 33

Tε , apparently because of the restraint in width direction. Usually the 

changes are larger, and all of these changes improve the performance of the piezoelectric elements. It is also 

difficult to obtain the accurate value of a2k  theoretically; however, it can theoretically be said that piezoelectric 

elements should also be fixed in the width direction. 

3. Validation of theoretical analysis by simulation and experiment 

3.1. Validation of optimum value of resistance 

   To validate the effectiveness of the new formulations of the resistance, simulations were carried out. The 

simulated magnitudes of the nondimensional compliance using series and parallel LR circuits with 0.01000β   

are shown in Fig. 16. Here optδ  denotes the optimum resistance ratio derived in this paper, and oldδ  denotes 

the resistance ratio adopted as an approximate optimum resistance ratio in previous papers [3-6]. The values of 

the resistance ratios are shown in Table 1. It is shown that the optimum resistance ratios formulated in this paper 



are superior to previous ones. 

   In this paper, the optimum resistance ratios were defined by root mean square of 
Aδ  and 

Bδ . The values of 

the resistance ratios derived by arithmetic average, geometric average, and root mean square are written in Table 

2. It is shown that the results of three kinds of averages are almost equal, and these differences do not have 

influence on the frequency response functions. 
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Fig. 16. Simulated magnitudes of the nondimensional compliance with two kinds of the values of the resistance 

and 0.01000β  : (a) series LR circuit and (b) parallel LR circuit. 

 

Table 1 

The resistance ratios used in the simulations shown in Fig. 16. 

 
oldδ  optδ  

Series LR circuit 0.07036 0.06108 

Parallel LR circuit 0.07089 0.06139 

 

Table 2 

The resistance ratios derived by arithmetic average, geometric average, and root mean square. 

 Point A Point B Arithmetic average Geometric average Root mean square 

Series LR circuit 0.06320 0.05890 0.06105 0.06101 0.06108 

Parallel LR circuit 0.06211 0.06066 0.06139 0.06138 0.06139 

 

3.2. Validation of optimum values in mobility and accelerance 

3.2.1. Experimental apparatus 

   A schematic diagram of the experimental apparatus used in this study is shown in Fig. 17. The material 

properties of the apparatus are written in Tables 3 and 4. Here accm  is the mass of the accelerometer, and accx  



is the location of the accelerometer. Two pieces of piezoelectric elements were attached to the cantilever; one 

was used for vibration suppression and the other for excitation of the beam. Both conductive and non-conductive 

adhesive bonds were used. The conductive type was used to simplify wiring, and the non-conductive type for 

fixing and electrical insulation. Specifically, a drop of the conductive adhesive bond was placed on the center of 

the piezoelectric elements and it was surrounded by the non-conductive adhesive bond. An inductor made by a 

generalized impedance converter was used in this experiment because the size of an actual coil is too large. In 

this experiment, the fundamental vibration mode of the cantilever was suppressed. The equivalent stiffness ratio, 

the capacitance of the piezoelectric element, the modal stiffness, and the modal damping coefficient, which were 

experimentally measured, are shown in Table 5 [14]. Here, the superscript x denotes that the values were 

obtained experimentally. The modal stiffness were derived as 

  
2

x x

S2K πF , (100) 

where x

SF  is the natural frequency of the fundamental vibration mode when the electrodes of the piezoelectric 

element are shorted in the experiment. The electromechanical coupling coefficient derived by Eq. (37) and the 

modal mass are also written in Table 5. The experimental result of the magnitude of the nondimensional 

compliance with short circuit is shown in Fig. 18. 
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Fig. 17. Schematic diagram of the experimental apparatus. 

 

Table 3 

Material properties of the cantilever and the accelerometer. 

Cantilever 

Length bl  0.280  m  

Width bw  0.0500  m  

Thickness 
bt  0.00300  m  

Density bρ  7900  3kg m  

Young’s modulus 
bE  112.06 10  2N m  

Accelerometer 
Mass accm  0.20  g  

Location accx  0.270  m  

 



Table 4 

Material properties of the piezoelectric elements. 

Length pl  0.0320  m  

Width pw  0.0220  m  

Thickness pt  0.000230  m  

Density pρ  8050  3kg m  

Elastic compliance 11

Es  111.55 10  2m N  

Young’s modulus pE  106.45 10  2N m  

Piezoelectric constant 
31d  102.30 10  C N  

Electrical permittivity 33

Tε  82.35 10  F m  

Poisson’s ratio pν  0.30   

Dielectric loss factor δ  0.020   

Location of the piezoelectric element 

for vibration suppression 
 l r,x x   0.0050,0.0370  m  

Location of the piezoelectric element 

for excitation 
 l r,x x   0.0400,0.0720  m  

 

Table 5 

Experimentally measured parameters of the cantilever with the two piezoelectric elements. 

Equivalent stiffness ratio xβ  0.00411   

Capacitance x

pC  0.0480  μF  

Electromechanical coupling coefficient xΘ  0.00273  N V  

Modal stiffness xK  37800  N m  

Modal damping coefficient xD  0.567  Ns m  

Modal mass M  1.00  kg  
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Fig. 18. The experimental result of the magnitude of the nondimensional compliance with short circuit. 



3.2.2. Simulated and experimental results 

   The simulated and experimental magnitudes of the nondimensional compliance, mobility, and accelerance 

using optimum values in compliance, mobility, and accelerance, respectively, are shown in Figs. 19 and 20,  
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Fig. 19. Simulated results of magnitudes of the nondimensional compliance, mobility, and accelerance using the 

optimum values: (a) compliance with series LR circuit, (b) compliance with parallel LR circuit, (c) mobility with 

series LR circuit, (d) mobility with parallel LR circuit, (e) accelerance with series LR circuit, and (f) accelerance 

with parallel LR circuit. 
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Fig. 20. Experimental results of magnitudes of the nondimensional compliance, mobility, and accelerance using 

the optimum values: (a) compliance with series LR circuit, (b) compliance with parallel LR circuit, (c) mobility 

with series LR circuit, (d) mobility with parallel LR circuit, (e) accelerance with series LR circuit, and (f) 

accelerance with parallel LR circuit. 

 

respectively. The values of the material properties used in the simulations are the experimental ones written in 

Table 5. The damping coefficient of the cantilever was ignored in the theoretical analysis; however, it was 

included in these simulations. In the mobility and the accelerance, the results using the LR circuit which was 



tuned optimally in terms of the compliance are also shown. The theoretical optimum values and the experimental 

values of the LR circuit are listed in Tables 6 and 7, respectively. These frequency response functions change 

sensitively depending on the value of the inductance. The magnitude relation of the inductance values in the 

experiment agrees well with the simulated ones. The reason why the values of the inductance are large is that the 

capacitance value of the piezoelectric element is small. The theoretical optimum values and the experimental 

ones of the resistance are much different. The detail is described in the following subsection. It can be said that 

optimum values in the proper frequency response function should be adopted. 

 

Table 6 

Theoretical optimum values of the LR circuit in compliance, mobility, and accelerance. 

  Compliance Mobility Accelerance  

Series LR circuit 
optL  549  548  547  H  

optR  38.39 10  38.37 10  38.36 10  Ω  

Parallel LR circuit 
optL  552  551  550  H  

optR  61.36 10  61.36 10  61.36 10  Ω  

 

Table 7 

Experimental values of the LR circuit in compliance, mobility, and accelerance. 

  Compliance Mobility Accelerance  

Series LR circuit 
L  553  552  550  H  

R  35.10 10  35.10 10  35.10 10  Ω  

Parallel LR circuit 
L  558  555  555  H  

R  62.41 10  62.41 10  62.41 10  Ω  

 

3.3. Various resistance ratios in experiment 

   The difference between the theoretical and experimental resistance values in Tables 6 and 7 is due to the 

dielectric loss of the piezoelectric element and the internal resistance of the inductor made using the generalized 

impedance converter. CR  and LR  measured experimentally are written in Table 8. Here CR  was measured at 

 
1 2

xω K . CR  obtained by Eq. (72) and  
1 2

xω K  is also written in Table 8 in parentheses. The various 

resistance ratios in the experiment and the theoretical optimum resistance ratios are given in Table 8. Only the 

values with respect to compliance are listed because the difference among compliance, mobility, and accelerance 

is small. The experimental total resistance ratios and the theoretical optimum resistance ratios agree well. These 

results imply that the optimum resistance value in the experiment can be estimated and dielectric loss of 

piezoelectric elements should be taken into consideration when the material of the piezoelectric elements is 

determined. 



Table 8 

Values of 
CR , 

LR , and various resistance ratios in the experiment and theoretical optimum resistance ratios. 

  Series LR Parallel LR  

Experimental values 

CR   6 63.61 10 3.6 10   Ω  

LR  37  Ω  

Cδ  0.0149  0.0149   

Lδ  0.00017  0.00017   

Sδ  0.0238  -  

Pδ  - 0.0224   

Tδ  0.0389  0.0375   

Theoretical optimum values optδ  0.0392  0.0393   

 

3.4. Investigation of stiffness of adhesive bond in experiment 

   To investigate the effect of the adhesive bond, a calculation model was constructed as shown in Fig. 21. The 

accurate curvature of the mode shape of the cantilever can be derived by the calculation model. The cantilever 

was divided into 280 segments, and the equivalent mass and stiffness of each segment were theoretically 

obtained. The stiffness and the mass of the two piezoelectric elements and the mass of the accelerometer were 

taken into consideration. The theoretically calculated equivalent stiffness ratio cβ , capacitance c

pC , modal 

stiffness 
cK , and modal electromechanical coupling coefficient cΘ  using various 

a1k  and 
a2k  are shown in 

Fig. 22. The material parameters listed in Tables 3 and 4 were used in this calculation. Note that the axes of c

pC  

are reversed. The results show that the equivalent stiffness ratio and the capacitance of the piezoelectric element 

are greatly affected by the stiffness of the adhesive bond. Those values are varied significantly around 

7

a1 p 1.02 10 N mk k    and 7

a2 p2 2.16 10 N mk k   . Here  

 
p p

p2 p

p

l t
k E

w
 . (101) 

The theoretically calculated combinations of a1k  and a2k , which satisfy either c 0.00411β   or 

c

p 0.0480μFC  , are shown in Fig. 23. The values of the intersection point are 8

a1 1.26 10 N mk    and 

7

a2 7.76 10 N mk   . These are the estimated values of a1k  and a2k  in the experimental apparatus. Both a1k  

and a2k  are larger than pk  and p2k , respectively; however, the value of the equivalent stiffness ratio can still 

be improved by using stiffer adhesive bonds. 

   The reason why a2k  is smaller than a1k  is that the distribution of the adhesive bond were not uniform in 

the experimental apparatus. An extreme example is shown in Fig. 24. In this example, the piezoelectric element 

is restrained only in the longitudinal direction. By comparison, a1k  and a2k  become the same value if the 

adhesive bond is uniformly spread on the entire piezoelectric element. Since the difference between the 

estimated values of a1k  and a2k  is not so large, it is reasonable to suppose that the theoretical analysis with 



respect to adhesive bonds is effective. 

 

Mass

Rotary spring

Hinge

 

Fig. 21. Calculation model of the cantilever with the piezoelectric elements to derive the mode shape. 
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Fig. 22. Theoretically calculated parameters of the cantilever with the piezoelectric elements using various a1k  

and a2k : (a) equivalent stiffness ratio, (b) capacitance, (c) modal stiffness, and (d) electromechanical coupling 

coefficient. 
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Fig. 23. Theoretically calculated results of the combinations of 
a1k  and 

a2k  which satisfy c 0.00411β   and 

c

p 0.0480μFC  , respectively. 
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Fig. 24. An extreme example of the distribution of the adhesive bond. 

 

4. Conclusion 

   The governing equations for passive vibration suppression with series and parallel LR circuits were derived 

using the new equivalent mechanical model of a piezoelectric element. The optimum values of the series and the 

parallel LR circuits were formulated by using the two fixed points method not only in terms of compliance but 

also in terms of mobility and accelerance. The difference between the series and parallel LR circuits was 

investigated theoretically. The effects of the dielectric loss of the piezoelectric elements, the internal resistance of 

the inductor, and the stiffness of adhesive bonds were theoretically investigated. The theoretical analysis was 

validated through numerical simulations and experiments. The performance of the passive vibration suppression 

technique using LR circuits was determined based on the value of the equivalent stiffness ratio as well as the 

mass ratio in typical mechanical vibration absorbers. The series LR circuit is superior to the parallel one in terms 

of compliance and mobility. However, the parallel LR circuit is superior to the series one in terms of robustness 

with respect to the variation of the resistance. Therefore, it is necessary to use two kinds of LR circuits properly 

according to the host structure and the piezoelectric element. This work demonstrated that the total resistance 

ratio, which includes the dielectric loss of the piezoelectric element and the internal resistance of the inductor, 



should be tuned to be equal to the optimum resistance ratio, and an adhesive bond with high longitudinal shear 

strength should be used. 
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