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This study re-examines a long-time asymptotic state of a two-dimensional barotropic
incompressible flow with a small-scale, Markovian random forcing on a rotating sphere. Numerical
simulations with different rotation rates of the sphere and different wavenumbers of the forcing are
performed from zero initial condition. The integration time is extended to around 100–500 times that
of the previous study by Nozawa and Yoden �Phys. Fluids 9, 2081 �1997��. At an early stage of the
time integration, a multiple zonal-band structure or a structure with westward circumpolar jets
emerges. However, in the course of time development, a multiple zonal-band structure is found to
appear in all cases. The multiple zonal-band structure then enters quasisteady state, showing little
energy increase with nearly steady energy spectrum. This is followed by a sudden merger/
disappearance of the jets, accompanying an energy increase, and at the final stage of the time
integration, a zonal-band structure with only two or three jets is realized in all cases. The
characteristic total wavenumber of this asymptotic state is far lower than the Rhines wavenumber of
the zonal flow, which suggests that the inverse energy cascade is not totally stopped by the �
effect. © 2010 American Institute of Physics. �doi:10.1063/1.3407652�

I. INTRODUCTION

Many studies on fluid dynamics in a nonrotating system
have been performed in relation to fluid phenomena in an
ordinary life. On the other hand, the fluid dynamics in a
rotating system is also attracting much interest in respect, for
instance, of observations in geoscience and of environmental
problems. In these areas, there are plenty of mathematical
models with a wide range of complexity in terms of the
treatment of the physical processes. With the great progress
in computer’s performance these days, more and more real-
istic numerical simulations are performed by using such
complex models. However, even the basic nature of simple
mathematical models being the foundation of such complex
models is not necessarily clear.

One of such unclear characteristics is a long-time
asymptotic state of the system, which is one of the most
interesting properties from the viewpoints of dynamics of
planetary atmospheres and fluid dynamics. In this paper, we
consider a long-time asymptotic state of a two-dimensional
barotropic incompressible flow on a rotating sphere, which is
one of the most fundamental dynamical models for planetary
atmospheres.

It is well known that, when a system is not rotating, the
energy is conserved in a three-dimensional system, whereas
both the energy and the enstrophy are conserved in a two-
dimensional system. As a consequence, in contrast to three-
dimensional case, two-dimensional turbulence in a nonrotat-
ing system shows the enstrophy cascade and the inverse

energy cascade, which brings about a larger-scale structure
as time progresses.

By contrast, when the system has � effect, which is the
consequence of the combination of the effect of the rotation
and the spherical effect of the system, two-dimensional tur-
bulence shows greatly different properties. Rhines1 per-
formed numerical experiments on a � plane and found that
the multiple zonal-band structure, a structure with alternating
westward and eastward jets, develops. Introducing the
Rhines wavenumber at which the � effect and the advective
effect in the governing equation become comparable, he ex-
plained the multiple zonal-band structure as a result of the
arrest of the inverse energy cascade around the Rhines wave-
number.

Many succeeding studies have confirmed the emergence
of the multiple zonal-band structure on both a � plane and a
two-dimensional sphere.2,3 The multiple zonal-band structure
suggests many fascinating problems such as the mechanism
of energy’s concentration to zonal jets4–6 and the asymmetry
of the eastward and westward jets’ profiles. However, it does
not seem to be clear whether the long-time asymptotic state
is actually characterized by such multiple zonal-band struc-
ture even in the cases on a � plane.

Recently, Yoden and Yamada7 investigated the long-time
asymptotic states of freely decaying two-dimensional baro-
tropic incompressible flows on a rotating sphere. Interest-
ingly, the long-time asymptotic states are not necessarily
characterized by the multiple zonal-band structure but strong
westward circumpolar jets become prominent after long-time
integration, although there still exists weak multiple zonal-
band structure in the low and middle latitudes. The scaling
laws for this circumpolar jets are obtained by Takehiro
et al.;8 when the rotation rate of the sphere � increases, the
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strength of the jets increases as �1/4 and the width of the jets
decreases as �−1/4.

On the other hand, for a forced two-dimensional baro-
tropic incompressible flow on a two-dimensional sphere,
Nozawa and Yoden9 performed numerical simulations, with a
Markovian random forcing, of 18 cases with different com-
binations of a rotation rate of the sphere and a forcing wave-
number. There, they showed that the generated flow fields
are characterized by a multiple zonal-band structure or a
structure with westward circumpolar jets. They also pointed
out that the two different structures can arise according to the
relative magnitude between the Rhines wavenumber of the
flow and the forcing wavenumber, and also that when the
forcing wavenumber is higher than the Rhines wavenumber,
the inverse energy cascade continues until the characteristic
wavenumber of the flow reaches around the Rhines wave-
number to form the multiple zonal-band structure; but when
the forcing wavenumber is lower than the Rhines wavenum-
ber, the inverse energy cascade hardly occurs, and the cir-
cumpolar jets appear as a result. In contrast, Huang et al.10

performed simulations with a white noise forcing and ob-
tained an asymptotic state consisting of only two zonal jets.
They then inferred that the Markovian random forcing in
Nozawa and Yoden9 may be regarded as a strong drag with
small wavenumber dissipation which maintains the formed
multiple zonal-band structure.

The numerical time integration of Nozawa and Yoden,9

however, does not seem to be long enough to obtain long-
time asymptotic states since the observed jets appear to be
still changing. Therefore, in this paper, we re-examine the
long-time asymptotic states of the two-dimensional barotro-
pic incompressible flows on a rotating sphere with a small-
scale, homogeneous, isotropic, and Markovian random forc-
ing. We extend the integration time of numerical simulation
to about 100–500 times that of Nozawa and Yoden.9 Section
II shows the model used for the simulations, then the numeri-
cal results and the stability of some obtained asymptotic
states are discussed in Sec. III, and the conclusion follows in
Sec. IV.

II. EQUATION OF MOTION AND NUMERICAL METHOD

The model equation considered in this paper is a nondi-
mensionalized vorticity equation for a forced two-
dimensional barotropic incompressible flow on a rotating
sphere, given in longitude � and sine latitude �,11

��

�t
+ J��,�� + 2�

��

��
= F + ���2 + 2�� . �1�

Here, t is time, � is the stream function, and ���2� is the
vorticity, where �2 is the horizontal Laplacian on a sphere. �
is a dimensionless constant rotation rate of the sphere,
� is the dimensionless kinematic viscosity coefficient, and
F=F�� ,� , t� is the vorticity forcing function. J�A ,B� is
the Jacobian operator: J�A ,B����A /�����B /���− ��A /���
���B /���. The term 2�� in the viscosity term is necessary
for the conservation of total angular momentum of the sys-
tem, as discussed in, for example, Bains.12

The vorticity forcing function F is taken to be the same
as that in Nozawa and Yoden;9 small-scale, homogeneous,
isotropic, and Markovian random function is given by

F��,�, j	t� = RF��,�,�j − 1�	t�

+ ��1 − R2�F̂��,�, j	t� , �2�

where 	t is the time step interval, j is the number of the time

step, and R=0.982 is the memory coefficient. F̂ is a random
vorticity source generated at each time step as

F̂��,�, j	t� = �
n=nf−	n

nf+	n

�
m=−n

m�0

n

F̂n
m�j�Yn

m��,�� , �3�

where F̂n
m is the expansion coefficient of F̂ and Yn

m is the
spherical harmonic with total wavenumber n and zonal

wavenumber m. The phase of F̂n
m �m
0� is random and

uniformly distributed on �0, 2��. The amplitude of F̂n
m �m


0� is also random with �F�=�	F̂2
 being a prescribed

value, where 	¯ 
 denotes the spherical mean. Then F̂n
−m

�m�0� is the complex conjugate of F̂n
m �m�0� since F̂ is

-0.051 0.0510 00-0.16 0.15 0.60-0.55

79=fn40=fn20=fn

FIG. 1. �Color online� Vorticity forcing field at dimensionless time t=1000. nf of the left, the middle and the right panels are 20, 40, and 79, respectively. The
top of the sphere, the bottom of the sphere, and the center line correspond to the North Pole �90° N�, the South Pole �90° S�, and the equator, respectively.
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real. This vorticity forcing is given in a narrow band in the
wavenumber space: nf −	n
n
nf +	n with 	n=2. Figure
1 shows the examples of the vorticity forcing fields with nf

=20, 40, and 79, and 	t=0.05.
For numerical calculations, the parameters in the

governing equation �1� are all set equal to those used in
Nozawa and Yoden.9 The kinematic viscosity coefficient is
�=3.46�10−6. The rotation rate of the sphere � takes five
different values; � /�J=0.25, 0.5, 1.0, 2.0, and 4.0, with
�J�2�. The central total wavenumber of the forcing nf

takes three different values nf =20, 40, and 79, and for each

of nf, the rms amplitude of F̂, i.e., �F� is given, as shown in
Table I.13

A spectral method with the spherical harmonics is used
for the calculation. The stream function � is expanded as

���,�,t� = �
n=0

NT

�
m=−n

n

�n
m�t�Yn

m��,��

= �
n=0

NT

�
m=−n

n

�n
m�t�Pn

m���exp�im�� .

Here, �n
m is the expansion coefficient. We set the truncation

wavenumber to be NT=199, then we take 600 and 300 spatial
grid points in the longitudinal and latitudinal directions,
which are sufficiently large to eliminate the aliasing errors.
Linear terms in the governing equation are analytically
treated by using exponential function. The time integration is
performed with the fourth order Runge–Kutta method with a
time step interval 	t=0.05 from the initial condition �=0.
The integration time is extended to about 100–500 times that
of Nozawa and Yoden9�Table I�. With the conditions above,
15 simulations with different combinations of � and nf

�Table I� are performed.14 Note that the run numbers are 2–6,
8–12, and 14–18, which keep the numbering correspondence
between the simulations of Nozawa and Yoden9 and ours.

III. RESULTS OF NUMERICAL EXPERIMENTS

A. Zonal-mean zonal angular momentum

We first observe temporal development of zonal-mean
zonal angular momentum �Llon� in 0
 t
1000. Here, �¯ �
denotes the zonal mean and �Llon� is given by

�Llon� �
1

2�
�

0

2�

ulon
�1 − �2d� ,

where ulon=−�1−�2��� /��� is the longitudinal component
of velocity.

Figure 2 corresponds to the main result of Nozawa and
Yoden,9 who discussed the flow pattern by using the numeri-
cal integration from t=0 to 1000. On runs 2, 3, 8–11, and
14–18, a structure with alternating eastward and westward
zonal jets, which we call a multiple zonal-band structure, is
formed, while westward circumpolar jets and the weak east-
ward flow at low—midlatitude appears on runs 4–6, and 12.
These results are in agreement with those of Nozawa and
Yoden.9

Then we continue the time integrations further to
t=1.0�105 or more, which is at least 100 times as long as
the integration time of Nozawa and Yoden.9 Figure 3 shows
the temporal development of zonal-mean zonal angular mo-
mentum �Llon�. It is apparent that, in all cases, in spite of the
classification made at t=1000 by Nozawa and Yoden,9 a mul-
tiple zonal-band structure appears in the course of time de-
velopment and then enters a quasisteady state with little
change in its flow pattern, followed by a sudden merger/
disappearance of the jets. In most cases, two prograde jets
merge and a retrograde jet between the two prograde jets
disappears. At the final stage of the time integration, a zonal-
band structure with only a few broad zonal jets is realized;
two jets remain in runs 2–6, 8–12, 14, and 15, and three jets
in runs 16–18. The structure with two broad jets, which con-
sists of an eastward and a westward jets, shows no correla-
tion with whether the eastward jet covers the Northern hemi-
sphere or the Southern hemisphere.

There is a tendency that the integration time needed to
reach the structure with a few zonal jets becomes longer as
the forcing wavenumber nf becomes higher and the rotation
rate � becomes larger. For example, when nf =20, the case
with �=4� �run 5� and the case with �=8� �run 6� require
4�104 and 8�104 dimensionless time to get to the structure
with two broad jets, respectively. Also, for instance, when
�=4�, the case with nf =20 �run 5�, 40 �run 11� require
4�104 and 2�105 dimensionless time to form the structures
with two broad jets, and the case nf =79 �run 17� takes
3�105 dimensionless time even to get to the structure with
three broad jets.

It is interesting to note that, in most of the cases, east-
ward jets merge, while a westward jet disappears. In the
process of the merger/disappearance of the jets, only one of
the two merging jets becomes very strong and intrudes into
the other, intercepting the development of the middle jet.

TABLE I. �, nf, �F�, and integration time in each run. Run numbers corre-
spond to those in Nozawa and Yoden �Ref. 9�.

Run No. � nf �F� Integration time

2 0.5� 1�105

3 � 1�105

4 2� 20 1.412�10−2 1�105

5 4� 1�105

6 8� 1�105

8 0.5� 1�105

9 � 1�105

10 2� 40 3.929�10−2 1.2�105

11 4� 2.5�105

12 8� 1.6�105

14 0.5� 1�105

15 � 1�105

16 2� 79 1.415�10−1 5.3�105

17 4� 5.2�105

18 8� 5.7�105
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It is widely known that when the state is still with a
multiple zonal-band structure, there exist significant asym-
metries between eastward and westward jets in terms of their
strength and width. Nevertheless, at sufficiently large time,
there are no apparent asymmetries between the two �or three�
broad jets.

The structure with two broad zonal jets is one of the
long-time asymptotic states of the system. The inverse cas-
cade does not proceed any more, and the two zonal jets can-
not merge to one zonal jet because of the conservation law of
the total angular momentum of the system. Therefore, ac-
cording to our numerical results, the asymptotic states of the
flow in runs 2–6, 8–12, 14, and 15 consist of two broad
zonal jets dominating over the whole sphere. On the other
hand, the final states in runs 16, 17, and 18 consist of three
broad zonal jets, but it is not clear whether or not the three
jets further merge or disappear at a later time. This will be
discussed again in Sec. III F.

B. Energy of zonal flow

The details of the appearance of the structure with a few
zonal jets are observed in the temporal variation in the spec-
tral distribution of the energy of zonal flow

	Ez�n,t�
 � 1
2n�n + 1���n

0�t��2.

For instance, from the temporal development of 	Ez
 in run 2
�not shown�, it is confirmed that at an early stage of the time
integration �t
100�, wavenumbers around the forcing wave-
number �nf =20� possess the zonal energy. The energy-
containing wavenumbers then decrease, and at t
500, the
total wavenumbers n=3 and 7 mainly possess the zonal en-
ergy. At t
1000, the zonal energy at n=3 is the strongest,
and this state remains stable until t
2.4�104, when most of
the zonal energy speedily cascade to n=2. Then the temporal
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FIG. 2. �Color online� Temporal development �t=0–1000� of zonal-mean zonal angular momentum �Llon�. The horizontal and the vertical axes in each panel
are, respectively, time and latitude in linear scale. This corresponds to Fig. 3 in Nozawa and Yoden �Ref. 9�.
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variations in 	Ez
 from t=0 to the final integral times in all
runs �not shown� show that although energy-containing
wavenumbers experience a long quasisteady period at n
3,
they resume transferring their energy to lower wavenumbers
and eventually reach 2 �runs 2–6, 8–12, 14, and 15� or 3
�runs 16–18�.

C. The Rhines wavenumber

In Nozawa and Yoden,9 the main total wavenumbers n of
the energy of the zonal flow 	Ez
 spread over a quite wide
range 2�n�n� at t=1000, where n� is the Rhines wave-
number. Since, in all runs, the inverse energy cascades pro-
ceed further than those in Nozawa and Yoden,9 we examine
the temporal change in the Rhines wavenumber n� on a
sphere, which is defined by

n��t� �� 	�

2Urms�t�

. �4�

Here, Urms�t� is the rms velocity of the fluid,

Urms�t� � �2E�t� ,

and 	�
=�� /2 denotes the spherical mean of �, the latitu-
dinal gradient of the Coriolis parameter. Also, we define the
energy-weighted mean total wavenumber nmean as the char-
acteristic total wavenumber of the flow,

nmean�n,t� �
�n=1

NT n	Etot�n,t�


�n=1
NT 	Etot�n,t�


,

where 	Etot
 is given by
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FIG. 3. �Color online� Long-time development of the zonal-mean zonal angular momentum �Llon�. The horizontal and the vertical axes in each panel are,
respectively, time and latitude in linear scale. The temporal integrations have performed t=0–1�105 in runs 2–6, 8, 9, 14, and 15, t=0–1.2�105 in run 10,
t=0–2.5�105 in run 11, t=0–1.6�105 in run 12, t=0–5.3�105 in run 16, t=0–5.2�105 in run 17, and t=0–5.7�105 in run 18.
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	Etot�n,t�
 �
1

2 �
m=−n

n

n�n + 1���n
m�t��2,

which means the energy at the total wavenumber n.
The temporal variation in n� and nmean is shown in Fig.

4. The characteristic wavenumber nmean becomes lower than
the Rhines wavenumber n� in a very early stage of the time
integration �before t=1000� and decreases to reach finally a
fairly low wavenumber �2–6� at the final stage. Note that
nmean does not reach 2 precisely even when the fully devel-
oped two broad jets are dominating over the sphere.

The above results suggest that the inverse energy cas-
cade or the energy transfer to lower wavenumbers continues
even when nmean�n�, for the flow field finally to consist of
only a few �two or three� broad zonal jets. This also suggests
that the Rhines wavenumber does not give an estimation of
the characteristic wavenumber of the asymptotic flow field.

D. The total energy

Figure 5 shows the temporal variation in the spherical-
mean energy,

	E�t�
 �
1

4�
�

0

2� �
−1

1 ulon
2 + ulat

2

2
d�d�

=
1

2�
n=0

NT

�
m=−n

n

n�n + 1���n
m�t��2, �5�

where NT is the truncation wavenumber. The most impres-
sive feature is the stepwise increase of 	E
 seen in runs 9–12
and 15–18. As Huang et al.10 pointed out, 	E
 experiences
quasisteady states with no apparent energy increase in these
runs. However, the quasisteady state is followed by a sudden
increase in energy �except the last stairs in runs 16–18�. This
implies that the standstill of the energy increase is not an
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FIG. 4. Temporal variation in the Rhines wavenumber n� �solid line� and the characteristic wavenumber nmean �dashed line�. The horizontal and the vertical
axes in each panel are time in linear scale and the Rhines wavenumber and the characteristic wavenumber in log scale, respectively. Note that n� is infinity
at t=0 because E�0�=0. The temporal integrations have performed t=0–1�105 in runs 2–6, 8, 9, 14, and 15, t=0–1.2�105 in run 10, t=0–2.5�105 in run
11, t=0–1.6�105 in run 12, t=0–5.3�105 in run 16, t=0–5.2�105 in run 17, and t=0–5.7�105 in run 18.
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effective sign of the realization of an asymptotic state. It is
interesting that the temporal variation in energy and the tem-
poral development of jets have almost perfect correspon-
dence in two aspects; the period in which the energy shows
little increase coincides with the period in which the number
of the jets remains constant; the time when the energy sud-
denly restarts increasing coincides with the time when the
jets suddenly merge/disappear.15 On the other hand, in runs
2–6, 8, and 14, where the zonal-mean zonal angular momen-
tum �Llon� shows a gradual formation of two broad jets in
Fig. 3, 	E
 also increase gradually, and the stepwise behavior
is not observed. These results imply that the merger/
disappearance of jets bring about the energy increase.

Concerning the asymptotic states of the flow, in the run
where two broad jets are finally formed �runs 2–6, 8–12, 14,
and 15�, we can see a tendency that after the two broad jets
are formed, 	E
 keeps increasing for a while and then slowly
relaxes it. This implies that it is still not obvious whether the

3-jet state at its final integral time in runs 16–18 is the
asymptotic state, or still a transient state before the next
merger/disappearance.

E. Stream function

Lastly, we observe the stream function and the zonal
velocity on the sphere. In all runs, the zonal flow structure
becomes dominant from an early stage of time development.
At around the time of the appearance of the zonal-band struc-
ture in Fig. 3, the structure with alternating rather eastward
and westward flows are also formed on a sphere �not shown�.
As time goes on, these flows become more zonal undergoing
mergers/disappearances, and fairly zonal flows have formed
by the final integration times in most runs �not shown�, al-
though some large-scale and nonzonal equatorial flows,
which are spoiling the zonal flows, are seen �runs 2, 8, and
14�, and there are several small nonzonal flows in the regions
between the eastward and the westward flows �runs 15 and
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16�. The early emergence of the zonal-band structure through
the mergers/disappearances of the jets may tempt us to inter-
pret it as a consequence of a barotropic instability of the jet.
However, it should be remarked that, as pointed out by
Rhines,1 a laminar zonal jet with a meridional scale larger
than the Rhines scale is linearly stable owing to Rayleigh’s
condition. Therefore, nonzonal flows superimposed on the
zonal jets appear necessary for the merger/disappearance of
the jets.

F. Stability of the 3-jet structure

As we have seen in Sec. III A, the structures with three
zonal jets seen in runs 16–18 are persistent and show little
change for nearly 3�105 of time, whereas the asymptotic
states consist of two broad jets in the rest of the runs. It is not
clear if the broad 3-jet state is the asymptotic state of the
system. Here, we examine the robustness of the 3-jet state in
run 17 by adding small perturbation with �n ,m�= �2,0� to the
stream function, since the main component of the stream
function of the 2-jet state in the wavenumber space is the one
with n=2, and observe whether the three jets experience a
merger/disappearance to two jets or not. The solid line in
Fig. 6�b� shows the stream function at t=4.5�105 in run 17.
Now let us magnify the �n ,m�= �2,0� component of this
stream function two, three, five, and ten times, then make
temporal development taking each of the flows as the starting
flow field at t=4.5�105. The obtained results show that, in
all cases, the three jets do not experience merger/
disappearance and are persistent until the final time �for the
case with �2

0 ten times as large as that in run 17 at t=4.5
�105 is shown in Fig. 6�a��. On the contrary, �Llon� appears
to go back to the 3-jet state even when the starting flow field
consists of two strong jets and a very weak jet, the third �the
weakest� jet is enhanced in the course of temporal develop-
ment, and the 3-jet state is reproduced at t=4.6�105. In fact,
as shown in Fig. 6�b�, the absolute value of the �n ,m�
= �2,0� component of the stream function decreases, and the
�n ,m�= �4,0� component increases instead.

IV. DISCUSSIONS AND CONCLUSIONS

In Secs. II and III, we have performed 15 numerical
simulations with the Markovian random forcing, with differ-
ent combinations of the rotation rate of a sphere � and the
central total wavenumber of the forcing nf. We have inte-
grated the equation of motion numerically from t=0 to t
=1.0�105 �100 times of the integration time of Nozawa and
Yoden9� or even more, with the zero initial condition. At an
early stage of the integration, in line with the findings of
Nozawa and Yoden,9 a multiple zonal-band structure or a
structure with westward circumpolar jets emerges. However,
in the course of further time development, a multiple zonal-
band structure appears in all runs and then enters a quasi-
steady state, showing little energy increase with nearly
steady spectral distribution of the energy, followed by a sud-
den merger/disappearance of the jets, accompanying an en-
ergy increase. At the final stage of the time integration, a
zonal-band structure with only a few �two or three� zonal jets
were realized in each case. This affects the spectral distribu-
tion of the zonal energy, which shows the strong energy con-
centration to the total wavenumber n=2 or 3 �this n coin-
cides with the number of the jets� at the final integration
time. At the final stage, the characteristic total wavenumber
is lower than the Rhines wavenumber of the flow.

The numerical results show that the 2-jet state obtained
here is one of the long-time asymptotic states of the two-
dimensional barotropic incompressible flow with a small-
scale, homogeneous, isotropic, and Markovian random forc-
ing on a rotating sphere, as the energy inverse cascade
cannot reach the wavenumber n=1 due to the conservation
law of the total angular momentum. Contrary to this, it is not
clear whether the 3-jet state at the final integration time is the
asymptotic state or it is still changing to the 2-jet state. In
Sec. III F, we considered the stability of the 3-jet state to the
perturbation with wavenumber �n ,m�= �2,0�, and the result
suggests that the 3-jet state may be possible to be one of the
asymptotic states.

Huang et al.10 argued that the inverse energy cascade
reaches below the Rhines wavenumber when the forcing is
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white noise, but not definitely when it is a Markovian ran-
dom forcing. In our case of Markovian random forcing, the
inverse energy cascade does not stop around the Rhines
wavenumber but proceeds down to lower wavenumbers in
the course of long-time evolution. This, together with the
numerical result of Huang et al.,10 suggests that, in the
forced two-dimensional barotropic incompressible flow on a
rotating sphere, the inverse energy cascade cannot be ar-
rested around the Rhines wavenumber by the � effect irre-
spective of the kind of the forcing given to the system, and
the asymptotic state consists of a very small number of zonal
jets. This may also imply that a forced two-dimensional
barotropic incompressible flow on a rotating sphere is not an
appropriate model for the dynamics of the planetary atmo-
spheres with multiple zonal-band structure such as the one
seen on the Jupiter, as far as long-time asymptotic states are
concerned.

Last but not least, although the real flow on a sphere
becomes zonal to some degree even at an early stage of the
time integration, the mergers/disappearances of the zonal jets
seen in the simulations in this paper are not explained by the
barotropic instability, as the laminar zonal jets have a meridi-
onal scale larger than the Rhines scale, and are therefore
linearly stable as discussed in Sec. III F. This strongly sug-
gests that the turbulence behind the zonal jets is essential for
the mergers/disappearances of the zonal jets, although the
energy is almost concentrated in the zonal components.
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