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Synopsis

For atmospheric sciences in the 21st century, atmospheric numerical models with
high precision are indispensable tools to be an exact science. Development of non-
hydrostatic models based on fully compressible dynamic equations in particular are
given high priority because they use the least approximation in dynamics. In this
paper, we examined accuracy of finite difference expressions of equations used in non-
hydrostatic fully compressible models. It is found that to make a set of flux form
equations is difficult under the constraint of satisfaction of hydrostatic balance with
high precision. It is also found the set of equations we propose here are not fully flux
form but have good conservation characteristics.
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1. Introduction

Synchronizing with rapid development of
computer science and technology, numerical mod-
els in meso- to small scale meteorology uses less ap-
proximations to the governing equations recently.
Now, most mesoscale models uses compressible
equations as their dynamics, while many cloud
models uses anelastic equations about fifteen years
ago.

Compressible models have several merits.
One of the merits concerns Poisson solvers for pres-
sure. Over complex terrain, Poisson solvers for
anelastic (or Boussinesq) equation systems in ter-
rain following coordinates have been consuming a
big amount of computer resources. However, pres-
sure or its substitute variable is one of prognos-
tic variables in compressible models. Therefore,
the solver of Poisson equation for pressure are no
longer an essential part of the model.

There are demerits of compressible models.
One of the demerits is that the time increments
must be small enough to satisfy the Courant-
Friedrichs-Lewy condition for sound waves. How-
ever, numerical technique such as a time-splitting
method or a full- (or semi-) implicit method can
alleviate the problem of the short time increment.
The recent increase of computer power also sup-
ports the migration from anelastic to compressible
models.

There are several variations of governing dy-
namic equations among compressible numerical
models in meteorology. One of the big differences
is whether the model uses fully compressible (with-
out any approximations) equations (e. g., Sato-
mura, 1989; Saito, 1997) or a quasi- compressible
(with one or more approximations) equations (e.
g., Klemp and Wilhelmson, 1978; Dudhia, 1993;
Xue et al., 1995). Another difference is whether



the equations are in flux forms or in advective
forms. In this paper, we focus on the latter dif-
ference among fully compressible models and ex-
amine the accuracy under the constraint of hydro-
static balance.

2. Equations

We examine the following five forms of two-
dimensional fully compressible nonhydrostatic dy-
namical equations. Here, we define as U =
ρu,W = ρw, Θ′ = (ρθ)′.

•Advection form:
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This form was used by, for example, Tapp and
White (1977), Carpenter (1979), Satomura (1989).

•Flux form 1:
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This form was used in WRF model (Klemp et al.,
2000).

•Flux form 2:

∂U

∂t
+

∂uU

∂x
+

∂wU

∂z
+

∂p′

∂x
= 0 (9)

∂W

∂t
+

∂uW

∂x
+

∂wW

∂z
+

∂p′

∂z
= −ρ′g (10)

∂ρ′

∂t
+

∂U

∂x
+

∂W

∂z
= 0 (11)





∂ρe
∂t + ∂Uh

∂x + ∂Wh
∂z

=
(
u∂p′

∂x + w ∂p′

∂z + ρ′wg
)
− ρwg

∂p′

∂t + ∂c2
sW
∂z = Rd

cv
(GE −Wg̃)

(12)

where

g̃ = g − 1
ρ

(
∂p′

∂z
+ ρ′g

)
,

GE = −∂Uh

∂x
+ u

∂p′

∂x
.

This form was developed by Satoh (2002). In this
equation set, both of the equations in (12) are used
simultaneously in the model time integration to
guarantee the energy conservation.

•Quasi-flux form 1:

∂U

∂t
+

∂uU

∂x
+

∂wU

∂z
+

∂p′

∂x
= 0 (13)

∂W

∂t
+

∂uW

∂x
+

∂wW

∂z
+

∂p′

∂z
= −gρ′ (14)

∂θ′

∂t
+

1
ρ

∂θ′U
∂x

+
1
ρ

∂θW

∂z

=
θ

ρ

(
∂U

∂x
+

∂W

∂z

)
(15)

∂p′

∂t
+

cpRθ

cv

(
p

p0

)R/cp

×
(

∂U

∂x
+

∂W

∂z
− ρ

θ

∂θ′

∂t

)
= 0 (16)

This form was used in MRI/JMA-NHM (Saito et
al. 2001)

•Quasi-flux form 2:
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•Quasi-flux form 3:
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This form was found by authors and firstly used
by Akiba (2002) in her master thesis.

3. Hydrostatic balance

In this section, accuracy of hydrostatic bal-
ance of above equation sets is examined. Hydro-
static balance is one of the most important bal-
ance for the atmosphere of the earth. Most of all
atmospheric motions are driven by small amount
of imbalance from the hydrostatic balance. If the
model code cannot reproduce the hydrostatic bal-
ance precisely, unrealistic flow will appear in the
mode. Therefore, it is important for nonhydro-
static models to use equations which assure basic
hydrostatic balance.

Let’s start to examine the equation set ”flux
form 1”. This set of equations has π′ in the right-
hand-side of eq. (6). This variable is calculated
as
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Normally, pi is nearly equal to π and, therefore,
such kind of subtraction possibly causes a serious
cancellation error. This fact indicates that one
must carefully make a discrete form of the equation
to avoid the cancellation error.

The set ”flux form 2” does not have such a
possible cancellation error. This set, however, uses
the energy conservation equation in different forms
eq. (19) two times. As Satoh (2002) also described
in his paper, twice use of same equation in different
forms introduces a kind of inconsistency, while he
stated this inconsistency seemed to be small.

The set ”quasi-flux form 1” also has the can-
cellation error problem. In this set, ρ′ is not a
prognostic variable but is calculated as

ρ′ = ρ− ρ̄

Similar to the calculation of π′ in the set ”flux
form 1”, ρ is nearly equal to ρ̄ and special atten-
tion should be paid to make a discrete form of the
equation set.

The other sets ”advection form”, ”quasi-flux
form 2” and ”quasi-flux form 3” do not suffer from
the cancellation error due to the subtraction of
hydrostatic variable (π̄ or ρ̄) from its total variable
(π or ρ). In this sense, these tree forms are superior
to the ”full flux form 1”, ”full flux form 2” and
”quasi-flux form 1”.

4. Mass conservation

Another point to be considered is the aspect
of the energy conservation. Generally, finite dif-
ference schemes which are not full flux forms are
difficult to conserve the total energy. To examine
how much energy will be lost or added by time in-
tegration, a heat island experiment was conducted.
In this paper, results using the ”quasi-flux form 2”
and ”quasi-flux form 3” were shown. The experi-
ment conditions were:

• the centered both in time and space finite dif-
ference schemes were used for the Arakawa A
grid system.

• the grid increment was 200 m both in the hor-
izontal and vertical directions,

• the domain size was 80 km in the horizontal
and 10 km in the vertical direction,

• both the horizontal and the vertical bound-
aries were rigid wall,

• the horizontal and the top boundaries were
free slip, and the bottom boundary was the
viscous boundary,

• the right half of the bottom surface was 5 K
higher than the left half,

• one-equation turbulent closure scheme was
used.

Figure 1 shows the time change of total mass
for the ”quasi-flux form 2”. The mass monoton-
ically increased with time. The increase rate of
mass was

1
M

dM

dt
≈ 1

8× 104

60
45× 3600

= 4.6× 10−9 sec−1. (26)

This mass increase rate indicates that the av-
erage pressure will increase about 1 hPa after 2



Fig. 1 Change of total mass with time for the
”quasi-flux form 2”. The unit of the ordi-
nate is kg.

Fig. 2 Same as Fig. 1 except for the ”quasi-flux
form 3”.

days integration. This is a rather large change of
mass for climate models.

Figure 2 shows the time change of total mass
for the ”quasi-flux form 3”. In this case, the mass
initially decreased only about 0.9 kg and then kept
almost the constant value.

Figures 3 and 4 show the potential tempera-
ture and the horizontal velocity after 6 hours inte-
gration using the ”quasi-flux form 3”. It is shown
that a mixed layer was formed over the heated sur-
face up to the 1.2 km and convective motions dom-
inated in the mixed layer. The flow toward the
heated surface existed below 400 500 m height,
and the reverse flow was observed above. There-
fore, the simulation using the ”quasi-flux form 3”

Fig. 3 Potential temperature after 6 hours inte-
gration for the ”quasi-flux form 3”. Con-
tour interval is 0.2 K.

Fig. 4 Same as Fig. 3 except horizontal velocity.
Contour interval is 0.5 m s−1.

not only conserved the total mass, but also cap-
tured the characteristics of the heat island circu-
lation well.

5. Conclusion

Six forms of two-dimensional nonhydrostatic
fully compressible hydrodynamic equations were
compared from the view point of the hydrostatic
balance. It was found that tree forms named ”full
flux form 1” used in WRF model (Klemp et al.,
2000), ”full flux form 2” (Satoh, 2002) and ”quasi-
flux form 1” used in MRI/JMA-NHM (Saito et
al., 2001) possibly suffered from the cancellation
error by subtracting a value nearly equal to the
other value. Other three forms ”advection form”
(e. g., Tapp and White, 1977; Carpenter, 1979;
Satomura, 1989), ”quasi-flux form 2” and ”quasi-
flux form 3” found by authors were free from such
the cancellation error.

Mass conservation was also examined for the
”quasi-flux form 2” and ”quasi-flux form 3”. By
simulating a heat island circulation, it is found
that the total mass of ”quasi-flux form 2” mono-
tonically increased while the total mass of ”quasi-



flux form 3” was almost constant during the sim-
ulation.

As a conclusion, the ”quasi-flux form 3” is
best form from the view points of numerical cal-
culation error and mass conservation among the
six forms examined in this paper. Probably the
”quasi-flux form 3” can be used in climate simu-
lation models in the future because of its less nu-
merical error and good mass conservation charac-
teristics.
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要 旨

精密科学を指向する 21世紀の気象学にとって，高精度の大気モデルは必要不可欠の道具である。特に，
対象現象のスケールに制限のない完全圧縮流体力学方程式に基づく非静力学モデルの構築への要請は高く，
既に幾つかの試みが発表されている。本研究では，完全圧縮非静水圧流体力学方程式系のいくつかの表現
形式の差分化を行ったときの精度について検討した。その結果，静水圧平衡を精度良く満たしつつ完全なフ
ラックス形式の差分方程式をつくることは，状態方程式の非線型性によって困難であること，完全なフラッ
クス形式ではなくても保存性の優れたものがあることが見いだされた。

キーワード : 非静力学，方程式系，フラックス形式，保存性


