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We develop a consistent relativistic generalization of collective coordinate quantization of field theory

solitons. Our principle of introducing collective coordinates is that the equations of motion of the

collective coordinates ensure those of the original field theory. We illustrate this principle with the

quantization of spinning degrees of freedom of Skyrmion representing baryons. We calculate the leading

relativistic corrections to the static properties of nucleons, and find that the corrections are non-negligible

ones of 10% to 20%.
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I. INTRODUCTION

Collective coordinates of a field theory soliton describe
the motion of the soliton in the symmetry directions of the
field theory action. They correspond to the zero modes
around the soliton and are important in understanding its
low energy dynamics. The simplest way of introducing the
collective coordinates is to promote the (originally con-
stant) parameters of a static soliton to time-dependent
dynamical variables by discarding the fluctuation of non-
zero modes. This is valid in the nonrelativistic cases where
time derivatives of the collective coordinates are small
enough.

However, in certain circumstances, it is inappropriate to
assume that solitons move slowly; relativistic corrections
come to be important. A typical example is the spinning
Skyrmion representing baryons [1]. In the standard quan-
tization of the rotational collective coordinate of the
Skyrmion [2,3], the mass of the baryons is given as the
sum of the energy of the static classical solution and the
rotational kinetic energy of a spherical rigid body. For the
nucleon (delta), about 8% (30%) of the total mass comes
from the rotational energy. This leads to the picture of a
baryon rotating with a velocity comparable to the light
velocity at the radius of order 1 fm. Since the baryon
rotates so fast, it is natural to expect that the baryon cannot
maintain its original spherical shape. The collective coor-
dinate of rotation should be introduced in a consistent way
that can express the deformation.

The purpose of this paper is, on the basis of a general and
simple principle of introducing the collective coordinates,
to carry out the quantization of rotational degrees of free-
dom of the SUð2Þ Skyrmion to evaluate the relativistic
corrections to the static properties of nucleons. While
several authors have discussed the deformation of spinning
Skyrmions with various physical pictures (see Refs. [4–8]
for earlier works), we emphasize that the deformation is
naturally induced in our treatment of collective coordi-

nates. Another feature of our treatment of a rotational
collective coordinate is that we introduce it through
coordinate-transformed static solitons with a new coordi-
nate depending on the time derivative of the collective
coordinate [see Eq. (5) together with (6)].

II. GENERAL PRINCIPLE

Our basic idea is to avoid mismatch between the field
theory dynamics and the collective coordinate dynamics.
While the system of collective coordinates has a finite
number of degrees of freedom, the original field theory
has an infinite one. Therefore, even when the equation of
motion (EOM) of collective coordinates holds, it does not
necessarily mean that the soliton configuration satisfies its
field theory EOM. Then our general principle of introduc-
tion of collective coordinates is simply stated as follows:
Collective coordinates must be introduced in such a way
that the EOM of the collective coordinates ensures that of
the original field theory. If the original field theory is a
relativistic one, this principle should automatically lead to
a relativistic dynamics of collective coordinates.
Oneway to realize this principle is, starting with suitably

introduced collective coordinates, to integrate over the
nonzero modes around the soliton. Namely, we solve the
EOM of the nonzero modes to express them in terms of the
collective coordinates. Since the field theory EOM is
equivalent to the set of EOMs of both the zero and the
nonzero modes, solving the EOM for the latter should lead
to a system of collective coordinates satisfying our princi-
ple. In fact, the relativistic energy of the center-of-mass

motion, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
, is obtained by this method in

scalar field theories in 1þ 1 dimensions [9,10].
However, no explicit calculation by this method has been
carried out for more complicated cases other than the
center of mass, in particular, for the collective coordinate
of rotational motion.
In this paper, we propose another way: First, the collec-

tive coordinates are put into the static classical solution in
such a way as to fulfill our principle of EOMs. Then, the
(relativistic) Lagrangian of the collective coordinates is
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obtained simply by inserting this soliton field into the field
theory Lagrangian density and carrying out the space in-
tegration. In this process, nonzero modes do not appear; in
other words, the EOM of nonzero modes implies that they
are equal to zero in this framework.

In the case of the collective coordinateXðtÞ of the center
of mass of a soliton in a scalar field theory, we can show
that our principle is satisfied, up to Oð@60Þ terms, by the

relativistic replacement of the space coordinate x of the

static soliton ’clðxÞ by ðx� XðtÞÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
with V ¼ _X,

leading to the relativistic Lagrangian L ¼ �M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
.

On the other hand, it is a nontrivial task to realize our
principle for the collective coordinate of space rotation. In
the rest of this paper, we illustrate our general method with
two-flavor spinning Skyrmion to obtain the relativistic
corrections to the earlier results [2,3]. Our finding here is
that our principle of EOMs can be satisfied, up to Oð@40Þ
terms, by taking the coordinate-transformed static soliton
given by (5) and (6) with suitably chosen functions AðrÞ,
BðrÞ, and CðrÞ.

Although we focus on the spinning collective coordinate
of the Skyrmion in the rest of this paper, we wish to
emphasize that our method of extracting the system of
collective coordinates on the basis of the principle of
EOMs is simpler and has wider applicability since we are
not bothered by the nonzero modes. In addition, our
method is interesting also in that we can directly know
how the soliton deforms due to fast collective motion, since
the collective coordinates are introduced by deforming the
coordinate of the static solution.

III. THE SKYRMION

The SUð2Þ Skyrme model [1] is described by the chiral
Lagrangian with the Skyrme term:

L ¼ tr

�
� f2�

16
L2
� þ 1

32e2
½L�; L��2 þ f2�

8
m2

�ðU� 12Þ
�
;

(1)

where UðxÞ is an SUð2Þ matrix and L� ¼ �iU@�U
y. The

EOM reads

@�

�
L� � 1

e2f2�
½L�; ½L�; L���

�
� im2

�

�
U� 1

2
trU

�
¼ 0:

(2)

This theory has a static soliton solution UclðxÞ ¼ expðix �
�FðrÞ=rÞ called Skyrmion, where �i are sigma matrices
and F is a function of r ¼ jxj. This static solution has a
rotational collective coordinate, that is, UclðR�1xÞ is also
an solution for any time-independent SOð3Þ matrix R. For
the Skyrmion, the space rotation is equivalent to the isospin
rotation; UclðR�1xÞ ¼ WUclðxÞW�1 with W being the
SUð2Þ matrix corresponding to R.

The standard way [2,3] to quantize these spinning de-
grees of freedom is as follows: Promoting the constant

SOð3Þ matrix R [or equivalently, the SUð2Þ matrix W] to
a time-dependent one, we take

Uðx; tÞ ¼ UclðR�1ðtÞxÞ; (3)

as the spinning Skyrmion field and insert it into the
Lagrangian density (1). Carrying out the spatial integra-
tion, we get the Lagrangian of RðtÞ, LðR; _RÞ ¼R
d3xLðUðx; tÞ ¼ UclðR�1ðtÞxÞÞ ¼ �Mcl þ 1

2I�
2, where

the rest mass Mcl and the moment of inertia I are func-
tionals of FðrÞ, and � is the angular velocity �i ¼
1
2"ijkðR�1 _RÞjk ¼ trði _WW�1�iÞ (precisely speaking, � is

the angular velocity in isospace). Note that �2 ¼
� 1

2 TrðR�1 _RÞ2. We carry out the quantization of the dy-

namical variable R using this Lagrangian.
This quantization procedure is evidently a nonrelativis-

tic one since the Lagrangian of R is simply that of a rigid
body. In addition, the field theory EOM (2) withU given by
(3) is violated by the Oð�2Þ term even if we use the EOM
of R,

ðd=dtÞ� ¼ 0: (4)

Moreover, the relativistic corrections to the various prop-
erties of baryons seem to be important as we explained in
the Introduction.

IV. DEFORMATION OF SPINNING SKYRMION

We wish to give a relativistic version of the spinning
Skyrmion field (3) on the basis of our general principle of
introducing the collective coordinates. However, it is diffi-
cult to find the complete one in a closed form. Instead, in
this paper we present the leading correction to the rigid
body approximation (3) with respect to the power of the
angular velocity �, or equivalently, the number of time
derivatives. Our spinning Skyrmion takes the form

Uðx; tÞ ¼ UclðyÞ; (5)

with y given by

y ¼ ð1þ AðrÞð _RR�1xÞ2 þ r2BðrÞTrðR�1 _RÞ2ÞR�1x

þ r2CðrÞ½ðR�1 _RÞ2R�1x�; (6)

where the functions A, B, and C are to be determined to
fulfill our principle concerning the EOMs. The form of y is
the most general one which is at most quadratic in �, odd
under x ! �x, and has the property that the left (right)
constant SOð3Þ transformation on R induces the space
(isospin) rotation. The last property is the basic one for
the quantization of Skyrmion. It can easily be seen that the
field configuration (5) with y of (6) represents a spheroidal
one.

V. DETERMINATION OF ðA;B;CÞ
For determining A, B, and C from our principle, we

substitute Uðx; tÞ of (5) into the field theory EOM (2) to
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find that its left-hand side is, upon using the EOM of Ucl,
given by��

d

dt
R�1 _R

�
y

�
i

�
Lcl
i � 1

e2f2�
½Lcl

j ; ½Lcl
i ; L

cl
j ��

�

þ r2 TrðR�1 _RÞ2ðy � �Þ � EQ1 þ ðR�1 _RyÞ2ðy � �Þ
� EQ2 þ r2½ðR�1 _RÞ2y� � � � EQ3

þ r½y� ðR�1 _RÞ2y� � � � EQ4 þOð@40Þ; (7)

with Lcl
i ¼ �iUclðyÞð@=@yiÞUclðyÞy. EQi (i ¼ 1; . . . ; 4) are

linear in ðA;B; CÞ and their first and second derivatives
with respect to r with coefficients given in terms of F and
its derivatives. Concrete expressions of EQi are very
lengthy, and they are given in the Appendix. Here, we
present a special linear combination of EQi which consists
of only a special combination Y ¼ �Aþ 3Bþ C and its
derivatives:

EQY ¼ �3EQ1 þ EQ2 � EQ3

¼
�
1þ 8

e2f2�

sin2F

r2

�
F0 d

2Y

dr2
þ

�
2F00 þ 8

r
F0 þ 8

e2f2�

�
2
sin2F

r2
F00 þ sin2F

r2
ðF0Þ2 þ 6

r

sin2F

r2
F0
��

dY

dr

þ
�
6

r
F00 þ 14

r2
F0 � 2

r3
sin2Fþ 8

e2f2�

�
8

r

sin2F

r2
F00 þ 4

r3
sin2FðF0Þ2 þ 6

r2
sin2F

r2
F0 � 2

r3
sin2F

r2
sin2F

��
Y

� 1

2r3
sin2Fþ 2

e2f2�

�
2

r

sin2F

r2
F00 þ 1

r3
sin2FðF0Þ2 þ 4

r2
sin2F

r2
F0 � 2

r3
sin2F

sin2F

r2

�
; (8)

where the prime on F denotes an r derivative. The function
YðrÞ is related to the angle average of y2 with respect to x,
1=ð4�ÞR d�xy

2 ¼ r2ð1� 4
3 r

2�2YðrÞÞ, and it seems to
represent an independent degree of freedom of the defor-
mation due to spinning.

Returning to (7), our principle of introducing the collec-
tive coordinates demands that (7) vanish identically upon
using the EOM of R. As we will see later, the EOM of R
remains unchanged from (4) even if the relativistic correc-
tions are introduced. This implies that the three functions
ðA; B; CÞ must satisfy four differential equations EQi ¼ 0
(i ¼ 1; . . . ; 4), which is apparently overdetermined.
Fortunately, EQ3 and EQ4 are not independent; we have
EQ4 ¼ � tanFEQ3 [see Eqs. (A3) and (A4)]. Therefore,
ðA; B; CÞ are determined by three inhomogeneous linear
differential equations of second order, EQi ¼ 0 (i ¼ 1, 2,
3), or another independent set EQ2 ¼ EQ3 ¼ EQY ¼ 0
with EQY given by (8). The boundary conditions for
ðA; B; CÞ at r ¼ 0 and r ¼ 1 are chosen to be the least
singular ones among those allowed by the differential
equations; ðA; B;CÞ � ð1; 1=r2; 1=r2Þ as r ! 0 and
ðA; B; C� AÞ � ð1=r; 1=r3; 1=r2Þ as r ! 1, both up to
numerical coefficients. By this choice, relativistic correc-
tions to various physical quantities of baryons, which are
given as space integrations with integrands consisting of
ðA; B; CÞ and F and their derivatives, are unambiguously
determined.

VI. LAGRANGIAN OF R

Inserting the spinning field Uðx; tÞ of (5) into the
Lagrangian density (1) and spatially integrating it, we
obtain the Lagrangian of R of the following form:

L ¼ �Mcl þ 1
2I�

2 þ 1
4J�4; (9)

where I and Mcl are the same as in the rigid body
approximation [3], and the last �4 term represents our
relativistic correction. This Lagrangian should be regarded
as the rotational motion counterpart of the relativistic

Lagrangian of center of mass; �M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p
¼ �Mþ

1
2MV2 þ 1

8MV4 þ � � � . The EOM of R derived from (9) is

d

dt
½ðI þ J�2Þ�� ¼ 0: (10)

This implies (4), which we already used in deriving the
differential equations for ðA; B; CÞ.
The coefficient J of the relativistic correction term has

two origins, J ¼ J 1 þ J 2; J 1 is from the part of the
Skyrme model Lagrangian (1) quadratic in L0 and hence is
linear in ðA; B;CÞ, while J 2 is from the part of (1) without
L0 and is quadratic in ðA; B; CÞ. The calculation of J 2 is
complicated, but fortunately we have the relation J 1 þ
2J 2 ¼ 0. This is understood by making the replacement
ðA; B; CÞ ! �ðA; B; CÞ in (6) and using the fact that � ¼ 1
must give an extremal of L for any constant � satisfying
the EOM (4) due to our principle of introducing the col-
lective coordinates and hence of determining ðA; B; CÞ.
Therefore, we have J ¼ J 1=2, which is explicitly given
by

J ¼ 4�f2�
15

Z 1

0
drr4sin2F

�
rZ0 þ 5Z� C

þ 4

e2f2�

�
sin2F

r2
ðrZ0 þ 3Zþ 2CÞ

� ðF0Þ2ðrZ0 þ Zþ CÞ
��
; (11)

with Z ¼ �2Aþ 5Bþ 2C.
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Several comments are in order: First, the moment of
inertia I in the Lagrangian (9) receives no correction from
the deformation of (6) as we mentioned before. A possible
correction to I is from the part of (1) without L0 and is
linear in ðA; B; CÞ. The vanishing of this correction is
shown by the same �-rescaling argument as we used in
deriving J 1 þ 2J 2 ¼ 0. By the same reason, further cor-
rection to y (6) of Oð@40Þ does not affect J .

Our second comment is on another way of obtaining the
expression (11) for J . The isospin charge derived from (9)
is

Ia ¼ ðI þ J�2Þ�a: (12)

On the other hand, Ia is also given by Ia ¼
R
d3xJ�¼0

V;a ,

where J
�
V;a is the Noether current of SUð2ÞV symmetry

derived from the Lagrangian density (1). By comparing
the two expressions of Ia, we can directly obtain (11) from
the Noether current. We can show in general that conserved
charges derived from the Lagrangian (9) of the R system
and the corresponding ones derived as the space integration
of the time component of the Noether currents in the
Skyrme model agree with each other up to the EOM of R
and that in the Skyrme model.

Finally, if the pion massm� in (1) is zero, the integration
(11) for J diverges at r ¼ 1. This is the case also for
relativistic corrections to other physical quantities. It is
crucial for our analysis to introduce nonzero pion mass.

VII. STATIC PROPERTIES OF NUCLEONS

The Hamiltonian of R obtained from the Lagrangian (9)
is given by

H ¼ Mcl þ 1
2I�

2 þ 3
4J�4: (13)

For obtaining the value of H for an eigenstate of the
isospin, we have to solve

I 2 ¼ ðI þ J�2Þ2�2; (14)

to express �2 in terms of a given I2.
Following [3], we evaluated f� and e in the Skyrme

Lagrangian (1) by taking the masses of nucleon, � and
pion (mN ¼ 939 MeV, m� ¼ 1232 MeV, m� ¼
138 MeV) as inputs. Our result is f� ¼ 125 MeV and e ¼
5:64. Compared with the experimental value f� ¼
186 MeV, our f� is fairly improved from that of [3], f� ¼
108 MeV, without relativistic correction. We have also
obtained the expressions of various static properties of
nucleons with relativistic correction and computed their
numerical values. For example, the isoscalar mean square
charge radius is given by hr2iI¼0 ¼ 4�

R1
0 drr4Jcl 0B ðrÞ�

ð1þ 4
3�

2r2YðrÞÞ, with Jcl 0B ðrÞ ¼ �1=ð2�2ÞðsinF=rÞ2 �
ðdF=drÞ being the baryon number density of the static
Skyrmion UclðxÞ. Our numerical results are summarized
in Table I.

As seen from the table, our relativistic correction is a
non-negligible one of roughly 10% to 20% for every static
property. (Note that each of our numerical values is not
given simply by adding the �2 correction to the value of
Ref. [3], since the parameters f� and e themselves are also
changed.) Unfortunately, the correction is not in the direc-
tion of making the theoretical prediction closer to the
experimental value for most of the quantities. However,
we emphasize that this is not a problem of our basic
principle of collective coordinate quantization; it might
be due to taking only the first term of the expansion in
powers of �2, or to the fact that the Skyrme model is
merely an approximation to QCD. In relation to the first
possibility, the ratio of the contributions of the three terms
of the Hamiltonian (13) to the baryon mass is approxi-
mately 89:7:4 for the nucleon, while it is 68:14:18 for �.
This shows that our analysis using� needs better treatment
of the relativistic correction beyond a simple expansion in
powers of angular velocity.

VIII. SUMMARY

In this paper, we proposed a general principle of intro-
ducing collective coordinates of solitons and applied it to
the quantization of spinning motion of Skyrmion. We
computed the leading relativistic corrections to the
Lagrangian of the rotational motion and various physical
quantities of baryons. Compared with the rigid body ap-
proximation, the value of the decay constant f� has be-
come fairly close to the experimental one due to the
correction, but the numerical results are not good for other
static properties of nucleons. Putting aside the problem
of comparison with the experimental values, our result
shows the importance of relativistic treatment of the spin-
ning collective coordinate beyond the rigid body
approximation.
Finally, application of our principle of collective coor-

dinate quantization to other interesting physical systems is
of course an important future subject.

TABLE I. The static properties of nucleons. Prediction of this
paper and that of Ref. [3] both use the experimental values of
ðmN;m�; m�Þ as inputs. We follow the notations of Ref. [2].

Prediction

(this paper)

Prediction

(Ref. [3]) Experiment

f� 125 MeV 108 MeV 186 MeV

hr2i1=2I¼0 0.59 fm 0.68 fm 0.81 fm

hr2i1=2I¼1 1.17 fm 1.04 fm 0.94 fm

hr2i1=2M;I¼0 0.85 fm 0.95 fm 0.82 fm

hr2i1=2M;I¼1 1.17 fm 1.04 fm 0.86 fm

�p 1.65 1.97 2.79

�n �0:99 �1:24 �1:91
j�p=�nj 1.67 1.59 1.46

gA 0.58 0.65 1.24
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APPENDIX: EXPLICIT EXPRESSIONS OF EQ1;2;3;4

In this Appendix, we present concrete expressions of the
four quantities EQi (i ¼ 1, 2, 3, 4) appearing in (7):

EQ1 ¼ 2

r2
F0A� F0 d

2B

dr2
� 2

�
F00 þ 4

r
F0
�
dB

dr
� 2

r

�
3F00 þ 7

r
F0 � 1

r2
sin2F

�
B� 1

r2

�
2F0 � 1

r
sin2F

�
C

þ 1

f2�e
2

�
4

r4
ð1� cos2FÞF0A� 4

r2
ð1� cos2FÞF0 d

2B

dr2
� 8

r2

�
ð1� cos2FÞ

�
F00 þ 3

r
F0
�
þ sin2FðF0Þ2

�
dB

dr

� 8

r3

�
ð1� cos2FÞ

�
4F00 þ 3

r
F0 � 1

r2
sin2F

�
þ 4 sin2FðF0Þ2

�
B� 2

r3
ð1� cos2FÞF0 dC

dr

� 4

r3

�
ð1� cos2FÞ

�
F00 þ 2

r
F0 � 1

r2
sin2F

�
þ sin2FðF0Þ2

�
C

�
; (A1)

EQ2 ¼ �F0 d
2A

dr2
� 2

�
F00 þ 4

r
F0
�
dA

dr
þ 2

r

�
�3F00 þ 1

r
ðcos2F� 3ÞF0 þ 1

r2
sin2F

�
Aþ

�
F0 � 1

2r
sin2F

�
d2C

dr2

þ
�
2F00 þ 1

r
ð7� cos2FÞF0 � 3

r2
sin2F

�
dC

dr
þ 2

r

�
3F00 þ 2

r
ð1� cos2FÞF0

�
C

þ 1

f2�e
2

�
2

r3

�
ð1� cos2FÞ

�
F00 þ 2

r
F0 � 2

r2
sin2F

�
þ 2 sin2FðF0Þ2

�
� 4

r2
ð1� cos2FÞF0 d

2A

dr2

� 4

r2

�
2ð1� cos2FÞ

�
F00 þ 3

r
F0
�
þ sin2FðF0Þ2

�
dA

dr
� 4

r3

�
ð1� cos2FÞ

�
8F00 þ 1

r
ð1� 2 cos2FÞF0 � 2

r2
sin2F

�

þ 5 sin2FðF0Þ2
�
Aþ 1

r2
ð1� cos2FÞ

�
4F0 � 1

r
sin2F

�
d2C

dr2

þ 2

r2

�
ð1� cos2FÞ

�
4F00 þ 1

r
ð7� 2 cos2FÞF0 � 2

r2
sin2F

�
þ 2 sin2FðF0Þ2

�
dC

dr

þ 4

r3

�
ð1� cos2FÞ

�
5F00 � 4

r
ð1þ cos2FÞF0 þ 2

r2
sin2F

�
þ 4 sin2FðF0Þ2

�
C

�
; (A2)

EQ 3 ¼ 2 cosF� EQ34; (A3)

EQ 4 ¼ �2 sinF� EQ34; (A4)

where EQ34 in (A3) and (A4) is given by

EQ34 ¼ 1

2r3
sinFþ 2

r2
cosFF0A� 1

2r
sinF

d2C

dr2
� 1

r

�
cosFF0 þ 3

r
sinF

�
dC

dr
� 1

r2

�
4 cosFF0 þ 1

r
sinF

�
C

þ 1

f2�e
2
sinF

�
2

r3

�
ðF0Þ2 � 1

r2
ð1� cos2FÞ

�
þ 4

r2
ðF0Þ2 dA

dr
þ 4

r3
F0
�
3F0 þ 2

r
sin2F

�
A� 1

r3
ð1� cos2FÞ d

2C

dr2

� 4

r2

�
ðF0Þ2 þ 1

r
sin2FF0 þ 1

r2
ð1� cos2FÞ

�
dC

dr
� 4

r3

�
ðF0Þ2 þ 4

r
sin2FF0 � 1

r2
ð1� cos2FÞ

�
C

�
: (A5)

RELATIVISTIC COLLECTIVE COORDINATE . . . PHYSICAL REVIEW D 82, 025017 (2010)

025017-5



[1] T.H. R. Skyrme, Proc. R. Soc. A 260, 127 (1961).
[2] G. S. Adkins, C. R. Nappi, and E. Witten, Nucl. Phys.

B228, 552 (1983).
[3] G. S. Adkins and C. R. Nappi, Nucl. Phys. B233, 109

(1984).
[4] M. Bander and F. Hayot, Phys. Rev. D 30, 1837 (1984).
[5] K. F. Liu, J. S. Zhang, and G. R. E. Black, Phys. Rev. D 30,

2015 (1984).
[6] E. Braaten and J. P. Ralston, Phys. Rev. D 31, 598 (1985).

[7] R. Rajaraman, H.M. Sommermann, J. Wambach, and
H.W. Wyld, Phys. Rev. D 33, 287 (1986).

[8] B. A. Li, K. F. Liu, and M.M. Zhang, Phys. Rev. D 35,
1693 (1987).

[9] J. L. Gervais, A. Jevicki, and B. Sakita, Phys. Rev. D 12,
1038 (1975).

[10] J. L. Gervais, A. Jevicki, and B. Sakita, Phys. Rep. 23, 281
(1976).

HIROYUKI HATA AND TORU KIKUCHI PHYSICAL REVIEW D 82, 025017 (2010)

025017-6

http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1016/0550-3213(83)90559-X
http://dx.doi.org/10.1016/0550-3213(83)90559-X
http://dx.doi.org/10.1016/0550-3213(84)90172-X
http://dx.doi.org/10.1016/0550-3213(84)90172-X
http://dx.doi.org/10.1103/PhysRevD.30.1837
http://dx.doi.org/10.1103/PhysRevD.30.2015
http://dx.doi.org/10.1103/PhysRevD.30.2015
http://dx.doi.org/10.1103/PhysRevD.31.598
http://dx.doi.org/10.1103/PhysRevD.33.287
http://dx.doi.org/10.1103/PhysRevD.35.1693
http://dx.doi.org/10.1103/PhysRevD.35.1693
http://dx.doi.org/10.1103/PhysRevD.12.1038
http://dx.doi.org/10.1103/PhysRevD.12.1038
http://dx.doi.org/10.1016/0370-1573(76)90049-1
http://dx.doi.org/10.1016/0370-1573(76)90049-1

