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Abstract

Based on the model system undergoing phase separation and chemical reactions, we investigate the dynamics of prop-
agating dissipative waves under external forcing which is periodic both in space and time. A phase diagram for the
entrained and non-entrained states under the external forcing is obtained numerically. Theoretical analysis in terms
of phase description of the traveling waves is carried out to show that the transition between the entrained and the
non-entrained states by changing the external frequency occurs either through a saddle-node bifurcation or through a
Hopf bifurcation and that these two bifurcation lines are connected at a Bogdanov-Takens bifurcation point.
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1. Introduction

Synchronization and entrainment of nonlinear oscilla-
tors under external periodic forcing have been studied for
many years. It has been shown that the phase dynamics
which introduces one phase variable for a limit cycle oscil-
lation is very useful to understand those phenomena [1, 2].
The time-evolution equation for the phase θ is given by

dθ

dt
= Ω − ω + f(θ), (1)

where ω is the frequency of the limit cycle oscillation and
Ω is that of the periodic external forcing. The function
f(θ) is a 2π−periodic function. It is evident that Eq. (1)
for 0 < θ < 2π has a pair of time-independent solutions for
small differences of |ω −Ω|. One is stable and the other is
unstable. If the value |ω−Ω| is increased by changing the
external frequency Ω, the pair of solutions converges and
disappears. This means that the bifurcation is a saddle-
node bifurcation.

In comparison with these studies of nonlinear oscillators,
nonlinear dissipative waves under external forcing have not
been explored extensively despite the fact that existence
of such waves are one of the most relevant self-organized
phenomena far from equilibrium. Some recent studies to-
wards this direction are given in refs. [3–8]. In the previ-
ous papers [9, 10], we addressed this problem not only for
the external forcing but also for the feedback control. We
carried out numerical simulations and theoretical analysis
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based on a model system in one dimension. In the present
paper, we focus our analysis on the external forcing and
investigate the entrained dynamics in further detail.

In the next section (section 2) we start with description
of our model system. Numerical results are shown in sec-
tion 3. The phase dynamics approach is given in section
4. The section 5 is devoted to discussion.

2. Model equations

We start with the coupled set of equations for the local
concentrations in a hypothetical ternary mixture where
both phase separation and chemical reactions take place
simultaneously. Let us assume that molecules A, B and
C are adsorbed on a flat substrate with the local concen-
trations, ψA, ψB and ψC , respectively. The other chemical
species involved in the chemical reactions are assumed to
exist abundantly in the gas phase above the substrate, and
the products are also assumed to dissolve quickly into the
gas phase. Each lattice site of the substrate is occupied by
one and only one molecule A, B or C. Any pair of molecules
A and B that are nearest neighbors exchange their posi-
tions randomly with a certain probability, but C molecules
do not participate in such exchanges. In this way, the con-
dition ψA + ψB + ψC = 1 is satisfied in the continuum
limit, while diffusion is exhibited by A and B molecules
but not C molecules. When these molecules encounter
other molecules in the gas phase, they undergo the chem-
ical reactions A → B → C → A with the reaction rates
γ1, γ2 and γ3 respectively. It is assumed that the A and B
species tend to segregate each other whereas the C compo-
nent is neutral to both A and B. Then the time-evolution
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equations for the local concentrations ψ = ψA − ψB and
φ = ψA + ψB are given by [11].

∂ψ

∂t
= ∇2[−∇2ψ − τψ + ψ3]

+ a1ψ + a2φ + a3 + Γ(x, t), (2)

∂φ

∂t
= b1ψ + b2φ + b3 + Γ(x, t). (3)

The phase separation process is characterized by the pa-
rameter τ > 0. The coefficients are given in terms of the
reaction rates by

a1 = −
(
γ1 +

γ2

2

)
, (4)

a2 = −
(
γ1 −

γ2

2
+ γ3

)
, (5)

a3 = b3 = γ3, (6)

b1 =
γ2

2
, (7)

b2 = −
(γ2

2
+ γ3

)
. (8)

The function Γ(x, t) stands for the external force which is
moving steadily to the right

Γ(x, t) = ε cos(qfx − Ωt), (9)

with the strength ε, the wave number qf and the frequency
Ω [12]. Here we suppose that the system is exposed by
illuminating light through a periodically arrayed slit and
the slit moves at a constant velocity Ω/qf . As a result,
we assume that the reaction rate γ3 is modified such that
γ3 → γ3 + Γ. In this way, the Γ term is added both in
Eqs. (2) and (3) since a3 = b3 = γ3 as Eq. (6). We have
ignored a term Γφ arising from the γ3φ term in Eqs. (5)
and (8) assuming a sufficiently small forcing ε.

We have studied earlier the solution of Eqs. (2) and
(3) without the external forcing [11]. The uniform time-
independent solution becomes unstable by increasing the
parameter τ with fixing other parameters. Depending on
the rate constants, e.g., γ3, there are two possibilities. One
is a Hopf bifurcation at a finite wave number. We have
verified that a traveling wave appears above the threshold.
The other is a Turing-type bifurcation beyond which a
spatially periodic motionless pattern appears.

Throughout this paper, we will fix the parameters as
τ = 1.6, γ1 = 0.3, γ2 = 0.16 and γ3 = 0.05. This set of
the parameters are close to the Hopf bifurcation threshold
τ = τc = 1.46 at a finite wave number q = qc ≈ 0.9
[11]. The frequency of oscillation at the bifurcation point
is given by ωc ≈ 0.07 and the external frequency Ω is varied
around this critical frequency to investigate the dynamics
under forcing.

Figure 1: Phase diagram for the entrainment with the external forc-
ing traveling to the right on the ε − Ω plane. The meaning of the
symbols is given in the text. The solid lines are the saddle-node bi-
furcation threshold whereas the dotted line is the Hopf bifurcation
threshold. These two lines are obtained from the phase equations
of motion (12) and (13). The Bogdanov-Takens bifurcation point is
indicated by the double circle.

3. Numerical simulations

We have carried out numerical simulations of Eqs. (2)
and (3) with (9) in one dimension. The system size is
L = 20π with a periodic boundary condition and the space
is divided into N = 128 cells with the cell size δx = 20π/N .
This system size is almost commensurate with the critical
spatial period of the traveling wave `c = 2π/qc ≈ 2π/0.9.
The wave number of the external force is fixed to be the
same as qc in order to avoid extra complications of dynam-
ics. The explicit Euler scheme is employed with the time
increment δt = 0.001. Initially we provide a wave propa-
gating to the right without the external forcing and then,
at a certain time instant, switch on the external force (9)
which is also traveling to the right.

Figure 1 represents the phase diagram on the ε−Ω plane
obtained numerically asymptotically in time. The travel-
ing wave is completely entrained by the external force in
the region filled by symbols (+) whereas it is not entrained
in the region filled by ¦. In the region indicated by •, the
wave trains undergo an oscillation trapped at the poten-
tial minima of the traveling external force. The space-time
plot of these dynamics for ε = 0.007 is displayed in Fig.
2 where the gray scale indicates the magnitude of ψ. The
entrained state (Ω = 0.07) is shown in Fig. 2(a). Fig.
2(b) illustrates the drift state (Ω = 0.1) where the wave
speed is modulated periodically every time the external
force catches up the traveling waves. Fig. 2(c) exhibits
the trapped state (Ω = 0.02) where each wave train moves
back and forth propagating gradually to the right on an
average. In the narrow region indicated by the black tri-
angles in Fig. 1, propagation reversal occurs. That is, the
wave propagating to the right starts to propagate to the
left after applying the external force which is propagating
to the right. The mechanism of this apparently strange
phenomenon will be clarified in section 4. In particular,
see Fig. 6 below.
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Figure 2: Space (horizontal)-time (vertical) plot of the propagating
waves for ε = 0.007 (a) in the entrained state for Ω = 0.07, (b) in
the non-entrained state near the saddle-node bifurcation for Ω = 0.1
and (c) in the trapped state near the Hopf bifurcation for Ω = 0.02.

The above results are obtained in the situation that the
external forcing is traveling to the same direction as the
propagating wave. It should be noted, however, that Eqs.
(2) and (3) without the external forcing have the waves
traveling both to the right and to the left depending on the
initial condition. Therefore, it is interesting to see what
dynamics appears when the force moving to the opposite
direction is applied. The phase diagram in such a case is
obtained numerically as shown in Fig. 3 where the white
circles indicates the region that the waves keep propagat-
ing to the initial direction with the periodic modulation
by the external force traveling to the opposite direction.
That is, the waves are not entrained. In the region indi-
cated by other symbols, the waves change their propagat-
ing direction after switching on the external force and the
asymptotic dynamics are the same as those in Fig. 1.

Figure 3: Phase diagram on the ε-Ω plane for the wave train propa-
gation under external forcing traveling to the left.

4. Phase equations

In order to clarify the dynamics in the phase diagram
displayed in Fig. 1, we derive the phase equations of mo-
tion for the propagating waves under the external force.
We represent the solutions of Eqs. (2) and (3) as

ψ = ψ0 + ψ1(t) cos(qcx − Ωt + θ1(t)), (10)
φ = φ0 + φ1(t) cos(qcx − Ωt + θ2(t)), (11)

where ψ0 and φ0 are the solutions of a1ψ + a2φ + a3 =
0 and b1ψ + b2φ + b3 = 0. The unknown functions
ψ1(t), φ1(t), θ1(t) and θ2(t) are to be determined. The pro-
cedure and the results are the same as the previous ones
[9]. The final set of phase equations is given by

dθ1

dt
= Ω − ε

ψ
(0)
1

sin(θ1)

− a2
φ

(0)
1

ψ
(0)
1

(
1 +

φ
(1)
1

φ
(0)
1

− ψ
(1)
1

ψ
(0)
1

)
sin θ12, (12)

dθ2

dt
= Ω − ε

φ
(0)
1

sin(θ2)

+ b1
ψ

(0)
1

φ
(0)
1

(
1 +

ψ
(1)
1

ψ
(0)
1

− φ
(1)
1

φ
(0)
1

)
sin θ12, (13)

where

θ12 = θ1 − θ2, (14)

and
3
4
(ψ(0)

1 )2 = q2
c + τ − τc

+
1

qc
2

(
a1 −

a2b1

b2
(cos θ12)2

)
, (15)

φ
(0)
1 =

(
−b1

b2
cos(θ12)

)
ψ

(0)
1 , (16)

ψ
(1)
1 =

2ε

3q2
c (ψ(0)

1 )2

×
(

cos(θ1) −
a2

b2
cos(θ2) cos θ12

)
, (17)

φ
(1)
1 =

φ
(0)
1

ψ
(0)
1

ψ
(1)
1 − ε

b2
cos(θ2). (18)

In Eq. (15), the positive solution for ψ
(0)
1 should be chosen

for consistency with the simulations.
When the external force is absent, Eqs. (12) and (13)

become a single equation for θ12, which takes the following
form

dθ12

dt
= b2 tan(θ12) +

a2b1

2b2
sin(2θ12). (19)

Note that the right hand side is an odd function of θ12 so
that Eq. (19) has two stable solutions which correspond
to the waves propagating either to the left or to the right
because the original set of Eqs. (2) and (3) are invariant
under the transformation x ↔ −x.

Equations (12) and (13) are valid up to O(ε). We have
omitted the higher harmonics in the derivations of these
equations. However, those effects are verified numerically
to be negligible. Putting dθ1/dt = dθ2/dt = 0 in Eqs.
(12) and (13), the time-independent solution, which cor-
responds to the entrained state, has been obtained nu-
merically by the Newton method and the stability of the
stationary solutions is analyzed.
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Figure 4: Nullcline of Eqs. (12) and (13) for ε = 0.004 and (a)
Ω = 0.08 and (b) Ω = 0.09 respectively. The white dot is the stable
fixed point and the black dot is the unstable fixed point. This pair
of the fixed points disappear in (b). The thin solid line is the line for
dθ1/dt = 0 and the thin broken line is the line for dθ2/dt = 0. The
thick solid line is the trajectory of the stable non-entrained solution
propagating to the same direction as the external force. The dot-
ted broken line is the trajectory of the stable non-entrained solution
propagating to the opposite direction.

Figure 5: Nullcline and the asymptotic solutions of Eqs. (12) and
(13) for ε = 0.004 and (a) Ω = 0.04, and (b) Ω = 0.029 respectively.
The thick solid line in (b) is the stable limit cycle solution. The
meanings of other lines are the same as those in Fig. 4.

We have carefully examined the phase equations (12)
and (13). It turns out that there are two different ways
resulting in instability of the entrained state. One possi-
bility is a pair annihilation of the stable and the unstable
fixed points. The other one is that the eigen value in the
linearized equations around the steady solution is complex
and its real part becomes positive. In the previous paper
[9], we overlooked this unusual possibility in the entrain-
ment and synchronization phenomena. The former is a
saddle-node bifurcation and the latter is a Hopf bifurca-
tion. The solid lines in Fig. 1 indicates the saddle-node
bifurcation line whereas the broken line is the Hopf bifur-
cation line. These two lines meet at about Ω = 0.0430 and
ε = 0.00275 which is a Bogdanov-Takens bifurcation point
[13]. It is shown that these lines obtained from the phase

Figure 6: Nullcline and the asymptotic solutions of Eqs. (12) and
(13) for ε = 0.004 and (a) Ω = 0.028, and (b) Ω = 0.01 respectively.
The meanings of the lines are the same as those in Fig. 4. Note that
there is a dotted broken line but no thick solid line in (a) indicating
that the non-entrained waves propagating to the same direction as
the external force do not exist.

equations (12) and (13) are consistent quantitatively with
the numerical simulations except for the larger values of
ε(> 0.09) where the lowest mode truncation in the phase
dynamics becomes less accurate. In order to illustrate the
above conclusion, the results of detailed computations of
Eqs. (12) and (13) performed near the bifurcation lines
are represented in Figs. 4, 5 and 6.

The nullclines of Eqs. (12) and (13) for ε = 0.004 are
plotted in the space of θ1+θ2 and θ12 = θ1−θ2 in Figs. 4, 5
and 6 for different values of the frequency Ω. The thin solid
(broken) line is the nullcline of Eq. (12) (Eq. (13)). Since
Eqs. (12) and (13) are invariant under the simultaneous
transformations θ12 → θ12 + π and θ1 + θ2 → θ1 + θ2 − π,
only the interval −π/2 ≤ θ12 < π/2 is plotted. Note that
θ12 for θ1 + θ2 = 0 is equal to θ12 for θ1 + θ2 = 4π but
θ1+θ2 for θ12 = −π/2 is equal to θ1+θ2−π for θ12 = π/2.

Figures 4 (a) and (b) display the nullclines for Ω = 0.08
and for Ω = 0.09 respectively. There are a pair of steady
solutions in Fig. 4 (a) where the solution indicated by the
white dot is stable (node) and the one indicated by the
black circle is unstable (saddle). These two solutions dis-
appear for Ω = 0.09 in Fig. 4 (b) indicating a transition
from the entrained state to the non-entrained state of the
waves. It is evident that this transition occurs as a saddle-
node bifurcation. The time-dependent trajectory corre-
sponding to the non-entrained phase-slip waves is shown
by the thick solid line in Fig. 4 (b). It should be noted
that there is a stable non-entrained solution propagating
to the direction opposite to the external forcing as the tra-
jectory is indicated by the dotted broken line in Figs. 4
(a) and (b).

The arrows in Figs. 4, 5 and 6 indicate the direction of
the time-evolution. The upward (downward) arrows show
propagation to the left (right) relative to the external force
propagating to the right. The arrows on the thick solid line
in Fig. 4(b) are directed to upward because the wave is
propagating to the right but its velocity is slower than that
of the external force.
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The dynamics for the lower values of Ω are shown in
Figs. 5 (a) and (b) for Ω = 0.04, Ω = 0.029 respectively.
Figure 5 (a) for Ω = 0.04 displays a stable steady solution
(white dot) of the entrained state and an unstable solution
(black circle). For a smaller value of Ω = 0.029, both of
the time-independent solutions are unstable (one is unsta-
ble focus and the other is saddle) and a limit cycle orbit
appears around the first one that clearly indicates a Hopf
bifurcation.

By decreasing further the value of Ω, the limit cycle
disappears and a trajectory of the monotonously time-
dependent motion appears which represents a periodically
modulated traveling wave as shown by the dotted broken
line for Ω = 0.028 in Fig. 6 (a) and both by the thick solid
line and by the dotted broken line for Ω = 0.01 in Fig. 6
(b). Note that there is no thick solid line in Fig. 6(a) and
that the non-entrained solution propagating to the same
direction as the external force does not exist here. This
means that the traveling wave changes the propagating
direction when the external forcing (which is moving to
the same direction as the initial traveling wave) is applied.
Actually this phenomenon occurs for a narrow but finite
interval of Ω as is indicated by the black triangles in Fig.
1.

Figure 7: Trajectory on the θ1±θ2 plane corresponding to Eqs. (12)
and (13) for ε = 0.004 and (a) Ω = 0.029, (b) Ω = 0.028 and (c)
Ω = 0.01.

In order to investigate the properties of the transitions
from the trapped oscillation in Fig. 5 (b) to the rever-
sal of propagation direction in Fig. 6 (a) and from the
reversal of propagation to the phase-slip waves in Fig. 6
(b), we examine the phase trajectory on the θ1 ± θ2 plane
as shown in Fig. 7 for ε = 0.004. It is evident that the
limit cycle oscillation in Fig. 7 (a) for Ω = 0.029 disap-
pears in Fig. 7 (b) for Ω = 0.028. This happens when
the orbit touches, as Ω is decreased, the separatrix which
exists between the limit cycle and the attractor of the non-
entrained solution. One notes from Fig. 1 that decreasing
Ω for Ω < ωc corresponds to decreasing the magnitude ε
of the external force. Recall that the system is bistable
for ε = 0 as mentioned in Eq. (19). This is the reason
why two attractors of wave solutions propagating to the
opposite direction appear for Ω = 0.01 together with the
separatrix connecting two unstable fixed points as can be

seen in Fig. 7 (c). The phase difference in the absence
of the external force is θ12 ≈ −0.628 which is close to the
location of the attractor of the waves propagating to the
right (the trajectory directed downward). As a result, the
right-moving wave emerges after switching on the external
force.

5. Discussion

We have shown that the transition between entrained
and non-entrained states occurs as a Hopf bifurcation as
well as a saddle-node bifurcation. The latter is the usual
behavior of the entrainment of a limit cycle oscillation un-
der external periodic forcing. In the present paper, we
have found, for the first time, that a Hopf bifurcation ap-
pears in the entrainment phenomenon of nonlinear dissi-
pative waves. These results have been confirmed by the
theory of phase description. The main results are summa-
rized in the phase diagram shown in Fig. 1. It is men-
tioned here that the boundary between the drift state and
the trapped oscillatory state is not so simple. For exam-
ple, if one decreases the value of Ω for the fixed value
of ε = 0.006 the trapped oscillatory state disappears at
Ω = 0.013 (although not shown in Fig. 1) but reappears
for Ω ≤ 0.002.

It is emphasized that the two phase variables are neces-
sary to represent the entrained and non-entrained dynam-
ics properly. If only one phase variable is introduced for
each oscillator as an ordinary phase dynamics of an oscilla-
tory system [1, 2], the trapped oscillation as shown in Fig.
2(c) cannot be obtained theoretically. The above property
inherent in the nonlinear propagating waves has a clear dis-
tinction from entrainment of limit cycle oscillation. When
the external forcing is strong enough in the latter case, the
original limit cycle orbit is deformed substantially so that
the phase description becomes less accurate and the am-
plitude modulation have to be considered. Because of the
coupling between the phase and the amplitude, an oscil-
latory modulation is possible [2]. However this oscillation
has no relation to the trapped oscillation mentioned above
caused by the coupling of the two phase variables.

The phase equations of motion given by Eqs. (12) and
(13) are fairly complicated. One of the reasons is that the
original system governed by Eqs. (2) and (3) have solu-
tions propagating to the right and the left. When external
forcing is absent, these two solutions are equally possible
and therefore the system is bistable. The phase dynam-
ics equations (12) and (13) contain this property correctly
and therefore look complicated. As displayed in Fig. 6,
Eqs. (12) and (13) exhibit the non-entrained waves propa-
gating to the same direction as and the opposite direction
to the external forcing.

In the present study, we have restricted ourselves to the
case qf = qc and varied the frequency of the external forc-
ing Ω around the critical value ωc. In our previous paper
[14], we have studied the dynamics for qf 6= qc. It has been
shown that, if qf ≈ qc and Ω ≈ ωc, the traveling waves are
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entrained by the external force. However, if the deviations
of qf and Ω are large, a wave-modulation occurs locally in
space and it propagates either to the right or to the left
depending on the parameters. This is a dynamical version
of discommensuration in the commensurate- incommen-
surate transitions [15]. A trapped-oscillation of waves has
also been obtained when the external frequency is substan-
tially different from ωc [14]. Therefore, it is interesting to
investigate how the Bogdanov-Takens bifurcation point is
extended when qf 6= qc. However, this is left for a future
study.
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