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Shear Surfaces in Saturated Cohesionless Soils
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Synopsis

The present study is concerned with the seismic performance of an infinite slope in
udrained conditions. The material on the sliding surface is assumed to be a saturated clean
sand with the undrained shear strength characteristics provided by a laboratory study based
on ring shear tests. The experimental outcomes from undrained monotonic and cyclic ring
shear tests come to support a modified Newmark sliding block model for assessing the
earthquake—induced undrained slope displacements. The proposed methodology
incorporates in the computational process the ability of a saturated sand to withstand strain
in dynamic conditions by using the experimental data from undrained monotonic shearing.
Sample calculations concerning the undrained seismic slope response under different input
seismic records, revealed that the seismic waveform affects the amount of earthquake-
induced undrained permanent slope displacement. The softening of the material on the
sliding surface has significant influence on the mobility of the sliding mass ensuing an
earthquake—induced catastrophic slope failure.
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1. Introduction

Analysis of seismic performance of an infinite
slope by Newmark’s sliding block method
(Newmark, 1965) represents a common engineering
practice. The conventional Newmark procedure has
been used extensively to develop empirical
relationships between the expected permanent
displacement of a sliding soil mass and related
earthquake characteristics (e.g., Newmark, 1965;
Sarma, 1973; Franklin and Chang, 1977; Maksidi and
Seed, 1978; Ambraseys and Menu, 1988; Cai and
Bathrust, 1995). Typically, these displacements
functions have been obtained by making the crucial
assumption that the yield resistance to sliding remains
constant and equal to that mobilized at a factor of
safety of one. Hence, the influence of variations in
excess pore water pressure and rapid loading-
unloading effects on the available shear resistance of
the soil on the sliding surface, in relation to the
seismically induced incremental displacements was
not taken into account.

Goodman and  Seed  (1966)  verified
experimentally the Newmark’s classical procedure by

investigating the relationship between accelerations
and displacements in a bank of cohesionless material
subjected to ground displacements. One of the main
outcomes of this study was that the computed values
of displacements showed high sensitivity to minor
changes in soil strength parameters. Consequently, a
correct analysis of seismic displacements involves
accurate knowledge of the shear strength that can be
developed by the soil on the slip surface at a certain
instant during the seismic excitation. In this
framework, the present study addresses a modified
Newmark formulation to estimate the earthquake-
induced undrained displacements of a soil mass along
a planar sliding surface consisting of a saturated
cohesionless material.

During recent years, results of undrained
monotonic and cyclic ring shear tests on saturated
cohesionless soils have been reported in literature by
Sassa and colleagues (Sassa, 1996; Sassa et al.,
1997a; Wang, 1998; Wang et al., 2000; Sassa, 2002;
Wang and Sassa, 2002). These experimental studies
revealed that saturated sandy soils exhibiting a
dilative shear behavior before failure, may be
triggered to liquefy after reaching the failure



condition as the excess pore water pressure gradually
continues to generate with increasing unidirectional
shear displacement. This phenomenon was referred as
“sliding surface liquefaction” (Sassa, 1996). Sliding
surface liquefaction may result in ultimate steady
state strengths smaller than the static driving shear
stress making, therefore, the slope susceptible to a
catastrophic failure under seismic conditions.

The goal of this research was to develop a
procedure for assessing the undrained seismic
displacements of an infinite slope along a slip surface
composed of a saturated clean sand, susceptible to
sliding surface liquefaction. To achieve this, a
methodology representing a combination of
conventional sliding block method (Newmark, 1965)
and experimental data is proposed. The procedure
makes use of the shear resistance—displacement curve
obtained from undrained monotonic ring shear tests
to approximate the available shear strength on the slip
surface during earthquake. The accuracy of this
assumption is verified by a laboratory study based on
ring shear tests carried out on the considered sand.
The experimental program consisted of undrained
monotonic and cyclic ring shear tests on replicate
samples, for a given initial stress state, aiming to
compare the shear  resistance-displacement
relationship from monotonic loading with the
available shear strength under various cyclic loading
conditions (e.g., amplitude, frequency, waveform).
The effectiveness of the proposed methodology is
enhanced by sample calculations, concerning the
undrained seismic performance of two infinite slopes
subjected to real input earthquake accelerations.

2. Experimental Program

The undrained tests were carried out using an
intelligent ring shear apparatus (DPRI-Ver.6)
developed and improved upon by Sassa and
colleagues (Sassa, 1997). A schematic layout along
with a very detailed description of this equipment,
emphasizing the undrained testing capabilities and the
water-pressure measurement system, is presented
elsewhere (Sassa, 1997; Sassa, 2000; Sassa et al.
2002a; Wang and Sassa 2002). The samples tested in
DPRI-Ver.6 are about 135 mm in height, with an
outer diameter of 350 mm and an inner diameter of
250 mm, respectively.

2.1 Sample characteristics

The present study is concerned with ring shear
tests on silica sand no. 6 (S6), which mainly consists
of quartz (92%-98%) and a small amount of feldspar.
Examination of S6 under an optical microscope
revealed that the grains are subrounded to subangular,
as shown in Fig. 1. Table 1 summarizes the results of
a series of laboratory tests performed to determine the
gradation, specific gravity and the
maximum/minimum void ratio of S6. The grain size
distribution of S6 is also illustrated in Fig. 2. It is

seen in Fig. 2 that S6 is uniform, with grain sizes
ranging from 0.1 to 0.9 mm, and it has a negligible
fraction of fines.

Fig. 1 Microscopic view of silica sand no. 6 (60x)
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Fig. 2 Grain-size distribution of silica sand no. 6

Table 1 Properties of silica sand no. 6

Mean grain size, Dso (mm) 0.25
Effective grain size, Dyp (mm) 0.115
Uniformity coefficient, U, 24

Maximum void ratio, € 1.16
Minimum void ratio, ey;n 0.69
Specific gravity, G 2.66

2.2 Sample preparation and testing procedure

The specimens were prepared by dry deposition
method, that is the oven dried sample fell into the
shear box freely through a plastic bottle like a funnel,
from the top of the upper ring. The saturation was
accomplished by aid of carbon dioxide and de-aired
water after the sample has been poured in the shear
box. The saturation degree was checked by
calculating Bp parameter proposed by Sassa (1988)
and given by Eq. (1):
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in which Au stands for the increment of pore water
pressure increase due to a change in total normal
stress, usually from 50 to 100 kPa, i.e., Ao =50kPa

under undrained conditions. The specimen is assumed
to be fully saturated when B, =0.95. All ring shear

tests in this study satisfied the condition B, =0.95.

The experimental program included series of
tests on normally consolidated specimens under
effective normal stress levels of 150 and 250 kPa.
After consolidation under an effective normal stress
gy, the shear stress was increased with a loading rate
of about 0.5 kPa/sec in drained conditions to an initial
value T,, in order to achieve the desired initial shear

stress ratio, T,/0Y Undrained loading was

subsequently applied in a monotonic or cyclic
manner. Concerning the shear stress control system of
DPRI-Ver.6, three rotating gears are available,
capable to develop a maximum shear speed of 10
mm/sec, 32.3 cm/sec, and 2.24 m/sec, respectively.
The medium rotating gear, corresponding to a
maximum shear speed of 32.3 cm/sec, was employed
for this experimental study.

2.3 Undrained monotonic shear behavior of

saturated sand

After setting-up the initial shear stress, the shear
box was shifted to undrained conditions and the
sample was sheared by gradually increasing the shear
stress with a loading rate of about 0.5 kPa/sec while
maintaining constant the total normal stress. The
gradual reduction in shear strength with progress of
shear displacement, after failure, resulted in an
accelerated motion until the shear velocity reached
the limit value of 32.3 cm/sec.

Figure 3 shows the response of S6 to undrained
monotonic shearing for two initial stress points (A
and B in Fig. 3a), corresponding to initial effective
normal stress levels of 150 and 250 kPa, and initial
shear stress ratios of 0.25 and 0.5, respectively. In
Fig. 3b, e, denotes the void ratio immediately after
consolidation (i.e., zero initial shear stress).
Apparently, the sand demonstrated a quasi steady
state (QSS) type of response (Ishihara, 1993) during
yielding prior to failure. Figure 3a displays how after
the first peak of shear resistance was reached, the
stress path moves quickly towards the failure line due
to significant generation of excess pore water
pressure with straining. As pointed out by Yoshimine
et al. (1999), the quasi steady state coincides with the
state of phase transformation, subsequent shearing
resulting in dilation associated with increase in shear
strength towards a secondary peak, reached at the
moment of failure.

After failure, the sand exhibited sliding surface
liquefaction (Sassa, 1996), as shown by the effective

stress path moving down along the failure line in Fig.
3a. The orders of magnitude of shear displacement,
required to reach the ultimate steady state strength
(USS) are noticeable in Fig. 3b.
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Fig. 3 Effective stress paths (a) and shear resistance—
displacement relationships (b) from undrained
monotonic ring shear tests

2.4 Undrained cyclic ring shear tests

The primary objective of this laboratory study
was to compare the shear resistance—displacement
data obtained under undrained monotonic loading
conditions, with the corresponding response of
saturated sand to cyclic loading, for a given initial
stress state. Consequently, undrained cyclic ring shear
tests were carried out on replicate samples subjected
to initial stresses defined, in the effective stress space,
by points A and B from Fig. 3a. The experiments
followed the same procedure described for the
undrained monotonic ring shear tests except that,
after setting up the initial stress state, the undrained
loading was applied in a cyclic manner instead of
monotonically.

The cyclic stresses for laboratory testing were
selected in order to reproduce the dynamic conditions
on the sliding surface of an infinite slope, subjected to
a horizontal seismic excitation, as shown in Fig. 4.



The slope, with an inclination 8, is assumed to have

a phreatic surface located in-between the ground
surface and the potential failure plane, and an average
unit weight of the soil within the sliding mass, y=18

kN/m®.

Fig. 4 Configuration of an infinite slope under
seismic conditions

The expressions of initial total normal stress,
0, , and driving shear stress, T,, on the sliding
surface (i.e., static conditions) derived from the
normal and tangential components of the weight, W,
of a soil column of width b, in respect to the direction
of slip surface, are as follows:

_WcosP - )
* = b secp yH cos™ B )
WsmB _ .
* = b secp =yHsinBcosP 3)

where H stands for the height of the soil mass above
the sliding surface.
From Eqgs. (2) and (3) we obtain

6, =% _Hh E @

For this study we consider a seepage parallel to the
surface and a groundwater level at height H, above
the sliding plane, i.e., equipotential lines
perpendicular onto the surface. In these
circumstances, the initial pore water pressure, ug, on
the sliding plane may be expressed as

=Y, H, cos’B ®)

where vy, is the unit weight of water, taken in this
study as 10 kN/m®.

On the other hand, based on the effective stress
principle u, can also be derived as

Uy =0, =0y = tanB%%tanBD (6)

Equations (2) to (6) enable us to express H and H,,
as functions of oy, 1,/0,, and B as follows:
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Concerning the applied seismic waveform, a
sinusoidal excitation was assumed, with the general
expression for the coefficient of earthquake
acceleration, k, at a certain instant, t, given by

k=(k, + j Ak) sinbret )
O 10

where T is the period of seismic excitation, and j =
1...N is the number of current cycle. N refers to the
total number of cycles during the experiment. Two
types of cyclic loading are engaged in this study, as
illustrated in Fig. 5. The first type (Fig. 5a)
corresponds to a gradual increase in the amplitude of
earthquake acceleration by a constant increment, Ak,
at the beginning of each cycle. This is equivalent with
making k, =0 in Eq. (9). The second type (Fig. 5b)
considers a seismic excitation of constant amplitude,
ko , which actually corresponds to Ak =0 in Eqg. (9).

The cyclic total normal stress, Ag, and cyclic driving
shear stress, At,, on the sliding plane due to a

horizontal inertia force imparted by the earthquake
loading on the slope shown in Fig. 4, may be
expressed as

Ao =k o, %E (10)

o, dt
AT, =k tanOB 0 H (11)

Table 2 summarizes the initial stress conditions
and cyclic loading characteristics for the undrained
cyclic ring shear tests, along with the parameters of
simulated infinite slope conditions.

In the time history of applied cyclic loading, the
total normal stress, o, and driving shear stress, T,



Table 2 Summary of cyclic ring shear tests and equivalent infinite slope parameters

Initial stresses

Cyclic loading characteristics

Equivalent slope parameters

and test no. & Ko Ak f(H2) N B () H(m) H,(m)
Case A: o, =150kPa ; 1,/0}, =0.25

Al 0.978 0.170 0 0.4 42

A2 0.981 0.350 0 0.4 20 10 122 6.5
Case B: o, =250kPa ; 1,/0;, =0.5

B1 0.971 0 0.006 0.4 20 20 216 10.6
B2 0.967 0.125 0 0.2 10

Note: f denotes the frequency of applied cyclic loading (f=1/T)

acting on the sample at a certain instant during the

experiment are given by the equations below:
o=0;-Ac (12)

T, =T, +At, (13)

with Ao and At, defined by Egs. (10) and (11).

o} in Eqg. (12) stands for the initial total normal

stress on the tested specimen, before applying the
cyclic loading. Since the undrained condition is
imposed only during the application of cyclic

stresses, we have @5 =g, for laboratory testing.
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Fig. 5 (a) Increasing amplitude and (b) constant
amplitude excitations used in undrained cyclic ring
shear tests
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2.5 Comparison of results from undrained
monotonic and cyclic ring shear tests
Figure 6 depicts the displacement series data
from undrained cyclic ring shear tests showing also,

on each diagram, the results from undrained
monotonic shearing corresponding to the same
initial stress conditions. Experiments Al, A2, and
B2 represent undrained cyclic ring shear tests under
uniform loading (i.e., Ak =0 in Eq. (9)) with shear

stress amplitudes greater than the peak strength
from undrained monotonic testing. Tests Al and B2
correspond to cyclic loading conditions with no
reversibility in driving shear stress (i.e., T, >0)

during the experiment, whereas a greater loading
amplitude was selected for test A2 in order to reach
negative values of T, within every cycle of

undrained loading. Experiment Bl addresses an
undrained cyclic ring shear test with increasing
amplitude of loading (i.e., k, =0 in Eq. (9)) and no
shear stress reversal.

A quick examination of the experimental results
from tests Al, B1, and B2, illustrated in Fig. 6,
reveals that the upper boundary of the unloading-
reloading loops from the cyclic ring shear tests,
follows very closely the shear resistance vs. shear
displacement relationship from the undrained
monotonic ring shear tests. The sand demonstrated
a similar response also for the cyclic ring shear test
A2, prior to the first unloading; thereafter, a slight
decrease in the available cyclic shear strength may
be noted compared with the monotonic shear
response. Hence, it appears that the reversibility in
driving shear stresses on the failure plane is
responsible for a higher excess pore pressure
generation, in spite of a positive cyclic shear
resistance measured during the entire experiment.
However, as a general overview, this laboratory
study demonstrated that, for the tested sand, the
shear resistance—displacement curve provided by
the undrained monotonic ring shear test may be
regarded as a reasonable estimate of the available
shear strength under various cyclic loading
conditions. This aspect is clearly emphasized by the
experimental results presented in Fig. 6.
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Fig. 6 Shear resistance from undrained monotonic and cyclic ring shear tests

3. Formulation

Assuming the sliding mass in Fig. 7 as a rigid
body in translation on the sliding surface, driven by
a horizontal seismic force, the Newton’s second law
of motion applied on the direction parallel to the
slip surface yields

ﬂ's‘=Wsin[3+kW cosp-R (14)
9

where § represents the acceleration of the sliding
mass relative to the base, g is the gravitational
acceleration, and R stands for the resistant force
developed by the soil on the sliding surface. The
latter may be written as

R=T1,b secP (15)

with 1, defining the available soil shear strength.

Equation (14) leads to the final expression of
the relative acceleration

§=(a-k, g) cosp (16)

in which a denotes the earthquake acceleration
(a=kg), whereas k, stands for the yield coefficient
of the potential sliding mass given by Eq. (17):

k, =H:—r—1%an|3 @an

Fig. 7 Forces involved in the equation of motion



In a conventional Newmark procedure, k
defines the coefficient of a pseudo-static seismic
force necessary to cause the limit equilibrium of the
potential sliding mass. Therefore, in the case of a
dry cohesionless soil on the sliding surface, the
expression of k, is given solely by the soil effective
friction angle, ¢, and slope angle (e.g., Seed and

Goodman, 1964; Goodman and Seed, 1966; Chugh,
1995 ), being thus constant in situations involving a
perfectly plastic shear response after failure.
Undrained conditions on the slip surface, however,
imply that under seismic conditions, T, relates to

the magnitude of shear displacement, as
demonstrated by the laboratory study introduced in
the previous section. Consequently, the yield
capacity of the sliding mass will be correlated with
the amount of earthquake—induced relative slope
displacement at a certain instant during the seismic
excitation. In order to include this aspect in an
undrained dynamic analysis, the Newmark based
approach proposed in this study utilizes the
experimental data from undrained monotonic
shearing to estimate the available undrained
dynamic strength during earthquake. This
assumption seems reasonable for the considered
sand, since variations in total normal stress on the
slip surface during earthquake appear to have no
influence on the available undrained cyclic shear
strength (see Fig. 6). As illustrated in Fig. 8a, by
employing in the computational process the shear
resistance—displacement curve from the undrained
monotonic ring shear test, it is possible to estimate
the amount of shear strength that can be developed
by the soil on the sliding surface in undrained
conditions, T,(t), given the value of earthquake—

induced slope displacement, s(t) , at a certain

instant during earthquake. In this circumstances, k,
in Eq. (17), may be interpreted as the coefficient of
the pseudo-static seismic force corresponding to
the equilibrium of the sliding mass at a certain
magnitude of displacement.

The example of undrained monotonic shear
response shown in Fig. 8a, corresponds to a
saturated sandy soil with an ultimate steady state
strength after failure (USS) below the static driving
shear stress, t,. For materials on the slip surface

exhibiting this type of undrained shear behavior, a
critical moment during the seismic slope
performance corresponds to the instant when the
amount of earthquake—induced displacement
reaches a critical level equal to s, in Fig. 8a. It is
seen in Fig. 8a that displacements greater than s
involve available shear strengths below 1. Hence,

a displacement at the end of seismic excitation
exceeding the critical level, s;, may result in a
catastrophic slope failure, since there is a high
probability that the sliding mass will continue to
move even after the earthquake loading has ceased,
assuming no significant changes in the static

driving shear stress on the slip surface. This is more
clearly illustrated in Fig. 8b addressing the vyield
coefficient in relation to displacement of the sliding
mass, for the shear strength characteristics on the
slip surface depicted in Fig. 8a. As shown in Fig.
8b, slope displacements beyond s, are associated
with negative yield coefficients, suggesting that a
pseudo-static seismic force acting towards the
slope is necessary to keep the sliding mass in
equilibrium.

T, ﬂ\

T, (1)

T

(b)

Fig. 8 (a) Example of undrained monotonic shear
response and (b) the corresponding yield coefficient
in relation to slope displacement

Equation (16) requires a step-by-step
numerical integration to calculate the dynamic
displacements. However, the presence of Kk,
depending on the unknown value of displacement,
s, renders to Eqg. (16) a nonlinear character.
Therefore, an iterative computational procedure is
necessary to obtain the solution.

4. Sample problem

The methodology introduced in the previous
section has been used to investigate the seismic
response of slopes A and B listed in Table 1,
considering two input accelerograms plotted in Fig.
9. These seismic records, have been obtained
during El Salvador earthquake, Magnitude M=7.6,
on January 13, 2001, and Hyogoken—Nambu
earthquake, Magnitude M=7.2, on January 17,
1995, respectively. In order to investigate the
influence of input signal on the slope performance,
both accelerograms were scaled to a coefficient of
maximum earthquake acceleration, k;,, of 0.25 as
shown in Fig. 9.



El Salvador Earthquake January 13,2001

0.3
0.2
0.1
0
-0.1
-0.2
-0.3

kn=0.25 =~ Component: EW

Acceleration,a(g)

0 10 20 30 40 50

Time, t (sec)

Hyogoken-Nambu Earthquake January 17,1995
0.3 k., =0.25
0.2
0.1

0
-0.1
-0.2
-0.3

Component: EW

0 10 20 30 40 50

Time, t (sec)
Fig. 9 Input earthquakes for sample problem
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Fig. 10 Yield coefficient in relation to displacement
for the analyzed slopes

Figure 10 depicts the yield coefficient in
relation to the slope displacement based on the
experimental curves shown in Fig. 3b, showing
also, the critical displacement, so, necessary to cause
a catastrophic failure of slopes A and B from Table
1.
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Fig. 11 Slope displacements from El Salvador and
Hyogoken—Nambu earthquakes scaled to 0.25g

Examination of earthquake—induced undrained
displacements of slope A in Fig. 11 reveals that the
input signal affects the seismic slope response. As
shown in Fig. 11, for k,=0.25, the displacement of
slope A at the end of El Salvador earthquake is
about 0.6sy, whereas Hyogoken—Nambu earthquake
resulted in a permanent displacement of 0.8sg.
However, slope A performed well under the given
seismic excitations, remaining stable after the
earthquake. This aspect is more clearly illustrated in
Fig. 12 showing the time history of driving shear
stress, T4, and available shear strength, t,, on the

sliding surface for El Salvador earthquake. It may
be noticed in Fig. 11 that concerning slope A, T,

just after the earthquake was slightly greater than
T, , suggesting that no additional movement will

take place under static conditions. Conversely,
slope B demonstrated a sharp increase in
displacements under both seismic excitations,
reaching the critical stage before the peak of the
strong ground motion (see Fig. 11). It is easy to
imagine the damage potential of such a catastrophic
slope failure, due to the high mobility of sliding
mass, by examining the results of the analysis
corresponding to slope B in Fig. 12. Apparently, the
sliding mass reached a relative displacement of 10
m in less than 5 seconds after the critical
displacement, sq, has been reached, assuming no
changes in topography. This result demonstrates the
crucial role played by the softening of the material
on the sliding surface upon the accelerated motion



of the sliding mass after the onset of a catastrophic
slope failure.
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Time, t (sec)
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Fig. 12 Time history of driving shear stress, T,,
and available shear strength, T, , on the slip surface
for El Salvador earthquake scaled to 0.25g

5. Conclusions

The undrained shear behavior of a saturated
clean sand under static and dynamic conditions has
been investigated through a laboratory study based
on monotonic and cyclic ring shear tests, with
initial shear stresses greater than ultimate steady
state strength. Examination of experimental results
revealed that, for the tested sand, the shear
resistance vs. shear displacement relationship from
undrained monotonic ring shear tests may be
considered a reasonable approximation of the

available dynamic shear strength developed under
cyclic loading conditions. This outcome of the
laboratory study provided the experimental
framework for a modified Newmark sliding block
method to estimate the earthquake—induced
undrained displacements of an infinite slope. The
material assumed on the sliding surface was the
saturated sand considered in the experimental
study. Sample calculations demonstrated the
effectiveness of a seismic analysis based on slope
performance, capable to encompass the sensitivity
of computed displacements to reductions in yield
acceleration; resulting thus in a more reliable
assessment of post-earthquake slope stability, when
comparing with a traditional limit equilibrium
approach, where the seismic loads are treated in a
pseudo-static fashion. The proposed procedure may
be used to predict whether a catastrophic landslide
will initiate or not under given seismic conditions.
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