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Abstract. The Boltzmann equation without Grad’s angular cutoff assumption is believed to

have regularizing effect on the solution because of the non-integrable angular singularity of the
cross-section. However, even though so far this has been justified satisfactorily for the spatially
homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous
Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates

for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based
on a generalized version of the uncertainty principle, and analyzing the commutators between
the collision operator and some weighted pseudo-differential operators, we prove the regularizing

effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed
on these solutions. For completeness, we also show that when the initial data has this mild
regularity and Maxwellian type decay in velocity variable, there exists a unique local solution
with the same regularity, so that this solution acquires the C∞ regularity for positive time.

1. Introduction

Consider the Boltzmann equation,

(1.1) ft + v · ∇xf = Q(f, f),

where f = f(t, x, v) is the density distribution function of particles with position x ∈ R3 and
velocity v ∈ R3 at time t. The right hand side of (1.1) is given by the Boltzmann bilinear collision
operator

Q(g, f) =
∫

R3

∫
S2
B (v − v∗, σ) {g(v′∗)f(v′) − g(v∗)f(v)} dσdv∗ ,

which is well-defined for suitable functions f and g specified later. Notice that the collision operator
Q(· , ·) acts only on the velocity variable v ∈ R3. In the following discussion, we will use the
σ−representation, that is, for σ ∈ S2,

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

which give the relations between the post and pre collisional velocities.
It is well known that the Boltzmann equation is a fundamental equation in statistical physics.

For the mathematical theories on this equation, we refer the readers to [22, 23, 33, 37, 57], and the
references therein also for the physics background.

In addition to the special bilinear structure of the collision operator, the cross-section B(v−v∗, σ)
varies with different physical assumptions on the particle interactions and it plays an important
role in the well-posedness theory for the Boltzmann equation. In fact, except for the hard sphere
model, for most of the other molecular interaction potentials such as the inverse power laws, the
cross section B(v − v∗, σ) has a non-integrable angular singularity. For example, if the interaction
potential obeys the inverse power law r−(p−1) for 2 < p <∞, where r denotes the distance between
two interacting molecules, the cross-section behaves like

B(|v − v∗|, cos θ) ∼ |v − v∗|γθ−2−2s, cos θ =
⟨ v − v∗
|v − v∗|

, σ
⟩
, 0 ≤ θ ≤ π

2
,
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with

−3 < γ =
p− 5
p− 1

< 1, 0 < s =
1

p− 1
< 1.

As usual, the hard and soft potentials correspond to 2 < p < 5 and p > 5 respectively, and the
Maxwellian potential corresponds to p = 5. The fact that the singularity θ−2−2s is not integrable
on the unit sphere leads to the conjecture that the nonlinear collision operator should behave like
a fractional Laplacian in the variable v. That is,

Q(f, f) ∼ −(−∆v)sf + lower order terms.

Indeed, consider the Kolmogorov type equation

ft + v · ∇xf = −(−∆v)sf.

Straightforward calculation by Fourier transformation shows that the solution is in Gevrey class
when 0 < s ≤ 1

2 and is ultra-analytic if 1
2 < s < 1 for initial data only in L2(R3

x × R3
v) if it admits

a unique solution (see [50] for a more general study). However, for the Boltzmann equation, the
gain of Gevrey regularity of solution is a long lasting open problem which has only been proved so
far in the linear and spatially homogeneous setting, see [48].

The mathematical study on the inverse power law potentials can be traced back to the work
by Pao [52] in the 1970s. And in the early 1980s, Arkeryd in [15] proved the existence of weak
solutions to the spatially homogeneous Boltzmann equation when 0 < s < 1

2 , while Ukai in [53]
applied an abstract Cauchy-Kovalevskaya theorem to obtain local solutions in the functional space
of functions, which are analytic in x and Gevrey in v. However, the smoothing effect of the collision
operator was not studied at that time.

Since then, this problem has attracted increasing interests in the area of kinetic theory and a
lot of progress has been made on the existence and regularity theories. More precisely, that the
long-range interactions have smoothing effects on the solutions to the Boltzmann equation was
first proved by Desvillettes for some simplified models, cf. [27, 28]. This is in contrast with the
hard sphere model and the potentials with Grad’s angular cutoff assumption. In fact, for the hard
sphere model, the cross-section has the form (in the σ representation)

B(|v − v∗|, cos θ) = q0|v − v∗|,

where q0 is the surface area of a hard sphere. For singular cross-sections, Grad [37] introduced the
idea to cut off the singularity at θ = 0 so that B(|v−v∗|, cos θ) ∈ L1(S2). This assumption has been
widely accepted and is now called Grad’s angular cutoff assumption which influences a few decades
of mathematical studies on the Boltzmann equation. Under this angular cutoff assumption, the
solution has the same regularity, at least in the Sobolev space, as the initial data. In fact, it was
shown in [34], that the solution has the form

f(t, x, v) = a(t, x, v)f(0, x− vt, v) + b(t, x, v),

when the initial data f(0, x, v) is in some weighted Lpx,v space. Here, a(t, x, v) and b(t, x, v) are
in the Sobolev space Hδ

t,x,v for some δ > 0. And the term f(0, x − vt, v) just represents the free
transport so that it is clear that f(t, x, v) and f(0, x, v) have the same regularity.

One of the main features of the Boltzmann equation is the celebrated Boltzmann’s H-theorem
saying that the H-functional

H(t) =
∫

R3×R3
f log fdxdv,

satisfies
dH(t)
dt

+D(t) = 0,

where

D(t) = −
∫

R3×R3
Q(f, f) log fdxdv ≥ 0,
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which is called the entropy dissipation rate. Notice that D(t) is non-negative and vanishes only
when f is a Maxwellian. The non-negativity of D indicates that the Boltzmann equation is a
dissipative equation. This fact is a basic ingredient in the L1 theory of the Boltzmann equation,
see for example [33].

By using the entropy dissipation rateD and the “Q+ smoothing property”, the formal smoothing
estimate was derived by P.-L. Lions (see the complete references in [6])

∥
√
f(
√
f ∗ ⟨v⟩−m)∥2

Bδ,2
∞

≤ C∥f∥1−θ
L1 (∥f∥L1 +D(f)

1
2 )θ, δ =

s

1 + s
, θ =

1
1 + s

,

for any constant m > 3. Notice that the above regularity estimate is on
√
f but not f itself.

Later, some almost optimal estimates together with some extremely useful results, such as the
cancellation lemma, were obtained in the work by Alexandre-Desvillettes-Villani-Wennberg [6].
By using these analytic tools, the mathematical theory regarding the regularizing effect for the
spatially homogeneous problems may now be considered as quite satisfactory, see [10, 11, 29, 30,
32, 39, 48, 55], and the references therein.

However, for the spatially inhomogeneous equations, there are much less results. The main
difficulty comes from the coupling of the transport operator with the collision operator, and the
commutators of the differential (pseudo-differential) operators with the collision operator. There
are two progresses which have been achieved so far. One is about the local existence of solutions
between two moving Maxwellians in [4], obtained by constructing upper and lower solutions. The
other one is about the global existence of renormalized solutions with defect measures constructed
in [12], which becomes weak solutions if the defect measures vanish. Some results on similar but
linear kinetic equations were also given in [9] and [18]. In particular, a generalized uncertainty
principle à la Fefferman [35] (see also [45, 46, 47]) was introduced in [9] in order to prove smoothing
effects of the linearized and spatially inhomogeneous Boltzmann equation with non-cutoff cross
sections, and get partial smoothing effects for the nonlinear Boltzmann equation. In the following
analysis, this partial regularity result, together with its proof, will also be used.

This paper can be viewed as a continuation of our recent work [9]. Under some mild regularity
assumption on the initial data, we will prove the existence of solutions and their C∞ regularity
with respect to all ( time, space and velocity) variables.

Even though it is still not known whether only some natural bounds, such as total mass, energy
and entropy on the initial data, can lead to the C∞ regularizing effect, as far as we know, the
results shown in this paper are the first ones justifying the C∞ regularizing effect for the nonlinear
and spatially inhomogeneous Boltzmann equation without Grad’s angular cutoff assumption.

In order to state our theorems, let us first introduce the notations and assumptions used in this
paper.

The non-negative cross-section B(z, σ) (for a monatomic gas, which is the case considered herein)
depends only on |z| and the scalar product < z

|z| , σ >. In most cases, the collision kernel cannot
be expressed explicitly, but to capture the essential properties, it can be assumed to have the form

B(|v − v∗|, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
⟨ v − v∗
|v − v∗|

, σ
⟩
, 0 ≤ θ ≤ π

2
.

Furthermore, to keep the presentation as simple as possible, and in particular to avoid the
difficulty coming from the vanishing of the cross-section at zero relative velocity, we assume that
the kinetic factor Φ in the cross-section is modified as

(1.2) Φ(|v − v∗|) =
(
1 + |v − v∗|2

) γ
2 , γ ∈ R.

This point can certainly be removed using our whole calculus, at the expense of technical and more
complicated details.

Moreover, the angular factor is assumed to have the following singular behavior

(1.3) sin θ b(cos θ) ≈ Kθ−1−2s, when θ → 0+,
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where 0 < s < 1 and K is a positive constant. In fact γ = 0 corresponds to the Maxwellian
molecule, γ < 0 corresponds to the modified soft potential, and γ > 0 corresponds to the modified
hard potential. The singularity will be called mild for 0 < s < 1

2 and strong for 1
2 ≤ s < 1.

The case s = 1
2 is critical in the sense that different computations are required in many parts of

our proofs for mild and strong singularities, as will be seen below. This is similar to the known
fractional Laplacian studies.

It is now well known from the work [6] that the singular behavior of the collision kernel (1.3)
implies a sub-elliptic estimate in the velocity variable v. In the following analysis, we shall need
a slightly precised weighted sub-elliptic estimate in the velocity variable. We shall show that for
γ ∈ R and 0 < s < 1, if f ≥ 0, ̸≡ 0 , f ∈ L1

2

∩
L logL(R3

v), there exists a constant C > 0 such that
for any function g ∈ H1(R3

v) we have

(1.4) C−1∥ΛsvWγ/2g∥2
L2(R3

v) ≤ (−Q(f, g), g)L2(R3
v) + C∥f∥L1

γ̃(R3)∥g∥2
L2

γ+/2
(R3

v),

where γ̃ = max(γ+, 2 − γ+), γ+ = max{γ, 0}. Here Wl = Wl(v) = (1 + |v|2)l/2 = ⟨v⟩l , l ∈ R, is
the weight function in the variable v ∈ R3.

Similar sub-elliptic estimates, first proved in [6] and then developed in many other works such
as [51] in a linearized context, have been used crucially at least for the following two aspects:

i) the proof of the regularizing effect on the solutions to the spatially homogeneous Boltzmann
equations, see [10, 11, 32, 39, 48];

ii) the proof of existence of solutions to the nonlinear and spatially inhomogeneous Boltzmann
equation [4, 12, 57].

In this paper, we will apply this tool in order to study the complete smoothing effect for the
spatially inhomogeneous and nonlinear Boltzmann equation.

It is now well understood, see [13] and references therein, that Landau equation corresponds to
the grazing limit of Boltzmann equation. However, while Landau operator involves usual partial
differential operators, it should be kept in mind that fractional differential operators appear in the
Boltzmann case, see [5, 2]. Therefore, the analysis on the Boltzmann equation appears much more
involved because it requires the unavoidable use of Harmonic Analysis. In particular, we shall use
a generalized uncertainty principle which was introduced in [9], and the estimation of commutators
used in the work [49] for the study of hypo-elliptic properties.

Throughout this paper, we shall use the following standard weighted (with respect to the velocity
variable v ∈ R3 ) Sobolev spaces. For m, l ∈ R, set R7 = Rt × R3

x × R3
v and

Hm
l (R7) =

{
f ∈ S

′
(R7); Wl(v) f ∈ Hm(R7)

}
,

which is a Hilbert space. Here Hm is the usual Sobolev space. We shall also use the functional
spaces Hk

l (R6
x, v) and Hk

l (R3
v), specifying the variables, the weight being always taken with respect

to v ∈ R3.
Since the regularity property to be proved here is local in space and time, for convenience, we

define the following local version of weighted Sobolev space. For −∞ ≤ T1 < T2 ≤ +∞, and any
given open domain Ω ⊂ R3

x, define

Hm
l (]T1, T2[×Ω × R3

v) =
{
f ∈ D

′
(]T1, T2[×Ω × R3

v);

φ(t)ψ(x)f ∈ Hm
l (R7) , ∀φ ∈ C∞

0 (]T1, T2[), ψ ∈ C∞
0 (Ω)

}
.

Our first main result is about the smoothing effect on the solution and can be stated as follows

Theorem 1.1. (Regularizing effect on solutions)
Assume that 0 < s < 1, γ ∈ R, −∞ ≤ T1 < T2 ≤ +∞ and let Ω ⊂ R3

x be an open domain.
Let f be a non-negative function belonging to H5

l (]T1, T2[×Ω × R3
v) for all l ∈ N and solving the

Boltzmann equation (1.1) in the domain ]T1, T2[×Ω×R3
v in the classical sense. Furthermore, if f

satisfies the non-vacuum condition

(1.5) ∥f(t, x, ·)∥L1(R3
v) > 0,
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for all (t, x) ∈]T1, T2[×Ω, then we have

f ∈ H+∞
l (]T1, T2[×Ω × R3

v),

for any l ∈ N, and hence
f ∈ C∞(]T1, T2[×Ω; S(R3

v)).

With this result in mind, a natural question is whether the Boltzmann equation has solutions
satisfying the assumptions imposed above. Let us recall that solutions constructed in [4, 12] do not
work for our purpose because of the lack of the weighted regularity H5

l . For Gevrey class solutions
from [53], there is of course nothing to prove.

Thus, our second main result is about the local existence and uniqueness of solution for the
Cauchy problem of the non-cutoff Boltzmann equation.

We consider the solution in the functional space with Maxwellian type exponential decay in the
velocity variable. More precisely, for m ∈ R, set

Em0 (R6) =
{
g ∈ D′(R6

x,v); ∃ ρ0 > 0 s.t. eρ0<v>
2
g ∈ Hm(R6

x,v)
}
,

and for T > 0

Em([0, T ] × R6
x,v) =

{
f ∈ C0([0, T ];D′(R6

x,v)); ∃ ρ > 0

s.t. eρ⟨v⟩
2
f ∈ C0([0, T ]; Hm(R6

x,v))
}
.

Theorem 1.2. Assume that 0 < s < 1/2 and γ + 2s < 1. Let f0 ≥ 0 and f0 ∈ Ek00 (R6) for some
4 ≤ k0 ∈ N. Then, there exists T∗ > 0 such that the Cauchy problem

(1.6)
{
ft + v · ∇xf = Q(f, f),
f |t=0 = f0,

admits a non-negative and unique solution in the functional space Ek0([0, T∗] × R6).
Furthermore, if we assume that the initial data f0 is in E5

0 (R6) and does not vanish on a compact
set K ⊂ R3

x, that is,
∥f0(x, ·)∥L1(R3

v) > 0, ∀ x ∈ K,

then we have the regularizing effect on the above solution, that is, there exist 0 < T̃0 ≤ T∗ and a
neighborhood V0 of K in R3

x such that

f ∈ C∞(]0, T̃0[×V0; S(R3
v)).

Moreover, if γ ≤ 0, the non-negative solution of the Cauchy problem (1.6) is unique in the
functional space C0([0, T∗]; Hm

p (R6)) for m > 3/2 + 2s, p > 3/2 + 4s.

Remark 1.3. For the inverse power law potential r−(p−1), the condition 0 < s < 1/2, γ + 2s < 1
corresponds to 3 < p <∞ which includes both soft and hard potentials.

At the moment, it is not clear whether we can relax the regularity assumption initially made on
the solutions. Note that for example, the condition that f ∈ L1∩L∞(R7) is enough to give a mean-
ingful sense to a weak formulation for the spatially inhomogeneous Boltzmann equation. However,
the analysis used here can not be applied to this case, and so further study is needed. On the
other hand, the above two theorems give an answer to a long lasting conjecture on the regularizing
effect of the non-cutoff cross-sections for the spatially inhomogeneous Boltzmann equation.

Finally in the introduction, let us review some related works on the regularizing effect and the
existence of solutions for the Landau equation. The regularizing effect from the Landau collision
operator has been rather well studied. See [31, 24, 13] for the spatially homogeneous case. For
the spatially inhomogeneous problem, a regularizing result was obtained in [26], where the H8

regularity is assumed on the solutions to start with. And similar result was also recently proved
for the Vlasov-Maxwell-Landau and the Vlasov-Poisson-Landau systems, cf. [25] and the refer-
ences therein. As for the existence of solutions, see [31] where unique weak solutions for spatially
homogeneous case have been constructed with rather general initial data, and see [36] where the
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classical solutions for the spatially inhomogeneous case have been constructed in a periodic box
with small initial data.

The rest of the paper will be organized as follows. First of all, in the next section, we will
use the pseudo-differential calculus to study the upper bounds on the collision operator. We shall
give a precise coercivity estimate linked to the singularity in the cross-section, and estimate the
commutators between some pseudo-differential operators and the nonlinear collision operators. In
Section 3, the regularizing effect will be proved under the initial regularity assumption on the
solution. The strategy of the proof is as follows. We first choose some suitable mollifiers such
that the mollified solutions can work as test functions for the weak formulation of the problem.
We then establish a small gain of the regularity in the velocity variable, by using the coercivity
estimate coming from the singularity of the cross section. On account of the generalized uncertainty
principle, a small gain of the regularity in the space and time variables can be derived. The H+∞

regularity will follow from an induction argument. Finally, in Section 4, local solutions to the non-
cutoff Boltzmann equation which meet the initialization condition of Theorem 1.1 are constructed,
using a family of cutoff Boltzmann equations with time local uniform bounds independent of cutoff
parameter in some weighted Sobolev space. In particular, the uniform bounds are established with
the help of time dependent Maxwellian type weight functions which were introduced in [53, 54]. The
convergence of the approximate solutions follows from compactness argument, while the uniqueness
of the solutions can also be proved by using our sharp upper bounds on the collision operator.

2. Pseudo-differential calculus

Under the non-cutoff cross section assumption, the Boltzmann collision operator is a (nonlinear)
singular integral operator with respect to v ∈ R3

v. In the linearized case, it behaves like a pseudo-
differential operator.

In this section, we study the pseudo-differential calculus on the Boltzmann operator. It is one
of the key analytic tools for proving the regularizing effect of the non-cutoff Boltzmann equation.
Even though the regularity proved in this paper is local in space and time variables, note that the
collision operator is non-local in the space of v variable. Moreover, since the kinetic factor in the
cross-section is of the form ⟨v⟩γ which might be unbounded, we need to consider the multiplication
by the weight function Wl(v) of the pseudo-differential operators. Hence, they are not the standard
pseudo-differential operators of order 0 on the usual Sobolev space. In other words, we shall
consider pseudo-differential operators with unbounded coefficients on the weighted Sobolev space
Hm
l (R3

v). The variables (t, x) are considered as parameters for the collision operators in this section.

2.1. Upper bound estimates. We shall need some functional estimates on the Boltzmann col-
lision operator in the existence and regularization proofs below. The first one is about the bound-
edness of the collision operator in some weighted Sobolev spaces, see also [5, 7, 39] .

Theorem 2.1. Let 0 < s < 1 and γ ∈ R. Then for any m, α ∈ R, there exists C > 0 such that

(2.1.1) ∥Q(f, g)∥Hm
α (R3

v) ≤ C∥f∥L1
α++(γ+2s)+

(R3
v)∥g∥Hm+2s

(α+γ+2s)+
(R3

v)

for all f ∈ L1
α++(γ+2s)+(R3

v) and g ∈ Hm+2s
(α+γ+2s)+(R3

v) .

Remark 2.2. .
(1) The collision operator Q(f, g) behaves differently with respect to f and g: (2.1.1) shows that,
in some sense, it is linear with respect to the second factor in the velocity variable v because the
action of differentiation of Q(f, g) with respect to v goes only on g when considered in the Sobloev
space. This is clear for the Landau operator which is the grazing limit of the Boltzmann operator.
(2) The estimate (2.1.1) is in some sense optimal with respect to the order of differentiation (exact
order of 2s) and also with respect to the order of the weight in v coming from the cross-section.
In [39], the cases of both the modified hard potential and Maxwellian molecule type cross-sections
corresponding to 0 ≤ γ < 1 are discussed. Let us also mention that a similar estimate was given
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in [8], but it is not optimal in terms of weight and differentiation. However, its proof is more
straightforward as it only uses the Fourier transformation of collision operator (Bobylev’s type
formula [16] and see also the Appendix of [6]). For our purpose, the full precise estimate (2.1.1)
will be needed.

Proof of Theorem 2.1 :
Firstly, we consider the case when α = 0. To prove (2.1.1) in this case, it suffices to show that

for any m ∈ R

(2.1.2)
∣∣∣∣(Q(f, g), h

)
L2(R3

v)

∣∣∣∣ ≤ C||f ||L1
(γ+2s)+

(R3
v)||g||Hm+2s

(γ+2s)+
(R3

v)||h||H−m(R3
v).

The proof needs some harmonic analysis tools based on the dyadic decomposition. It is similar to
the proof in [39], where the hard potential case γ ≥ 0 was studied. Interested readers may refer to
the papers [5, 6, 39] for more details, though we will keep the paper self-contained.

Recall that(
Q(f, g), h

)
L2(R3

v)
=
∫

R6

∫
S2
b(cos θ)f(v∗)Φ(|v − v∗|)g(v){h(v′) − h(v)}dσdv∗dv,

where Φ(|v − v∗|) = Φ(|v′ − v′∗|) = ⟨v′ − v′∗⟩γ . Set

F (v, v∗) = Φ(|v − v∗|)g(v),

and write (
Q(f, g), h

)
L2(R3

v)
=
∫

R6

∫
S2
b(cos θ)f(v∗)F (v, v∗){h(v′) − h(v)}dσdv∗dv

=
∫

R3
f(v∗)(U1 − U2)dv∗.

(2.1.3)

Then we have (formally) by inverse Fourier formula,

U1 ≡
∫

R3

∫
S2
b(cos θ)F (v, v∗)h(v′)dσdv =

∫
R3

∫
R3
H(ξ, η, v∗)F̂ (ξ, v∗)ĥ(η)dξdη,

where (also formally)

H(ξ, η, v∗) =
∫

R3

∫
S2
b(k · σ)eiv·ξ−iv

′·ηdσdv

=
∫

R3
eiv·ξ−i

v+v∗
2 ·η

[ ∫
S2
b(k · σ)e−i

|v−v∗|
2 σ·ηdσ

]
dv

=
∫

R3
eiv·ξ−i

v+v∗
2 ·η

[ ∫
S2
b(η̃ · σ)e−i

|v−v∗|
2 |η|σ·kdσ

]
dv , (η̃ = η/|η|)

=
∫

R3
eiv·ξ−i

v+v∗
2 ·η

[ ∫
S2
b(η̃ · σ)e−i|η|

v−v∗
2 ·σdσ

]
dv

=
∫

S2
b(η̃ · σ)e−iv∗·η

−
[ ∫

R3
eiv·(ξ−η

+)dv
]
dσ

=
∫

S2
b(η̃ · σ)e−iv∗·η

−
dσ δ(ξ − η+),

with

η− =
1
2
(η − |η|σ), η+ =

1
2
(η + |η|σ),

so that

U1 =
∫

R3

[ ∫
S2
b(η̃ · σ)e−iv∗·η

−
dσ
]
F̂ (η+, v∗)ĥ(η)dη.
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On the other hand,

U2 ≡
∫

R3

∫
S2
b(cos θ)F (v, v∗)h(v)dσdv

=
[ ∫

S2
b(cos θ)dσ

] ∫
R3
F̂ (η, v∗)ĥ(η)dη

=
∫

R3

[ ∫
S2
b(η̃ · σ)dσ

]
F̂ (η, v∗)ĥ(η)dη,

because (formally) we have ∫
S2
b(cos θ)dσ =

∫
S2
b(η̃ · σ)dσ = const.

Therefore, we have obtained the following generalized Bobylev formula(
Q(f, g), h

)
L2(R3

v)

=
∫

R3
f(v∗)

[ ∫
R3

∫
S2
b(η̃ · σ)

{
e−iv∗·η

−
F̂ (η+, v∗) − F̂ (η, v∗)

}
ĥ(η)dηdσ

]
dv∗

=
∫

R3
f(v∗)

[ ∫
R3

∫
S2
b(η̃ · σ)

{
eiv∗·η

+
F̂ (η+, v∗) − eiv∗·ηF̂ (η, v∗)

}
× eiv∗·ηĥ(η)dηdσ

]
dv∗.

(2.1.4)

Notice that the above derivation is only formal for non-cutoff cross-section because we can not
split the gain and loss term in this case. However, the derivation can be easily justified as a limit
process of cutoff cross-sections when combining the gain term and loss term together.

We now introduce a dyadic decomposition in R3
v as follows:

∞∑
k=0

ϕk(v) = 1 , ϕk(v) = ϕ(2−kv) for k ≥ 1 with 0 ≤ ϕ0, ϕ ∈ C∞
0 (R3),

and

supp ϕ0 ⊂ {|v| < 2}, supp ϕ ⊂ {1 < |v| < 3}.

Take also ϕ̃0 and ϕ̃ ∈ C∞
0 such that

ϕ̃0 = 1 on {|v| ≤ 2}, supp ϕ̃0 ⊂ {|v| < 3},
ϕ̃ = 1 on {1/2 ≤ |v| ≤ 3}, supp ϕ̃ ⊂ {1/3 < |v| < 4}.

Furthermore, we assume that all these functions are radial. From |v′−v∗| ≤ |v−v∗| ≤
√

2|v′−v∗|,
it follows that

ϕ̃k(v′ − v∗)ϕk(v − v∗) = ϕk(v − v∗) = ϕ̃k(v − v∗)ϕk(v − v∗), k ≥ 0,

and thus we get(
Q(f, g), h

)
L2(R3

v)
=

∞∑
k=0

∫
R6

∫
S2
b(cos θ)f(v∗)Fk(v, v∗){hk(v′, v∗) − hk(v, v∗)}dσdv∗dv,

where

(2.1.5) Fk(v, v∗) = ϕk(v − v∗)Φ(|v − v∗|)g(v), hk(v, v∗) = ϕ̃k(v − v∗)h(v).
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Similarly to (2.1.4), we also obtain(
Q(f, g), h

)
L2(R3

v)
=

∞∑
k=0

∫
R3
f(v∗)

[ ∫
R3

∫
S2
b(η̃ · σ)

{
eiv∗·η

+
F̂k(η+, v∗) − eiv∗·ηF̂k(η, v∗)

}
× eiv∗·ηĥk(η, v∗)dηdσ

]
dv∗

=
∫

R3
f(v∗)

∞∑
k=0

Kk(v∗)dv∗.

In the following, we will estimate
∑∞
k=0 |Kk(v∗)|, regarding v∗ as a parameter.

By setting
Ωk =

{
σ ∈ S2 ; η̃ · σ ≥ 1 − 21−2k⟨η⟩−2

}
,

and ˜̂
Fk(η, v∗) = eiv∗·ηF̂k(η, v∗),

˜̂
hk(η, v∗) = eiv∗·ηĥk(η, v∗),

we split Kk(v∗) into

Kk(v∗) =
∫

R3

∫
S2∩Ωk

b(η̃ · σ)
{˜̂
Fk(η+, v∗) − ˜̂Fk(η, v∗)}˜̂hk(η, v∗)dηdσ

+
∫

R3

∫
S2∩Ωc

k

b(η̃ · σ)
{˜̂
Fk(η+, v∗) − ˜̂Fk(η, v∗)}˜̂hk(η, v∗)dηdσ

=Kk
1 (v∗) +Kk

2 (v∗).

Note that ∫
S2∩Ωk

θ2 b(cos θ)dσ = 2π
∫
{θ∈[0,π/2]; sin(θ/2)≤2−k⟨η⟩−1}

sin θ b(cos θ)θ2dθ(2.1.6)

≤ C⟨η⟩2s−22k(2s−2), if 0 < s < 1,∫
S2∩Ωc

k

b(cos θ)dσ = 2π
∫
{θ∈[0,π/2]; sin(θ/2)≥2−k⟨η⟩−1}

sin θ b(cos θ)dθ(2.1.7)

≤ C⟨η⟩2s22ks, for any s > 0.

It follows from (2.1.7) that

|Kk
2 (v∗)| ≤

∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)
∣∣∣˜̂Fk(η+, v∗) − ˜̂Fk(η, v∗)∣∣∣∣∣∣˜̂hk(η, v∗)∣∣∣dηdσ(2.1.8)

≤

(∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)⟨η⟩2m+2s
(∣∣∣˜̂Fk(η+, v∗)

∣∣∣2 +
∣∣∣˜̂Fk(η, v∗)∣∣∣2)dηdσ)1/2

×

(∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)⟨η⟩−2m−2s
∣∣∣˜̂hk(η, v∗)∣∣∣2dηdσ)1/2

≤C22ks
∥∥⟨Dv⟩m+2sFk(v, v∗)}

∥∥
L2 ||⟨Dv⟩−mhk(v, v∗)||L2 .

Here, we have used the change of variables η → η+, which is regular because the Jacobian can be
computed, with η̃ = η/|η|, as∣∣∣∂(η+)

∂(η)

∣∣∣ = ∣∣∣1
2
I +

1
2
σ ⊗ η̃

∣∣∣ = 1
8
(1 + σ · η̃) =

1
4

cos2
θ

2
.

It should be noted that after this change of variable, θ plays no longer the role of the polar angle
because the “pole” η̃ now moves with σ and hence the measure dσ is no longer given by sin θdθdϕ.
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However, the situation is rather good because if we take η̃+ = η+/|η+| as a new pole which is
independent of σ, then the new polar angle ψ defined by cosψ = η̃+ · σ satisfies

ψ =
θ

2
, dσ = sinψdψdϕ, ψ ∈ [0,

π

4
],

and thus θ works almost as the polar angle. Therefore, since ⟨η⟩ ≤ 2⟨η+⟩ ≤ 2⟨η⟩ we have∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)⟨η⟩2m+2s
∣∣∣˜̂Fk(η+, v∗)

∣∣∣2dηdσ ≤ C

∫
R3

η+

D0(η+)
∣∣∣˜̂Fk(η+, v∗)

∣∣∣2dη+

with

D0(η+) =
∫

S2∩Ωc
k

b(η̃ · σ)⟨ η(η+, σ) ⟩2m+2sdσ

≤ C

∫
S2∩Ωc

k

⟨ η(η+, σ) ⟩2m+2sθ−2−2sdσ

≤ C⟨η+⟩2m+2s

∫ π/4

2−k⟨η+⟩−1
ψ−2−2s sinψdψ ≤ 22ks⟨η+⟩2m+4s ,

which implies (2.1.8). Notice that for p = 0, 1, 2,∣∣∣2k(2s−p)|v − v∗|pϕk(v − v∗)Φ(|v − v∗|)
⟨v∗⟩(γ+2s)+

∣∣∣ ≤ C
⟨v − v∗⟩γ+2s

⟨v∗⟩(γ+2s)+
ϕk(v − v∗)(2.1.9)

≤ C⟨v⟩(γ+2s)+ϕk(v − v∗).

Then, recalling (2.1.5) and using (2.1.9) with p = 0 we have

|Kk
2 (v∗)| ≤C⟨v∗⟩(γ+2s)+

∥∥∥∥ ⟨Dv⟩m+2s

⟨v∗⟩(γ+2s)+
{22ksFk(v, v∗)}

∥∥∥∥
L2

||⟨Dv⟩−mhk(v, v∗)||L2

≤C⟨v∗⟩(γ+2s)+
(
∥ϕ̃k(v − v∗)⟨Dv⟩m+2sg∥2

L2
(γ+2s)+

+ 2−k∥⟨Dv⟩m+2sg∥2
L2

(γ+2s)+

)1/2

×
(
∥ϕ̃k(v − v∗)⟨Dv⟩−mh∥2

L2 + 2−k∥⟨Dv⟩−mh∥2
L2

)1/2

:=C Γk(v∗),

where Γk(v∗) stands for the quantity defined by this right hand side up to a constant multiple.
On the other hand, in order to estimate Kk

1 (v∗), write{˜̂
Fk(η+, v∗) − ˜̂Fk(η, v∗)}˜̂hk(η, v∗) =

{˜̂
Fk(η+, v∗) − ˜̂Fk(η, v∗)}{˜̂hk(η, v∗) − ˜̂hk(η+, v∗)

}
−η− ·

(
∇˜̂Fk)(η+, v∗)

˜̂
hk(η+, v∗)

−
∫ 1

0

{(
∇˜̂Fk)(η+ + τ(η − η+), v∗) −

(
∇˜̂Fk)(η+, v∗))dτ

}
· (η − η+)˜̂hk(η+, v∗).

Correspondingly, we decompose Kk
1 (v∗) into

Kk
1 (v∗) = Kk,1

1 (v∗) +Kk,2
1 (v∗) +Kk,3

1 (v∗).

For the variable transformation η −→ η+ = 1
2 (η + |η|σ), we denote its inverse transformation

η+ −→ η by ψσ(η+). Then

Kk,2
1 (v∗) = −

∫
R3

∫
S2∩Ωk

b
( ψσ(η+)
|ψσ(η+)|

· σ
) ∣∣∣∣∂(ψσ(η+))

∂(η+)

∣∣∣∣
× η−(σ) ·

(
∇˜̂Fk)(η+, v∗)

˜̂
hk(η+, v∗)dη+dσ

= 0 , with η−(σ) = ψσ(η+) − η+,
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because σ1, σ2 ∈ S2 ∩ Ωk are symmetric with respect to each other in the sense that, cf Figure 1,

η−(σ1) = ψσ1(η
+) − η+ = −(ψσ2(η

+) − η+) = −η−(σ2).

Figure 1. Symmetry of σ1 and σ2

Write Kk,1
1 (v∗) into

Kk,1
1 (v∗) = −

∫ 1

0

∫ 1

0

(∫
R3

∫
S2∩Ωk

b(η̃ · σ)
{(

∇˜̂Fk)(η+ + τ(η − η+), v∗) · (η − η+)
}

×
{(

∇˜̂hk)(η+ + s(η − η+), v∗) · (η − η+)
}
dηdσ

)
dτds.

Since |η − η+|2 = |η−|2 = |η|2 sin2(θ/2) and the change of variable η+ + τ(η − η+) → η is also
regular (see Page 2044 of [9]), (2.1.6) implies

|Kk,1
1 (v∗)| ≤C

∫ 1

0

∫ 1

0

(∫
R3

∫
S2∩Ωk

θ2 b(η̃ · σ)⟨η⟩2
∣∣∣(∇˜̂Fk)(η+ + τ(η − η+), v∗)

∣∣∣
×
∣∣∣(∇˜̂hk)(η+ + s(η − η+), v∗)

∣∣∣dηdσ)dτds
≤C

∫ 1

0

∫ 1

0

(∫
R3

∫
S2∩Ωk

θ2 b(η̃ · σ)⟨η⟩2+2s+2m
∣∣∣(∇˜̂Fk)(η+ + τ(η − η+), v∗)

∣∣∣dηdσ)1/2

×
(∫

R3

∫
S2∩Ωk

θ2 b(η̃ · σ)⟨η⟩2−2s−2m
∣∣∣(∇˜̂hk)(η+ + s(η − η+), v∗)

∣∣∣dηdσ)1/2

dτds

≤C2k(2s−2)∥⟨η⟩2s+m
(
∇˜̂Fk)∥L2(R3)∥⟨η⟩−m

(
∇˜̂hk)∥L2(R3).
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Hence, we have obtained, by using (2.1.9) with p = 1

|Kk,1
1 (v∗)| ≤C⟨v∗⟩(γ+2s)+

∥∥∥∥ ⟨Dv⟩m+2s

⟨v∗⟩(γ+2s)+
{2k(2s−1)(v − v∗)Fk(v, v∗)}

∥∥∥∥
L2

× ∥2−k(v − v∗)hk(v, v∗)∥H−m

≤C⟨v∗⟩(γ+2s)+
(
∥ϕ̃k(v − v∗)⟨Dv⟩m+2sg∥2

L2
(γ+2s)+

+ 2−k∥⟨Dv⟩m+2sg∥2
L2

(γ+2s)+

)1/2

×
(
∥ϕ̃k(v − v∗)⟨Dv⟩−mh∥2

L2 + 2−k∥⟨Dv⟩−mh∥2
L2

)1/2

,

which has the same bound Γk(v∗) as in the previous case, up to a constant factor. Finally, we
consider

Kk,3
1 (v∗) = −

∫ 1

0

∫ 1

0

(∫
R3

∫
S2∩Ωk

b(η̃ · σ)
{(

∇2˜̂Fk)(η+ + τs(η − η+), v∗)τ(η − η+)2
}

×
{˜̂
hk(η+, v∗)

}
dηdσ

)
dτds.

Then, by using (2.1.9) with p = 2, we have

|Kk,3
1 (v∗)| ≤C⟨v∗⟩(γ+2s)+

∥∥∥∥ ⟨Dv⟩m+2s

⟨v∗⟩(γ+2s)+
{2k(2s−2)(v − v∗)2Fk(v, v∗)}

∥∥∥∥
L2

∥hk(v, v∗)∥H−m

≤CΓk(v∗).

Therefore, it follows from Schwarz’s inequality that∣∣∣∣(Q(f, g), h
)
L2(R3

v)

∣∣∣∣ ≤ C||f ||L1
(γ+2s)+

×

×
( ∞∑
k=0

{∥ϕ̃k(v − v∗)⟨Dv⟩m+2sg∥2
L2

(γ+2s)+
+ 2−k∥⟨Dv⟩m+2sg∥2

L2
(γ+2s)+

}
)1/2

×
( ∞∑
k=0

{∥ϕ̃k(v − v∗)⟨Dv⟩−mh∥2
L2 + 2−k∥⟨Dv⟩−mh∥2

L2}
)1/2

≤ C||f ||L1
(γ+2s)+

||g||Hm+2s

(γ+2s)+
||h||H−m ,

which yields (2.1.2). Now the proof of Theorem 2.1 is complete for the case α = 0.
To prove (2.1.1) for the case α ̸= 0, it suffices to show that

(2.1.10)
∣∣∣∣(Q(f, g), ⟨v⟩αh

)
L2(R3

v)

∣∣∣∣ ≤ C||f ||L1
α++(γ+2s)+

(R3
v)||g||Hm+2s

(α+γ+2s)+
(R3

v)||h||H−m(R3
v).

The argument is similar to the one for α = 0, up to the estimation on hk(v, v∗) in (2.1.5) which
must be replaced by

ϕ̃k(v − v∗)⟨v⟩αh(v) = ⟨v⟩αhk(v, v∗).

We can write

⟨v⟩αhk(v, v∗) =(⟨v∗⟩α + 2kα)ψk(v, v∗)hk(v, v∗), if α > 0,(2.1.11)

⟨v⟩αhk(v, v∗) =
(
⟨v∗⟩
2k

)min{(γ+2s)+,−α}

ψk(v, v∗)hk(v, v∗), if α < 0.(2.1.12)
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with a suitable ψk(v, v∗) belonging to C∞
b (R3

v), uniformly with respect to k, v∗. For p = 0, 1, 2, we
have ∣∣∣2k(α+2s−p)|v − v∗|pϕk(v − v∗)Φ(|v − v∗|)

⟨v∗⟩(α+γ+2s)+

∣∣∣(2.1.13)

≤ C
⟨v − v∗⟩α+γ+2s

⟨v∗⟩(α+γ+2s)+
ϕk(v − v∗) ≤ C⟨v⟩(α+γ+2s)+ϕk(v − v∗),

which is similar to (2.1.9). We first consider the case α > 0. It follows from (2.1.7) that

|Kk
2 (v∗)| ≤(⟨v∗⟩α + 2kα)

∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)
∣∣∣˜̂Fk(η+, v∗) − ˜̂Fk(η, v∗)∣∣∣∣∣∣˜̂ψkhk(η, v∗)∣∣∣dηdσ

≤(⟨v∗⟩α + 2kα)

(∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)⟨η⟩2m+2s
(∣∣∣˜̂Fk(η+, v∗)

∣∣∣2 +
∣∣∣˜̂Fk(η, v∗)∣∣∣2)dηdσ)1/2

×

(∫
R3

∫
S2∩Ωc

k

b(η̃ · σ)⟨η⟩−2m−2s
∣∣∣˜̂ψkhk(η, v∗)∣∣∣2dηdσ)1/2

≤C22ks(⟨v∗⟩α + 2kα)
∥∥⟨Dv⟩m+2sFk(v, v∗)}

∥∥
L2 ||⟨Dv⟩−mhk(v, v∗)||L2 .

Then, recalling (2.1.5), and using (2.1.9) and (2.1.13) with p = 0, we have

|Kk
2 (v∗)| ≤C

{
⟨v∗⟩α+(γ+2s)+

∥∥∥∥ ⟨Dv⟩m+2s

⟨v∗⟩(γ+2s)+
{22ksFk(v, v∗)}

∥∥∥∥
L2

+ ⟨v∗⟩(α+γ+2s)+
∥∥∥∥ ⟨Dv⟩m+2s

⟨v∗⟩(α+γ+2s)+
{2k(α+2s)Fk(v, v∗)}

∥∥∥∥
L2

}
||⟨Dv⟩−mhk(v, v∗)||L2

≤C⟨v∗⟩α+(γ+2s)+
(
∥ϕ̃k(v − v∗)⟨Dv⟩m+2sg∥2

L2
(α+γ+2s)+

+ 2−k∥⟨Dv⟩m+2sg∥2
L2

(α+γ+2s)+

)1/2

×
(
∥ϕ̃k(v − v∗)⟨Dv⟩−mh∥2

L2 + 2−k∥⟨Dv⟩−mh∥2
L2

)1/2

:=C Γαk (v∗),

where Γαk (v∗) stands for the quantity defined by this right hand side up to a constant multiple.
Performing the same computation as above for Kk

2 (v∗), it follows from (2.1.6) that

|Kk,1
1 (v∗)| + |Kk,3

1 (v∗)| ≤ C Γαk (v∗),

so that (2.1.10) holds in this case.
The estimation on the case α < 0 is also similar by using (2.1.12) if one considers the cases

γ+2s ≤ 0, 0 < γ+2s ≤ −α and γ+2s ≥ −α separately. Details are omitted. And this completes
the proof of Theorem 2.1.

In the following, we need also estimates on the commutator between the collision operator Q
and the weight Wl. For this purpose, estimations on |Wl −W ′

l | are needed.

Lemma 2.3. Let l ∈ N. There exists C > 0 depending only on l such that

(2.1.14)
∣∣Wl −W ′

l

∣∣ ≤ C sin
(
θ

2

)(
W ′
l +W ′

l,∗

)
≤ C sin

(
θ

2

)
W ′
lW

′
l,∗,

and

(2.1.15)
∣∣Wl −W ′

l

∣∣ ≤ C sin
(
θ

2

)(
W ′
l +W ′

l−1W
′
1,∗ + sinl−1

(
θ

2

)
W ′
l, ∗

)
.

Proof : It follows from |v − v∗| = |v′ − v′∗| and |v|2 + |v∗|2 = |v′|2 + |v′∗|2 that, for any λ > 0

|v|2 ≤ |v′|2 + |v′∗|2, Wλ ≤ 2λ(W ′
λ +W ′

λ, ∗).
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On the other hand

|v − v′|2 = sin2

(
θ

2

)
|v − v∗|2,

where 0 ≤ θ ≤ π/2. Taylor formula yields∣∣Wl −W ′
l

∣∣ ≤ C|v − v′|
(
Wl−1 +W ′

l−1

)
≤ C sin

(
θ

2

)
|v − v∗|

(
W ′
l−1 +W ′

l−1,∗ +W ′
l−1

)
≤ C sin

(
θ

2

)
|v′ − v′∗|

(
W ′
l−1 +W ′

l−1,∗

)
≤ C sin

(
θ

2

)(
W ′

1 +W ′
1, ∗

)(
W ′
l−1 +W ′

l−1, ∗

)
≤ C sin

(
θ

2

)(
W ′
l +W ′

l, ∗
)
≤ C sin

(
θ

2

)
W ′
lW

′
l, ∗ ,

which gives (2.1.14). For (2.1.15), we have∣∣Wl −W ′
l

∣∣ ≤ C|v − v′|
(
Wl−1 +W ′

l−1

)
≤ C sin

(
θ

2

)
|v − v∗|

(
W ′
l−1 +

(
1 + |v − v′ + v′|2

) (l−1)
2

)

≤ C sin
(
θ

2

)
|v′ − v′∗|

(
W ′
l−1 + |v − v′|l−1

)
≤ C sin

(
θ

2

)((
W ′

1 +W ′
1, ∗

)
W ′
l−1 + sinl−1

(
θ

2

)
|v′ − v′∗|l

)
≤ C sin

(
θ

2

)(
W ′
l +W ′

l−1W
′
1,∗ + sinl−1

(
θ

2

)
W ′
l,∗

)
.

And this completes the proof of the lemma.

Lemma 2.4. Let l ∈ N, m ∈ R.
(1) If 0 < s < 1/2, there exists C > 0 such that

(2.1.16)
∣∣∣∣((Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣∣ ≤ C∥f∥L1
l+γ+ (R3

v)∥g∥L2
l+γ+ (R3

v)∥h∥L2(R3
v).

Moreover, if l ≥ 3 (actually, we need only l > 3
2 + 2s), then

(2.1.17)
∣∣∣∣((Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3)

∣∣∣∣ ≤ C∥f∥L2
l+γ+ (R3

v))∥g∥L2
l+γ+ (R3)∥h∥L2(R3).

(2) If 1/2 < s < 1, then for any ε > 0, there is a constant Cε > 0 such that∣∣∣∣((Wl Q(f, g) −Q(f, Wl g)
)
, h
)
L2(R3

v)

∣∣∣∣(2.1.18)

≤ Cε∥f∥L1
l+2s−1+γ+ (R3

v)∥g∥H2s−1+ε

l+2s−1+γ+ (R3
v)∥h∥L2(R3

v) ,

and ∣∣∣∣((Wl Q(f, g) −Q(f, Wl g)
)
, h
)
L2(R3

v)

∣∣∣∣(2.1.19)

≤ Cε∥f∥L1
l+2s−1+γ+ (R3

v)∥g∥L2
l+2s−1+γ+ (R3

v)∥h∥H2s−1+ε
l (R3

v).

(3) When s = 1/2, we have the same estimates as (2) with 2s− 1 replaced by any small κ > 0.
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With Lemma 2.2, we immediately have the following improved upper bound estimate with
respect to the weight.

Corollary 2.5.
(1) When 0 < s < 1/2, we have

∥Q(f, g)∥Hm
l (R3

v) ≤ C∥f∥L1
max{l+γ+, (γ+2s)+}

(R3
v)∥g∥Hm+2s

l+(2s+γ)+
(R3

v),

provided that m ≤ 0 and 0 ≤ m+ 2s.
(2) When 1/2 < s < 1, we have

(2.1.20) ∥Q(f, g)∥Hm
l (R3

v) ≤ C∥f∥L1
max{l+2s−1+γ+, (2s+γ)+}

(R3
v)∥g∥Hm+2s

l+max{2s−1+γ+, (2s+γ)+}
(R3

v),

provided that −1 < m ≤ 0.
(3) When s = 1/2, we have the same form of estimate as (2.1.20) with 2s − 1 replaced by any

small κ > 0.

In fact, this corollary is a direct consequence of Theorem 2.1 and Lemma 2.4.

Proof of Lemma 2.4 :
Proof of (1): the case 0 < s < 1/2. By using Φ(|v′ − v′∗|) ≤ ⟨v′⟩γ+⟨v′∗⟩γ

+
, we have∣∣∣((Wl Q(f, g) −Q(f, Wl g)

)
, h
)
L2(R3

v)

∣∣∣
=

∣∣∣ ∫∫∫ bΦ f ′∗g
′(W ′

l −W )h dvdv∗dσ
∣∣∣

≤ C

∫∫∫
b |θ| |(Wl+γ+f)′∗| |(Wl+γ+g)′| |h| dvdv∗dσ

= C

∫∫∫
b |θ||(Wl+γ+f)∗| |(Wl+γ+g)| |h′| dvdv∗dσ

≤ C
(∫∫∫

b |θ| |(Wl+γ+ f)∗| |(Wl+γ+ g)|2dvdv∗dσ
)1/2

×
(∫∫∫

b |θ| |(Wl+γ+ f)∗| |h′|2 dvdv∗dσ
)1/2

= CJ1 × J2.

Clearly, one has

J2
1 ≤ C∥f∥L1

l+γ+
∥g∥2

L2
l+γ+

∫
S2
b(cos θ) |θ| dσ ≤ C∥f∥L1

l+γ+
∥g∥2

L2
l+γ+

.

Next, by the regular change of variables v → v′, cf. [6, 12], we have

J2
2 =

∫∫
D0(v∗, v′)|(Wl+γ+f)∗||h′|2dv∗dv′,

where

D0(v, v′) = 2
∫

S2

θ(v∗, v′, σ)
cos2(θ(v∗, v′, σ)/2)

b(cos θ(v∗, v′, σ))dσ ≤ C

∫ π/4

0

ψ−1−2s sinψ dψ,

and

cosψ =
v′ − v∗
|v′ − v∗|

· σ, ψ = θ/2, dσ = sinψdψdϕ.

Thus,
J2

2 ≤ C∥f∥L1
l+γ+

∥h∥2
L2 ,

and this, together with the estimate on J1, gives (2.1.16).
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We now prove (2.1.17) by using (2.1.15) instead of (2.1.14). We have∣∣∣((Wl Q(f, g) −Q(f, Wl g)
)
, h
)
L2(R3

v)

∣∣∣
≤ C

{∫∫∫
b |θ|l |(Wl+γ+f)′∗| |(Wγ+g)

′| |h| dvdv∗dσ

+
∫∫∫

b |θ| |(W1+γ+f)′∗| |(Wl−1+γ+g)
′| |h| dvdv∗dσ

+
∫∫∫

b |θ| |(Wγ+f)′∗| |(Wl+γ+g)
′| |h| dvdv∗dσ

}
= M1 + M2 + M3.

M2,M3 can be estimated similarly to (2.1.16), and we have

M2 ≤ C||f ||L1
1+γ+

∥g∥L2
l−1+γ+

∥h∥L2 ,

M3 ≤ C||f ||L1
γ+

∥g∥L2
l+γ+

∥h∥L2 .

M1 can be estimated as follows. Firstly, we have

M2
1 =C2

(∫∫∫
b |θ|l|(Wl+γ+f)∗||(Wγ+g)| |h′| dvdv∗dσ

)2

≤C2

∫∫∫
b |θ| l− 3

2 |(Wγ+g)||(Wl+γ+f)∗|2dvdv∗dσ

×
∫∫∫

b |θ| l+ 3
2 |(Wγ+g)||h′|2dvdv∗dσ

=M1,1 ×M1,2.

Then, if l − 3
2 − 2s− 1 > −1, that is, l > 2s+ 3

2 , we have

M1,1 ≤ C∥g∥L1
γ+

∥f∥2
L2

l+γ+
.

On the other hand, for M1,2 we need to apply the singular change of variables v∗ → v′. The
Jacobian of this transform is, with k = (v − v∗)/|v − v∗|,

(2.1.21)
∣∣∣∂v∗
∂v′

∣∣∣ = 8∣∣∣I − k ⊗ σ
∣∣∣ =

8
|1 − k · σ|

=
4

sin2(θ/2)
≤ 16θ−2, θ ∈ [0, π/2].

Notice that this gives rise to an additional singularity in the angle θ around 0. Actually, the
situation is even worse in the following sense. Recall that θ is no longer legitimate polar angle. In
this case, the best choice of the pole is k′′ = (v′ − v)/|v′ − v| for which polar angle ψ defined by
cosψ = k′′ · σ satisfies (cf. [6, Fig. 1])

ψ =
π − θ

2
, dσ = sinψdψdϕ, ψ ∈ [

π

4
,
π

2
].

This measure does not cancel any of the singularity of b(cos θ), unlike the case in the usual polar
coordinates. Nevertheless, this singular change of variables yields

M1,2 = C

∫∫∫
b |θ|l+ 3

2 |(Wγ+g)| |h′|2 dvdv∗dσ

≤ C

∫∫
D1(v, v′)|(Wγ+g)| |h′|2dvdv′,

when l > 3
2 + 2s because

D1(v, v′) =
∫

S2
θl+

3
2−2b(cos θ)dσ ≤ C

∫ π/2

π/4

(
π

2
− ψ)−2−2s+l+ 3

2−2dψ ≤ C.
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Therefore,
M1,2 ≤ C∥g∥L1

γ+
∥h∥2

L2 .

Now the proof of (2.1.17) is completed by the embedding estimate for l > 3
2 ,

∥g∥L1
γ+

≤ C∥g∥L2
l+γ+

.

Proof of (2): the case 1/2 ≤ s < 1. Since we look for an upper bound estimate and ε > 0, it
is sufficient to assume s > 1/2 for our purpose. Write((

Wl Q(f, g) −Q(f, Wl g)
)
, h
)
L2(R3

v)
=
∫∫∫

B f ′∗g
′(W ′

l −Wl)h dvdv∗dσ

=
∫∫∫

B f∗g(Wl −W ′
l )h

′ dvdv∗dσ =
∫∫∫

B f∗g
′(Wl −W ′

l )h
′ dvdv∗dσ

+
∫∫∫

B f∗(g − g′)(Wl −W ′
l )h

′ dvdv∗dσ = I1 + I2.

Taylor expansion gives

Wl −W ′
l = ∇Wl(v′)(v − v′) −

∫ 1

0

(1 − τ)∇2Wl(v′ + τ(v − v′))dτ(v − v′)2 ,

so that

I1 = −
∫ 1

0

(1 − τ)
∫∫∫

B f∗{∇2Wl(v′ + τ(v − v′))}(v − v′)2g′ h′ dvdv∗dσdτ .

By using the symmetry property shown in Figure 1 ( see also Figure 2 below, and §3 in [39]), the
first order term in the Taylor expansion vanishes, that is,∫∫∫

B f∗g
′∇Wl(v′)(v − v′)h′ dvdv∗dσ

=
∫∫

f∗

{∫
S2
b

(
ψσ(v′) − v∗
|ψσ(v′) − v∗|

· σ
)

Φ(|ψσ(v′) − v∗|)
∣∣∣∂(ψσ(v′))

∂(v′)

∣∣∣(ψσ(v′) − v′)dσ
}

· ∇Wl(v′) g′h′dv′dv∗ = 0.

Here, we have used the notation that for a transformation v → v′, its inverse transformation is
denoted by v′ → ψσ(v′) = v. And σ1, σ2 are symmetric with respect to each other, in the sense
that ψσ1(v

′) − v′ = −(ψσ2(v
′) − v′).

Figure 2. Symmetry of σ1 and σ2
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Furthermore, since∣∣{∇2Wl(v′ + τ(v − v′))}(v − v′)2
∣∣ ≤ Cθ2|v∗ − v′|2{Wl−2(v∗) +Wl−2(v′ + τ(v − v′) − v∗)}

≤ Cθ2{Wl(v∗) +Wl(v′)} ≤ Cθ2Wl(v∗)Wl(v′)

and Φ(|v − v∗|) ≤ (
√

2⟨v′ − v∗⟩)γ
+ ≤

√
2
γ+

⟨v∗⟩γ
+⟨v′⟩γ+

, we get by the regular change of variables
v → v′ and the Schwartz inequality

(2.1.22) |I1| ≤ C||f ||L1
l+γ+ (R3

v)||g||L2
l+γ+ (R3

v)||h||L2(R3
v).

In order to estimate I2, we shall apply the Littlewood-Paley decomposition {△j}∞j=0, which is
a dyadic decomposition in the Fourier variable (see also [17, 59, 5]),

△jg(v) = F−1
(
ϕj(η)ĝ(η)

)
, g =

∞∑
0

△jg,

and for m ∈ R,
∥△jg∥Hm ≈ 2jm∥△jg∥L2 , ∥g∥2

Hm ≈
∑

22j m∥△jg∥2
L2 .

Then we have the following decomposition

I2 =
∞∑
j=0

∫ 1

0

(∫
R6

{∫
Ωj

B f∗∇v(△jg)(v′ + τ(v − v′))(v − v′)(Wl −W ′
l )h

′ dσ
}
dvdv∗

)
dτ

+
∞∑
j=0

∫
R6

{∫
Ωc

j

B f∗
{
(△jg)(v) − (△jg)(v′)

}
(Wl −W ′

l )h
′ dσ
}
dvdv∗

=
∞∑
j=0

(
I1
2,j + I2

2,j

)
,

where

Ωj = Ωj(v, v∗) =
{
σ ∈ S2 ;

v − v∗
|v − v∗|

· σ ≥ 1 − 21−2j⟨v − v∗⟩−2

}
.

Note that if 1/2 < s < 1, then∫
Ωj

b(cos θ) θ2dσ = 2π
∫
{θ∈[0,π/2]; sin(θ/2)≤2−j⟨v−v∗⟩−1}

sin θ b(cos θ)θ2dθ(2.1.23)

≤ C2j(2s−2)⟨v − v∗⟩2s−2,

and ∫
Ωc

j

b(cos θ) θ dσ = 2π
∫
{θ∈[0,π/2]; sin(θ/2)≥2−j⟨v−v∗⟩−1}

sin θ b(cos θ) θ dθ(2.1.24)

≤ C2j(2s−1)⟨v − v∗⟩2s−1.

To estimate I1
2,j , we need the change of variables

(2.1.25) v → z = v′ + τ(v − v′) =
1 + τ

2
v +

1 − τ

2
(|v − v∗|σ + v∗).

The Jacobian of this transform is bounded from below uniformly in v∗, σ, τ , because∣∣∣∂(z)
∂(v)

∣∣∣ = ∣∣∣det
(1 + τ

2
I +

1 − τ

2
σ ⊗ k

)∣∣∣ (k =
v − v∗
|v − v∗|

)

=
(1 + τ)3

23

∣∣∣1 +
1 − τ

1 + τ
k · σ

∣∣∣ = (1 + τ)3

23

∣∣∣ 2τ
1 + τ

+ 2
1 − τ

1 + τ
cos2

θ

2

∣∣∣
≥ (1 + τ)3

23

∣∣∣ 2τ
1 + τ

+
1 − τ

1 + τ

∣∣∣ = (1 + τ)3

23
≥ 1

23
.
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Recall, cf. [6], that the cross-section B(v − v∗, θ) is assumed to be supported in 0 ≤ θ ≤ π/4.
Furthermore, we have

|z − v∗| =
∣∣∣1 + τ

2
(v − v∗) +

1 − τ

2
|v − v∗|σ

∣∣∣(2.1.26)

= |v − v∗|
∣∣∣(1 + τ

2

)2

+
(1 − τ

2

)2

+
1 − τ2

2
k · σ

∣∣∣1/2
= |v − v∗|

∣∣∣τ2 + (1 − τ2) cos2
θ

2

∣∣∣1/2 ≥ 1√
2
|v − v∗|,

which implies ⟨v − v∗⟩2sΦ(|v − v∗|) ≤ C⟨z⟩2s+γ+⟨v∗⟩2s+γ+ . Since

|(v − v′)(Wl −W ′
l )| ≤ Cθ2|v − v∗|2(Wl−1(z) +W∗l−1) ≤ Cθ2|v − v∗|2Wl−1(z)W∗l−1,

we have from (2.1.23) that for any ε > 0

|I1
2,j | ≤ C

∫ 1

0

∫∫∫
Ωj

bθ2|(Wl−1+2s+γ+f)∗| |
(
Wl−1+2s+γ+(∇v△jg)

)
(z)|⟨v − v∗⟩2−2s|h′|dσdvdv∗dτ

≤ C

[∫ 1

0

(∫∫ (∫
Ωj

bθ2|(Wl−1+2s+γ+f)∗| |
(
Wl−1+2s+γ+(∇v△jg)

)
(z)|2

×⟨v − v∗⟩2−2s|dσ
)
dvdv∗

)1/2

dτ

]

×

[∫∫ (∫
Ωj

bθ2|(Wl−1+2s+γ+f)∗| ⟨v − v∗⟩2−2s|h′|2dσ
)
dvdv∗

]1/2

≤ C2−εj∥f∥L1
l+2s−1+γ+

(R3
v)∥g∥H2s−1+ε

l+2s−1+γ+
(R3

v)∥h∥L2(R3
v),

where we used the regular change of variables v → z defined by (2.1.25) and the regular change of
variables v → v′. The estimate (2.1.24) yields the same bound for I2

2,j . Therefore, we obtain

(2.1.27) |I2| ≤ C||f ||L1
l+2s−1(R3

v)||g||H2s−1+ε
l+2s−1 (R3

v)||h||L2(R3
v).

Estimates (2.1.22) and (2.1.27) together give the desired estimate (2.1.18).
For the convenience of the readers, we postpone the proof of (2.1.19) to the end of section 2.3.

And this completes the proof of Lemma 2.2 because (3) comes from (2) for the case s = 1/2 + κ.

2.2. Coercivity estimates. We establish coercivity estimates of the Boltzmann collision opera-
tor. We will show that the angular singularity in the cross-section yields the sub-elliptic estimates
which are lower bounds of the collision operator, see [6]. Notice that we need precise weighted sub-
elliptic estimates as given in the following theorem. For more detailed explanations and notations,
interested readers can refer to [5, 39].

Theorem 2.6. Assume that γ ∈ R, 0 < s < 1. Let g ≥ 0, ̸≡ 0, g ∈ L1
max{γ+, 2−γ+}

∩
L logL(R3

v).
Then there exists a constant Cg > 0 depending only on B(v−v∗, θ), ∥g∥L1

max{γ+, 2−γ+}
and ∥g∥L log L,

and C > 0 depending on B(v−v∗, θ) such that for any smooth function f ∈ H1
γ/2(R

3
v)∩L2

γ+/2(R
3
v),

we have

(2.2.1) −
(
Q(g, f), f

)
L2(R3

v)
≥ Cg∥Wγ/2f∥2

Hs(R3
v) − C||g||L1

max{γ+, 2−γ+}
(R3

v)∥f∥2
L2

γ+/2
(R3

v) .

Remark 2.7. From the proof of the theorem, the constant Cg is seen to be an increasing function
of ∥g̃∥L1 , ∥g̃∥−1

L1
1

and ∥g̃∥−1
L logL where g̃ = ⟨v⟩−|γ|g. If the function g depends continuously on a

parameter τ ∈ Ξ, then the constant Cg depends on infτ∈Ξ ∥⟨v⟩−|γ|gτ∥L1 , supτ∈Ξ ∥gτ∥L log L and
supτ∈Ξ ∥g∥L1

max{γ+, 2−γ+}
. In the later application, we take τ = (t, x).
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Proof. Firstly, we have

(Q(g, f), f) =
∫

R6

∫
S2

Φ(|v − v∗|)b(cos θ)g(v∗)f(v){f(v′) − f(v)}dσdv∗dv

=
1
2

∫
R6

∫
S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′)2 − f(v)2}dσdv∗dv

− 1
2

∫
R6

∫
S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′) − f(v)}2dσdv∗dv

= R1 −R2.

For R1, according to the cancellation lemma, Corollary 2 of [6], we have

R1 =
1
2

∫
R6

∫
S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′)2 − f(v)2}dσdv∗dv

=
1
2

∫
R6

∫
S2

{
Φ

(
|v − v∗|
cos θ2

)
1

cos3 θ
2

− Φ(|v − v∗|)

}
b(cos θ)g(v∗)f(v)2dvdσdv∗

=
1
2

∫
R6

∫
S2

Φ

(
|v − v∗|
cos θ2

){
1

cos3 θ
2

− 1

}
b(cos θ)g(v∗)f(v)2dvdσdv∗

+
1
2

∫
R6

∫
S2

{
Φ

(
|v − v∗|
cos θ2

)
− Φ(|v − v∗|)

}
b(cos θ)g(v∗)f(v)2dvdσdv∗

= R11 + R12.

For the first term R11, from 1 − cos3 θ
2 ≤ 3(1 − cos θ2 ) = 6 sin2 θ

4 , it follows that

R11 ≤ C∥g∥L1
γ+

∥f∥2
L2

γ+/2
,

because Φ ≤ 1 when γ < 0. For the second term R12, we first note that the mean value theorem
gives

Φ

(
|v − v∗|
cos θ2

)
− Φ(|v − v∗|)

= −(
1

cos θ2
− 1)|v − v∗|2(1 + (

|v − v∗|
a

)2)
γ
2 −1 2

a3

≤ C(
1

cos θ2
− 1)Φ(|v − v∗|),

where
√

2
2 ≤ cos θ2 < a < 1. Similar to R11, we can obtain

R12 ≤ C∥g∥L1
γ+

∥f∥2
L2

γ+/2
.

For the term R2, we first note that

Φ(|v − v∗|) = (1 + |v − v∗|2)
γ
2 ≥ ⟨v⟩γ

⟨v∗⟩|γ|
.
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Then, by using the fact that (a− b)2 ≥ a2/2 − b2, we have

R2 =
1
2

∫
R6

∫
S2

Φ(|v − v∗|)b(cos θ)g(v∗){f(v′) − f(v)}2dσdv∗dv

≥ C

∫
R6

∫
S2
b(cos θ)

g(v∗)
⟨v∗⟩|γ|

⟨v⟩γ{f(v′) − f(v)}2dσdv∗dv

= C

∫
R6

∫
S2
b(cos θ)

g(v∗)
⟨v∗⟩|γ|

{⟨v⟩
γ
2 f(v′) − ⟨v⟩

γ
2 f(v)}2dσdv∗dv

= C

∫
R6

∫
S2
b(cos θ)

g(v∗)
⟨v∗⟩|γ|

{⟨v′⟩
γ
2 f(v′) − ⟨v⟩

γ
2 f(v)

+ ⟨v⟩
γ
2 f(v′) − ⟨v′⟩

γ
2 f(v′)}2dσdv∗dv

≥ C1

∫
R6

∫
S2
b(cos θ)

g(v∗)
⟨v∗⟩|γ|

{⟨v′⟩
γ
2 f(v′) − ⟨v⟩

γ
2 f(v)}2dσdv∗dv

− C2

∫
R6

∫
S2
b(cos θ)

g(v∗)
⟨v∗⟩|γ|

{⟨v⟩
γ
2 f(v′) − ⟨v′⟩

γ
2 f(v′)}2dσdv∗dv

= R21 −R22.

For the first term R21, by using Corollary 3 and Proposition 2 of [6], we have

R21 = C1

∫
R6

∫
S2
b(cos θ)

g(v∗)
⟨v∗⟩|γ|

{⟨v′⟩
γ
2 f(v′) − ⟨v⟩

γ
2 f(v)}2dσdv∗dv

≥ C

∫
R3

|F(Wγ/2f)(ξ)|2
{∫

S2
b(ξ̃ · σ)

(
F(g̃)(0) −

∣∣∣F(g̃)(ξ−)
∣∣∣)}dξ

≥ C̃g∥Wγ/2f∥2
Hs − C∥g̃∥L1∥f∥2

L2
γ+/2

,

(2.2.2)

where g̃ = ⟨v⟩−|γ|g. Here C̃g is an increasing function of ∥g̃∥L1 , ∥g̃∥−1
L1

1
and ∥g̃∥−1

L logL, according to
the proof in the last part of [6] (see also Lemma 2.1 of [48]).

For the second term R22, note that for some τ ∈ (0, 1), we have

⟨v⟩
γ
2 − ⟨v′⟩

γ
2

⟨v∗⟩
|γ|
2

≤ C
⟨v′ + τ(v − v′)⟩

γ−2
2

⟨v∗⟩
|γ|
2

|v − v′|

≤ C
⟨v∗⟩

|2−γ|
2 − |γ|

2

⟨v′ + τ(v − v′) − v∗⟩
2−γ

2

|v′ − v∗| tan(θ/2)

≤ C⟨v∗⟩
|2−γ|

2 ⟨v′ − v∗⟩
γ
2 tan(θ/2)

≤ C

{
⟨v∗⟩

|2−γ|
2 ⟨v′⟩

γ
2 tan(θ/2), if γ ≥ 0,

⟨v∗⟩ tan(θ/2), otherwise.

Hence, we get

R22 = C2

∫
R6

∫
S2
b(cos θ)g(v∗)

{
⟨v⟩

γ
2 − ⟨v′⟩

γ
2

⟨v∗⟩
|γ|
2

}2

f(v′)2dσdv∗dv

≤ C2

∫
R6

∫
S2
b(cos θ) tan2(θ/2)⟨v∗⟩|2−γ

+|g(v∗){⟨v′⟩
γ+

2 f(v′)}2dσdv∗dv

≤ C2||g||L1
|2−γ+|

∥f∥2
L2

γ+/2
.

This completes the proof of Theorem 2.6.
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In the following analysis, we shall also need the following interpolation inequality between
weighted Sobolev spaces in v, see for instance [32, 39].

Lemma 2.8. For any k ∈ R, p ∈ R+, δ > 0,

(2.2.3) ∥f∥2
Hk

p (R3
v) ≤ Cδ∥f∥Hk−δ

2p (R3
v)∥f∥Hk+δ

0 (R3
v).

2.3. Commutator estimates. We are now going to study the commutators of a family of pseudo-
differential operators with the Boltzmann collision operator. This is a key step in the regularity
analysis of weak solutions because it requires the mollifiers defined by pseudo-differential operators.
Below, we denote (· , ·)L2(R3

v) by (· , ·) for simplicity of notations, without any confusion.

Proposition 2.9. Let λ ∈ R and M(ξ) be a positive symbol of pseudo-differential operator in Sλ1,0
of the form of M(ξ) = M̃(|ξ|2). Assume that for any c > 0 there exists a constant C > 0 such that
for any s, τ > 0

(2.3.1) c−1 ≤ s

τ
≤ c implies C−1 ≤ M̃(s)

M̃(τ)
≤ C.

Furthermore assume that M(ξ) satisfies

(2.3.2) |M (α)(ξ)| = |∂αξM(ξ)| ≤ CαM(ξ)⟨ξ⟩−|α|,

for any α ∈ N3. Then the followings hold.
(1) If 0 < s < 1/2, for any N > 0 there exists a CN > 0 such that∣∣(M(Dv)Q(f, g) −Q(f, M(Dv)g), h)L2(R3

v)

∣∣(2.3.3)

≤ CN∥f∥L1
γ+ (R3

v))

(
∥Mg∥L2

γ+ (R3
v) + ∥g∥Hλ−N

γ+ (R3
v))

)
∥h∥L2(R3

v).

(2) If 1/2 < s < 1, for any N > 0 and any ε > 0 there exists a CN,ε > 0 such that∣∣(M(Dv)Q(f, g) −Q(f, M(Dv)g), h)L2(R3
v)

∣∣(2.3.4)

≤ CN,ε∥f∥L1
(2s+γ−1)+

(R3
v))

(
∥Mg∥H2s−1+ε

(2s+γ−1)+
(R3

v)) + ∥g∥Hλ−N

γ+ (R3
v))

)
∥h∥L2(R3

v) .

(3) If s = 1/2, we have the same estimate as (2.3.4) with (2s+ γ − 1) replaced by (γ + κ) for
any small κ > 0.

Proof : Firstly, set Φ∗(v) = Φ(|v − v∗|) and write(
M(Dv)Q(f, g), h

)
−
(
Q(f, M(Dv)g), h

)
=

∫
R6

∫
S2
B(|v − v∗|, σ)f(v∗)g(v)

((
M h

)
(v′) −

(
M h

)
(v)
)
dσdv∗dv

−
∫

R6

∫
S2
B(|v − v∗|, σ)f(v∗)

(
M g

)
(v)
(
h(v′) − h(v)

)
dσdv∗dv

=
∫

R6

∫
S2
b(cos θ)f(v∗)

[
(Φ∗g)(v)(Mh)(v′) −

{
M(Φ∗g)

}
(v)h(v′)

]
dσdv∗dv

+
∫

R6

∫
S2
b(cos θ)f(v∗)

{
M(Φ∗g)

}
(v)
(
h(v′) − h(v)

)
dσdv∗dv

−
∫

R6

∫
S2
b(cos θ)f(v∗)

{
Φ∗
(
M g

)}
(v)
(
h(v′) − h(v)

)
dσdv∗dv

=
∫

R6

∫
S2
b(cos θ)f(v∗)

[
(Φ∗g)(v)(Mh)(v′) −

{
M(Φ∗g)

}
(v)h(v′)

]
dσdv∗dv

+
∫

R6

∫
S2
b(cos θ)f(v∗)

([
M , Φ∗

]
g
)
(v)
(
h(v′) − h(v)

)
dσdv∗dv

= I + II.



THE NON CUTOFF BOLTZMANN EQUATION 23

The above computation is justified with cutoff approximation, see the remark given after (2.1.4)
and also [39]. The first term I can be rewritten by using Bobylev formula (see e.g. [6]) as

I =
∫

R6

∫
S2
b(
ξ

|ξ|
· σ)f(v∗)

(
M(ξ) −M(ξ+)

)
F(Φ∗g)(ξ+)e−iv∗ξ

−
dσdv∗ĥ(ξ)dξ,

where

ξ± =
ξ ± |ξ|σ

2
.

Notice that in the case of Maxwellian molecule type cross section with γ = 0 i.e. Φ(|v − v∗|) = 1,
II ≡ 0.

Since M̃ ′(|ξ|2) = 2ξ · ∇M(ξ)/|ξ|2 and |ξ+| ≤ |ξ| ≤ 2|ξ+|, it follows from (2.3.1) and (2.3.2) that

(2.3.5) |M(ξ) −M(ξ+)| ≤ C

∣∣∣∣sin θ2
∣∣∣∣2M(ξ+),

and ∫
S2
b
( ξ
|ξ|

· σ
) ∣∣∣∣sin θ2

∣∣∣∣2 dσ ≤ C < +∞.

Thus,

|I| ≤ C

∫
R3
⟨v∗⟩γ+ |f(v∗)|

∫
S2

∫
R3
b(
ξ

|ξ|
· σ) sin2 θ

2
M(ξ+)|F(Φ∗⟨v∗⟩−γ+g)(ξ+)| |ĥ(ξ)|dξdσdv∗

≤ C
(∫

R3
|⟨v∗⟩γ+f(v∗)|

∫
S2

∫
R3
b(
ξ

|ξ|
· σ) sin2 θ

2
|M(ξ+)F(Φ∗⟨v∗⟩−γ+g)(ξ+)|2dξdσdv∗

)1/2

×
(∫

R3
|⟨v∗⟩γ+f(v∗)|

∫
S2

∫
R3
b(
ξ

|ξ|
· σ) sin2 θ

2
|ĥ(ξ)|2dξdσdv∗

)1/2

≤ C∥f∥L1
γ+

(
sup
v∗

∥M(Dv)Φ∗⟨v∗⟩−γ+g(v)∥L2
γ+

)
∥h∥L2 ,

where we have used Plancherel’s equality, the change of variables ξ → ξ+ for which dξ ∼ dξ+

uniformly with respect to σ, the estimate Φ∗⟨v∗⟩−γ+ ≤ ⟨v⟩γ+ . Then by using the expansion
formula of the pseudo-differential calculus

(2.3.6) [M(Dv), Φ∗(v)] g =
∑

1≤|α|<N1

1
α!

Φ∗(α)M
(α)(Dv)g + rN1(v,Dv; v∗)g ,

with N1 > λ, and the condition (2.3.2), we obtain

(2.3.7) sup
v∗

∥M(Dv)Φ∗⟨v∗⟩−γ+g(v)∥L2
γ+

≤ C
(
∥Mg∥L2

γ+
+ ||g||

H
λ−N1
γ+

)
.

Hence,

(2.3.8) |I| ≤ C∥f∥L1
γ+

(
∥Mg∥L2

γ+
+ ||g||

H
λ−N1
γ+

)
∥h∥L2 .

We now turn to the term II. Firstly, set

F (v, v∗) = [M, Φ∗]g(v),

and decompose

II =
∫

R6

∫
S2
b(cos θ)f(v∗)

{
F (v′, v∗)h(v′) − F (v, v∗)h(v)

}
dσdv∗dv

+
∫

R6

∫
S2
b(cos θ)f(v∗)

(
F (v, v∗) − F (v′, v∗)

)
h(v′)dv∗dvdσ

= J1 + J2.
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According to the cancellation lemma [6], we obtain∫
R3

∫
S2
b(cos θ)

{
F (v′, v∗)h(v′) − F (v, v∗)h(v)

}
dσdv =

(
S ∗

{
F ( · , v∗)h

})
(v∗),

where the convolution product is in v ∈ R3, and in this case,

S = 2π
∫ π/2

0

sin θb(cos θ)
[ 1
cos3(θ/2)

− 1
]
dθ

is a constant function. Consequently,

J1 =
∫

R3
f(v∗)

(
S ∗ {F (·, v∗)h}

)
(v∗)dv∗ = S

∫
R6
f(v∗)F (v, v∗)h(v)dvdv∗.

By (2.3.6) and (2.3.7), we get

|J1| ≤C
∫

R3
|f(v∗)|∥F (·, v∗)∥L2∥h∥L2dv∗(2.3.9)

≤C∥f∥L1
γ+

(
∥Mg∥L2

γ+
+ ||g||

H
λ−N1
γ+

)
∥h∥L2 .

To estimate the term J2, we need to consider the following two cases.

Case 1: 0 < s < 1/2 . Since the mean value theorem yields

F (v, v∗) − F (v′, v∗) = (v − v′) ·
∫ 1

0

∇v(F (v′ + τ(v − v′), v∗)dτ,

by noticing that

|v′ − v| = |v − v∗| sin(θ/2) = |v′ − v∗| tan(θ/2),

we have

|J2| ≤
∫ 1

0

(∫
R6×S2

b(cos θ)|v′ − v||f(v∗)||h(v′)||(∇vF )(v′ + τ(v − v′), v∗)|dvdv∗dσ
)
dτ.

≤C
(∫

R6×S2
b(cos θ)|θ|⟨v∗⟩γ+ |f(v∗)||h(v′)|2dvdv∗dσ

)1/2

×
∫ 1

0

(∫
R6×S2

b(cos θ)|θ|⟨v∗⟩γ+ |f(v∗)|
∣∣∣∣ |v − v∗|
⟨v∗⟩γ+

(∇vF )(v′ + τ(v − v′), v∗)
∣∣∣∣2 dvdv∗dσ)1/2

dτ

=C J21 × J22.

By the change of variables v → v′ for which dv ∼ dv′ uniformly in v∗ ∈ R3, σ ∈ S2 (see [6]), we get

(2.3.10) J2
21 ≤ C∥f∥L1

γ+
∥h∥2

L2 .

To estimate J22, we apply the change of variables (2.1.25) and use (2.1.26). Setting

ψ∗(v) =
⟨v − v∗⟩
⟨v∗⟩γ+

,

we get

J2
22 ≤ C

∫ 1

0

[ ∫
R2n×S2

b(cos θ)|θ|⟨v∗⟩γ+ |f(v∗)|
∣∣∣ψ∗(z)(∇vF )(z, v∗)

∣∣∣2dzdv∗dσ]dτ
≤ C∥f∥L1

γ+
sup
v∗

∥ψ∗(·)(∇vF )(·, v∗)∥2
L2 .
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On the other hand, it follows from the expansion formula of pseudo-differential operators that,
with Φ∗(v) = (1 + |v − v∗|2)γ/2 we have for any N1 ∈ N

(∇vF )(v, v∗) = ∇v[M, Φ∗]g(v)

=
∑

1≤|α|<N1

1
α!

{
(∇Φ∗(α))M (α)(Dv)g + Φ∗(α)M

(α)(Dv)∇vg
}

+ r̃N1(v,Dv; v∗)g

=FN1(v,Dv; v∗)g(v) + r̃N1(v,Dv; v∗)g(v),

(2.3.11)

where r̃N1 is a pseudo-differential operator with symbol belonging to Sλ−N1
1,0 uniformly with respect

to v∗ ∈ R3 (cf. [41]). Since∣∣ψ∗Φ∗(α)

∣∣ ≤ Cα
⟨v − v∗⟩
⟨v∗⟩γ+

⟨v − v∗⟩γ−|α| ≤ Cα⟨v⟩γ+ ,

by (2.3.2), we have for α ̸= 0 that,

|M (α)(ξ) ξ| ≤ CαM(ξ)⟨ξ⟩−|α|+1 ≤ CαM(ξ).

Hence

(2.3.12) J2
22 ≤ C∥f∥L1

γ+

(
∥Mg∥2

L2
γ+

+ ||g||2
H

λ−N1
γ+

)
.

Now, it follows from (2.3.9), (2.3.10), and (2.3.12) that

(2.3.13) |II| ≤ C∥f∥L1
γ+

(
∥Mg∥L2

γ+
+ ||g||

H
λ−N1
γ+

)
||h||L2 .,

holds when 0 < s < 1/2.

Case 2: 1/2 < s < 1. We now decompose J2 as follows:

J2 =
∫ 1

0

(∫
R6×S2

b(cos θ)f(v∗)h(v′)(v − v′) · (∇vF )(v′ + τ(v − v′), v∗)dvdv∗dσ
)
dτ

=
∫

R6×S2
b(cos θ)f(v∗)h(v′)(v − v′) · (∇vF )(v′, v∗)dvdv∗dσ

+
∫ 1

0

(∫
R6×S2

b(cos θ)f(v∗)h(v′)

(v − v′) · {(∇vF )(v′ + τ(v − v′), v∗) − (∇vF )(v′, v∗)} dvdv∗dσ
)
dτ

= J0
2 + J1

2 .

The essential feature of this decomposition is that J0
2 vanishes by symmetry as in the proof of

Lemma 2.4. Indeed, we have

J0
2 =

∫
R6
f(v∗)h(v′){∫

S2
b

(
ψσ(v′) − v∗
|ψσ(v′) − v∗|

· σ
) ∣∣∣∂(ψσ(v′))

∂(v′)

∣∣∣(ψσ(v′) − v′)dσ
}
· (∇vF )(v′, v∗)dv′dv∗

= 0,

because of the symmetry in σ1 and σ2 in the sense that ψσ1(v
′) − v′ = −(ψσ2(v

′) − v′), cf. Figure
2.

Now, by the change of variable v → z = v′ + τ(v − v′) defined by (2.1.25), we consider

J1
2 (τ) =

∫
R6×S2

bf(v∗)h(v′)(v − v′) · {(∇vF )(z, v∗) − (∇vF )(v′, v∗)}dvdv∗dσ.
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By recalling the expansion formula (2.3.11) of (∇vF )(v, v∗), we first consider

J1
2 (τ, α)

=
∫

R6×S2
bf(v∗)h(v′)(v − v′) · {Φ∗(α)M

(α)∇vg(z) − Φ∗(α)M
(α)∇vg(v′)}dvdv∗dσ

=
∫

R6×S2
bf(v∗)h(v′)

{
Φ∗(α)(z) − Φ∗(α)(v′)

}
(v − v′) ·M (α)∇vg(z)dvdv∗dσ

+
∫

R6×S2
bf(v∗)h(v′)Φ∗(α)(v′)(v − v′) · {M (α)∇vg(z) −M (α)∇vg(v′)}dvdv∗dσ

=J1,0
2 (τ, α) + J̃1

2 (τ, α).

(2.3.14)

Notice that the case when |α| = 1 is the most difficult one, in the sense that M (α)(Dv)∇v is a
pseudo-differential operator of order λ with symbol bounded by CM(ξ) due to the assumption
(2.3.2). By writing (1) instead of (α) when |α| = 1, we have∣∣{Φ∗(1)(z) − Φ∗(1)(v′)

}
|v − v′|

∣∣ ≤ C⟨z − v∗⟩γθ2,

which gives ∣∣∣J1,0
2 (τ, (1))

∣∣∣ ≤(∫
R6×S2

bθ2|⟨v∗⟩γ+f(v∗)||h(v′)|2dσdvdv∗
)1/2

(2.3.15)

×

(∫
R6×S2

bθ2|⟨v∗⟩γ+f(v∗)|
∣∣∣∣ ⟨z − v∗⟩γ

⟨v∗⟩γ+
M (α) ∇vg(z)

∣∣∣∣2 dσdvdv∗
)1/2

≤C||f ||L1
γ+

||M g||L2
γ+

||h||L2 .

In order to evaluate the term J̃1
2 (τ, (1)), we take the same Littlewood-Paley partition of unity

{ψj(ξ)} as in the proof of Lemma 2.4 and write

J̃1
2 (τ, (1))

=
∫

R6×S2
bf(v∗)h(v′)Φ∗(1)(v′)(v − v′) · {M (1)∇vg(z) −M (1)∇vg(v′)}dvdv∗dσ

=
∞∑
j=0

∫
R6×S2

bf(v∗)h(v′)Φ∗(1)(v′)(v − v′) · (gj(z) − gj(v′)) dvdv∗dσ

=
∞∑
j=0

J̃1
2,j(τ),

where gj(v) = ψj(Dv)M (1)(Dv)∇vg(v). For each j we apply the following decomposition by using
Ωj introduced in the proof of Lemma 2.4 to have

J̃1
2,j(τ)

=
∫ 1

0

(∫
R6

(∫
Ωj

bf(v∗)h(v′)Φ∗(1)(v′)(v − v′)

· (z − v′)∇gj(v′ + s(z − v′))dσ
)
dvdv∗

)
ds

+
∫

R6

(∫
Ωc

j

bf(v∗)h(v′)Φ∗(1)(v′)(v − v′) · (gj(z) − gj(v′)) dσ

)
dvdv∗

=J̃1,1
2,j (τ) + J̃1,2

2,j (τ).

By setting
v′τ,s = v′ + s(z − v′),
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we have

|J̃1,1
2,j (τ)| ≤

∫ 1

0

(∫
R6

(∫
Ωj

b|v′ − v|2|f(v∗)||h(v′)||Φ∗(1)(v′)||∇gj(v′τ,s)|dσ

)
dvdv∗

)
ds

≤ C

∫ 1

0

(∫
R6

(∫
Ωj

b(cos θ)θ2⟨v − v∗⟩2−2s⟨v∗⟩(2s+γ−1)+ |f(v∗)|

× |h(v′)|

∣∣∣∣∣ ⟨v′τ,s − v∗⟩2s+γ−1

⟨v∗⟩(2s+γ−1)+
∇gj(v′τ,s)

∣∣∣∣∣ dσ)dvdv∗)ds
≤ C2−εj

(∫
R6

(∫
Ωj

b(cos θ)θ22j(2−2s)⟨v − v∗⟩2−2s⟨v∗⟩(2s+γ−1)+ |f(v∗)||h(v′)|2dσ
)
dvdv∗

)1/2

×
∫ 1

0

((∫
R6

(∫
Ωj

b(cos θ)θ22j(2−2s)⟨v − v∗⟩2−2s⟨v∗⟩(2s+γ−1)+ |f(v∗)|∣∣∣⟨v′τ,s⟩(2s+γ−1)+2j(2s−2+ε)∇gj(v′τ,s)
∣∣∣2 dσ)dvdv∗)1/2)

ds

= C2−εj J̃1,1
2,j,1(τ) × J̃1,1

2,j,2(τ).

By using the same change of variables as for J2,1 in the previous case, it follows from (2.1.23) that

(2.3.16) J̃1,1
2,j,1(τ)

2 ≤ C||f ||L1
(2s+γ−1)+

||h||2L2 .

Similarly, by taking the change of variables v → v′τ,s as in the previous case again, (2.1.23) leads
to

(2.3.17) J̃1,1
2,j,2(τ)

2 ≤ C||f ||L1
(2s+γ−1)+

(
||M g||2

H2s−1+ε
(2s+γ−1)+

+ ||g||2
H

λ−N1+2s−1+ε

(2s+γ−1)+

)
,

where we have used

||2j(2s−2−ε)∇gj(v)||2L2
(2s+γ−1)+

≤ C
(
||M g||2

H2s−1+ε
(2s+γ−1)+

+ ||g||2
H

λ−N1+2s−1+ε

(2s+γ−1)+

)
.

Hence, it follows from (2.3.16) and (2.3.17) that, for N1 > λ+ 2s− 1 + ε, we have

(2.3.18) |J̃1,1
2,j (τ)| ≤ C2−εj ||f ||L1

(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+
+ ||g||Hλ−N

(2s+γ−1)+

)
|h||L2 .

On the other hand, for J̃1,2
2,j (τ), note that

J̃1,2
2,j (τ) =

∫
R6

(∫
Ωc

j

bf(v∗)h(v′)Φ∗(1)(v′)(v − v′) · gj(z)dσ

)
dvdv∗,

by the symmetry in Ωcj . We have

|J̃1,2
2,j (τ)| ≤ C

∫
R6

(∫
Ωc

j

b(cos θ)θ⟨v − v∗⟩1−2s⟨v∗⟩(2s+γ−1)+ |f(v∗)|

× |h(v′)|
∣∣∣∣ ⟨z − v∗⟩2s+γ−1

⟨v∗⟩(2s+γ−1)+
gj(z)

∣∣∣∣ dσ)dvdv∗
≤ C2−εj

(∫
R6

(∫
Ωc

j

b(cos θ)θ2j(1−2s)⟨v − v∗⟩1−2s⟨v∗⟩(2s+γ−1)+ |f(v∗)||h(v′)|2dσ
)
dvdv∗

)1/2

×
(∫

R6

(∫
Ωc

j

b(cos θ)θ2j(1−2s)⟨v − v∗⟩1−2s⟨v∗⟩(2s+γ−1)+ |f(v∗)|∣∣∣⟨z⟩(2s+γ−1)+2j(2s−1+ε)gj(z)
∣∣∣2 dσ)dvdv∗)1/2

≤ C2−εj ||f ||L1
(2s+γ−1)+

|h||L2

(
||M g||H2s−1+ε

(2s+γ−1)+
+ ||g||Hλ−N

(2s+γ−1)+

)
,
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because of (2.1.24). This together with (2.3.15) and (2.3.18) yield

(2.3.19) |J1
2 (τ, (1))| ≤ C||f ||L1

(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+
+ ||g||Hλ−N

(2s+γ−1)+

)
|h||L2 .

It is easy to see that all other terms coming from FN1(v,Dv; v∗)g(v) in (2.3.11) have the same
upper bound estimates. Moreover, all the terms coming from r̃N1(v,Dv; v∗)g(v) can be estimated
by

C||f ||L1
(2s+γ−1)+

||g||Hλ−N
(2s+γ−1)+

|h||L2 .

Therefore, we finally obtain

|J2| = |J1
2 | ≤ C||f ||L1

(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+
+ ||g||Hλ−N

(2s+γ−1)+

)
|h||L2 .

In summary, when 1/2 < s < 1 we obtain instead of (2.3.13) that

(2.3.20) |II| ≤ C||f ||L1
(2s+γ−1)+

(
||M g||H2s−1+ε

(2s+γ−1)+
+ ||g||Hλ−N

(2s+γ−1)+

)
|h||L2 .

By combining (2.3.8), (2.3.13) and (2.3.20), the proof of Proposition 2.9 is completed.

The rest of this section is devoted to the proof (2.1.19) of Lemma 2.4.

Proof of (2.1.19) of Lemma 2.4.For m = 2s− 1 + ε > 0, we have with Λ = (1 − ∆v)1/2(
WlQ(f, g) −Q(f, Wlg), h

)
=
(
(Λ−mQ(f, g) −Q(f, Λ−mg)), WlΛmh

)
+
(
(WlQ(f, Λ−mg) −Q(f, WlΛ−mg)), Λmh

)
+
(
(Q(f, Λ−mWl g) − Λ−mQ(f, Wlg)), Λmh

)
+
(
(
[
Λ−m, Wl

]
Q(f, g) −Q(f,

[
Λ−m, Wl

]
g)), Λmh

)
= (1) + (2) + (3) + (4).

It follows from (2.3.4) with M(ξ) = Λ−m that

|(1)| ≤ C∥f∥L1
(2s+γ−1)+

∥g∥L2
(2s+γ−1)+

∥h∥Hm
l
,

|(3)| ≤ C∥f∥L1
(2s+γ−1)+

∥Wlg∥L2
(2s+γ−1)+

∥h∥Hm .

By means of (2.1.18), we have

|(2)| ≤ C∥f∥L1
l+2s−1+γ+

∥g∥L2
l+2s−1+γ+

∥h∥Hm .

To estimate (4), we first note that

[Λ−m, Wl] =
∑
|α|=1

(
Wl

)
(α)

(
Λ−m)(α) +Wl−1R(v,Dv),

where R is a pseudo-differential operator which belongs to S−m−2
1, 0 . Write

(4) =
∑
|α|=1

({(
Λ−m)(α)

Q(f, g) −Q(f,
(
Λ−m)(α)

g)
}
,
(
Wl

)
(α)

Λmh
)

+
∑
|α|=1

({(
Wl

)
(α)
Q(f,

(
Λ−m)(α)

g) −Q(f,
(
Wl

)
(α)

(
Λ−m)(α)

g)
}
,Λmh

)
+
(
R(v,Dv)Q(f, g),Wl−1Λmh

)
+
(
Q(f,Wl−1R(v,Dv)g),Λmh

)
=(a) + (b) + (c) + (d).



THE NON CUTOFF BOLTZMANN EQUATION 29

It follows from (2.1.1) that

|(c)| ≤ C∥Q(f, g)∥H−2∥h∥Hm
l−1

≤ C∥f∥L1
(γ+2s)+

∥g∥L2
(γ+2s)+

∥h∥Hm
l−1
,

|(d)| ≤ C∥Q(f,Wl−1Rg)∥L2∥h∥Hm ≤ C∥f∥L1
(γ+2s)+

∥g∥L2
l−1+(γ+2s)+

∥h∥Hm .

By exactly the same method as the one for (2.1.18), namely, by replacing Wl by (Wl)(α) which is
bounded by Wl−|α|, we have

|(b)| ≤ C∥f∥L1
l−2+2s+γ+

∥
(
Λ−m

)(α)

g∥Hm
l+2s−2+γ+

∥h∥Hm ≤ C∥f∥L1
l−2+2s+γ+

∥g∥L2
l+2s−2+γ+

∥h∥Hm .

The estimation on (a) is the same as the argument in Proposition 2.9 by replacing M(D) by
(Λ−m)(α), except for the term corresponding to I. Notice that Dα

ξ (⟨ξ⟩−m) := M (α)(ξ) is no longer
a function of |ξ|2. Instead of (2.3.5), we only have

(2.3.21) |M (α)(ξ) −M (α)(ξ+)| ≤ C

∣∣∣∣sin θ2
∣∣∣∣ ⟨ξ+⟩−m−1.

Thus, we need to use the symmetry property as in the proof of Theorem 2.1. The term corre-
sponding to I is

Iα =
∫

R6

∫
S2
b(
ξ

|ξ|
· σ)f(v∗)

×
(
M (α)(ξ) −M (α)(ξ+)

)
F(Φ∗g)(ξ+)e−iv∗ξ

−
dσdv∗ĥ0(ξ)dξ,

where h0 = (Wl)(α)Λmh. By letting

F (v, v∗) =
Φ(|v − v∗|)
⟨v∗⟩γ+ g(v), h(v, v∗) =

h0(v)
⟨v∗⟩

,

we write

Iα =
∫

R3
⟨v∗⟩1+γ

+
f(v∗)

×
{∫

R3

∫
S2
b(
ξ

|ξ|
· σ)
(
M (α)(ξ) −M (α)(ξ+)

)
eiv∗ξ

+
F̂ (ξ+, v∗)eiv∗ξĥ(ξ, v∗)dσdξ

}
dv∗

=
∫

R3
⟨v∗⟩1+γ

+
f(v∗)L(v∗)dv∗.

Set ˜̂
F (ξ, v∗) = eiv∗ξF̂ (ξ, v∗),

˜̂
h(ξ, v∗) = eiv∗ξĥ(ξ, v∗),

and write

L(v∗) =
∫

R3

∫
S2
b(
ξ

|ξ|
· σ)
(
M (α)(ξ) −M (α)(ξ+)

)˜̂
F (ξ+, v∗)

(˜̂
h(ξ, v∗) − ˜̂h(ξ+, v∗))dσdξ

+
1
2

∫ 1

0

(1 − τ)
{∫

Rn

∫
S2
b
( ξ
|ξ|

· σ
)

× (∇2
ξM

(α))(ξ+ + τ(ξ − ξ+))(ξ−)2 ˜̂F (ξ+, v∗)
˜̂
h(ξ+, v∗)dσdξ

}
dτ

=L1(v∗) + L2(v∗).

By the same symmetry property as shown in Figure 1 in the proof of Theorem 2.1, we have∫
R3

∫
S2
b
( ξ
|ξ|

· σ
)
(∇ξM

(α))(ξ+) · ξ−(σ) ˜̂F (ξ+, v∗)
˜̂
h(ξ+, v∗)dσdξ = 0.

Then it follows from (2.3.21) that

sup
v∗

|L1(v∗)| ≤ C∥g∥L2
γ+

∥h0∥L2
1
≤ C∥g∥L2

γ+
∥h∥Hm

l
,
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and
sup
v∗

|L2(v∗)| ≤ C∥g∥L2
γ+

∥h0∥L2 ≤ C∥g∥L2
γ+

∥h∥Hm
l−1
,

whence we obtain
|Iα| ≤ C∥f∥L1

1+γ+
∥g∥L2

γ+
∥h∥Hm

l
.

In summary, we obtained the desired estimate (2.1.19).

3. Regularizing effect

In this section, we will prove the regularizing effect on solutions to the non-cutoff Boltzmann
equation starting from f ∈ H5

l (]T1, T2[×Ω×R3
v)). Actually this will be proved by using an induction

argument in the following subsections. In the first step, we will show the gain of regularity in the
variable v mainly by using the singularity in the cross-section, that is, the coercivity property in
(3.1.3). In the second step, we will apply the hypo-elliptic estimate obtained by a generalized
version of the uncertainty principle to show the gain of regularity in (x, t) variables. Then an
induction argument will lead to at least one order higher regularity in (x, t) variables. By using
the equation and an induction argument again, at least one order higher regularity can be obtained
in v variable. Therefore, the solution is shown to be in H6

l (]T1, T2[×Ω × R3
v) which by induction

leads to H∞
l (]T1, T2[×Ω × R3

v).
Let f ∈ H5

l (]T1, T2[×Ω×R3
v)), for all l ∈ N, be a (classical) solution of the Boltzmann equation

(1.1). We now want to prove the full regularity of φ(t)ψ(x)f for any smooth cutoff functions
φ ∈ C∞

0 (]T1, T2[), ψ ∈ C∞
0 (Ω).

3.1. Initialization. Here and below, ϕ denotes a cutoff function satisfying ϕ ∈ C∞
0 and 0 ≤ ϕ ≤ 1.

Notation ϕ1 ⊂⊂ ϕ2 stands for two cutoff functions such that ϕ2 = 1 on the support of ϕ1.
Take the smooth cutoff functions φ, φ2, φ3 ∈ C∞

0 (]T1, T2[) and ψ, ψ2, ψ3 ∈ C∞
0 (Ω) such that

φ ⊂⊂ φ2 ⊂⊂ φ3 and ψ ⊂⊂ ψ2 ⊂⊂ ψ3. Set f1 = φ(t)ψ(x)f , f2 = φ2(t)ψ2(x)f and f3 =
φ3(t)ψ3(x)f . For α ∈ N7, |α| ≤ 5, define

g = ∂α(φ(t)ψ(x)f) = ∂αt,x,v(φ(t)ψ(x)f) ∈ L2
l (R7).

Firstly, the translation invariance of the collision operator with respect to the variable v implies
that (see [32, 37, 53] ), for the translation operation τh in v by h, that we have

τhG(f, g) = Q(τhf, τhg).

Then the Leibniz formula with respect to the t, x variables yields the following equation in a weak
sense

(3.1.1) gt + v · ∂xg = Q(f2, g) +G, (t, x, v) ∈ R7,

where

G =
∑

α1+α2=α, 1≤|α1|

Cα1
α2
Q
(
∂α1f2, ∂

α2f1

)
(3.1.2)

+ ∂α
(
φtψ(x)f + v · ψx(x)φ(t)f

)
+ [∂α, v · ∂x](φ(t)ψ(x)f)

≡ (A) + (B) + (C).

To prove the regularity of g = ∂α(φ(t)ψ(x)f), the natural idea would be to use g as a test
function for equation (3.1.1). But at this point, g only belongs to L2

l (R7) so that it is only a
weak solution to equation (3.1.1). By using the upper bound estimate on Q, we have Q(f2, g) ∈
L2(R4

t,x; H
−2s(R3

v)). Thus, we need to choose the test functions at least in the space L2(R4
t,x; H

2s(R3
v)).

For this, we will use a mollification of g with respect to the variables (x, v) as a test function.
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For this purpose, let S ∈ C∞
0 (R) satisfy 0 ≤ S ≤ 1 and

S(τ) = 1, |τ | ≤ 1; S(τ) = 0, |τ | ≥ 2.

Then
SN (Dx)SN (Dv) = S(2−2N |Dx|2)S(2−2N |Dv|2) : H−∞

l (R6) → H+∞
l (R6),

is a regularization operator such that

∥
(
SN (Dx)SN (Dv)f

)
− f∥L2

l (R6) → 0, as N → ∞.

Choose another cutoff function ψ ⊂⊂ ψ1 ⊂⊂ ψ2 and set

PN, l = ψ1(x)SN (Dx)Wl SN (Dv).

Then we can take
g̃ = P ⋆N, l (PN, l g) ∈ C1(R;H+∞(R6))

as a test function for the equation (3.1.1).
It follows by integration by parts on R7 = R1

t × R3
x × R3

v that(
[SN (Dv), v] · ∇xSN (Dx)g, ψ1(x)WlPN,l g

)
L2(R7)

=(
PN,lQ(f2, g), PN,l g

)
L2(R7)

+
(
G, g̃

)
L2(R7)

,

which implies that

−
(
Q(f2, PN, l g), PN, l g

)
L2(R7)

= −
(
[SN (Dv), v] · ∇xSN (Dx)g, ψ1(x)WlPN,l g

)
L2(R7)

(3.1.3)

+
(
PN, lQ(f2, g) −Q(f2, PN, l g), PN, l g

)
L2(R7)

+
(
G, g̃

)
L2(R7)

.

By using (3.1.3), we can deduce the regularity of g from the coercivity property of the collision
operator on the left hand side and the upper bound estimate on the right hand side. The detailed
argument will be given in the next subsection.

3.2. Gain of regularity in v. In this subsection, we will prove a partial smoothing effect of the
cross-section on the weak solution g in the velocity variable v .

Proposition 3.1. Assume that 0 < s < 1, γ ∈ R. Let f ∈ H5
l (]T1, T2[×Ω × R3

v) be a solution of
the equation (1.1) for all l ∈ N. Assume furthermore that

(3.2.1) f(t, x, v) ≥ 0 and ∥f(t, x, ·)∥L1(R3
v) > 0,

for all (t, x, v) ∈]T1, T2[×Ω × R3
v. Then one has,

(3.2.2) Λsvf1 ∈ H5
l (R7),

for any l ∈ N, where f1 = φ(t)ψ(x)f with φ ∈ C∞
0 (]T1, T2[), ψ ∈ C∞(Ω).

Proof : Firstly, the local positive lower bound assumption (3.2.1) implies that

inf
(t,x)∈supp φ×supp ψ1

∥f2(t, x, ·)∥L1(R3
v) = c0 > 0.

Thus, the coercivity estimate (2.2.1) in Theorem 2.6 gives that for any γ ∈ R, 0 < s < 1,

−
(
Q(f2, PN,l g), PN,l g

)
L2(R7)

= −
∫
t∈suppφ

∫
x∈suppψ1

(
Q(f2, PN,l g), PN,l g

)
L2(R3

v)
dxdt

≥
∫

Rt

∫
R3

x

(
C0∥Wγ/2PN,l g(t, x, ·)∥2

Hs(R3
v)

−C∥f2(t, x, ·)∥L1
max{γ+, 2−γ+}

(R3
v)∥PN,l g(t, x, ·)∥2

L2
γ+/2

(R3
v)

)
dxdt

≥ C0∥ΛsvWγ/2PN,l g∥2
L2(R7) − C∥f2∥L∞(R4

t,x; L1
max{γ+, 2−γ+}

(R3
v))∥Wl g∥2

L2
γ+/2

(R7),

where C0 depends on c0, supt,x ∥f2(t, x, ·)∥L1
1(R3

v) and supt,x ∥f2(t, x, ·)∥L logL(R3
v), see Remark 2.7.
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For the terms in (3.1.3), note first of all that

(3.2.3) [SN (Dv), v] · ∇x SN (Dx) = 2−2N
(
S′)

N
(Dv)Dv · ∇x SN (Dx) : L2(R6

x,v) → L2(R6
x,v),

is a uniformly bounded operator so that∣∣∣([SN (Dv), v] · ∇x SN (Dx)g, ψ1(x)WlPN,l g
)
L2(R7)

∣∣∣ ≤ C∥f1∥2
H5

l (R7).

Hence, by using (3.1.3), we get, for l > 3/2 + 2,

∥ΛsvWγ/2PN,l g∥2
L2(R7) ≤ C

{(
1 + ∥f2∥H2+δ

l+γ+ (R6)

)
∥f1∥2

H5
l (R7) +

∣∣∣∣(G, g̃)
L2(R7)

∣∣∣∣(3.2.4)

+
∣∣∣(PN,lQ(f2, g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

∣∣∣} .
The above constants C > 0 are independent of N .

We complete the proof of Proposition 3.1 by estimating the last two terms in (3.2.4) through
the following three Lemmas.

Lemma 3.2. Assume 0 < s < 1, γ ∈ R. Let f ∈ H5
l (]T1, T2[×Ω × R3

v), l ≥ 3/2 + 2. Then, for
any α ∈ N7, |α| ≤ 5, we have, for any ε > 0,

(3.2.5)
∣∣∣∣(G, g̃)

L2(R7)

∣∣∣∣ ≤ Cε∥f3∥4
H5

l+4+|γ|(R7) + ε∥ΛsvWγ/2PN, l g∥2
L2(R7

t,x,v).

Proof : Firstly, we prove that

(3.2.6) G ∈ L2(R4
t,x;H

−(2s−1+δ)+

l (R3
v)),

for any l ∈ N, where (2s − 1 + δ)+ = max{2s − 1 + δ, 0} and δ > 0 satisfying 2s − 1 + δ < s. By
using the decomposition in (3.1.2), it is obvious that

(B) = ∂α
(
φtψ(x)f + v · ψx(x)φ(t)f

)
∈ L2

l (R7),

and

∥(B)∥L2
l (R7) ≤ C∥f2∥H5

l+1(R7).

Since [∂α, v · ∂x] is a differential operator of order |α|, we have

∥(C)∥L2
l (R7) ≤ C∥f2∥H5

l (R7)).

For the term (A), recall that α1 + α2 = α, |α| ≤ 5 and |α2| < 5. In the following, we will apply
Theorem 2.1 with m = 1 − δ − 2s. We separate the discussion into two cases.

Case 1. If |α1| = 1, 2, we have∫
Rt

∫
R3

x

∥Q(∂α1f2, ∂
α2f1)(t, x, ·)∥2

H1−δ−2s
l (R3

v)
dxdt

≤ C

∫
Rt

∫
R3

x

∥∂α1f2(t, x, ·)∥2
L1

l+(2s+γ)+
(R3

v)∥∂
α2f1(t, x, ·)∥2

H1−δ

l+(2s+γ)+
(R3

v)
dxdt

≤ C∥∂α1f2∥2
L∞(R4

t,x;L1
l+(2s+γ)+

(R3
v))

∫
Rt

∫
R3

x

∥∂α2f1(t, x, ·)∥2
H1

l+(2s+γ)+
(R3

v)dxdt

≤ C∥f2∥2

H
2+4/2+δ

l+3/2+δ+(2s+γ)+
(R7)

∥f1∥2
H5

l+(2s+γ)+
(R7).
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Case 2. If |α1| ≥ 3, then |α2| ≤ 2, it follows that∫
Rt

∫
R3

x

∥∂α1f2(t, x, ·)∥2
L1

l+(2s+γ)+
(R3

v)∥∂
α2f1(t, x, ·)∥2

H1−δ

l+(2s+γ)+
(R3

v)
dxdt

≤ C∥∂α2f1∥2
L∞(R4

t,x;H1−δ

l+(2s+γ)+
(R3

v))

∫
Rt

∫
R3

x

∥∂α1f2(t, x, ·)∥2
L2

l+3/2+δ+(2s+γ)+
(R3

v)dxdt

≤ C∥f1∥2

H
2+1−δ+4/2+δ/2
l+(2s+γ)+

(R6)
∥f2∥2

H5
l+3/2+δ+(2s+γ)+

(R7).

By combining these two cases, we have proved (3.2.6).
Now if 2s− 1 < 0, then (3.2.6) implies that∣∣∣∣(G, g̃)L2(R7)

∣∣∣∣ ≤ C∥f3∥3
H5

l+4+γ+ (R7).

On the other hand, if 0 ≤ 2s− 1 and γ < 0 (the case γ > 0 is easier), then (3.2.6) implies that∣∣∣∣(G, g̃)L2(R7)

∣∣∣∣ ≤ ∥G∥L2(R4
t,x;H1−2s−δ

l+|γ|/2 (R3
v)∥W−|γ|/2PN, l g∥L2(R4

t,x;H2s−1+δ(R3
v))

≤ C∥f3∥2
H5

l+4+|γ|(R7) ∥W−|γ|/2PN, l g∥L2(R4
t,x;H2s−1+δ(R3

v)),

because 2s− 1 + δ < s. Therefore, the proof of Lemma 3.2 is completed.

We now turn to the estimates of commutators between the mollification operators and the
collision operator, which are given in the following two lemmas.

Lemma 3.3. For any γ ∈ R, we have
(1) If 0 < s < 1/2, then for any suitable functions f and g with the following norms well defined,
one has

(3.2.7) ∥SN (Dv)Q(f, g) −Q(f, SN (Dv)g)∥L2(R3
v) ≤ C∥f∥L1

γ+ (R3
v)∥g∥L2

γ+ (R3
v),

for some constant C independent of N .
(2) If 1/2 < s < 1, then for any δ > 0 there exists a constant Cδ > 0 such that

(3.2.8) ∥SN (Dv)Q(f, g) −Q(f, SN (Dv)g)∥L2(R3
v) ≤ Cδ∥f∥L1

(2s+γ−1)+
(R3

v)∥g∥H2s−1+δ

(2s+γ−1)+
(R3

v) ,

and

(3.2.9) ∥SN (Dv)Q(f, g) −Q(f, SN (Dv)g)∥H1−2s−δ(R3) ≤ Cδ∥f∥L1
(2s+γ−1)+

(R3
v)∥g∥L2

(2s+γ−1)+
(R3

v).

(3) When s = 1/2, we have the same form of estimate as (3.2.8) with (2s + γ − 1) replaced by
(γ + κ) for any small κ > 0.

Before giving the proof of this lemma, notice that when γ = 0 in the Maxwellian molecule
case, the following proof of Lemma 3.3 is similar to Lemma 3.1 in [48] (see also Lemma 5.1 in [8])
by using the Fourier transformation of collision operator. However, here we consider the case for
γ ∈ R.

Proof of Lemma 3.3 : The proof is a slight modification of the proof for Proposition 2.9. Set

M(|ξ|) = SN (|ξ|) = S(2−2N |ξ|2).

Then SN ∈ S0
1,0 uniformly. Even though it does not satisfy (2.3.2), we have

|∂αSN (|ξ|)| ≤ CαSN+1(|ξ|) < ξ >−|α|

with Cα independent ofN ∈ N. Thus, (2.3.3) implies (3.2.7) and (2.3.4) implies (3.2.8) respectively.
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For (3.2.9), note that with m = 2s− 1 + δ we have

(SNQ(f, g) −Q(f, SNg), h) =
(
(Λ−mQ(f, g) −Q(f,Λ−mg)),ΛmSNh

)
+
(
(SNQ(f,Λ−mg) −Q(f,Λ−mSNg)),Λmh

)
+
(
(Q(f, SNΛ−mg) − Λ−mQ(f, SNg)),Λmh

)
=(I1) + (I2) + (I3).

By applying (2.3.4) with M(ξ) = ⟨ξ⟩−m to (I1) and (I3), we obtain

|(I1)| + |(I3)| ≤ C∥f∥L1
(2s+γ−1)+

∥g∥L2
(2s+γ−1)+

∥h∥Hm ,

because SN ∈ S0
1,0 uniformly. The same bound on (I2) follows from (3.2.8).

Notice that the case of s = 1/2 follows from the case of s = 1/2 + κ for any positive κ because
the main concern here is the upper bound. And this completes the proof of the lemma.

The following lemma is on the commutator of the collision opertor with mollifier in the x variable.

Lemma 3.4. Let 0 < s < 1 and γ,m ∈ R. For any suitable functions f and h with the following
norms well defined, one has

∥SN (Dx)Q(f, h) −Q(f, SN (Dx)h)∥L2(R4
t,x, H

m−2s(R3
v))(3.2.10)

≤ C2−N∥∇xf∥L∞(R4
t,x, L

1
(2s+γ)+

(R3
v))∥h∥L2(R4

t,x, H
m
(2s+γ)+

(R3
v)).

for a constant C independent of N .

Proof : Let us introduce K̃N (z) = 23N Ŝ(2Nz)2Nz. Note that K̃N ∈ L1(R3) uniformly with
respect to N . Then for any smooth function h̃, one has((

SN (Dx) Q(f, h) −Q(f, SN (Dx)h)
)
, h̃
)
L2(R7)

=
∫ 1

0

{∫
Rt

∫
R3

x×R3
y

K̃N (x− y)

×
(
Q
(
∇xf(t, y + τ(x− y), · ), 2−Nh(t, y, · )

)
, h̃(t, x, · )

)
L2(R3

v)
dtdxdy

}
dτ.

By applying Theorem 2.1 with m− 2s, the right hand side of this equality can be estimated from
above by

C
{

sup
t,x

||∇xf(t, x, · )||L1
(2s+γ)+

(R3
v)

}
×∫

Rt

∫
R3

x

(
|K̃N | ∗ ||2−Nh(t, · )||Hm

(2s+γ)+
(R3

v)

)
(x)||h̃(t, x, ·)||H2s−m(R3

v)dxdt

≤ C2−N∥∇xf∥L∞(R4
t,x;L1

(2s+γ)+
(R3

v))∥h∥L2(R4
t,x;Hm

(2s+γ)+
(R3

v))||h̃||L2(R4
t,x;H2s−m(R3

v)),

which completes the proof of the lemma.

We now apply (3.2.10) with h = SN (Dv)g and m = 1, we get

∥SN (Dx)Q(f, SN (Dv)g) −Q(f, SN (Dx)SN (Dv)g)∥L2(R4
t,x, H

1−2s(R3
v))(3.2.11)

≤ C∥∇xf∥L∞(R4
t,x, L

1
(2s+γ)+

(R3
v))∥g∥L2(R4

t,x, L
2
(2s+γ)+

(R3
v)).

Here, we have used the fact that a mollification operator SN (Dv) in the v variable has the property
that

∥2−NSN (Dv)g(t, x, · )∥H1
(2s+γ)+

(R3
v) ≤ C∥g(t, x, · )∥L2

(2s+γ)+
(R3

v),

where C is a constant independent on N .

Now we are ready to complete the proof of Proposition 3.1.
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Completion of proof of Proposition 3.1.
We study now the commutator terms in (3.2.4). For this purpose, note that(

PN,lQ(f2, g) −Q(f2, PN,l g), PN,l g
)
L2(R7)

(3.2.12)

=
(
SN (Dv)Q(f2, g) −Q(f2, SN (Dv) g), S⋆N (Dx)ψ1(x)WlPN,l g

)
L2(R7)

+
(
SN (Dx)Q(f2, SN (Dv) g) −Q(f2, SN (Dx)SN (Dv) g), ψ1(x)WlPN,l g

)
L2(R7)

+
(
ψ1(x)WlQ(f2, SN (Dx)SN (Dv) g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

.

= (1) + (2) + (3).

Note that Λsv[ψ1(x), SN (Dx)]SN (Dv) is an L2 uniformly bounded operator with respect to the
parameter N for 0 ≤ s ≤ 1, and that [Wl, SN (Dv)] is also a uniformly bounded operator from
L2 to L2

l−1 with respect to the parameter N . The discussion on (3.2.12) can be divided into the
following two cases.
Case 1. 0 < s < 1/2. In this case, Lemma 3.3 implies that , for l > max{4, (γ + 2s)+},

|(1)| ≤ C∥f2∥L∞(R4
t,x , L

1
γ++2s

(R3
v))∥g∥L2(R7)∥g∥L2

2l(R7) ≤ C∥f3∥3
H5

2l(R7).

And Lemma 3.4 implies that

|(2)| ≤ C∥∇xf2∥L∞(R4
t,x , L

1
γ++2s

(R3
v))∥g∥L2(R4

t,x , L
2
γ+ (R3

v))∥g∥L2
2l(R7) ≤ C∥f3∥3

H5
2l(R7).

As for the term (3), we use Lemma 2.4 to have

|(3)| ≤ C∥f2∥L∞(R4
t,x , L

1
l+γ++2s

(R3
v))∥g∥L2

l+γ++2s
(R7)∥PN, l g∥L2(R7) ≤ C∥f3∥3

H5
2l(R7).

Case 2. 1/2 ≤ s < 1. By using (3.2.9), we have

|(1)| ≤ C∥f2∥L∞(R4
t,x , L

1
l+γ++2s−1

(R3
v))∥g∥L2

l+γ++2s−1
(R7)∥Wγ/2PN, l g∥L2(R4

t,x , H
2s−1+δ(R3

v))

≤ ε∥ΛsvWγ/2PN,l g∥2
L2(R7) + Cε∥f3∥4

H5
l+4+γ+ (R7).

We can use (3.2.11) to show that

|(2)| ≤ C∥∇xf2∥L∞(R4
t,x , L

1
γ++2s

(R3
v))∥g∥L2(R4

t,x , L
2
γ++2s

(R3
v))∥Wl PN, l g∥L2(R4

t,x , H
2s−1(R3

v))

≤ Cε∥f3∥
4
θ +2

H5
kl(R7)

+ ε∥ΛsvWγ/2PN, l g∥2
L2(R7

t,x,v).

Then, (2.1.18) implies that

|(3)| ≤ C∥f2∥L∞(R4
t,x , L

1
2s+l−1+γ+

(R3
v))∥ψ1(x)SN (Dx)SN (Dv) g∥L2(R4

t,x , H
2s−1+δ
2s+l−1+γ+

(R3
v))∥PN, l g∥L2(R7)

≤ Cε∥f3∥
4
θ +2

H5
kl(R7)

+ ε∥ΛsvWγ/2PN, l g∥2
L2(R7

t,x,v).

In summary, we have obtained the following estimate for the second term on the right hand side
of (3.2.4) ∣∣∣(PN,lQ(f2, g) −Q(f2, PN,l g), PN,l g

)
L2(R7)

∣∣∣
≤ Cε∥f3∥2 k′

H5
kl(R7) + ε∥ΛsvWγ/2PN, l g∥2

L2(R7
t,x,v).

Finally, it holds that

(3.2.13) ∥ΛsvWγ/2PN,l g∥2
L2(R7) ≤ C∥f3∥2 k′

H5
kl(R7),

where the constants C, k, and k′ are independent of N . Therefore, Proposition 3.1 is proved by
taking the limit N → ∞.
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3.3. Gain of regularity in (t, x). First of all, let us consider a transport equation in the form of

(3.3.1) ft + v · ∇xf = g ∈ D′(R2n+1),

where (t, x, v) ∈ R1+n+n = R2n+1. In [9], by using a generalized uncertainty principle, we proved
the following hypo-elliptic estimate.

Lemma 3.5. Assume that g ∈ H−s′(R2n+1), for some 0 ≤ s′ < 1. Let f ∈ L2(R2n+1) be a weak
solution of the transport equation (3.3.1) such that Λsv f ∈ L2(R2n+1) for some 0 < s ≤ 1. Then it
follows that

Λs(1−s
′)/(s+1)

x f ∈ L2
− ss′

s+1
(R2n+1), Λs(1−s

′)/(s+1)
t f ∈ L2

− s
s+1

(R2n+1),

where Λ• = (1 + |D•|2)1/2.

As mentioned earlier, this hypo-elliptic estimate together with Proposition 3.1 are used to obtain
the partial regularity in the variable (t, x). With this partial regularity in (t, x), by applying
a Leibniz type formula for fractional derivatives, we will show some improved regularity in all
variables, v and (t, x). Then the hypo-elliptic estimate can be used again to get higher regularity
in the variable (t, x). This procedure can be continued to obtain at least one order higher regularity
in (t, x) variable.

For the details, we first recall a Leibniz type formula for fractional derivatives with respect to
variable (t, x).

Lemma 3.6. Let 0 < λ < 1. Then there exists a positive constant Cλ ̸= 0 such that for any
f ∈ S(Rn), one has

(3.3.2) |Dy|λf(y) = F−1
(
|ξ|λf̂(ξ)

)
= Cλ

∫
Rn

f(y) − f(y + h)
|h|n+λ

dh.

Indeed, note that∫
Rn

f(y) − f(y + h)
|h|n+λ

dh =
∫

Rn

f̂(ξ)eiy·ξ
∫

Rn

1 − eih·ξ

|h|n+λ
dhdξ,

while ∫
Rn

1 − e−i h·ξ

|h|n+λ
dh = |ξ|λ

∫
Rn

1 − e−i u·
ξ
|ξ|

|u|n+λ
du,

so that (3.3.2) follows from ∫
Rn

1 − e−i u·
ξ
|ξ|

|u|n+λ
du ̸= 0,

which is a positive constant depending only on λ and the dimension n, but independent from ξ.
Using this Lemma, we have the following Leibniz type formula,

|Dy|λ
(
f(y)g(y)

)
= Cλ

∫
Rn

f(y)g(y) − f(y + h)g(y + h)
|h|n+λ

dh(3.3.3)

= g(y)|Dy|λf(y) + f(y)|Dy|λg(y) + Cλ

∫
Rn

(
f(y) − f(y + h)

)(
g(y + h) − g(y)

)
|h|n+λ

dh.

We now turn to the analysis of the fractional derivative with respect to (t, x) of the nonlinear
collision operator. Denote the difference with respect to (t, x) by

fh(t, x, v) = f(t, x, v) − f((t, x) + h , v), h ∈ R4
t,x .

It follows that for the collision operator (where n = 1 + 3),

|Dt,x|λQ
(
f, g

)
= Q

(
|Dt,x|λf, g

)
+Q

(
f, |Dt,x|λg

)
+ Cλ

∫
R4

|h|−4−λQ
(
fh, gh

)
dh.(3.3.4)
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This kind of decomposition will be used extensively below in order to get the partial regularity
with respect to the (t, x) variable.

First of all, we have the following proposition on the gain of regularity in the variable (t, x)
through the uncertainty principle.

Proposition 3.7. Under the hypothesis of Theorem 1.1, one has

(3.3.5) Λs0t,x f1 ∈ H5
l (R7),

for any l ∈ N and 0 < s0 = s(1−s)
(s+1) .

Proof: In fact, for any l ∈ N, it follows from Proposition 3.1 that

ΛsvWlg ∈ L2(R7).

Then the upper bound estimation given by Corollary 2.5 with m = −s implies that

WlQ(f2, g) ∈ L2(R4
t,x; H

−s(R3
v)).

On the other hand, Proposition 3.2 and (3.2.6) gives

WlG ∈ L2(R4
t,x; H

−(2s−1+δ)(R3
v)).

By using (3.1.1), it follows that

(3.3.6) ∂t(Wlg) + v · ∂x(Wlg) = WlQ(f2, g) +WlG ∈ H−s(R7).

Finally, by using Lemma 3.5 with s′ = s, we can conclude (3.3.5) and this completes the proof of
the proposition.

Therefore, under the hypothesis f ∈ H5
l (]T1, T2[×Ω × R3

v) for all l ∈ N, it follows that for any
l ∈ N we have

(3.3.7) Λsv(φ(t)ψ(x)f) ∈ H5
l (R7), Λs0t,x(φ(t)ψ(x)f) ∈ H5

l (R7) .

We now improve this partial regularity in (t, x) variable.

Proposition 3.8. Let 0 < λ < 1. Suppose that f ∈ H5
l (]T1, T2[×Ω × R3

v) is a solution of the
equation (1.1) for all l ∈ N. Furthermore, assume that for any cutoff functions φ,ψ,

(3.3.8) Λsv(φ(t)ψ(x)f) ∈ H5
l (R7), Λλt,x(φ(t)ψ(x)f) ∈ H5

l (R7).

Then, one has

(3.3.9) ΛsvΛ
λ
t,x(φ(t)ψ(x)f) ∈ H5

l (R7),

for any l ∈ N and any cutoff functions φ,ψ.

Proof: Set
gN,l = PN,l g = ψ1(x)SN (Dx)Wl SN (Dv)∂α(φ(t)ψ(x)f),

where α ∈ N7, |α| ≤ 5 and l ∈ N. Then (3.3.8) yields

∥ΛsvgN,l∥L2(R7) ≤ C∥Λsv∂α(φ(t)ψ(x)f)∥L2
l (R7),

and
∥Λλt,xgN,l∥L2(R7) ≤ C∥Λλt,x∂α(φ(t)ψ(x)f)∥L2

l (R7),

where the constant C is independent of N .
It follows that gN,l satisfies the equation

(3.3.10) ∂t(gN,l) + v · ∂x (gN,l) = Q(f2, gN,l) +GN,l,

where GN,l is given by

GN,l = ψ1(x)Wl

[
SN (Dv), v

]
· ∇xSN (Dx)g +

(
PN,lQ

(
f2, g

)
−Q

(
f2, PN,l g

))
+
(
(v · ∇x)ψ1(x)

)
Wl SN (Dx)SN (Dv)g + PN,lG,
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with G defined in (3.1.2).
We now choose |Dt,x|λψ2

2(x)|Dt,x|λgN,l as a test function for equation (3.3.10). It follows that(
v ·
(
∂xψ2

)
|Dt,x|λgN,l, ψ2(x)|Dt,x|λgN,l

)
L2(R7)

(3.3.11)

=
(
ψ2(x)|Dt,x|λ

{
Q(f2, gN,l) +GN,l

}
, ψ2(x)|Dt,x|λgN,l

)
L2(R7)

.

It is sufficient to prove that, for any l ∈ N,

(3.3.12) ΛsvΛ
λ
t,xPN,l g ∈ L2(R7),

and is uniformly bounded with respect to N . In the rest of the proof, we use C to denote a constant
independent of N .

We first consider the linear terms in (3.3.11). On the left hand side of (3.3.11), the hypothesis
(3.3.8) implies that∥∥∥v ·

(
∂xψ2

)
|Dt,x|λgN,l

∥∥∥
L2(R7)

≤ C∥ |Λt,x|λ∂α(φ(t)ψ(x)f)∥L2
l+1(R7).

For the linear terms in GN,l, by using (3.2.3), one has∥∥ψ2(x)|Dt,x|λ
{
ψ1(x)Wl

[
SN (Dv), v

]
· ∇xSN (Dx)g

}∥∥
L2(R7)

≤ C∥|Λt,x|λ∂α(φ(t)ψ(x)f)∥L2
l (R7),

and ∥∥ψ2(x)|Dt,x|λ
(
v · (∇x ψ1)(x)

)
Wl SN (Dx)SN (Dv)g

∥∥
L2(R7)

≤ C∥|Λt,x|λ∂α(φ(t)ψ(x)f)∥L2
l+1(R7).

Similarly, concerning the linear terms (B) and (C) in G, we have∥∥ψ2(x)|Dt,x|λPN,l
(
(B) + (C)

)∥∥
L2(R7)

≤ C∥|Λt,x|λ∂α(φ(t)ψ(x)f)∥L2
l+1(R7).

For the nonlinear terms in (3.3.11), we shall use the formula (3.3.4).First of all, the coercivity
estimate (2.2.1) gives, as in (3.2.3), that

−
(
Q(f2, ψ1(x)|Dt,x|λgN,l), ψ1(x)|Dt,x|λgN,l

)
L2(R7)

(3.3.13)

≥ C0∥ΛsvWγ/2ψ1(x)|Dt,x|λgN,l∥2
L2(R7)

−C∥f2∥L∞(R4
t,x; L1

max{γ+, 2−γ+}
(R3

v))∥ψ1(x)|Dt,x|λgN,l∥2
L2

γ+/2
(R7).

On the other hand, the upper estimate of Theorem 2.1 with m = −s and α = −γ/2 > 0 (the
case γ > 0 is easier) gives,∣∣∣(Q(|Dt,x|λf2, ψ1(x)gN,l), ψ1(x)|Dt,x|λgN,l

)
L2(R7)

∣∣∣
≤ C∥|Dt,x|λf2∥L∞(R4

t,x, L
1
|γ|/2+γ++2s

(R3
v))∥ψ1(x)ΛsvgN,l∥L2

|γ|/2+γ++2s
(R7)∥ψ1(x)|Dt,x|λΛsvWγ/2gN,l∥L2(R7)

≤ ε∥ψ1(x)|Dt,x|λΛsvWγ/2gN,l∥2
L2(R7) + Cε∥|Dt,x|λf2∥2

L∞(R4
t,x, L

2
|γ|/2+γ++2s+4

(R3
v))∥Λ

s
vg∥2

L2
|γ|/2+γ++2s+l

(R7).

For the cross term coming from the decomposition (3.3.4), by using again estimate (2.1.1) with
m = −s and α = |γ|/2, we get∫

R4
|h|−4−λ

∣∣∣(Q((f2)h, (gN,l)h), ψ2
1(x)|Dx|λgN,l

)
L2(R7)

dh
∣∣∣

≤ |Cλ|∥ψ1(x)|Dx|λΛsvWγ/2gN,,l∥L2(R7)

×
∫

R4
|h|−4−λ∥(f2)h∥L∞(R4

t,x, L
1
|γ|/2+γ++2s

(R3
v))∥Λsv(gN,l)h∥L2

|γ|/2+γ++2s
(R7)dh.
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Furthermore, ∫
R4

|h|−4−λ∥(f2)h∥L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))∥Λsv(gN,l)h∥L2

|γ|/2+γ++2s
(R7)dh

≤
∫
|h|<1

|h|−4−λ∥(f2)h∥L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))∥Λsv(gN,l)h∥L2

|γ|/2+γ++2s
(R7)dh

+4C̃λ∥f2∥L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))∥ΛsvgN,l∥L2

|γ|/2+γ++2s
(R7)

≤ 2
∫
|h|<1

|h|−4−λ+1∥∇t,xf2∥L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))∥ΛsvgN,l∥L2

|γ|/2+γ++2s
(R7)dh

+4C̃λ∥f2∥L∞(R4
t,x, L

1
|γ|/2+γ++2s

(R3
v))∥ΛsvgN,l∥L2

|γ|/2+γ++2s
(R7).

Thus ∫
R4

|h|−4−λ
∣∣∣(Q((f2)h, (gN,l)h), ψ2

1(x)|Dx|λWγ/2gN,l

)
L2(R7)

dh
∣∣∣

≤ ε∥ψ1(x)|Dx|λΛsvgN,l∥2
L2(R7) + Cε∥Λ1

t,xf2∥2
L∞(R4

t,x;L2
|γ|/2+γ++2s+4

(R3
v))∥Λ

s
vgN,l∥2

L2
|γ|/2+γ++2s

(R7).

Hence, the formula (3.3.4) yields∣∣∣(|Dt,x|λQ(f2, ψ1(x)gN,l) −Q(|Dt,x|λf2, ψ1(x)gN,l), ψ1(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣
≤ ε∥ψ1(x)|Dt,x|λΛsvWγ/2gN,l∥2

L2(R7) + Cε∥Λ1
t,xf2∥2

L∞(R4
t,x, L

2
|γ|/2+γ++2s+4

(R3
v))∥Λ

s
vg∥2

L2
|γ|/2+γ++2s+l

(R7).

In conclusion, we get from coercivity property (3.3.13) that

∥ΛsvWγ/2ψ1(x)|Dt,x|λgN,l∥2
L2(R7)(3.3.14)

≤C∥Λ1
t,xf2∥2

L∞(R4
t,x, L

2
|γ|/2+γ++2s+4

(R3
v))

×
(
∥ |Dt,x|λg∥2

L2
l+|γ|/2+γ++2s

(R7) + ∥Λsvg∥2
L2

l+|γ|/2+γ++2s
(R7)

)
+
∣∣∣∣(|Dt,x|λ

(
PN,lQ

(
f2, g

)
−Q

(
f2, PN,l g

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣∣
+
∣∣∣(|Dt,x|λPN,l (A), ψ2

2(x)|Dt,x|λ gN,l
)
L2(R7)

∣∣∣
= (I) + (II) + (III) .

For the term (II), since [|Dt,x|λ, ψ1(x)] is a bounded operator, we can replace PN,l by P̃N,l =
Wl SN (Dx)SN (Dv). Again, the formula (3.3.4) yields(

|Dt,x|λ
(
P̃N,lQ

(
f2, g

)
−Q

(
f2, P̃N,lg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

=
((
P̃N,lQ

(
|Dt,x|λf2, g

)
−Q

(
|Dt,x|λf2, P̃N,lg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

+
((
P̃N,lQ

(
f2, |Dt,x|λg

)
−Q

(
f2, P̃N,l|Dx|λg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

+Cλ
∫

R4
|h|−4−λ

((
P̃N,lQ

(
(f2)h, gh

)
−Q

(
(f2)h, P̃N,lgh

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

dh.

As for (3.2.13), in the case when 1/2 ≤ s < 1 (the other case when 0 < s < 1/2 is similar and
easier to handle), by applying Lemmas 2.4, 3.3 and 3.4, we have∣∣∣((P̃N,lQ(|Dt,x|λf2, g

)
−Q

(
|Dt,x|λf2, P̃N,lg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣(3.3.15)

≤ C∥Λ1+λ
t,x f2∥L∞(R4

t,x , L
1
(γ+2s−1)+

(R3
v))∥g∥L2(R4

t,x , H
2s−1+δ

(γ+2s−1)+
(R3

v))∥ |Dt,x|λg∥L2
2l(R7).
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By using (3.2.9) of Lemma 3.3, we can get, for 2s− 1 + δ < s,∣∣∣((P̃N,lQ(f2, |Dt,x|λg
)
−Q

(
f2, P̃N,l|Dt,x|λg

))
, ψ2

2(x)|Dt,x|λgN,l
)
L2(R7)

∣∣∣
≤ C∥Λt,xf2∥L∞(R4

t,x , L
1
(γ+2s−1)+

(R3
v))∥ |Dt,x|λg∥L2(R4

t,x , L
2
l+(γ+2s−1)+

(R3
v))

×∥ |Dt,x|λψ1gN,l∥L2(R4
t,x , H

2s−1+δ

l+(γ+2s−1)+
(R3

v))

≤ ε∥ΛsvWγ/2ψ1(x)|Dt,x|λgN,l∥2
L2(R7)

+Cε∥Λ1
t,xf2∥2k′

L∞(R4
t,x , L

2
l+3/2+δ+(γ+2s−1)+

(R3
v))∥ |Dt,x|λg∥2k′

L2(R4
t,x , L

2
kl(R3

v)) ,

and ∣∣∣ ∫ |h|−4−λ
((
P̃N,lQ

(
f2,h, gh

)
−Q

(
f2,h, P̃N,lgh

))
, ψ2

2(x)|Dx|λgN,l
)
L2(R7)

dh
∣∣∣

≤ C∥Λt,xΛxf2∥L∞(R4
t,x;L1

l+(γ+2s−1)+
(R3

v))∥g∥L2(R4
t,x , H

2s−1+δ

l+(γ+2s−1)+
(R3

v))∥ |Dt,x|λg∥L2
l (R7)

≤ C∥f2∥H2+4/2+δ

l+3/2+δ+(γ+2s−1)+
(R7)

∥Λsvg∥L2
l+(γ+2s−1)+

(R7)∥ |Dt,x|λg∥L2
l (R7).

Thus, we have

(II) ≤ ε∥ΛsvWγ/2ψ1(x)|Dt,x|λgN,l∥2
L2(R7)

+ Cε∥f2∥2k′

H2
l+γ++2s+4

(R3
v))

(
∥ |Dt,x|λg∥2k′

L2
kl+γ++2s

(R7) + ∥Λsvg∥2
L2

l+γ++2s
(R7)

)
.

We now consider the last term (III) of (3.3.14). Recall that (A) stands for the nonlinear terms
from G given in (3.1.2). Precisely

(A) =
∑

α1+α2=α α1 ̸=0

Cα1
α2
Q
(
∂α1f2, ∂

α2f1

)
.

By using (2.1.1) (we consider also only the case 1/2 ≤ s < 1) and formula (3.3.4), we have∣∣∣∣(|Dt,x|λ
(
Q
(
∂α1f2, ∂

α2f1

))
, PN,lψ

2
2(x)|Dt,x|λ gN,l

)
L2(R7)

∣∣∣∣
≤ C∥Λ−m

v Wγ/2ψ1(x)|Dt,x|λgN,l∥L2(R7)

{∥∥∥Q(|Dt,x|λ∂α1f2, ∂
α2f1

)∥∥∥
L2(R4

t,x;Hm
l+|γ|/2(R3

v))

+
∥∥∥Q(∂α1f2, |Dt,x|λ∂α2f1

)∥∥∥
L2(R4

t,x;Hm
l+|γ|/2(R3

v))

+
∥∥∥∫ h−4−λQ

(
∂α1(f2)h, ∂α2(f1)h

)
dh
∥∥∥
L2(R4

t,x;Hm
l+|γ|/2(R3

v))

}
.

We divide the discussion into two cases.
Case 1. |α1| = 1, 2. Take m = −s. We have∥∥∥Q(|Dt,x|λ∂α1f2, ∂

α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))
+
∥∥∥Q(∂α1f2, |Dt,x|λ∂α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))

≤ C∥Λλt,x∂
α1f2∥L∞(R4

t,x;L1
l+γ++2s

(R3
v))∥ΛsvΛ

λ
x∂

α2f1∥L2
l+γ++2s

(R7)

≤ C∥f2∥Hλ+2+4/2+δ

l+3/2+δ+γ++2s
(R7)

∥Λsvf1∥H4+λ

l+γ++2s
(R7),
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and ∥∥∥∫
R4
h−4−λQ

(
∂α1(f2)h, ∂α2(f1)h

)
dh
∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))

≤ C

∫
|h|−4−λ∥ ∂α1(f2)h∥L∞(R4

t,x;L1
l+γ++2s

(R3
v))∥Λsv∂

α2(f1)h∥L2
l+γ++2s

(R7)dh

≤ C∥ ∂α1f2∥L∞(R4
t,x;L1

l+γ++2s
(R3

v))∥Λsv∂
α2∇t,xf1)∥L2

l+γ++2s
(R7)

≤ C∥f2∥H2+4/2+δ

l+3/2+δ+γ++2s
(R7)

∥Λsvf1∥H5
l+γ++2s

(R7).

Case 2. |α1| ≥ 3. By the same argument as above, one has∥∥∥Q(|Dt,x|λ∂α1f2, ∂
α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))
+
∥∥∥Q(∂α1f2, |Dt,x|λ∂α2f1

)∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))

≤ C∥Λλt,x∂
α1f2∥L2(R4

t,x;L1
l+γ++2s

(R3
v))∥ΛsvΛ

λ
t,x∂

α2f1∥L∞(R4
t,x;L2

l+γ++2s
(R3

v))

≤ C∥Λλt,xf2∥H5
l+3/2+δ+γ++2s

(R7)∥Λsvf1∥H2+4/2+λ+δ

l+γ++2s
(R7)

.

When |α1| = 3, 4, we have∥∥∥∫
R4
h−4−λQ

(
∂α1(f2)h, ∂α2(f1)h

)
dh
∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))

≤ C

∫
|h|−4−λ∥ ∂α1(f2)h∥L2(R4

t,x;L1
l+γ++2s

(R3
v))∥Λsv∂

α2(f1)h∥L∞(R4
t,x;L2

l+γ++2s
(R3

v))dh

≤ C∥∇t,x∂
α1f2∥L2(R4

t,x;L1
l+γ++2s

(R3
v))∥Λsv∂

α2f1)∥L∞(R4
t,x;L2

l+γ++2s
(R3

v))

≤ C∥f2∥H5
l+3/2+δ+γ++2s

(R7)∥f1∥H2+4/2+s+δ

l+γ++2s
(R7)

,

while when |α1| = |α| = 5, we have∥∥∥∫
R4
h−4−λQ

(
∂α(f2)h, (f1)h

)
dh
∥∥∥
L2(R4

t,x;H−s
l+|γ|/2(R3

v))

≤ C

∫
|h|−4−λ∥ ∂α(f2)h∥L2(R4

t,x;L1
l+γ++2s

(R3
v))∥Λsv(f1)h∥L∞(R4

t,x;L2
l+γ++2s

(R3
v))dh

≤ C∥ ∂αf2∥L2(R4
t,x;L1

l+γ++2s
(R3

v))∥Λsv∇t,xf1)∥L∞(R4
t,x;L2

l+γ++2s
(R3

v))

≤ C∥f2∥H5
l+3/2+δ+γ++2s

(R7)∥f1∥H1+4/2+s+δ

l+γ++2s
(R7)

,

Thus, by the Cauchy-Schwarz inequality, we obtain

(III) ≤ ε∥ΛsvWγ/2ψ1(x)|Dt,x|λgN,l∥2
L2(R7) + Cε

(
∥Λλt,xf3∥4

H5
2l+γ++7

(R7) + ∥Λsf3∥4
H5

2l+γ++7
(R7)

)
.

Finally, we get from (3.3.14) that

∥ΛsvWγ/2ψ1(x)|Dt,x|λgN,l∥2
L2(R7) ≤ C

(
∥Λλt,xf3∥k

′4
H5

kl+γ++7
(R7) + ∥Λsvf3∥4

H5
2l+γ++7

(R7)

)
.

Therefore, we complete the proof for Proposition 3.8.

We are now ready to prove the following regularity result on the solution with respect to the
(t, x) variable.

Proposition 3.9. Under the hypothesis of Theorem 1.1, one has

(3.3.16) Λ1+ε
t,x (φ(t)ψ(x)f) ∈ H5

l (R7),

for any l ∈ N and some ε > 0.
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Proof: Fix s0 = s(1−s)
(s+1) . Then (3.3.7) and Proposition 3.8 with λ = s0 imply

ΛsvΛ
s0
t,xg ∈ H5

l (R7).

It follows that,

(Λs0t,xg)t + v · ∂x(Λs0t,xg) = Λs0t,xQ(f2, g) + Λs0t,xG ∈ H−s
l (R7).

By applying Lemma 3.5 with s′ = s, we can deduce that

Λs0+s0t,x (φ(t)ψ(x)f) ∈ H5
l (R7),

for any l ∈ N. If 2s0 < 1, by using Proposition 3.8 with λ = 2s0 and Lemma 3.5 with s′ = s, we
have

Λsv(φ(t)ψ(x)f), Λ2s0
t,x (φ(t)ψ(x)f) ∈ H5

l (R7) ⇒ Λ3s0
t,x (φ(t)ψ(x)f) ∈ H5

l (R7).

Choose k0 ∈ N such that
k0s0 < 1, (k0 + 1)s0 = 1 + ε > 1.

Finally, (3.3.16) follows from (3.3.5) and Proposition 3.8 with λ = k0s0 by induction. And this
completes the proof of the proposition.

3.4. Proof of Theorem 1.1. In this subsection, we give the proof of Theorem 1.1 with the above
preparations. The proof is also based on an induction argument.

From Propositions 3.1 and 3.9, it follows that for any l ∈ N,

(3.4.1) Λsv (φ(t)ψ(x)f), ∇t,x (φ(t)ψ(x)f) ∈ H5
l (R7).

These facts will be used to get the high order regularity with respect to the variable v.

Proposition 3.10. Let 0 < λ < 1. Suppose that, for any cutoff functions φ ∈ C∞
0 (]T1, T2[), ψ ∈

C∞
0 (Ω) and all l ∈ N,

(3.4.2) Λλv (φ(t)ψ(x)f), ∇x (φ(t)ψ(x)f) ∈ H5
l (R7).

Then, for any cutoff function and any l ∈ N,

(3.4.3) Λλ+s
v (φ(t)ψ(x)f) ∈ H5

l (R7).

Proof : Recall that g = ∂α(φ(t)ψ(x)f) with |α| ≤ 5 and

gN,l = PN,l g = ψ1(x)SN (Dx)Wl SN (Dv)g.

Choose Λ2λ
v gN,l as a test function for equation (3.3.10). Then, one has

(3.4.4)
([

Λλv , v
]
· ∂x gN,l, ΛλvgN,l

)
L2(R7)

=
(
Λλv
{
Q(f2, gN,l) +GN,l

}
, ΛλvgN,l

)
L2(R7)

.

Since [
Λλv , v

]
· ∂x = λΛλ−2

v ∂v · ∂x,

and Λλ−2
v ∂v are bounded operators in L2, for any 0 < λ < 1, we have, by using the hypothesis

(3.4.2) that

(3.4.5)
∣∣∣([Λλ

v , v
]
· ∂xgN,l, Λλ

v gN,l

)
L2(R7)

∣∣∣ ≤ C∥Λλv g∥L2
l (R7)∥∇x g∥L2

l (R7),

and when 1/2 ≤ s < 1.

(3.4.6)
∣∣∣(ΛλvGN,l, ΛλvgN,l

)
L2(R7)

∣∣∣ ≤ C∥f2∥H5
7 (R7)∥Λλvg∥L2

l+γ++2s
(R7)∥Λλ+2s−1+δ

v gN,l∥L2(R7)

≤ ε∥ΛsvWγ/2ΛλvgN,l∥2
L2(R7) + Cε∥f2∥2

H5
7 (R7)∥Λ

λ
v g∥2k

L2
k′l

(R7).
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By setting M = Λλv in Proposition 2.9, we have∣∣∣(ΛλvQ(f̃ , gN,l) −Q(f̃ , ΛλvgN,l), ΛλvgN,l
)
L2(R7)

∣∣∣(3.4.7)

≤ C∥f2∥L∞(R4
t,x;L1

γ+
(R3

v))

(
∥ΛλvgN,l∥2

L2(R4
t,x;L2

γ+(R3
v)) + ∥gN,l∥2

L2(R7)

)
∥ΛλvgN,l∥2

L2(R7)

≤ C∥f3∥H5
7 (R7)∥Λλv g∥2

L2
l+1(R7),

when 0 < s < 1/2. Moreover when 1/2 ≤ s < 1, we have∣∣∣(ΛλvQ(f2, gN,l) −Q(f2, ΛλvgN,l), ΛλvgN,l
)
L2(R7)

∣∣∣(3.4.8)

≤ C∥f2∥L∞(R4
t,x;L1

(2s+γ−1)+
(R3

v))

×
(
∥ΛλvgN,l∥2

L2(R4
t,x;L2

(2s+γ−1)+
(R3

v)) + ∥gN,l∥2
L2(R7)

)
∥Λλ+2s−1+δ

v gN,l∥2
L2(R7)

≤ ε∥ΛsvWγ/2ΛλvgN,l∥2
L2(R7) + Cε∥f3∥2

H5
7 (R7)∥Λ

λ
v g∥2k

L2
k′l

(R7).

Now the coercivity estimate (2.2.1) gives,

−
(
Q(f2, ΛλvgN,l), ΛλvgN,l

)
L2(R7)

≥ C0∥ΛsvWγ/2ΛλvgN,l∥2
L2(R7)(3.4.9)

−C∥f2∥L∞(R4
t,x;L1

max{γ+, 2−γ+}
(R3

v))∥ΛλvgN,l∥2
L2

γ+/2
(R7).

Thus, Proposition 3.10 is proved by the following estimate

(3.4.10) ∥ΛsvWγ/2ΛλvgN,l∥2
L2(R7) ≤ C

(
∥f3∥2

H5
7 (R7) + ∥Λλv g∥2k

L2
k′l(R

7)

)
,

where C is independent on N .

We can now conclude the following regularity result with respect to the variable v.

Proposition 3.11. Under the hypothesis of Theorem 1.1, one has

(3.4.11) Λ1+ε
v (φ(t)ψ(x)f) ∈ H5

l (R7),

for any l ∈ N and some ε > 0.

Again, this result follows by induction. Indeed, notice that there exists k0 ∈ N such that

k0s < 1, (k0 + 1)s = 1 + ε > 1.

Then we get (3.4.11) from (3.2.2), Proposition 3.10 with λ = k0s and (3.4.10), by induction.

High order regularity by iterations

From Proposition 3.9 (more precisely (3.3.16)) and Proposition 3.11, we can now deduce that,
for any l ∈ N, and any cutoff functions φ(t) and ψ(x),

φ(t)ψ(x)f ∈ H6
l (R7).

The proof of Theorem 1.1 is then completed by induction.
Indeed, if f is a solution of Boltzmann equation satisfying the assumptions of Theorem 1.1,

then, when m ≥ 5, we have

f ∈ Hm
l (]T1, T2[×Ω × R3

v), ∀l ∈ N =⇒ f ∈ Hm+1
l (]T1, T2[×Ω × R3

v), ∀l ∈ N.

Thus, the full regularity of Theorem 1.1 is obtained by induction from m = 5.
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4. Existence and uniqueness of local solutions

The local existence of solutions to the spatially inhomogeneous Boltzmann equation without
angular cutoff is so far not well studied. The strategy of proving the existence in this section is to
approximate the non-cutoff cross-section by a family of cutoff cross-sections and approximate the
Boltzmann equation by a sequence of iterative linear equations. Then by proving the existence
of solutions to these approximate linear equations and by obtaining a uniform estimate on these
solutions with respect to the cutoff parameter in some suitable weighted Sobolev space, the com-
pactness will lead to the convergence of the approximate solutions to the desired solution for the
original problem. One of the techniques used here is to introduce a transformation defined by the
time dependent Maxwellian developed previously in [54]. The purpose of this transformation is
to get an extra gain of one order higher weight in the velocity variable at the expense of the loss
of the decay in the time dependent Maxwellian. Moreover, the uniqueness of the solution is also
proved in some function space.

4.1. Modified Cauchy Problem. By taking κ, ρ > 0, we set, for 0 ≤ t ≤ T0 = ρ/(2κ),

µκ(t) = µ(t, v) = e−(ρ−κt)(1+|v|2),

and
f = µκ(t)g, Γt(g, g) = µκ(t)−1Q(µκ(t)g, µκ(t)g).

Then the Cauchy problem (1.6) is reduced to

(4.1.1)
{
gt + v · ∇xg + κ(1 + |v|2)g = Γt(g, g),
g|t=0 = g0.

Our existence theorem can be stated as follows

Theorem 4.1. Assume that 0 < s < 1/2, γ + 2s < 1 and κ, ρ > 0. Let g0 ∈ Hk
l (R6), g0 ≥ 0 for

some l ≥ 3 and k ≥ 4. Then there exists T∗ ∈]0, T0] such that the Cauchy problem (4.1.1) admits
a unique non-negative solution

g ∈ C0([0, T∗]; Hk
l (R6))

∩
L2(]0, T∗[;Hk

l+1(R6)) .

We shall prove Theorem 4.1 by cutoff approximations. For simplicity of notations, we will
denote µκ(t) by µ(t) without any confusion.

Recall that the cross-section is of the form of B(|v − v∗|, cos θ) = Φ(|v − v∗|)b(cos θ) which
satisfies (1.2) and (1.3). For 0 < ε << 1, we approximate (cutoff) the cross-section by

bε(cos θ) =
{
b(cos θ), if |θ| ≥ 2ε,
b(cos ε), if |θ| ≤ 2ε.

Denote by Γtε(g, g) the collision operator corresponding to the above cutoff cross-section Bε =
Φ(v − v∗)bε(cos θ).

By using the collisional energy conservation,

|v′∗|2 + |v′|2 = |v∗|2 + |v|2,

we have µ∗(t) = µ−1(t)µ′
∗(t)µ

′(t). Then for some suitable functions U, V , it holds that

Γtε(U, V )(v) = µ−1(t, v)
∫∫

R3
v∗×S2

σ

Bε(v − v∗, σ)
(
µ′
∗(t)U

′
∗µ

′(t)V ′ − µ∗(t)U∗µ(t)V
)
dv∗dσ

=
∫∫

R3
v∗×S2

σ

Bε(v − v∗, σ)µ∗(t)
(
U ′
∗V

′ − U∗V
)
dv∗dσ = Tε(U, V, µ(t))(4.1.2)

= Qε(µ(t)U, V ) +
∫∫

R3
v∗×S2

σ

Bε(v − v∗, σ)(µ∗(t) − µ′
∗(t))U

′
∗V

′dv∗dσ.
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Then we have the following formula coming from the Leibniz formula in the x variable and the
translation invariance property in the v variable. For any α, β ∈ N3,

∂αx ∂
β
v Γtε(U, V )

=
∑

α1+α2=α; β1+β2+β3=β

Cα1,α2,β1,β2,β3Tε(∂α1
x ∂β1

v U, ∂α2
x ∂β2

v V, ∂β3
v µ(t))

= Qε(µ(t)U, ∂αx ∂
β
v V ) +

∫∫
R3

v∗×S2
σ

Bε(v − v∗, σ)(µ∗(t) − µ′
∗(t))U

′
∗(∂

α
x ∂

β
v V )′dv∗dσ

+
∑

|α2|+|β2|≤|α+β|−1

Cα1,α2,β1,β2,β3Tε(∂α1
x ∂β1

v U, ∂α2
x ∂β2

v V, ∂β3
v µ(t))

= A1 +A2 +A3 .(4.1.3)

Firstly, we give the following upper weighted estimate on the nonlinear collision operator with
cutoff.

Lemma 4.2. Let γ ∈ R.Then for any ε > 0, k ≥ 4, l ≥ 0, there exists C > 0 depending on ε, k, l
such that for any U, V belonging to Hk

l (R6)

(4.1.4) ∥Γtε(U, V )∥Hk
l (R6) ≤ C∥U∥Hk

l+γ+ (R6)∥V ∥Hk
l+γ+ (R6), 0 ≤ t ≤ T0 =

ρ

2κ
.

Proof. To prove (4.1.4), put

g1 = ∂α1
x ∂β1

v U, h2 = ∂α2
x ∂β2

v V, µ3(t) = ∂β3
v µ(t),

Tε(g1, h2, µ3(t)) = T +
ε − T −

ε .

Throughout this section, the estimates

µ(t, v), |µ3(t)| = |∂β3
v µ(t, v)| ≤ Cρ, k e

−ρ⟨v⟩2/4, t ∈ [0, T0], v ∈ R3,

will often be used.
Firstly, we compute T +

ε as follows.

|WlT +
ε | ≤ C

∫∫
⟨|v − v∗|⟩γ |µ3(t, v∗)|

Wl

(Wl)′∗(Wl)′
|(Wlg1)′∗||(Wlh2)′|dv∗dσ

≤ C
[ ∫∫ ∣∣∣µ3(t, v∗)

Wl

(Wl)′∗(Wl)′

∣∣∣2dv∗dσ]1/2[ ∫∫ ⟨v′ − v′∗⟩2γ |(Wlg1)′∗(Wlh2)′|2dv∗dσ
]1/2

≤ Cε

[ ∫∫
|(Wl+γ+g1)′∗(Wl+γ+h2)′|2dv∗dσ

]1/2
,

where we have used |v − v∗| = |v′ − v′∗| and Wl

(Wl)′∗(Wl)′
≤ 1. Since the change of variables

(4.1.5) (v, v∗, σ) → (v′, v′∗, σ
′), σ′ = (v − v∗)/|v − v∗|,

has a unit Jacobian, we get

∥WlT +
ε ∥2

L2(R6) ≤ C

∫∫∫∫
|(Wl+γ+g1)′∗(Wl+γ+h2)′|2dv∗dσdvdx

= C

∫∫∫∫
|(Wl+γ+g1)′∗(Wl+γ+h2)′|2dv′∗dσ′dv′dx

≤ C

∫
∥(Wl+γ+g1)∥2

L2(R3
v)∥(Wl+γ+h2)∥2

L2(R3
v)dx.

If |α1 + β1| ≤ k/2, then we have

∥WlT +
ε ∥L2(R6) ≤ C∥(Wl+γ+g1)∥L∞(R3

x;L2(R3
v))∥(Wl+γ+h2)∥L2(R6

x,v)

≤ C∥U∥Hk
l+γ+ (R6)∥V ∥Hk

l+γ+ (R6),

because of the Sobolev embedding theorem and the fact k/2 + 3/2 < k when k ≥ 4. When
|α2 + β2| ≤ k/2, the proof is similar. This completes the proof of the lemma.
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4.2. Cutoff approximations. We now study the following Cauchy problem for the cutoff Boltz-
mann equation

(4.2.1)
{
gt + v · ∇xg + κ⟨v⟩2g = Γtε(g, g),
g|t=0 = g0 ,

for which we shall obtain uniform estimates in weighted Sobolev spaces.

We first prove the existence of weak solutions to this cutoff Boltzmann equation.

Theorem 4.3. Assume that γ ≤ 1. Let k ≥ 4, l ≥ 0, ε > 0 and D0 > 0. Then, there exists
Tε ∈]0, T0] such that for any non-negative initial data g0 satisfying

g0 ∈ Hk
l (R6), ∥g0∥Hk

l (R6) ≤ D0,

the Cauchy problem (4.2.1) admits a unique non-negative solution gε having the property

gε ∈ C0(]0, Tε[; Hk
l (R6)), ∥gε∥L∞(]0,Tε[; Hk

l (R6)) ≤ 2D0.

Moreover, this solution enjoys a moment gain in the sense that

(4.2.2) gε ∈ L2(]0, Tε[;Hk
l+1(R6)).

Remark 4.4. (1) Notice that we do not assume g0 ∈ Hk
l+1(R6) and the gain of the moment will

be essentially used below in the proof of uniform estimates to compensate the singularity in the
cross-section.
(2) The regularity of gε with respect to t variable follows directly from the equation (4.2.1).
(3) Fix γ, k, l as in the theorem. Then Tε is a function of ε and D0. In the following, when we
need to emphasize this dependency, we shall write

T = Tε(D0).

(4) If γ ≤ 0, we may take κ = 0. In this case, we do not have the moment gain (4.2.2), which is
anyway not needed.

Proof of Theorem 4.3. We prove the existence of non-negative solutions by successive ap-
proximation that preserves the non-negativity, which is defined by using the usual splitting of the
collision operator (4.1.2) into the the gain (+) and loss (-) terms,

Γt,+ε (g, h) =
∫∫

R3
v∗×S2

σ

Bε(v − v∗, σ)µ∗(t) g′∗h
′dv∗dσ,

Γt,−ε (g, h) = hLε(g),

Lε(g) =
∫∫

R3
v∗×S2

σ

Bε(v − v∗, σ)µ(t, v∗) g∗dv∗dσ.

Evidently, Lemma 4.2 applies to Γt,±ε , and in view of (1.2), the linear operator Lε satisfies

(4.2.3) |∂αx ∂βvLε(g)(t, x, v)| ≤ C⟨v⟩γ−|β|∥∂αx g∥L2(R3
v), t ∈ [0, T0],

for a constant C > 0 depending on ε, because |µ(t, v∗)∂βv ⟨v − v∗⟩γ | ≤ C⟨v⟩γ−|β|.
We now define a sequence of approximate solutions {gn}n∈N by

(4.2.4)

 g0 = g0 ;
∂tg

n+1 + v · ∇xg
n+1 + κ⟨|v|⟩2gn+1 = Γt,+ε (gn, gn) − Γt,−ε (gn, gn+1),

gn+1|t=0 = g0.

Actually, in view of (4.2.3) we consider the mild form

gn+1(t, x, v) =e−κ⟨|v|⟩
2t−V n(t, 0)g0(x− tv, v)(4.2.5)

+
∫ t

0

e−κ⟨|v|⟩
2(t−s)−V n(t, s)Γs,+ε (gn, gn)(s, x− (t− s)v, v)ds,
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where

V n(t, s) =
∫ t

s

Lε(gn)(s, x− (t− s)v, v)ds.

First, we note from Lemma 4.2 that for any T ∈ ]0, T0], T0 = ρ/(2κ), g0 ≥ 0, and

gn ∈ L∞(]0, T [; Hk
l (R6)), gn ≥ 0,

the mild form (4.2.5) determines gn+1 in the function class

(4.2.6) gn+1 ∈ L∞(]0, T [; Hk
l−γ+(R6)), gn+1 ≥ 0,

and solves (4.2.4). Thus gn+1 exists and is non-negative, but appears to have a loss of weight
in the velocity variable. We shall now show that the term κ⟨v⟩2gn+1 in (4.2.4) not only recovers
this weight loss but also creates a higher moment. More precisely, we have the following lemma.
Introduce the space and norm by

X = L∞(]0, T [; Hk
l (R6)) ∩ L2(]0, T [; Hk

l+1(R6)),

|||g|||2 = ∥g∥2
L∞(]0,T [; Hk

l (R6))
+ κ∥g∥2

L2(]0,T [; Hk
l+1(R6))

.

This norm depends on k, l, T, κ, but we omit this dependence in the notation for simplicity.

Lemma 4.5. Assume that γ ≤ 1 and let k ≥ 4, l ≥ 0, ε > 0. Then, there exist positive numbers
C1, C2 such that if ρ > 0, κ > 0 and if

(4.2.7) g0 ∈ Hk
l (R6), gn ∈ L∞(]0, T [; Hk

l (R6)),

with some T ≤ T0, the function gn+1 given by (4.2.5) enjoys the properties

(4.2.8)
gn+1 ∈ X,

|||gn+1|||2 ≤ eC1KnT
(
∥g0∥2

Hk
l (R6)

+ C2
κ ||gn||4

L4(]0,T [; Hk
l (R6))

)
,

where Kn is a positive constant depending on ∥gn∥L∞(]0,T [; Hk
l (R6)) and κ.

Proof. Put
hn = hnα = ∂αgn.

Differentiation of equation (4.2.4) yields

∂th
n+1 + v · ∇xh

n+1 + κ⟨v⟩2hn+1 = G+
1 −G−

1 +G2 +G3,

G+
1 = ∂αΓt,+ε (gn, gn), G−

1 = ∂αΓt,−ε (gn, gn+1),

G2 = −[∂α, v · ∇x]gn+1,

G3 = −κ
∑

|β̃|=1,2

Cβ̃∂
β̃
v ⟨v⟩2∂α−(0,β̃)gn+1.

Let χj ∈ C∞
0 (R3), j ∈ N , be the cutoff function

χj(v) =
{

1 , |v| ≤ j ,
0 , |v| ≥ j + 1 .

We remark that (4.2.6) does not necessarily imply Wl+1h
n+1(t) ∈ L2(R6), but χjWl+1h

n+1(t)
∈ L2(R6) for all j ∈ N. Hence, we can use χ2

jW
2
l S

2
N (Dx)hn+1 as a test function to get

1
2
d

dt
∥SN (Dx)χjWlh

n+1∥2 + κ∥SN (Dx)χjWl+1h
n+1∥2(4.2.9)

= (G+
1 −G−

1 +G2 +G3, SN (Dx)2χ2
jW

2
l h

n+1).



48 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Here and in what follows, the norm ∥ ∥ and inner product ( , ) are those of L2(R6
x,v) unless

otherwise stated. We shall evaluate the inner products on the right hand side. Observe that
Lemma 4.2 gives, for t ∈ [0, T ],∣∣∣(G+

1 , S
2
Nχ

2
jW

2
l h

n+1)
∣∣∣ = ∣∣∣(SNχjWl−1G

+
1 , SNχjWl+1h

n+1)
∣∣∣ ≤ C∥Wl−1G

+
1 ∥ ∥SNχjWl+1h

n+1∥

≤ C∥Γt,+ε (gn, gn)∥Hk
l−1(R6) ∥SNχjWl+1h

n+1∥

≤ C∥gn∥2
Hk

l (R6)∥ ∥SNχjWl+1h
n+1∥

≤ C

κ
∥gn∥4

Hk
l (R6) +

κ

4
∥SNχjWl+1h

n+1∥2.

On the other hand, Lemma 4.2 is not enough to evaluate G−
1 because G−

1 contains gn+1 which is
not known, at this moment, to have moments required by Lemma 4.2. However, this obstacle is
only superficial. Observe that

G−
1 =

∑
(α1,β1)+α2=α

Cα1,β1,α2

(
∂α2gn+1

)(
∂β1
v L(∂α1

x gn)
)
.

Define,
Hj,l(g) =

∑
|α|≤k

∥χjWl∂
αg∥2,

and write Hn
j,l = Hn

j,l(t) = Hj,l(gn(t)). By recalling (4.2.3), we get∣∣∣(G−
1 , S

2
Nχ

2
jW

2
l h

n+1)
∣∣∣ ≤ ∑

(α1,β1)+α2=α

Cα1,β1,α2∥χj⟨v⟩γ−|β1|Wl−1∂
α2gn+1∥ ∥∂α1

x gn∥ ∥SNχjWl+1h
n+1∥

≤ C∥gn∥Hk
l (R6)∥ (Hn+1

j,l )1/2 ∥SNχjWl+1h
n+1∥

≤ C ′

κ
∥gn∥2

Hk
l (R6)H

n+1
j,l +

κ

4
∥SNχjWl+1h

n+1∥2.

Here C,C ′ are positive constants independent of κ.
The estimate on the remaining two inner products are more straightforward and can be given

as follows.∣∣∣(G2 +G3, S
2
Nχ

2
jW

2
l h

n+1)
∣∣∣ ≤ C∥χjWl−1(G2 +G3)∥ ∥SNχjWl+1h

n+1∥

≤ C(κ+ 1)
(
Hn+1
j,l

)1/2

∥SNχjWl+1h
n+1∥ ≤ C ′′ (κ+ 1)2

κ
Hn+1
j,l +

κ

4
∥SNχjWl+1h

n+1∥2.

The constants C,C ′′ are independent of ε and κ.
Putting together all the estimates obtained above in (4.2.9) yields

1
2
d

dt
∥SNχjWlh

n+1∥2+
κ

4
∥SNχjWl+1h

n+1∥2 ≤ C ′′′
{
κ+

1
κ

(1 + ∥gn∥2
Hk

l (R6))
}
Hn+1
j,l +

C

κ
∥gn∥4

Hk
l (R6).

Summing up estimates for hn+1 = hn+1
α over |α| ≤ k then yields,

d

dt
Hj,l(SNgn+1) + κHj,l+1(SNgn+1) ≤ C1KnHj,l(gn+1) +

C2

κ
∥gn∥4

Hk
l (R6),

where
Kn = κ+

1
κ

(
∥gn∥2

L∞(]0,T [;Hk
l (R6)) + 1

)
,

and C1 > 0 is a constant independent of ε, κ while C2 is independent of κ but depends on ε. By
integrating the above estimate over [0, t] and taking the limit N → ∞, we get

Hn+1
j,l (t) + κ

∫ t

0

Hn+1
j,l+1(τ)dτ

≤ Hn+1
j,l (0) + C1Kn

∫ t

0

Hn+1
j,l (τ)dτ +

C2

κ

∫ t

0

∥gn(τ)∥4
Hk

l (R6)dτ, t ∈ [0, T ],
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which gives a Gronwall type inequality

Hn+1
j,l (t) + κ

∫ t

0

eC1Kn(t−τ)Hn+1
j,l+1(τ)dτ(4.2.10)

≤ eC1KntHn+1
j,l (0) +

C2

κ

∫ t

0

eC1Kn(t−τ)∥gn(τ)∥4
Hk

l (R6)dτ, t ∈ [0, T ],

for all j ∈ N. Since
Hn+1
j,l (0) ≤ ∥g0∥2

Hk
l
,

and 1 ≤ eC1Kn(t−τ) ≤ eC1Knt, (4.2.10) gives

Hn+1
j,l (t)+κ

∫ t

0

Hn+1
j,l+1(τ)dτ ≤ eC1Knt

{
∥g0∥2

Hk
l

+
C2

κ

∫ t

0

∥gn(τ)∥4
Hk

l (R6)dτ
}
, t ∈ [0, T ].

Since the right hand side is independent of j, we see that {χj∂αgn+1}j∈N, |α| ≤ k is weakly*
compact in L∞(]0, T [;L2

l (R6)) and weakly compact in L2(]0, T [;L2
l+1(R6)). Take a convergent

subsequence. Apparently, its limit is hn+1(t). This is true for all |α| ≤ k so that we can now
conclude that

gn+1 ∈ X = L∞(]0, T [;Hk
l (R6)) ∩ L2(]0, T [;Hk

l+1(R6)),

and by Fatou’s theorem,

|||gn+1|||2 ≤ lim inf
j→∞

∥Hn+1
j,l ∥L∞(]0,T [) + κ lim inf

j→∞
∥Hn+1

j,l+1∥L1(]0,T [)

≤ eC1KnT
(
∥g0∥2

Hk
l

+
C2

κ
∥gn∥4

L4(]0,T [;Hk
l (R6)

)
.

Now the proof of Lemma 4.5 is completed.

We are now ready to prove the convergence of {gn}n∈N. Fix κ > 0, let D0, g0 be as in Theorem
4.3 and introduce an induction hypothesis

(4.2.11) ∥gn∥L∞(]0,T [; Hk
l (R6)) ≤ 2D0.

for some T ∈ ]0, T0]. Notice that the factor 2 can be any number > 1.
(4.2.11) is true for n = 0 due to (4.2.7). Suppose that this is true for some n > 0. We shall

determine T independent of n. A possible choice is given by

eC1K0T = 2,
24C2

κ
TD2

0 = 1 where K0 = κ+
2D0 + 1

κ
,(4.2.12)

or

T = min
{

log 2
C1K0

,
κ

24C2D2
0

}
.

In fact, (4.2.8) and (4.2.11) yield that gn+1 ∈ X and

|||gn+1|||2 ≤ eC1K0T
(
∥g0∥2

Hk
l (R6) +

C2

κ
T ||gn||4L∞(]0,T [; Hk

l (R6))

)
≤ eC1K0T

(
D2

0 +
C2

κ
T24D4

0

)
≤ 4D2

0.

That is, the induction hypothesis (4.2.11) is fulfilled for n+ 1, and hence holds for all n.
For the convergence, set wn = gn(t) − gn−1(t), for which (4.2.4) leads to ∂tw

n+1 + v · ∇xw
n+1 + κ⟨|v|⟩2wn+1 = Γt,+ε (wn, gn) + Γt,+ε (gn−1, wn),

−Γt,−ε (wn, gn+1) − Γt,−ε (gn−1, wn+1),
wn+1|t=0 = 0.
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By the same computation as used for (4.2.9), but more directly since we can now use test functions
as SN (Dx)2W 2

l ∂
α wn+1, we get

|||wn+1|||2 ≤ 1
2
C2e

C1K0T
1
κ
T
{
∥gn+1∥2

L∞(]0,T [; Hk
l (R6)) + ∥gn∥2

L∞(]0,T [; Hk
l (R6))

+ ∥gn−1∥2
L∞(]0,T [; Hk

l (R6))

}
∥wn∥2

L∞(]0,T [; Hk
l (R6)),

with the same constants C1, C2 and K0 as above. Then, (4.2.11) and (4.2.12) give

|||gn+1 − gn|||2 ≤ 24C2D
2
0κ

−1T∥gn − gn−1∥2
L∞(]0,T [; Hk

l (R6)).

Finally, choose T smaller if necessary so that

24C2D
2
0κ

−1T ≤ 1
4
.

Then, we have proved that for any n ≥ 1,

(4.2.13) |||gn+1 − gn||| ≤ 1
2
|||gn − gn−1|||.

Consequently, {gn} is a convergence sequence in X, and the limit

gε ∈ X,

is therefore a non-negative solution of the Cauchy problem (4.2.1). The estimate (4.2.13) also
implie the uniqueness of solutions.

By means of the mild form (4.2.5), it can be proved also that for each n,

gn ∈ C0([0, T ];Hk
l (R6))

and hence so is the limit gε. The non-negativity of gε follows because gn ≥ 0. Now the proof of
Theorem 4.3 is completed.

4.3. Uniform estimate. We now prove the existence of solutions for the Cauchy problem (4.1.1)
by the convergence of approximation sequence {gε} as ε → 0. The first step is to prove the
uniform boundedness of this approximation sequence. Below, the constant C are various constants
independent of ε > 0.

Theorem 4.6. Assume that 0 < s < 1/2, γ + 2s < 1. Let g0 ∈ Hk
l (R6), g0 ≥ 0 for some

k ≥ 4, l ≥ 3. Then there exists T∗ ∈]0, T0] depending only on ∥g0∥Hk
l

and independent of ε such
that if

(4.3.1) gε ∈ C0(]0, T∗]; Hk
l (R6)) ∩ L2(]0, T∗[; Hk

l+1(R6)),

is a non-negative solution of the Cauchy problem (4.2.1), then it holds that

(4.3.2) ∥gε∥L∞(]0,T∗[; Hk
l (R6)) ≤ 2∥g0∥Hk

l (R6).

In the following, ρ > 0, κ > 0 are fixed. Furthermore, recall T0 = ρ/(2κ). We start with a
solution gε subject to (4.3.1) for some T ∈ ]0, T0]. For α ∈ N6, |α| ≤ k, the differentiation of the
equation (4.2.1) implies

(4.3.3) ∂t(∂αgε) + v · ∇x(∂αgε) + κ⟨v⟩2(∂αgε) = ∂αΓtε(g
ε, gε) − [∂α, v · ∇x]gε − κ[∂α, ⟨v⟩2]gε.

Since ∂αgε only belongs to L2
l , now as in Section 3, we take,

P ⋆N, lPN, l(∂
αgε)
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as a test function in (4.3.3), where l ≥ 3 and PN, l = SN (Dx)SN (Dv)Wl (we do not need the cutoff
functions φ,ψ here). Then we have

1
2
d

dt
∥PN, l(∂αgε)(t)∥2

L2(R6) + κ∥W1 PN, l(∂αgε)(t)∥2
L2(R6)(4.3.4)

+ κ
(
[SN (Dv), ⟨v⟩2]Wl (∂αgε), SN (Dx)PN, l(∂αgε)

)
L2(R6)

=
(
A1 +A2 +A3 +A4 +A5, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

,

where A1, A2, A3 are defined in (4.1.3) with U = V = g and

A4 = −[∂α, v · ∇x]gε, A5 = −κ
∑

|β̃|=1,2

Cβ̃∂
β̃
v ⟨v⟩2∂α−(0,β̃)gε.

We have firstly,

(4.3.5)
∣∣∣(A4, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

∣∣∣ ≤ C∥gε(t)∥2
Hk

l (R6),

and

(4.3.6)
∣∣∣(A5, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

∣∣∣ ≤ Cκ∥gε(t)∥2
Hk

l (R6) +
κ

4
∥gε(t)∥2

Hk
l+1(R6).

We also have ∣∣∣∣κ([SN (Dv), ⟨v⟩2]Wl (∂αgε), SN (Dx)PN, l(∂αgε)
)
L2(R6)

∣∣∣∣(4.3.7)

≤ Cκ∥gε(t)∥2
Hk

l (R6) +
κ

4
∥gε(t)∥2

Hk
l+1(R6).

We now study the termA1 by using the non-negativity of gε and the coercivity of collision operators.

Proposition 4.7. Assume that 0 < s < 1/2, γ ∈ R. There exists C > 0 independent of ε such
that for any α ∈ N6, |α| ≤ k, k ≥ 4, l ≥ 3,

(4.3.8)
(
A1, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+γ+ (R6),

for any 0 ≤ t ≤ T ≤ T0.

Proof : By setting h = ∂αgε, we have,(
A1, P

⋆
N, lPN, lh

)
L2(R6)

=
(
PN, lQε(µgε, h), (PN, lh)

)
L2(R6)

=
(
Qε
(
µ(t)gε, (PN, lh)

)
, (PN, lh)

)
L2(R6)

+
(
PN, lQε

(
µ(t)gε, h

)
−Qε

(
µ(t)gε, (PN, lh)

)
, (PN, lh)

)
L2(R6)

= B1 +B2.

Since µ(t) gε(t, x, v) ≥ 0, we have, in the same way as Theorem 2.6 with the cancellation lemma,

B1 = −1
2

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

Bε(v − v∗, σ) (µ(t) gε)∗
(
(PN, lh)′ − (PN, lh)

)2

dv∗dσdvdx

+
1
2

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

Bε(v − v∗, σ) (µ(t) gε)∗
{(

(PN, lh)′
)2

−
(
PN, lh

)2}
dv∗dσdvdx

≤ 1
2

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

Bε(v − v∗, σ) (µ(t) gε)∗
{(

(PN, lh)′
)2

−
(
PN, lh

)2}
dv∗dσdvdx

≤ C

∫∫∫
R3

x×R3
v∗×R3

v

(µ(t) gε)∗ ⟨v − v∗⟩γ
+
(PN, lh)2dvdv∗dx

≤ C∥µWγ+gε(t)∥L∞(R3
x;L1(R3

v))∥Wlh(t)∥L2(R6
x, v)∥Wl+γ+h(t)∥L2(R6

x, v)

≤ C∥gε(t)∥H3/2+δ(R6
x, v)∥gε(t)∥Hk

l (R6
x, v)∥gε(t)∥Hk

l+γ+ (R6
x, v), t ∈ [0, T ],
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where we used the fact that bε(cos θ) ≤ b(cos θ).
By putting SN = SN (Dx) S̃N = SN (Dv), we decompose

B2 =
(
SN S̃N

{
WlQε

(
µ(t)gε, h

)
−Qε

(
µ(t)gε, (Wlh)

)}
, (PN, lh)

)
L2(R6)

+
(
SN

{
S̃NQε

(
µ(t)gε, (Wlh)

)
−Qε

(
µ(t)gε, S̃N (Wlh)

)}
, (PN, lh)

)
L2(R6)

+
(
SNQε

(
µ(t)gε, (S̃NWlh)

)
−Qε

(
µ(t)gε, SN (S̃NWlh)

)
, (PN, lh)

)
L2(R6)

= B21 +B22 +B23.

By Lemma 2.4, we get

|B21| =
∣∣∣∣({WlQε

(
µ(t)gε, h

)
−Qε

(
µ(t)gε, (Wlh)

)}
, (S̃NSNPN, lh)

)
L2(R6)

∣∣∣∣
≤ C∥µ(t)gε(t)∥L∞(R3

x;L1
l+γ+ (R3

v))

∫
R3

x

∥Wl+γ+h∥L2(R3
v)∥PN, lh∥L2(R3

v)dx

≤ C∥gε(t)∥L∞(R3
x;L2(R3

v))∥gε(t)∥Hk
l (R6)∥gε(t)∥Hk

l+γ+ (R6),

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+γ+ (R6), t ∈ [0, T ].

It follows from Lemma 3.3 that

|B22| ≤

(∫
R3

x

∥S̃NQε(µ(t)gε, (Wlh)) −Qε(µ(t)gε, S̃N (Wlh))∥2
L2(R3

v)dx

)1/2

∥PN, lh∥L2(R6)

≤ C∥µ(t)gε(t)∥L∞(R3
x;L1

γ+ (R3
v))∥Wl+γ+h∥L2(R6

v)∥gε(t)∥Hk
l (R6)

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+γ+ (R6), t ∈ [0, T ].

Lemma 3.4 with m = 2s yields

|B23| ≤ C∥SNQ(µ(t)gε, (S̃NWlh) ) −Q(µ(t)gε, SN (S̃NWlh) )∥L2(R3
x, L

2(R3
v))∥PN, lh∥L2(R6)

≤ C∥µ(t)∇xg
ε∥L∞(R3

x, L
1
(2s+γ)+

(R3
v))∥(2−N S̃N (Wlh)∥L2(R3

x, H
2s
(2s+γ)+

(R3
v))∥PN, lh∥L2(R6)

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+γ+ (R6), t ∈ [0, T ].

Combining the above estimates proves Proposition 4.7.

For the term A2 and A3, we prove the following proposition.

Proposition 4.8. Assume that 0 < s < 1/2, γ + 2s < 1. Then, for any δ > 0, there exists C > 0
independent of ε > 0 such that for any α ∈ N6, |α| ≤ k, k ≥ 4, l ≥ 3,

(4.3.9)
(
A2 +A3, P

⋆
N, lPN, l(∂

αgε)
)
L2(R6)

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+(γ+2s+δ)+
(R6),

for t ∈ [0, T ].

Proof. By putting h = ∂αgε and h̃ = W−2
l P ⋆N, lPN, l(∂

αgε) , we get∣∣∣∣(A2, W
2
l h̃
)
L2(R6)

∣∣∣∣ =
∣∣∣∣∣
∫∫∫∫

R3
x×R3

v×R3
v∗×S2

σ

Bε(v − v∗, σ)(µ∗(t) − µ′
∗(t))(g

ε)′∗h
′(W 2

l h̃)dv∗dσdvdx

∣∣∣∣∣
≤
∫∫∫∫

R3
x×R3

v×R3
v∗×S2

σ

B(v − v∗, σ)|µ∗(t) − µ′
∗(t)| |(gε)′∗| |(Wlh)′(Wlh̃)|dv∗dσdvdx

+
∫∫∫∫

R3
x×R3

v×R3
v∗×S2

σ

B(v − v∗, σ)|(µ∗(t) − µ′
∗(t))| |(gε)′∗|

∣∣Wl −W ′
l

∣∣ |h′(Wlh̃)|dv∗dσdvdx

= I1 + I2.
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To estimate I1, we notice that

(4.3.10) |µ(t, v∗)−µ(t, v′∗)| ≤ C|v∗− v′∗|λ ≤ Cθλ|v− v∗|λ ≤ Cθλ|v′− v′∗|λ, λ ∈ [0, 1], t ∈ [0, T0],

which is elementary for λ = 0, 1 and is obtained for general λ ∈ (0, 1) by interpolation. Since
γ + 2s < 1 is assumed in the proposition, there is λ ∈ (0, 1) such that λ > 2s, γ + λ ≤ 1. By the
manipulation on the primed and non-primed variables ( see (4.1.5) ) we have

I1 ≤ C

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

⟨v′ − v′∗⟩(γ+λ)+θ−2−2s+λ|(gε)′∗| |(Wlh)′| |(Wlh̃)|dv∗dσdvdx

≤ C

∫∫∫
R3

x×R3
v∗×S2

σ

θ−2−2s+λ|(W(γ+λ)+g
ε)∗|
{∫

R3
v

|(Wl+(γ+λ)+h)(Wlh̃)′|dv
}
dv∗dσdx

≤ C∥gε(t)∥L∞(R3
x;L1

(γ+λ)+
(R3

v))∥gε(t)∥Hk
l (R6)∥gε(t)∥Hk

l+(γ+λ)+
(R6)

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+(γ+λ)+
(R6),

for l > (γ + λ)+ + 3/2. In the third inequality we have used again the fact that the Jacobian of
changing of variable v → v′ is bounded.

Using (2.1.14) gives

I2 ≤ C

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

⟨v′ − v′∗⟩γθ−1−2s(µ∗(t) + µ′
∗(t))|(gε)′∗

(
W ′
lW

′
l,∗
)
h′(Wlh̃)|dv∗dσdvdx

= C(J1 + J2).

By the Schwarz inequality and the Sobolev inclusion, we have

J1 ≤ C

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

θ−1−2sµ∗(t)|(Wl+γ+gε)′∗(Wl+γ+h)′(Wlh̃)|dv∗dσdvdx

≤ C

∫
R3

x

(∫∫∫
R3

v×R3
v∗×S2

σ

θ−1−2sµ∗(t)2|(Wlh̃)|2dvdv∗dσ
)1/2

×
(∫∫∫

R3
v×R3

v∗×S2
σ

θ−1−2s|(Wl+γ+gε)′∗(Wl+γ+h)′|2dvdv∗dσ
)1/2

dx

≤ C∥µ∥L2(R3
v)

∫
R3

x

∥Wlh̃(x)∥L2(R3
v)∥Wl+γ+gε(x)∥L2(R3

v)∥Wl+γ+h(x)∥L2(R3
v)dx

≤ C∥gε∥L∞(R3
x;L2(R3

v)∥Wl+γ+h∥L2(R6)∥Wlh̃∥L2(R6)

≤ C∥gε∥2
Hk

l+γ+ (R6)∥g
ε∥Hk

l (R6).

On the other hand, again by the manipulation on the primed and non-primed variables,

J2 ≤ C

∫∫∫∫
R3

x×R3
v×R3

v∗×S2
σ

θ−1−2s|(µ(t)Wl+γ+gε)′∗(Wl+γ+h)′(Wlh̃)|dv∗dσdvdx

≤ C

∫∫∫∫
R3

x×R3
v∗×S2

σ

θ−1−2s|(µ(t)Wl+γ+gε)∗|
{∫

R3
v

|Wl+γ+h||(Wlh̃)′|dv
}
dv∗dσdx

≤ C∥µ(t)Wl+γ+gε∥L∞(R3
x;L1(R3

v))∥Wl+γ+h∥L2(R6)∥Wlh̃∥L2(R6)

≤ C∥gε∥2
Hk

l (R6)∥g
ε∥Hk

l+γ+ (R6).

Here, we have used Wl+γ+µ1/2(t) ≤ C.
We consider now the term A3. For any α ∈ N6, |α| ≤ k, k ≥ 4, l ≥ 3, denote

h1 = ∂α1gε, h2 = ∂α2gε,

where
α1 + α2 ≤ α, α2 < α .
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We shall compute(
Tε(h1, h2, µ̃), W 2

l h̃
)
L2(R6)

=
∫∫∫∫

R3
x×R3

v×R3
v∗×S2

σ

Bε(µ̃∗(t) − µ̃′
∗(t))(h1)′∗h

′
2(W

2
l h̃)dv∗dσdvdx

+
∫∫∫∫

R3
x×R3

v×R3
v∗×S2

σ

Bε (µ̃h1)′∗
(
Wl −W ′

l

)
h′2(Wlh̃)dv∗dσdvdx

+
(
Qε(µ̃h1, (Wlh2) ),Wlh̃

)
L2(R6)

.

For the last term, by Theorem 2.1 with m = 2s < 1, there exists C > 0 independent of ε such that
for |α2| ≤ |α| − 1 and δ > 0,

∥Qε(µ̃h1, (Wlh2) )∥2
L2(R6) ≤ C

∫
R3

∥µ̃h1(t, x, · )∥2
L1

(γ+2s)+
(R3

v)∥(Wlh2)(t, x, · )∥2
H2s

(γ+2s)+
(R3

v)dx

≤

 C∥µ̃h1(t)∥2
L∞(R3

x, L
2
3/2+(γ+2s)++δ

(R3
v))

∥(Wlh2)(t)∥2
L2(R3

x; H2s
(γ+2s)+

(R3
v))
, |α1| ≤ 2,

C∥µ̃h1(t)∥2
L2(R3

x; L2
3/2+(γ+2s)++δ

(R3
v))

∥(Wlh2)(t)∥2
L∞(R3

x, H
2s
(γ+2s)+

(R3
v))
, |α1| > 2,

≤

 C∥h1(t)∥2
H3/2+δ(R3

x; L2(R3
v))

∥(Wlh2)(t)∥2
L2(R3

x; H2s
(γ+2s)+

(R3
v))
, |α1| ≤ 2,

C∥h1(t)∥2
L2(R3

x; L2(R3
v))∥(Wlh2)(t)∥2

H3/2+δ(R3
x; H2s

(γ+2s)+
(R3

v))
, |α1| > 2,

≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥2

Hk
l+(γ+2s)+

(R6), k ≥ 4 > 3 + 2s, l > (γ + 2s)+ + 3/2.

The estimation on the first term is similar to (A2,W
2
l h̃)L2(R6) by taking into account the same

manipulation concerning α2. The estimation for the second term is also similar to the part J2 of
I2 as above. Hence, we have obtained

(4.3.11)
∣∣∣∣(A3, W

2
l h̃
)
L2(R6)

∣∣∣∣ ≤ C∥gε(t)∥2
Hk

l (R6)∥g
ε(t)∥Hk

l+γ+2s(R6).

This completes the proof of Proposition 4.8.

If (4.3.5), (4.3.6), (4.3.7), (4.3.8) and (4.3.9) are combined, then it follows from (4.3.4) that

1
2
d

dt
∥PN, l(∂αgε)(t)∥2

L2(R6) + κ∥W1 PN, l(∂αgε)(t)∥2
L2(R6) −

κ

2
∥gε(t)∥2

Hk
l+1(R6)

≤C
(
∥gε(t)∥2

Hk
l (R6) + C2∥gε(t)∥2

Hk
l (R6)∥g

ε(t)∥Hk
l+(γ+2s+δ)+

(R6)

)
.

Take the sum over |α| ≤ k, integrate from 0 to t ∈ [0, T ] and make N → ∞. Then there exists
C1, C2 > 0 independent of ε > 0 such that , for any δ > 0 and t ∈ [0, T ],

∥gε(t)∥2
Hk

l (R6) + κ

∫ t

0

∥gε(τ)∥2
Hk

l+1(R6)dτ

(4.3.12)

≤ ∥gε(0)∥2
Hk

l (R6) + C1

∫ t

0

∥gε(τ)∥2
Hk

l (R6)dτ + C2

∫ t

0

∥gε(τ)∥2
Hk

l (R6)∥g
ε(τ)∥Hk

l+(γ+2s+δ)+
(R6)dτ.

Remark 4.9. We give here some technical reasons about the choice of the time dependent dis-
tribution µ(t) as moment control in the equation (4.1.1). If we take κ = 0 in the definition of
Maxwellian distribution µ(t), the above computation gives also (4.3.12) without the second term
on the left hand side because κ = 0. But the upper bound estimate, by using Theorem 2.1, always
gives the last term in (4.3.12) with the factor ∥gε(t)∥Hk

l+(γ+2s)++δ
(R6). If γ+2s < 0, there is no loss

of moment, we can get (4.3.13) with κ = 0. If 0 ≤ γ+2s < 1, we choose δ such that γ+2s+ δ ≤ 1
so the second term on left hand side absorbs the last term in (4.3.12) because

∥gε(t)∥Hk
l+(γ+2s+δ)+

(R6) ≤ ∥gε(t)∥Hk
l+1(R6).
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In conclusion, the choice of µ(t) is mainly for the hard potential.

Completion of proof of Theorem 4.6. Set X(t) = ∥gε(t)∥2
Hk

l (R6)
and F (t) =

∫ t
0
X(τ)(1 +

X(τ))dτ . Since γ + 2s < 1, by (4.3.12) there exists a C > 0 independent of ε > 0 such that

(4.3.13) X(t) +
κ

2

∫ t

0

∥gε(τ)∥2
Hk

l+1(R6)dτ ≤ X(0) + CF (t).

Noticing that F ′(t) ≤
(
X(0) + CF (t)

)(
1 +X(0) + CF (t)

)
, we have

∥gε(t)∥2
Hk

l (R6)) ≤
∥g0∥2

Hk
l (R6)

eCt

1 −
(
eCt − 1

)
∥g0∥2

Hk
l (R6)

, for t ∈]0, T ].

We choose T∗ > 0 small enough such that

eCT∗

1 −
(
eCT∗ − 1

)
∥g0∥2

Hk
l (R6)

= 4.

Then
T∗ =

1
C

log
(
1 +

3
1 + 4∥g0∥2

Hk
l (R6)

)
,

is independent of ε > 0, but depends on ∥g0∥Hk
l (R6) and the constant C which depends on ρ, κ, k

and l. Now, we have (4.3.2).
From (4.3.2) and (4.3.13), we get also, for κ > 0,

(4.3.14) κ∥gε∥2
L2(]0,T∗[;Hk

l+1(R6)) ≤ 2∥g0∥2
Hk

l (R6)

(
1 + 2CT∗(1 + 2∥g0∥2

Hk
l (R6))

)
.

We have proved Theorem 4.6.

4.4. Convergence and uniqueness. The second step is to prove that, for any 0 < ε < 1, we
can extend the approximation solution gε, obtained by Theorem 4.2.1, to a fixed interval ]0, T∗[
with T∗ > 0 determined in Theorem 4.6 which is independent on ε > 0. Then this sequence is
convergent.

Theorem 4.10. Assume that 0 < s < 1/2, γ+2s < 1, g0 ≥ 0, g0 ∈ Hk
l (R6) for some k ≥ 4, l ≥ 3.

Let T∗ > 0 be given in Theorem 4.6. Then the Cauchy problem (4.2.1) admits a unique non-negative
solution up to T∗ satisfying

gε ∈ L∞(]0, T∗[; Hk
l (R6)) ∩ L2(]0, T∗[; Hk

l+1(R6)).

Proof: We recall the notation T = Tε(D0) from Remark 4.4. Then Theorem 4.3 asserts that the
Cauchy problem (4.2.1) with initial data g0 admits a unique non-negative solution

gε1 ∈ C0([0, 2T1,ε]; Hk
l (R6)) ∩ L2(]0, 2T1,ε[; Hk

l+1(R6)), T1,ε =
1
2
Tε(∥g0∥Hk

l (R6)).

If T1,ε ≥ T∗, then the proof is completed. If T1,ε < T∗, then Theorem 4.6 implies

∥gε1(T1,ε)∥Hk
l (R6) ≤ 2 ∥g0∥Hk

l (R6).

We now consider the Cauchy problem (4.2.1) with initial data gε(T1,ε). Again Theorem 4.3 asserts
that there exists

T2,ε =
1
2
Tε(2∥g0∥Hk

l (R6)),

such that the Cauchy problem (4.2.1) admits a unique non-negative solution

gε2 ∈ C0([T1,ε, T1,ε + 2T2,ε]; Hk
l (R6))

∩
L2(]T1,ε, T1,ε + 2T2,ε[; Hk

l+1(R6)).

By uniqueness of solution, we obtain a non-negative solution of the Cauchy problem (4.2.1),

gε ∈ C0([0, T1,ε + 2T2,ε]; Hk
l (R6))

∩
L2(]0, T1,ε + 2T2,ε[; Hk

l+1(R6)).
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If T1,ε+2T2,ε ≥ T∗, we finish the proof. If T1,ε+2T2,ε < T∗, we consider again the Cauchy problem
(4.2.1) with initial date gε(T1,ε + T2,ε). Since Theorem 4.6 gives again

∥gε(T1,ε + T2,ε)∥Hk
l (R6) ≤ 2 ∥g0∥Hk

l (R6),

the interval of the existence of solution is the same, that is, 2T2,ε, so that we can extend the
solution to

gε ∈ L∞(]0, T1,ε + 3T2,ε[; Hk
l (R6))

∩
L2(]0, T1,ε + 3T2,ε[; Hk

l+1(R6)).

By iteration, there exists m ∈ N such that

T1,ε +mT2,ε < T∗, T1,ε + (m+ 1)T2,ε ≥ T∗,

and we extend the solution up to

gε ∈ C0([0, T1,ε + (m+ 1)T2,ε]; Hk
l (R6))

∩
L2(]0, T1,ε + (m+ 1)T2,ε[; Hk

l+1(R6)).

We have proved Theorem 4.10.

Theorem 4.10 asserts the existence of an approximation solution sequence{
gε
}
ε>0

⊂ C0([0, T∗]; Hk
l (R6))

∩
L2(]0, T∗; Hk

l+1(R6)),

and
∥gε∥L∞(]0,T∗[ ; Hk

l (R6)) ≤ 2 ∥g0∥Hk
l (R6).

This implies that it is a weakly* compact set of L∞(]0, T∗[; Hk
l (R6)). Let

g ∈ L∞(]0, T∗[ ; Hk
l (R6)),

be a limit of a subsequence of
{
gε
}
ε>0

.
On the other hand, by using the equation (4.2.1) and Theorem 2.1, we obtain

∥∂tgε∥L∞(]0,T∗[ ; Hk−1
l−1 (R6)) ≤ C

(
∥gε∥L∞(]0,T∗[ ; Hk

l (R6)) + ∥gε∥2
L∞(]0,T∗[ ; Hk

l (R6))

)
≤ 2C (1 + 2∥g0∥Hk

l (R6))∥g0∥Hk
l (R6).

Thus,
{
gε
}
ε>0

is a compact subset in

C1−δ(]0, T∗[ ; Hk−1−δ
l−1 (Ω × R3

v)),

for any compact bounded open set Ω ⊂ R3
x and for any δ > 0. For the variable v, we have the

weight Wl−1 with l − 1 > 3/2. Then, we can take the limit in the equation (4.2.1) and also in
the mild form (4.2.5). Then g is a solution of the Cauchy problem (4.1.1). The limit g belongs to
L2(]0, T∗[; Hk

l+1(R6)) deduced from (4.3.14). Now if g0 ≥ 0, Theorem 4.3 implies that gε ≥ 0, so
that the limit g is also non-negative on ]0, T∗[. We have completed the proof for the local existence
of solutions stated in Theorem 4.1.

It remains to prove the uniqueness of solutions in Theorem 4.1. We state it more precisely as
follows.

Proposition 4.11. Assume that 0 < s < 1/2, γ + 2s < 1, 0 < T ≤ T0, m > 3 and g0 ≥ 0, g0 ∈
Hm

3 (R6). Suppose that the Cauchy problem (4.1.1) admits two (non-negative) solutions

g1, g2 ∈ C0([0, T ]; Hm
4 (R6)).

Then g1 ≡ g2.
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Set f = g1 − g2, by using (4.1.1), we have

(4.4.1)
{
ft + v · ∇xf + κ(1 + |v|2)f = Γt(g1, f) + Γt(f, g2) ,
f |t=0 = 0.

We can now take W3f as a test function to get

(4.4.2)
1
2
d

dt
∥W3f(t)∥2

L2(R6) + κ∥W4f(t)∥2
L2(R6) =

(
W3Γt(g1, f) +W3Γt(f, g2) ,W3f

)
L2(R6)

.

Recall that

Γt(g, h) = Q(µ(t)g, h) +
∫

R3
v∗×S2

B
(
µ(t)∗ − µ(t)′∗

)
g′∗h

′dv∗dσ.

We estimate the last two terms of (4.4.2) in the following lemma.

Lemma 4.12. Assume that g1 ≥ 0. Then for any ε > 0, there exist constants Cε > 0 and
K(ε, ∥g2∥L∞(]0, T [;Hm

4 (R6))) > 0 such that

(4.4.3)
(
W3Γt(g1, f) ,W3f

)
L2(R6)

≤ ε∥W4f(t)∥2
L2(R6) + Cε∥g1∥2

L∞(]0, T [;Hm
4 (R6))∥W3f(t)∥2

L2(R6),

(4.4.4)∣∣∣∣(W3Γt(f, g2) ,W3f
)
L2(R6)

∣∣∣∣ ≤ ε∥W4f(t)∥2
L2(R6) +K(ε, ∥g2∥L∞(]0, T [;Hm

3 (R6)))∥W3f(t)∥2
L2(R6).

Notice that by using the above lemma with ε = κ/4 and (4.4.2), we get

d

dt
∥W3f(t)∥2

L2(R6) ≤
(
C∥g1∥2

L∞(]0, T [;Hm
4 (R6)) +K(ε, ∥g2∥L∞(]0, T [;Hm

4 (R6)))
)
∥W3f(t)∥2

L2(R6).

Then ∥W3f(0)∥L2(R6) = 0 implies ∥W3f(t)∥L2(R6) = 0 for all 0 ≤ t ≤ T which gives Proposition
4.11.

Proof of Lemma 4.12. As for (4.4.3), we have(
W3Γt(g1, f) ,W3f

)
L2(R6)

=
(
W3Q(µ(t)g1, f) ,W3f

)
L2(R6)

+
∫∫∫∫

B (µ(t)∗ − µ(t)′∗)g
′
1∗f

′W 2
3 fdv∗dσdvdx

=
(
Q(µ(t)g1, W3f) ,W3f

)
L2(R6)

+
(
W3Q(µ(t)g1, f) −Q(µ(t)g1, W3f) ,W3f

)
L2(R6)

+
∫∫∫∫

B (µ(t)∗ − µ(t)′∗)g
′
1∗
(
W3f

)′
W3fdv∗dσdvdx

+
∫∫∫∫

B (µ(t)∗ − µ(t)′∗)g
′
1∗
(
W3 −W ′

3

)
f ′W3fdv∗dσdvdx

= D1 +D2 +D3 +D4.

The term D1 is similar to B1 in the proof of Proposition 4.7. By using µ(t)g1 ≥ 0, we have

D1 ≤ C∥g1(t)∥H3/2+δ(R6
x, v)∥f(t)∥L2

3(R6
x, v)∥f(t)∥L2

3+γ+ (R6
x, v),

for some small δ > 0. The term D2 is similar to B2 and we can obtain

|D2| ≤ C∥g1(t)∥H3/2+δ(R6
x, v)∥f(t)∥L2

3(R6
x, v)∥f(t)∥L2

3+γ+ (R6
x, v).

The terms D3, D4 are similar to I1, I2 in the proof of Proposition 4.8. Namely

|D3| + |D4| ≤ C∥g1(t)∥H6/2+δ

3+(γ+2s+δ)+
(R6

x, v)
∥f(t)∥L2

3(R6
x, v)∥f(t)∥L2

3+(γ+2s+δ)+
(R6

x, v).

Thus, for any 0 < t ≤ T and m > 3, we have(
W3Γt(g1, f) ,W3f

)
L2(R6)

≤ C∥g1∥L∞(]0,T [;Hm
4 (R6

x, v))∥W3f(t)∥L2(R6
x, v)∥W4f(t)∥L2(R6

x, v),
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which implies (4.4.3). The left hand side of (4.4.4) can be written as(
W3 Γt(f, g2) ,W3 f

)
L2(R6)

=
(
W3Q(µ(t)f, g2) ,W3f

)
L2(R6)

+
∫∫∫∫

B (µ(t)∗ − µ(t)′∗)f
′
∗g

′
2W

2
3 fdv∗dσdvdx

=
(
W3Q(µ(t)f, g2) ,W3f

)
L2(R6)

+
∫∫∫∫

B (µ(t)∗ − µ(t)′∗)f
′
∗
(
W3g2

)′
W3fdv∗dσdvdx

+
∫∫∫∫

B (µ(t)∗ − µ(t)′∗)f
′
∗
(
W3 −W ′

3

)
g′2W3fdv∗dσdvdx

= E1 + E2 + E3.

Using Corollary 2.5 with m = 0, l = 3 gives

|E1| ≤
∫

R3
x

∥W3Q(µ(t)f, g2)∥L2(R3
v)∥W3f∥L2(R3

v)dx

≤ C

∫
R3

x

∥µ(t)f∥L1
3+(γ+2s)+

(R3
v)∥g2∥H2s

3+(γ+2s)+
(R3

v)∥W3f∥L2(R3
v)dx

≤ C∥g2∥L∞(]0,T [×R3
x;H2s

3+(γ+2s+δ)+
(R3

v))∥f(t)∥L2(R6)∥W3f(t)∥L2(R6)

≤ C∥g2∥L∞(]0,T [;H
3/2+2s+δ

3+(γ+2s+δ)+
(R3

v))
∥W3f(t)∥2

L2(R6).

The term E2 is similar to D3, and we have

|E2| ≤ C∥f(t)∥L2(R3
x;L1

(γ+2s+δ)+
(R3

v))∥g2∥L∞(]0,T [×R3
x;L2

3+γ+ (R3
v))∥W3f(t)∥L2(R6)

≤ C∥f(t)∥L2
3/2+δ+(γ+2s+δ)+

(R6))∥g2∥L∞(]0,T [;H
3/2+δ

3+γ+ (R6))
∥W3f(t)∥L2(R6)

≤ C∥g2∥L∞(]0,T [;H
3/2+δ
4 (R6))

∥W3f(t)∥2
L2(R6)).

For the term E3, we can use (2.1.15) with l = 3. Then

|E3| ≤
∫∫∫∫

b(cos θ) ⟨v − v∗⟩γ |µ(t)∗ − µ(t)′∗| |f ′∗|
∣∣W3 −W ′

3

∣∣ |g′2| |W3f | dv∗dσdvdx

≤ C

∫∫∫∫
sin
(θ

2

)
b(cos θ) |(W1+γ+f)′∗| |(W3+γ+g2)′| |W3f | dv∗dσdvdx

+ C

∫∫∫∫
sin3

(θ
2

)
b(cos θ) µ′

∗(t)|(W3+γ+f)′∗| |(Wγ+g2)′| |W3f | dv∗dσdvdx

+ C

∫∫∫∫
sin3

(θ
2

)
b(cos θ) µ∗(t)|(W3+γ+f)′∗| |(Wγ+g2)′| |W3f | dv∗dσdvdx

= E3,1 + E3,2 + E3,3.

Since 0 < 2s < 1 is assumed, for any ε > 0 there exists Cε > 0 such that

|E3,1| ≤ C

∫
R3

x

∥f(t, x, ·)∥L1
1+γ+ (R3

v) ∥g2(t, x, ·)∥L2
4(R3

v) ∥f(t, x, ·)∥L2
3(R3

v) dx

≤ C∥f(t)∥L2(R3
x;L1

1+γ+ (R3
v)) ∥g2∥L∞(]0,T [×R3

x;L2
4(R3

v)) ∥f(t)∥L2
3(R6

x,v)

≤ C∥f(t)∥L2
3/2+δ+1+γ+ (R6

x,v) ∥g2∥L∞(]0,T [;H
3/2+δ
4 (R6

x,v))
∥f(t)∥L2

3(R6
x,v)

≤
(
ε∥W4f(t)∥2

L2(R6
x,v) + Cε∥W3f(t)∥2

L2(R6
x,v)

)
∥g2∥L∞(]0,T [;H

3/2+δ
4 (R6

x,v))
.

Similarly

|E3,2| ≤ C

∫
R3

x

∥µ(t)f(t, x, ·)∥L1
1+γ+ (R3

v) ∥g2(t, x, ·)∥L2
γ+ (R3

v) ∥f(t, x, ·)∥L2
3(R3

v) dx

≤ C∥g2∥L∞(]0,T [;H
3/2+δ
4 (R6

x,v))
∥f(t)∥L2(R6

x,v)∥W3f(t)∥L2(R6
x,v) .
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Since 3/2 + (3 + γ+) > 4, we can not estimate E3,3 in the same way as for E3,2. Instead, we have

|E3,3| ≤ C∥Wγ+g2∥L∞(]0,T [×R6
x,v)

∫∫∫∫
θ3b(cos θ) µ∗(t)|(W3+γ+f)′∗| | |W3f | dv∗dσdvdx

≤ C∥g2∥L∞(]0,T [;H3+δ
3 (R6

x,v))

∫
R3

x

(∫∫∫
θ1b(cos θ) µ∗(t)|W3f |2 | dv∗dσdv

) 1
2

×
(∫∫∫

θ5b(cos θ) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dσdv
) 1

2

dx .

We now take the singular change of variables v′∗ → v. The Jacobian is computed in (2.1.21) which
is of the order of θ−2. Then this singular change of variables yields∫∫∫

θ5b(cos θ) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dσdv

≤ C

∫∫
D1(v∗, v′∗) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dv′∗,

with D1(v∗, v′∗) =
∫
S2 θ

5−2b(cos θ)dσ ≤ C
∫ π/2
π/4

(π2 − ψ)−2−2s+5−2dψ ≤ C. Hence∫∫∫
θ5b(cos θ) µ∗(t)|(W3+γ+f)′∗|2 | dv∗dσdv

≤ C∥µ(t)∥L1(R3
v)∥W3+γ+f(t, x, ·)∥2

L2(R3
v).

Therefore,
|E3,3| ≤ C∥g2∥L∞(]0,T [;H3+δ

4 (R6
x,v))∥W3f∥L2(R6

x,v)∥W3+γ+f∥L2(R6
x,v).

By combining the estimates on E1, E2, E3, we have proved (4.4.4). Now the proof of Lemma 4.12
is complete.

4.5. Proof of Theorem 1.2. Assume that f0 ∈ Ek00 (R5). Then there exists ρ0 > 0 such that
eρ0⟨v⟩

2
f0 ∈ Hk0(R6). Choose 0 < ρ < ρ0 and κ > 0 small enough. By setting g0 = e ρ⟨v⟩

2
f0, then

g0 ∈ Hk0
l (R6) for all l ∈ N. Theorem 4.1 asserts that the Cauchy problem (4.1.1) with the initial

datum g0 admits a non-negative local solution

g ∈ C0([0, T∗];Hk0
l (R6))

∩
L2(]0, T∗[;Hk0

l+1(R
6)), ∀ l ∈ N,

with T∗ ∈]0, T0] (T0 = ρ
2κ ). Then

f(t, x, v) = e−(ρ−κt)⟨v⟩2g(t, x, v) ∈ C0([0, T∗];Hk0
l (R6))

∩
L2(]0, T∗[;Hk0

l (R6)), ∀ l ∈ N,

is a non-negative solution of the Cauchy problem (1.6). Since for 0 ≤ t ≤ T∗ ≤ T0,

(4.5.1) e
ρ
2 ⟨v⟩

2
f ∈ C0([0, T∗];Hk0(R6)),

we can conclude f ∈ Ek0([0, T∗] × R6
x,v), which leads to the local existence stated in Theorem 1.2.

Suppose now for some f0 ∈ E4
0 (R5), the Cauchy problem (1.6) admits two solutions f1 ∈

E4([0, T1]×R6
x,v) and f2 ∈ E4([0, T2]×R6

x,v). This implies that there exist ρ0, ρ1, ρ2 > 0 such that

eρ0⟨v⟩
2
f0 ∈ H4(R6),

and
eρ1⟨v⟩

2
f1 ∈ C0([0, T1]; H4(R6)), eρ2⟨v⟩

2
f2 ∈ C0([0, T2]; H4(R6)).

Take 0 < ρ < min{ρ0, ρ1, ρ2} and κ > 0 sufficiently small such that ρ
2κ > T∗∗ = min{T1, T2}.

Then we have
g0 = eρ⟨v⟩

2
f0 ∈ H4

l (R6),
for any l ∈ N, and

g1 = e(ρ−κt)⟨v⟩
2
f1 ∈ C0([0, T∗∗]; H4

l (R6)), g2 = e(ρ−κt)⟨v⟩
2
f2 ∈ C0([0, T∗∗]; H4

l (R6)),
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are two solutions of the Cauchy problem (4.1.1) with the common initial datum g0. Then Propo-
sition 4.11 gives g1 = g2, so that f1 = f2 for t ∈ [0, T∗∗]. Now the uniqueness of solutions stated in
Theorem 1.2 is obvious since T1 = T2 = T∗∗.

On the other hand, in view of (4.5.1), ∥f(t, x, · )∥L1 is continuous for (t, x) ∈ [0, T∗] × R3
x.

Therefore, if for a compact K ⊂ R3, we have

inf
x∈K

∥f0(x, · )∥L1 = c0 > 0,

then there exist 0 < T̃0 ≤ T∗ and a closed neighborhood of K denoted by V0 in R3
x such that

inf
(t,x)∈[0,T̃0]×V0

∥f(t, x, · )∥L1 ≥ c0
2
.

Now Theorem 1.1 implies that

f ∈
∩
l∈N

H+∞
l (]0, T̃0[×V0 × R3

v) ⊂ C∞(]0, T̃0[×V0;S(R3
v)).

It remains to prove the uniqueness of solutions of Theorem 1.2 in the soft potential case γ ≤ 0.
In this case, the uniqueness of solution can be proved in a larger functional space. We state it as
follows.

Proposition 4.13. Assume that 0 < s < 1/2, γ ≤ 0, 0 < T ≤ +∞ and m > 2s+3/2, l > 2s+3/2.
Let f0 ≥ 0, f0 ∈ Hm

l+2s(R6). Suppose that the Cauchy problem (1.6) admits two non-negative
solutions

f1, f2 ∈ L∞(]0, T [; Hm
l+2s(R6)).

Then f1 ≡ f2.

Proof: The proof is similar to the one for Proposition 4.11. Set F = f1 − f2, by using (1.6), we
have

(4.5.2)
{
Ft + v · ∇xF = Q(f1, F ) +Q(F, f2) ,
F |t=0 = 0.

We can now take WlF as a test function to have

(4.5.3)
1
2
d

dt
∥F (t)∥2

L2
l (R6) =

(
WlQ(f1, F ) +WlQ(F, f2) ,WlF

)
L2(R6)

.

Since f1 ≥ 0 and γ ≤ 0, similar to the analysis on B1 in the proof of Proposition 4.7, we have(
Q(f1, WlF ) ,WlF

)
L2(R6)

≤ C∥f1(t)∥L∞(R3
x;L1(R3

v))∥F (t)∥2
L2

l (R6
x, v).

Using (2.1.17) with γ+ = 0 gives∣∣∣∣(WlQ(f1, F ) −Q(f1, WlF ) ,WlF
)
L2(R6)

∣∣∣∣ ≤ C∥f1(t)∥L∞(R3
x;L2

l (R3
v))∥F (t)∥2

L2
l (R6

x, v),

and∣∣∣∣(WlQ(F, f2) −Q(F, Wlf2) ,WlF
)
L2(R6)

∣∣∣∣ ≤ C∥F (t)∥L2
l (R6

x, v)∥f2(t)∥L∞(R3
x;L2

l (R3
v))∥F (t)∥L2

l (R6
x, v).

Finally, for l > 3/2 + 2s, we have∣∣∣∣(Q(F, Wlf2) ,WlF
)
L2(R6)

∣∣∣∣ ≤ C∥Q(F, Wlf2)∥L2(R6)∥F (t)∥L2
l (R6)

≤ ∥F (t)∥L2
l (R6)

(∫
R3

x

∥F (t, x, · )∥2
L1

2s(R3
v)∥f2(t, x, · )∥

2
H2s

l+2s(R3
v)

)1/2

≤ C∥F (t)∥2
L2

l (R6)∥f2(t)∥L∞(R3
x; H2s

l+2s(R3
v)).
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Thus, we have, for any 0 < t < T and δ > 0 small enough,

d

dt
∥F (t)∥2

L2
l (R6) ≤ C

(
∥f1∥L∞(]0,T [; H

3/2+δ
l (R6

x,v))
+ ∥f2∥L∞(]0,T [; H

3/2+δ+2s
l+2s (R6

x,v))

)
∥F (t)∥2

L2
l (R6).

Therefore, ∥F (0)∥L2
l (R6) = 0 implies ∥F (t)∥L2

l (R6) = 0 for all t ∈ [0, T [.
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