# 桜島火山における反復地震探査(一回目)

筒井智樹<sup>\*</sup>・井口正人・為栗 健・上田義浩<sup>\*\*</sup>・大島弘光<sup>\*\*\*</sup>・植木貞人<sup>\*\*\*\*</sup>・ 大湊隆雄<sup>\*\*\*\*\*</sup>・及川 純<sup>\*\*\*\*\*</sup>・市原美恵<sup>\*\*\*\*\*</sup>・野上健治<sup>\*\*\*\*\*\*</sup>・中道治久<sup>\*\*\*\*\*</sup>・ 大倉敬宏<sup>\*\*\*\*\*\*</sup>・清水 洋<sup>\*\*\*\*\*\*\*</sup>・宮町宏樹<sup>\*\*\*\*\*\*\*</sup>・八木原 寛<sup>\*\*\*\*\*\*\*</sup>・ 前川徳光<sup>\*\*\*</sup>・堀川信一郎<sup>\*\*\*\*\*\*</sup>・吉川 慎<sup>\*\*\*\*\*\*\*</sup>・園田忠臣・平野舟一郎<sup>\*\*\*\*\*\*\*</sup>・ 末峯宏一<sup>\*\*</sup>・林 幹太<sup>\*\*</sup>・加藤幸司<sup>\*\*</sup>・長尾 潤<sup>\*\*</sup>・池亀孝光<sup>\*\*</sup>・ 松末伸一<sup>\*\*</sup>・五藤大仁<sup>\*\*</sup>・河野太亮<sup>\*\*</sup>・簗田高広<sup>\*\*\*</sup>・田中窓香<sup>\*\*\*\*</sup>・ 渡辺竜一<sup>\*</sup>・長岡優<sup>\*\*\*\*\*</sup>・前原祐樹<sup>\*\*\*\*\*\*(現在\*\*\*\*\*)</sup>・吉田沙由美<sup>\*\*\*\*\*\*</sup>・ 小林由実<sup>\*\*\*\*\*\*</sup>・栢橋志郎<sup>\*\*\*\*\*\*</sup>



## 要 旨

鹿児島県桜島火山において火山活動にともなう構造変化の検出を目的とした反復地震探 査を行った。桜島火山は 2009 年 10 月以降,噴火活動が昭和火口において活発化している。 このような火山活動の推移を背景に 2008 年探査測線の一部を再現して人工地震探査を行っ た。地震探査測線は 15 点の発破点と 263 点の臨時観測点で構成された。このうち再現され た測線は 7 点の再現発破点と 219 点の再現臨時観測点で構成された。測線の再現にあたり, 火山地帯特有の困難に直面したが 202 点が同一点への再設置に成功した。同じ薬量の以前 の観測と比較すると,今回の発破では 0.6 から 2.9 倍の最大振幅の記録が得られた。今回得 られた記録では目立った初動走時の変化は認められないが,北東部における観測記録の一 部の後続相の出現様式に系統的な変化が認められる。したがって桜島火山の活動にともな う構造変化の検出につながるデータであることが期待される。

キーワード:桜島火山、人工地震探査、構造変化

### 1.はじめに

火山とその周辺の地下における物質の移動を知ることは、火山活動を定量的に理解するために重要な事である。1994年に火山噴火予知計画の一環として始められた火山体構造探査計画によって人工地震探査が推進され、これまでに日本国内の主要な活火山の内部構

造が明らかにされてきた。これまでのとりくみでは地 震波速度構造などの静的な構造の解明に焦点があてら れていた。火山噴火予知の精度を高めるためには,火 山内部の物質の移動に伴う構造変化をとらえることに よって火山活動に関与する物質の総量や移動速度を直 接把握することが鍵である。今後,火山内部における 物質の移動を直接監視する方法の確立に向けた取り組



Fig. 1 The 2009 seismic lines. Topography is described by the contour of a 200-m interstice. Asterisks and the block marks show shot points, and black dots show temporal stations. The symbols AL, AG, and A show the pressure sources after Hidayati et al. (2007). The dashed lines and the thick gray lines which were drawn from these sources show the magma supply way expected. KD: Kita-dake and MD: Minami-dake.

みが必要であると考えられる。

地球内部の活動による構造変化の検出の試みは古く からなされてきた(例えば,地質調査所,1971;地質 調査所,1975;地質調査所,1988など)。最近では内田 ら (2002) や Nishimura et al. (2005) が岩手火山周辺にお けるくりかえし人工地震実験によって火山活動にとも なう地震波速度変化を議論したほか,また Duputel et al. (2009) が地震波干渉法を雑微動に適用して Piton de la Fournaise 火山の活動にともなう地震波速度変化を 議論している。

本研究の最大の特徴は,後続相の変化に注目し反射 法地震探査をベースとして構造変化の議論を行うこと である。一般に地下におけるマグマの移動に関与する 領域はごく狭いものであると考えられる。したがって, 地下において物質の置き換えにともなう地震波速度や 弾性インピーダンスなどの地震学的特性の変化も小さ な領域であることが予想される。このような小さな領 域のインピーダンス変化をとらえるためには,反射波 を用いることが最適であると考えた。反射法地震探査 をベースとした手法を用いて地熱流体の移動にともな う地下構造の時間変化を議論したものに,Matsushima et al. (2004) がある。

桜島火山は後続相に注目した構造変化の研究を行う 目的に最適であると考えられる。桜島火山では 1950 年代以降 1990 年代まで山頂火口における爆発活動が 継続していたが,2006年6月4日に東山腹の昭和火 口が活動を再開して以降,山腹火口からの噴火が徐々 に活発化している(井口ら,2008)。さらに,より長い 時間スケールで見ると,1993年以降桜島の北方にあ る姶良カルデラの中央部に推定される圧力源の増圧が 継続中であることから,今後桜島の火山活動がより高 いレベルに移行する可能性が指摘されている(井口ら, 2008)。また,2008年には井口ら(2009)による人工 地震探査(以下,これを2008年観測と称する)が行 われ,桜島火山およびその周辺における地下構造の解 明への取り組みが行われており,比較の対象となる データも充実してきている。このように桜島は地下に おけるマグマの移動が確実であり,マグマの移動に伴 う地下構造変化の検出を行うフィールドとして最適な のである。

本稿で述べる 2009 年探査が行われた時期は 2009 年 10 月に始まる爆発回数増加の途上の時期であり,桜 島北東部を横断する基線の伸張が加速するとともに毎 月おおむね 14 万 t ずつ火山灰噴出量が増加していた 時期であった(気象庁, 2010)。2009 年地震探査は上 で述べた火山活動の流れの中の一瞬の地下構造を切り 取るものである。この観測記録は井口ら(2009)の観 測記録とともに,今後実施される予定の探査記録と併 せて,桜島火山内部の微速度撮影映像を構成すること になるであろう。

Table 1. Shot-point location and the shot times. Altitude denotes the height of a charge head.

| 2009<br>shot | La  | titude ( | WGS84)   | Lon | gitude | (WGS84) | Altitude | Shot time               | 2008<br>shot | Difference from 2008's shot |                |  |
|--------------|-----|----------|----------|-----|--------|---------|----------|-------------------------|--------------|-----------------------------|----------------|--|
| point        | Deg | Min      | Sec      | Deg | Min    | Sec     | (m)      | Shot time               |              | Northin<br>g                | Easting<br>(m) |  |
| 09S01        | 31  | 34       | 56.66225 | 130 | 41     | 26.955  | 133.4    | 2009/12/10 02:27:00.888 | -            | -                           | -              |  |
| 09802        | 31  | 35       | 1.63357  | 130 | 42     | 5.0941  | 58.8     | 2009/12/10 01:07:00.768 | 08S09        | 5                           | 1.1            |  |
| 09803        | 31  | 35       | 27.79292 | 130 | 41     | 59.8032 | 81.33    | 2009/12/10 02:17:00.423 | -            | -                           | -              |  |
| 09804        | 31  | 35       | 42.4545  | 130 | 41     | 34.0548 | 94.65    | 2009/12/10 01:17:00.605 | 08S10        | -0.7                        | -1.4           |  |
| 09805        | 31  | 36       | 3.35389  | 130 | 41     | 23.0585 | 115.7    | 2009/12/10 00:17:00.539 | -            | -                           | -              |  |
| 09806        | 31  | 36       | 13.05444 | 130 | 41     | 18.6362 | 128.51   | 2009/12/10 02:12:00.503 | -            | -                           | -              |  |
| 09807        | 31  | 36       | 34.72538 | 130 | 41     | 7.6828  | 141.6    | 2009/12/10 01:12:00.561 | -            | -                           | -              |  |
| 09S08        | 31  | 37       | 5.59099  | 130 | 40     | 38.693  | 83.85    | 2009/12/10 00:07:00.434 | 08S12        | -2.1                        | -0.4           |  |
| 09809        | 31  | 37       | 38.66055 | 130 | 40     | 35.1723 | 25.9     | 2009/12/10 01:27:00.612 | -            | -                           | -              |  |
| 09S10        | 31  | 36       | 13.09329 | 130 | 42     | 23.7744 | 28.97    | 2009/12/10 00:27:00.675 | 08S06        | -3.9                        | 2.2            |  |
| 09S11        | 31  | 36       | 24.25932 | 130 | 41     | 43.5835 | 83.18    | 2009/12/10 02:07:00.745 | -            | -                           | -              |  |
| 09812        | 31  | 36       | 44.89158 | 130 | 41     | 0.3721  | 136.65   | 2009/12/10 00:12:00.553 | 08S11        | 2.2                         | -1.3           |  |
| 09813        | 31  | 36       | 30.82384 | 130 | 39     | 54.5606 | 307.32   | 2009/12/10 00:22:01.522 | 08S13        | -4.5                        | 7.1            |  |
| 09814        | 31  | 36       | 25.82365 | 130 | 39     | 28.079  | 320.05   | 2009/12/10 01:22:01.717 | -            | -                           | -              |  |
| 09S15        | 31  | 36       | 17.80699 | 130 | 38     | 18.1595 | 360.55   | 2009/12/10 02:22:01.574 | 08S15        | -2                          | -1.4           |  |

## 2. 観測

2009年人工地震探査(以下,2009年観測と称する) は2009年12月7日~12月12日の6日間に35名の 参加を得て実施された。測線は15点の発破点を含み, 265点の観測点が展開された。これを2009年測線と 称する。

2009 年測線のうち 219 点は 2008 年観測測線(井口 ら,2009)の一部である 2 本の反射法測線を再現する ように展開された。以下ではこれを再現測線と呼ぶこ とにする。再現測線は Hidayati et al. (2007)のマグマ供 給系モデルの検証を目的として,桜島北東部で交差す る Line NS と Line EW の 2 本が設定された。さらに 46 点は新設観測点として 2008 年観測記録(井口ら, 2009)の特徴を考慮して設けられた。

2009 年観測でも 2008 年観測と同様に白山工業製小 型データロガー LS8200SD (蔵下ら, 2006) と 4.5Hz 上 下動地震計で構成された 1 成分観測臨時観測点を測 線全体に展開した。データ収録は分解能 24bit, サン プリング周期 2ms で, 2009 年 12 月 9 日 21:00 ~翌 10 日 06:00 頃までの期間の連続記録を行った。臨時観測 点の測位は GPS 受信器 (ライカ社製 SR530)を用いて 島内の常設 GPS 観測点を基準点としたクイック・ス タティック法を行った。すべての観測点位置を Fig. 1 に図示し, 座標を Appendix 1 に表として示す。

再現測線は X001A ~ X125A および X192A からなる Line NS と, X001B ~ X094B および X101B からなる Line EW から構成された。このほかに黒神アレイ KAR1 および KAR3 ~ KAR8 も再現された。

再現観測では観測点の正確な再現が必要である。浸 食や土石流の流下による地形変化に加えて,土地利用 状況の変化や,砂防・治山工事などが完全な観測点 再現を妨げる。再現観測点設置作業では2008年観測 の際に得られた観測点座標(井口ら,2009)を用いた 市販のハンディ GPS によるナビゲーションに加えて, 2008年観測の際に得られた写真をもとに最終的な位 置決めを行った。再現測線では再現選点ランクを定義 し,個々の観測点に対して設置時に2008年測線の再 現状況の記載を行い Appendix 1 のように表示した。

再現選点ランクは作業効率を考慮して以下のように 定義された。ナビゲーションに用いた座標および写真 を用いてまったく同一点に設置できた場合にはランク を◎,ナビゲーションに用いた座標から5m以内(自 動車道路脇設置)もしくは20m以内(徒歩設置)の 場合はランクを○とし,これらに当てはまらない場合 は再現設置が不可能な新設点としてランクをNで表 記した。再現測線を構成する219点のうち,202点(◎ 137点,○65点)が再現に成功し,17点は砂防また は治山工事などにより再現できない点であった。

新設観測点は以下の3つの場所に設けられた。1) NS 測線南端付近から鍋山に向けた測線,2)進行中の 砂防工事と重複する区間における再現設置放棄区間, 3) Line EW 西端付近における群列配置。1)は観測点 C001 ~ C017が相当し,2)はB099およびB102,B201 ~B207が相当する。3)にはD001 ~ D010が相当する。 1),3)は2008年観測記録を補い,人工地震波のより詳 細な議論を可能とする目的で設けられ,2)は砂防工事 区間によって分断されるLine EW 中央部における測 線の接続および 09S08 への接続を目的として設けられ た。

2009 年観測の 15 カ所の発破作業は 12 月 10 日未 明に行われた。2009 年に行われた発破はすべて孔長 10m の単一孔による薬量 20kg の発破であった。以



Fig. 2 The 2009 shot shot records along the line NS. (a) 09S02, (b)09S04, (c)09S12, and (d)09S08. The left end of each plot is for the north end. The location of a shot point is shown 0 km. Each waveform has been normalized at each maximum value. Black circle shows the part which a change can be seen as compared with the last observation in 2008 (Fig. 3).



Fig. 3 The 2008 shot records along the line NS. (a)08S09, (b)08S10, (c)08S11, (d) 08S12. Plot style is the same as that of Fig. 2. After Iguchi et al. (2009).

下,本稿では区別のために通称発破点名(Sxx)の前 に西暦年号の下二桁をつけた名前で呼ぶことにす る。09Sxxは2009年の発破を示し,08Sxxは井口ら (2009)による2008年の発破を示す。全15カ所の発破 点09S01~09S15のうち,再現された発破点は7点 (09S02,09S04,09S08,09S10,09S12,09S13,09S15)で あった。これらと井口ら(2009)の発破点はそれぞれ 以下のように対応される。09S02:08S09,09S04:08S10, 09S08:08S12,09S10:08S06,09S12:08S11,09S13:08S13, 09S15:08S15である。それぞれの再現された発破点は 2008年のそれから8.5m以内の場所に設けられた。こ れら以外の新設発破点は2008年観測のデータを補い, より詳細な反射断面を得ることを目的として設置され たものである。すべての発破点位置および発破時刻を Table1に示す.

## 3. データ

再現測線 Line NS の再現発破に対応する記録を Fig. 2 に,対応する 2008 年観測のショットレコードを Fig. 3 に示す。Fig. 2(a) ~ (d) および Fig. 3(a) ~ (d) は 図左端が測線北端,右端が測線南端に相当する。Fig. 2(a) は測線南端付近の発破 09S02 に対する記録を示 す。09S02 南側では初動の見かけ速度が次のように分 布する。震源から 0.041km 地点まで 0.59km/s, 0.041km 地点から測線南端まで 1.95km/s を示す。これに対して 09S02 北側では 0.29km まで 0.91km/s, 0.29km ~ 4.42km 地点までは 1.89km/s の見かけ速度分布を示す。09S02 の記録には初動の他に見かけ速度が遅い顕著な相が現 れている。この相は 09S02 の北側 0.77km 以遠で顕著 に表れており,その見かけ速度は 0.62km/s を示す。

発破点 09802 は西を大正溶岩,北を昭和溶岩に囲ま れた軽石質砂層の上に位置する(福山・小野,1981)。 この軽石質砂層は昭和溶岩および大正溶岩の下にも分 布すると考えられる。したがって,09802 の周辺で現 れる 0.59-0.62km/sの速度は軽石質砂層の速度と考え られる。

Fig. 2(b) は発破 09S04 に対する記録を示す。09S04 南側では震源より 0.29km 地点まで 1.44km/s の見かけ 速度を示し, 0.29km から 1.7km 地点までは 1.74km/ s の見かけ速度を示す。これに対して 09S04 北側では 0.22km 地点まで 0.85km/s, 1.76km 地点までは 2.14km/s の見かけ速度を示す。1.76km 地点では約 0.1 秒走時が 遅れる初動走時のギャップが見受けられ、これ以遠で は 2.12km まで 3.4km/s, 3.0km 地点までは 2.70km/s の 見かけ速度を示す。

福山・小野(1981)によると09804は文明溶岩南縁 に隣接する昭和溶岩上に堆積した砂礫層上で発破作業 が行われていた。このことから、南側で観測される 1.44km/s は昭和溶岩最上部の速度に対応し、北側で観 測される 2.14km/s は文明溶岩最上部の速度に対応す ると考えられる。また、0.85km/sの速度は昭和溶岩上 の砂礫層に対応すると考えられる。

Fig. 2(c) は発破 09S12 に対する再現測線 Line NS 上 の記録を示す。09S12 南側では 0.33km 地点まで 1.12km/ s を, 1.36km 地点までは 4.46km/s を示す。1.36km 地 点には走時のギャップが存在し,約 0.2 秒の走時遅れ が現れる。この地点から 3.0km 地点までは 1.94km/s の見かけ速度が現れている。これに対して 09S12 北側 では 0.47km 地点まで 1.37km/s の見かけ速度を, さら に 8km まで 4.43km/s の見かけ速度を示す。

09S12 は福山・小野 (1981) によると安永溶岩上に位 置する。1.12-1.37km/s は安永溶岩最上部の速度を示し, 4.43-4.46km/s は安永溶岩中央部の緻密な部分あるいは 地下水で飽和した部分の速度を示していると考えられ る。

Fig. 2(d) は測線北端部の発破 09S08 の記録を示す。 09S08 南側では 1.9km 地点と 3.02km 地点と 2 ヶ所 の走時ギャップがあらわれる。初動走時は震源から 0.13km 地点までは 0.61km/s の見かけ速度があらわれ, 0.13km ~ 1.81km 地点まででは 3.01km/s の見かけ速度 を示す。1.9km までの間は初動が不明瞭になるギャッ プであるが, 1.92km ~ 3.02km までの区間では 2.24km/ s の見かけ速度を示す。3.02km 地点では約 0.2 秒走時 が遅くなり, これ以遠では 4.34km まで 1.90km/s の見 かけ速度を, 4.72km までは $\infty$ の見かけ速度を示す。 これに対して 09S08 北側では比較的単純な初動走時を 示し, 初動は 0.14km 地点まで 0.62km/s, 0.42km まで は 5.78km/s, 1.19km までは 2.54km/s の見かけ速度を 示す。

09S08 は福山・小野 (1981) によると割石崎溶岩と安 永溶岩とにはさまれた遊砂池で発破作業が行われた。 09S08 周辺で観測される 0.61-0.62km/s は遊砂池およ びその周辺の軽石質砂層の速度と考えられる。09S08 南側で観測される 3.01km/s は安永溶岩の速度を,そ れ以遠で観測される 2.24km/s は北岳噴出物 (K7)の速 度に相当すると考えられる。09S08 北側で観測される 2.54, 5.58km/s は割石崎溶岩の速度と考えられ,とく に後者は地下水で飽和した部分の可能性が高いと考え られる。

以上が 2009 年観測で得られた Line NS 観測記録の 特徴である。2009 年観測の初動走時には Fig. 3 に示さ れる 2008 年観測のそれとの顕著な相違は見られない。

さらに Line EW の再現発破に対応する記録を Fig. 4 に,対応する 2008 年観測のショットレコードを Fig. 5 に示す。Fig. 4 および Fig. 5 はともに図の左端が西側, 右端が東側に対応する。Fig. 4(a) は東端の発破 09S10 に対する記録を示す。発破 09S10 に対する走時は複雑



Fig. 4 The 2009 shot records along the line EW. (a) 09S10, (b)09S12, (c)09S13, (d)09S15. The left end of each plot is the west end. The location of a shot point is shown 0 km. Each trace has been normalized at each maximum value. The black circle shows the part which a change can be seen as compared with the last observation.



Fig. 5 The 2008 shot record of the linr EW. (a) 08S06, (b)08S11, (c)08S13, (d)08S15. The display style of the panels is the same as that of Fig. 4. After Iguchi et al.(2009).



Fig. 6 Peak-amplitude distributions in the line NS. (a) 09S02 and 08S09, (b)09S04 and 08S10, (c)09S12 and 08S11, (d)09S08 and 08S12. A vertical axis shows the logarithm of a peak amplitude and a transverse shows hypocentral distance. Cross symbols are 2008's amplitudes and solid diamonds are 2009's amplitudes.



Fig. 7 Peak-amplitude distribution in the line EW. (a)09S13 and 08S13, (b)09S15 and 08S15, (c) 09S10 and 08S06. The style is the same as Fig. 6.

な様相を呈しており, 震源から 0.94km までは 3.0km/ s の見かけ速度を示した後, 1.31km 地点まで 1.49km/ s を示す。さらに 2.0km まで 9.93km/s という大きな 見かけ速度を示した後, 2.92km 地点までは 2.61km/s, 4.57km 地点までは 1.4km/s, 測線西端まで 4.95km/s の 見かけ速度を示す。

09S10 は福山・小野 (1981) によると文明溶岩上に 位置している。09S10 近傍の 3.0km/s, それより遠方の 1.49km/s は文明溶岩に対応すると考えられる。また, 09S12 周辺で観測された 2.64km/s は安永溶岩の速度と 考えられる。

Fig. 4(b) は発破 09S12 に対して Line EW 上で得られ た記録を示す。09S12 東側の初動は 0.19km まで 1.12km/ s を示し, 測線東端まで 2.89km/s の見かけ速度を示す。 これに対して初動は 09S12 西側では 1.51km 地点まで 1.81km/s を示し, 3.07km 地点まで 2.35km/s を, 測線 西端の 3.94km 地点までは 4.41km/s の見かけ速度を示 す。

南北測線における記述と同様に福山・小野 (1981) によれば 09S12 東側の 1.12km/s は安永溶岩最表層部 の速度を示していると考えられ、それ以東の 2.89km/ s は安永溶岩に対応した速度と考えられる。また、 09S12 西側では 1.81km/s は安永溶岩上部に、2.35km/s はその下位の北岳 K6 溶岩に相当する速度であると考 えられる。

Fig. 4(c) は発破 09S13 に対する記録を示す。09S13 東側の初動は 0.88km ~ 2.3km 地点まで 4.07km/s の見 かけ速度を示した後, 2.3km ~ 2.6km で不明瞭になる。 2.65km ~ 測線東端までは 2.02km/s の見かけ速度を示 す。これに対して 09S13 西側の初動は 0.06 ~ 0.23km 地点までは 1.26km/s の, 0.44km 地点までは 1.14km/s,

1.55km 地点までは 2.27km/s, これ以降測線西端まで 3.39km/s の見かけ速度を示す。

発破 09S13 は福山・小野 (1981) によれば北岳 K6 溶 岩上の西寄りに位置する。09S13 東側で観測される 4.07km/s は北岳 K6 溶岩に対応する速度と考えられる のに対して,09S13 西側には軽石質砂層が地表に分布 しており 1.26-1.14km/s はこの軽石質砂層の下部に対 応すると考えられる。

Fig. 4(d) は測線最西端の発破 09S15 に対する記録を 示す。09S15 東側の初動は比較的単純な様相を呈して いる。0.34km 地点までの初動は 0.74km/s の見かけ速 度を示し、4.43km 地点までの初動は 2.54km/s の見か け速度を示す。これに対して 09S15 西側では 0.03km 地点まで 0.29km/s の見かけ速度を、0.22km までは 1.06km/s の見かけ速度を示す。発破点 09S15 は桜島火



Fig. 8 Examples of traces and their instantaneous rms amplitude (gate width: 0.2 s). The markers point remarkable waveform changes are observed against the previous observation. Amplitude of the waveforms have been normalized for its maximum amplitude. (a) Records at the stations X081A, X082A for the shots 09S04 and 08S10. (b) Instantaneous rms amplitude distribution of (a). (c) Records at the stations X042A, and X043A for the shots 09S12 and 08S11. (d) Instantaneous rms amplitude. A logarithmic vertical axis is applied only in this plot. (e) Records at the stations X092B, X093B, and X094B for the shots 09S13 and 08S13. (f) Instantaneous rms amplitude of X093B.

山北岳北西斜面に位置する北岳 K4 溶岩上に位置して いるが,北岳 K4 溶岩は厚く軽石質の砂に覆われてお り,09S15 周辺の0.29 ~ 0.74km/s は K4 溶岩表面を覆 う軽石質砂層の速度を反映していると考えられる。

以上が 2009 年の観測で得られた記録の特徴である。 南北測線の例と同様に, Line EW における初動走時に は Fig. 5 に示される 2008 年観測記録との顕著な差は 見られない。

本観測によって反復測線上で得られた観測波形の最 🕅 -1 大振幅の分布を, 2008 年観測のそれとともに Fig. 6,7 に示す。すべてが同方式,同薬量で実施された 2009 年発破だけを取り出してみると、発震の強さは互いに ほぼ同じであったと考えられる。2008年観測で行わ れた同薬量の発破 (08809, 08810, 08811, 08812, 08813, 08S15) に対して、2009年の発破では 0.6 倍~ 2.9 倍の 振幅が得られた (Fig. 6(a) ~ (d), Fig. 7(a) ~ (b))。もと もと爆薬震源は波形の再現性が高くないことに加え て, 先述のように発破方式および薬頭深度が異なる などの条件の差異も重なって、2009年の観測記録と 2008年のそれとの間にこのような振幅差が発生した と考えられる。観測される人工地震波の振幅が発破薬 量におおむね依存するのは自明であるが、発破 09S10 で観測された最大振幅は、その10倍の薬量で実施さ れた 08S06 の 0.17 倍であった (Fig. 7(c))。

### 4. 人工地震波形の変化

Fig. 2 および Fig. 3 の各図の対応するものを比較す ると、後続相部分に若干の変化が見いだせるものが 2つある。 Fig. 2(b) と Fig. 2(c) でマーカーがつけられ ている箇所である。Fig. 2(b) は, 2008年に同じ地点 から発震した記録 Fig. 3(b) と比較して, 往復走時3 秒付近にある見かけ速度の高い位相の振幅が大きく なっている。Fig. 2(c) のマーカーがつけられている場 所も, 2008年に同一地点で発震した記録 Fig. 3(c) に 比べて見かけ速度の高い位相の振幅が大きくなってい る。Line EW における記録 Fig. 4(c) も, それに対応す る Fig. 5(c) の同部分で見かけ速度の高い位相が大きく なる傾向にある。マーカーがつけられている箇所の観 測点のうち、再現選点ランクが◎であるものを優先的 に選び出して波形を拡大した図が Fig. 8 である。2009 年記録では往復走時3秒付近で、対応する2008年記 録に見いだせない位相が現れている。

なお、単孔発破であった 2009 年の記録では見かけ 速度の遅い波(表層の直達波や S 波,表面波)に相当 する位相の振幅が、2008 年の記録よりも大きくなる 傾向にある。これは 2008 年では分割発破点が震源ア レイを構成していたために、単孔発破の場合よりも下 方への地震波放射が相対的に大きかったことがその理



Fig. 9 Estimated position of the reflecting points that remarkable changes appeared. The plot style is the same as that in Fig.1. An orange arrow points to the occurence zone of the remarkable enhancement in later phases around 3s.



Fig. 10 Processing flow and parameter of the singlefolded profiling.

由のひとつとして考えられる。

往復走時3秒付近の見かけ速度の高い位相を反射波 であると仮定すると、その反射点はFig.9中の矢印で 示される一帯であると考えられる。すなわち振幅の増 大が認められる記録はLine NSとLine EWの交差点付 近に反射点をもつ波線によるものと考えることができ る。もし反射点における反射係数の変化が原因である とすれば、この一帯を反射点とする他の波線による記 録にも後続相振幅の異常が観測されるはずである。こ のような条件に沿った再現測線記録を探すと、Line



Fig. 11 The single-folded profiles (SFP) of the line NS. (a) SFP by the 2009 data. The circles A-E show the part where the remarkable change is observed. (b) SFP based on 2008 data. The cross section projected along the line which connects the stations X125A to X001A. The origin of a distance is the station X001A. A vertical axis is the normal two-way travel time from the datum. The datum is defined at 162 m in height.

NS では 09S12 に対する観測点 X042A, X043A の組み 合わせ (Fig. 8(c)) と, Line EW では 09S13 に対する X092B, X093B, X094B の組み合わせ (Fig. 8(c)) を見い だすことができる。Fig. 8(c) ~ (f) では, Fig. 8(a) ほど 明瞭ではないが 2009 年の記録でやはり往復走時 3 秒 付近の後続相振幅が大きくなっていることが示されて いる。

以上のことから,2009年に取得された地震探査の 波形記録には、何らかの地下における変化が記録され ている可能性が高いと考えられる。 上述の波形変化によって地震反射断面に現れる変 化を明示的に表示するために,2009年観測データと 2008年観測データの両方に Fig. 10 の手順にしたがっ てシングルフォールド反射法解析を施す。2009年と 2008年の両方のデータに対する処理パラメータは Fig. 10 中に示される同一のものを使用した。

得られたシングルフォールド断面 (SFP) を Fig. 11 に示す。Fig. 11の横軸は観測点 X001A からの距離 (km) を示し、縦軸は基準面 (標高 162m) からの往復 走時を示している。Fig. 11(a) は 2009 年データを使用 し, Fig. 11(b) は 2008 年データを使用したものである。 Fig. 11(a) と (b) とを比較すると、いくつかの点で様相 の変化が認められる。Fig. 11 (a) では明瞭な反射波の 振幅増加が、3.2~3.7km 地点の1.8秒付近 (A), 1.2km 地点の 1.7 秒付近 (B), 3.0km 地点の 3 秒付近 (C) に 認められる。一方, Fig. 11(a) のDおよびEで示され る区間 2~4km では, Fig. 11(b) で見えていた 4~5 秒の部分の反射が目立たなくなっている。特に注目さ れるのは先述の Fig. 11(a) の C である。C は Fig. 8(a) で指摘された走時3秒付近の位相に相当し、NMO補 正に用いた速度を考慮すると基準面から約 3km の深 さに相当する走時に現れている。また、B,Cに関し てはAより浅部の変化を反映していると考えられる。 さらに Fig. 11(a) における D, E は Fig. 2 の生記録で表 面波などの速度が遅い波の到来と重なる走時に相当す ることから、今後の多フォールド断面解析を待って議 論を進めたい。

また Hidayati et al. (2007) のモデルからは往復走時 5 秒以上(6km以上の深さに相当)における構造変化が 桜島北東部で期待される。しかしこの議論の基準とな る 2008 年観測の測線北端における記録(Fig. 3(a))に おいて相当する走時の S/N比が高くないことから,現 時点では反射波強度の変化の評価は難しいと考える。 2009 年観測を新たな基準として今後得られるデータ を待って深部の議論を展開したい。

#### 6. まとめ

鹿児島県桜島火山で火山活動に伴う地下構造変化の 検出を目的とした反復地震探査を行った。本報告の地 震探査は反復地震探査の第1回目として位置づけられ る。反復地震探査では2008年に実施された地震探査 測線の一部を219点からなる再現測線として再構築 し,7発破点および202観測点の再現が実現した。再 現観測による記録では,初動走時に目立った変化が認 められなかったが,後続相に変化が認められるものが あった。走時3秒付近で後続相の変化が認められる観 測記録は,桜島北東部を通る波線で得られたものであ る。したがって 2009 年観測では地下構造変化の検出 につながるデータが得られたと考える。また,5秒よ り遅い走時の後続相についての議論は今後のデータの 蓄積を待ちたい。

#### 謝 辞

本探査実験は測線に関連する地区の区長諸兄をはじ めとする桜島住民の皆様の絶大なるご協力によって無 事に実施することができました。国土交通省大隅河川 国道事務所には本観測にあたり格別のご配慮をいただ き,効率的な測線展開・撤収作業を可能にしていただ いた。観測に使用した機材の提供では森田裕一氏(東 京大学地震研究所)と片尾 浩氏(京都大学防災研究 所)に便宜を図っていただいた。気象庁地震火山部火 山課には実施経費の一部を負担していただきました。 観測作業の実施ならびに解析にあたって発生した費用 は京都大学防災研究所一般共同研究(課題番号 20G-08,代表者:筒井智樹)および文部科学省による「地 震および火山噴火予知のための観測研究計画」の支援 を受けました。ここに記して感謝の意を表します。

#### 参考文献

- 井口正人・他 82 名 (2009): 2008 年桜島人工地震探査 の目的と実施,京都大学防災研究所年報 第 52 号 B, pp. 293-307.
- 井口正人・為栗 健・横尾亮彦 (2008): 火山活動の経過, 第10回桜島火山集中総合観測報告書, pp. 1-18
- 内田直希・西村太志・吉本和生・中原 恒・佐藤春夫・ 大竹政和・田中 聡・浜口博之 (2002): 1998 年岩 手県内陸北部地震前後の地震波速度変化, 地震 第 2 輯, 第 55 巻, pp. 192-206.
- 気象庁 (2010): 桜島の火山活動解説資料 (平成 22 年 3月), 11pp.
- 蔵下英司・平田 直・森田裕一・結城 昇 (2006): 高機能小型オフラインデータロガーを用いた高密 度地震観測システム,地震 第2輯,第59巻, pp. 107-106.
- 地質調査所 (1971): 爆破地震による地震波速度の変化(第4回観測結果報告),地震予知連絡会会報, Vol. 6, pp. 15-24.
- 地質調査所 (1975): 川崎付近における地震波速度変 化の観測(第1回,第2回扇島爆破実験),地震予 知連絡会会報, Vol. 16, pp. 60-65.
- 地質調査所 (1988): 爆破地震による地震波速度変化 の観測 -第5回東海爆破実験結果概報-, 地震予 知連絡会会報, Vol. 40, pp. 322-325.

- 福山博之・小野晃司 (1981): 桜島火山地質図, 地質調 査所発行, 8pp.
- Duputel, Z., Ferrazzini, V., Brengier, F., Shapiro, N., Campillo, M., and Nercessian, A. (2009): Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Reunion) from January 2006 to June 2007, Journal of Volcanology and Geothermal Research, Vol. 184, pp. 164-173.
- Matsushima, J., Yokota, T., Okubo, Y., Rokugawa, S., Tanaka, K., Tsuchiya, T., Narita, N., Tani, K. (2004): Repeated seismic reflection measurements in the Kakkonda geothermal field, Journal of Volcanology and Geothermal Research, Vol. 129, pp. 343-356.
- Nishimura, T., Tanaka, S., Yamamoto, S., Sano, T., Sato, M., Nakahara, H., Uchida, N., Hori, S., and Sato, H. (2005): Temporal changes in seismic velocity of the crust around Iwate volcano, Japan, as inferred from analyses of repeated active seismic experiment data from 1998 to 2003, Earth Planets Space, Vol. 57, pp. 491-505.

| Station            | Logger       | r Latitude<br>(WGS84) |          | Longitude<br>(WGS84) |            |          | Alti-<br>tude        | lti- Offset to<br>de 2008's station |                  | Rank            | Note   |                                                   |
|--------------------|--------------|-----------------------|----------|----------------------|------------|----------|----------------------|-------------------------------------|------------------|-----------------|--------|---------------------------------------------------|
|                    |              | Deg                   | Min      | Sec                  | Deg        | Min      | Sec                  | (m)                                 | Northi<br>ng (m) | Eastin<br>g (m) |        |                                                   |
| C 001              | 1113         | 31                    | 34       | 59.05628             | 130        | 41       | 58.69197             | 74.3                                | -                | -               | N      |                                                   |
| C 002<br>C 003     | 1114         | 31                    | 34<br>34 | 58.8353<br>56.92016  | 130        | 41       | 55.47276<br>53.71909 | 75.0                                | -                | -               | N<br>N |                                                   |
| C 003              | 1122         | 31                    | 34       | 57.90035             | 130        | 41       | 50.45757             | 86.9                                | _                | _               | N      | Noisy                                             |
| C 005              | 1118         | 31                    | 34       | 58.54615             | 130        | 41       | 47.96354             | 92.6                                | -                | -               | Ν      |                                                   |
| C 006              | 1121         | 31                    | 34       | 59.3605              | 130        | 41       | 46.46872             | 99.2                                | -                | -               | N      | Bag broken and drowned logger                     |
| C 007              | 1172         | 31                    | 35       | 1.73573              | 130        | 41<br>41 | 44.37209<br>41.57452 | 118.3                               | -                | -               | N<br>N | Bag broken and drowned logger                     |
| C 008              | 2029         | 31                    | 34       | 59.62526             | 130        | 41       | 40.1157              | 120.4                               | -                | -               | N      | Bag broken and drowned logger                     |
| C 010              | 1117         | 31                    | 34       | 58.89916             | 130        | 41       | 38.26396             | 122.6                               | -                | -               | Ν      |                                                   |
| C 011              | 3007         | 31                    | 34       | 58.12887             | 130        | 41       | 36.24537             | 125.0                               | -                | -               | N      | Broken bag, TCAL error                            |
| C 012<br>C 013     | 1119<br>3003 | 31                    | 34<br>34 | 57.2576<br>57 58099  | 130        | 41       | 33.99981             | 127.6                               | -                | -               | N<br>N |                                                   |
| C 013              | 3006         | 31                    | 34       | 57.64137             | 130        | 41       | 29.21169             | 132.8                               | _                | _               | N      | Noisy                                             |
| C 015              | 3005         | 31                    | 34       | 57.77044             | 130        | 41       | 25.52915             | 138.9                               | -                | -               | Ν      |                                                   |
| C 016              | 1174         | 31                    | 34       | 57.16078             | 130        | 41       | 23.39493             | 141.5                               | -                | -               | Ν      |                                                   |
| C 017              | 1173         | 31                    | 34       | 56.38522             | 130        | 41       | 20.61691             | 145.7                               | -                | -               | Ν      |                                                   |
| K ARI<br>K AR3     | 1009         | 31                    | 34<br>35 | 0.20667              | 130        | 42       | 6.10868              | 65.7                                | -                | -               |        |                                                   |
| K AR4              | 3002         | 31                    | 35       | 0.42783              | 130        | 42       | 7.38715              | 64.0                                | -                | -               |        | Noisy                                             |
| K AR5              | 1015         | 31                    | 35       | 0.64824              | 130        | 42       | 8.90179              | 59.9                                | -                | -               |        |                                                   |
| K AR6              | 1003         | 31                    | 34       | 58.54062             | 130        | 42       | 6.74149              | 66.1                                | -                | -               |        |                                                   |
| K AR/<br>K AR8     | 1021         | 31                    | 35       | 1.23106              | 130        | 42       | 5.62385              | 66.5                                | -                | -               |        |                                                   |
| X 001 A            | 1005         | 31                    | 34       | 51.13354             | 130        | 42       | 3.69581              | 80.2                                | 0.9              | -2.3            |        | Turned logger and sensor, noisy                   |
| X 002 A            | 1008         | 31                    | 34       | 52.24549             | 130        | 42       | 3.07997              | 80.5                                | -7.4             | -4.3            |        | Noisy                                             |
| X 003 A            | 1116         | 31                    | 34       | 54.30654             | 130        | 42       | 2.14686              | 80.0                                | -0.2             | 0.4             |        | Noisy                                             |
| X 004 A<br>X 005 A | 1001<br>3004 | 31                    | 34<br>34 | 57.29693<br>59.86761 | 130        | 41       | 59.03                | 78.0                                | 15.8             | -7.5            |        | Noisy                                             |
| X 005 A<br>X 006 A | 3004         | 31                    | 34       | 59.97571             | 130        | 42       | 3.0396               | 70.2                                | -6.6             | -4.0            |        | Noisy                                             |
| X 007 A            | 3001         | 31                    | 35       | 0.28926              | 130        | 42       | 4.87717              | 67.9                                | 0.6              | 2.2             |        | Noisy                                             |
| X 008 A            | 3009         | 31                    | 35       | 1.96799              | 130        | 42       | 5.33499              | 65.7                                | 3.9              | -1.8            |        |                                                   |
| X 009 A            | 1004         | 31                    | 35       | 2.83459              | 130        | 42       | 5.21182              | 64.8<br>65.8                        | -12.8            | -25.2           | Ν      |                                                   |
| X 010 A<br>X 011 A | 1091         | 31                    | 35       | 8.30359              | 130        | 42       | 8.62808              | 73.5                                | -1.7             | -0.4            |        |                                                   |
| X 012 A            | 1092         | 31                    | 35       | 9.63006              | 130        | 42       | 9.61006              | 72.8                                | -1.7             | -1.2            |        | Delayed start for 9 s.                            |
| X 013 A            | 5002         | 31                    | 35       | 11.38574             | 130        | 42       | 9.82318              | 89.1                                | 0.2              | -0.2            |        | TCAL error, noisy.                                |
| X 014 A<br>X 015 A | 5003<br>1090 | 31                    | 35       | 13.1693              | 130        | 42       | 9.01374              | 99.3                                | -0.6             | -0.3            |        | Broken bag                                        |
| X 015 A            | 1083         | 31                    | 35       | 16.28122             | 130        | 42       | 8.66279              | 90.9                                | 0.0              | -1.7            |        | broken bug                                        |
| X 017 A            | 1088         | 31                    | 35       | 18.12316             | 130        | 42       | 9.03814              | 85.2                                | -47.7            | 4.5             | Ν      |                                                   |
| X 018 A            | 5005         | 31                    | 35       | 19.75844             | 130        | 42       | 9.04624              | 81.7                                | 2.2              | 4.7             |        | Noisy                                             |
| X 019 A<br>X 020 A | 1085         | 31                    | 35       | 21.49372             | 130        | 42       | 8.77523              | 85.2<br>85.4                        | -1.8             | -3.5            |        |                                                   |
| X 192 A            | 6008         | 31                    | 35       | 25.11468             | 130        | 42       | 6.45737              | 88.7                                | -0.4             | -0.7            |        |                                                   |
| X 021 A            | 1089         | 31                    | 35       | 26.01142             | 130        | 42       | 3.25116              | 91.1                                | 0.1              | 2.9             |        | Broken bag                                        |
| X 022 A            | 6009         | 31                    | 35       | 27.38408             | 130        | 42       | 1.47847              | 92.6                                | 0.6              | 4.1             |        |                                                   |
| X 023 A            | 1042         | 31                    | 35       | 28.48979             | 130        | 42       | 0.12197              | 93.7                                | 0.2              | 3.3             |        | Failed and no data. Ouadruplet flashing indicator |
| X 024 A            | 1087         | 31                    | 35       | 30.04524             | 130        | 41       | 58./5881             | 94.5                                | 0.6              | 4.0             |        | ramp.                                             |
| X 025 A            | 5001         | 31                    | 35       | 30.67985             | 130        | 41       | 56.15912             | 95.2                                | 0.2              | 0.3             |        |                                                   |
| X 020 A<br>X 027 A | 5004         | 31                    | 35       | 33.96655             | 130        | 41       | 54.65407             | 95.9<br>96.6                        | 0.9              | -0.3            |        | Broken bag                                        |
| X 028 A            | 6010         | 31                    | 35       | 35.53099             | 130        | 41       | 55.05539             | 97.0                                | 1.1              | 0.1             |        | C C                                               |
| X 029 A            | 1043         | 31                    | 35       | 36.96295             | 130        | 41       | 54.43724             | 97.8                                | 0.3              | -0.4            |        | Delayed start for 33 s.                           |
| X 030 A            | 1096         | 31                    | 35       | 38.16848             | 130        | 41       | 53.16768             | 99.1                                | 0.7              | -0.3            |        | Delayed start for 0 s                             |
| X 031 A<br>X 032 A | 1159         | 31                    | 35       | 39.62289             | 130        | 41       | 50.64947             | 98.9                                | -0.6             | -0.2            |        | Delayed start for 9 s.                            |
| X 033 A            | 1157         | 31                    | 35       | 40.48749             | 130        | 41       | 48.50671             | 104.5                               | 0.3              | -0.6            |        | Failed and no data.                               |
| X 034 A            | 1161         | 31                    | 35       | 41.18569             | 130        | 41       | 46.18146             | 105.3                               | 0.1              | -0.3            |        |                                                   |
| X 035 A            | 1169         | 31                    | 35       | 41.4681              | 130        | 41       | 43.8817              | 106.1                               | -0.2             | 0.1             |        |                                                   |
| A 036 A<br>X 037 A | 1160         | 31                    | 35<br>35 | 42.13022<br>42.94615 | 130        | 41<br>41 | 42.51067<br>41 3247  | 106.5                               | 0.2              | -0.3            |        |                                                   |
| X 038 A            | 1074         | 31                    | 35       | 43.88459             | 130        | 41       | 39.95907             | 107.7                               | 0.2              | 0.1             |        |                                                   |
| X 039 A            | 1156         | 31                    | 35       | 45.10418             | 130        | 41       | 38.18996             | 109.0                               | 0.0              | 0.3             |        |                                                   |
| X 040 A            | 1164         | 31                    | 35       | 46.27136             | 130        | 41       | 36.4897              | 110.2                               | 0.2              | -0.2            |        | Delayed start for 6                               |
| л 041 A<br>Х 042 Δ | 1163         | 31                    | 35<br>35 | 47.28981<br>48.50016 | 130<br>130 | 41<br>41 | 55.00272<br>33.23738 | 111.3<br>112.6                      | 0.0<br>-0.5      | 0.3             |        | Delayed start for bs.                             |
| 11 012 /1          |              | 2.                    | 55       |                      | 100        | ••       | 22.20,00             | . 12.0                              | 0.5              | 0.0             |        |                                                   |

Appendix 1. Station location. Rank shows a reinstallation rank. Refer to the text for the definition of a reinstallation rank.

\_

| Station            | Logger |     | Lati<br>(WC | itude<br>SS84)       |     | Longi<br>(WGS | Longitude<br>(WGS84) |              | i- Offset to<br>e 2008's station |                 | Rank | Note                           |
|--------------------|--------|-----|-------------|----------------------|-----|---------------|----------------------|--------------|----------------------------------|-----------------|------|--------------------------------|
|                    |        | Deg | Min         | Sec                  | Deg | Min           | Sec                  | (m)          | Northi<br>ng (m)                 | Eastin<br>g (m) |      |                                |
| X 043 A            | 1162   | 31  | 35          | 49.973               | 130 | 41            | 30.76383             | 114.2        | 2.0                              | -2.3            |      |                                |
| X 044 A<br>X 045 A | 1026   | 31  | 35          | 50.99754<br>52 39046 | 130 | 41            | 29.61591             | 115.2        | -0.3                             | -2.7            |      |                                |
| X 045 A            | 1023   | 31  | 35          | 53.57833             | 130 | 41            | 25.99643             | 120.0        | 0.6                              | 0.0             |      |                                |
| X 047 A            | 1177   | 31  | 35          | 55.37303             | 130 | 41            | 24.00829             | 123.4        | 1.5                              | -1.0            |      |                                |
| X 048 A            | 1031   | 31  | 35          | 57.58874             | 130 | 41            | 22.51307             | 125.1        | -3.1                             | 2.2             |      |                                |
| X 049 A            | 1070   | 31  | 35          | 59.12075             | 130 | 41            | 21.90479             | 125.4        | 0.7                              | -0.3            |      |                                |
| X 050 A            | 1183   | 31  | 36          | 1.34859              | 130 | 41            | 21.90709             | 124.7        | 1.5                              | 3.0             |      |                                |
| X 051 A<br>X 052 A | 1002   | 31  | 36          | 2.69653              | 130 | 41            | 22.52458             | 124.1        | 3.0                              | -1.4            |      |                                |
| X 052 A            | 1062   | 31  | 36          | 6.4139               | 130 | 41            | 20.1474              | 124.5        | -4.3                             | 1.5             |      |                                |
| X 054 A            | 1066   | 31  | 36          | 9.32533              | 130 | 41            | 19.73372             | 130.8        | 2.6                              | 3.3             |      |                                |
| $X \ 055 \ A$      | 1176   | 31  | 36          | 10.88493             | 130 | 41            | 19.22286             | 134.1        | 2.2                              | 0.0             |      | Delayed start for 9s.          |
| X 056 A            | 1065   | 31  | 36          | 12.96897             | 130 | 41            | 19.03673             | 135.0        | 1.9                              | -0.4            |      | Failed and no data             |
| X 057 A            | 1030   | 31  | 36          | 15.10551             | 130 | 41            | 18.48706             | 140.7        | 3.8                              | -3.9            |      | Delayed start for 15 s.        |
| Λ 058 A<br>Χ 059 Δ | 1182   | 31  | 36          | 18 27941             | 130 | 41            | 17.90925             | 144.0        | 1.7                              | -0.6            |      | Noisy                          |
| X 060 A            | 1023   | 31  | 36          | 20.01881             | 130 | 41            | 16.73895             | 154.1        | 2.2                              | 4.7             |      | TOBY                           |
| X 061 A            | 1029   | 31  | 36          | 21.80295             | 130 | 41            | 15.59016             | 159.1        | -1.4                             | -0.1            |      |                                |
| X 062 A            | 1180   | 31  | 36          | 23.63964             | 130 | 41            | 14.90651             | 153.7        | -0.2                             | -0.1            |      | Noisy                          |
| X 063 A            | 4031   | 31  | 36          | 25.23417             | 130 | 41            | 15.0547              | 151.0        | 3.6                              | 6.1             |      | Delayed start for 24 s.        |
| X 064 A            | 4027   | 31  | 36          | 26.8287              | 130 | 41            | 13.76135             | 149.4        | 4.4                              | 5.8             |      |                                |
| X 065 A<br>X 066 A | 1178   | 31  | 36          | 28.12007             | 130 | 41            | 12.0148              | 148.0        | -0.4                             | -0.2            |      |                                |
| X 067 A            | 1064   | 31  | 36          | 32.01152             | 130 | 41            | 10.95263             | 147.5        | 1.5                              | -1.6            |      |                                |
| X 068 A            | 4028   | 31  | 36          | 32.87815             | 130 | 41            | 10.05731             | 148.4        | -0.2                             | 0.0             |      |                                |
| X 069 A            | 4030   | 31  | 36          | 34.3897              | 130 | 41            | 9.2485               | 148.1        | 1.9                              | -0.9            |      |                                |
| X 070 A            | 4024   | 31  | 36          | 35.29775             | 130 | 41            | 6.86066              | 148.3        | 0.3                              | 0.5             |      | TCAL error                     |
| X 071 A            | 4025   | 31  | 36          | 35.16904             | 130 | 41            | 5.10502              | 149.2        | -2.1                             | -0.1            |      |                                |
| X 0/2 A<br>X 073 A | 1063   | 31  | 36          | 30.08/05             | 130 | 41            | 2 09853              | 147.3        | 4.0                              | -12.3           |      |                                |
| X 073 A<br>X 074 A | 1072   | 31  | 36          | 38,18918             | 130 | 41            | 0.58519              | 145.2        | -1.0                             | 1.7             |      |                                |
| X 075 A            | 4029   | 31  | 36          | 40.29393             | 130 | 41            | 0.42186              | 143.2        | 7.4                              | 0.0             |      |                                |
| X 076 A            | 1025   | 31  | 36          | 41.35806             | 130 | 41            | 0.56942              | 143.5        | -0.3                             | -0.2            |      |                                |
| X 077 A            | 1024   | 31  | 36          | 43.23628             | 130 | 41            | 1.3063               | 140.7        | -0.2                             | -0.1            |      | noisy                          |
| X 078 A            | 4032   | 31  | 36          | 45.11911             | 130 | 41            | 2.10331              | 139.1        | -1.1                             | -2.5            |      |                                |
| X 0/9 A<br>X 080 A | 4020   | 31  | 36          | 40.31218             | 130 | 41            | 2.43992              | 138.9        | -0.5                             | 6.9             |      |                                |
| X 081 A            | 3012   | 31  | 36          | 48.83178             | 130 | 41            | 2.05239              | 140.5        | -0.7                             | -0.1            |      |                                |
| X 082 A            | 3015   | 31  | 36          | 50.82098             | 130 | 41            | 0.05371              | 142.8        | -1.1                             | -1.3            |      | noisy                          |
| X 083 A            | 3014   | 31  | 36          | 52.87607             | 130 | 40            | 58.95487             | 145.3        | 1.3                              | -1.2            |      |                                |
| X 084 A            | 1185   | 31  | 36          | 53.79346             | 130 | 40            | 55.94311             | 153.7        | -5.8                             | -3.8            |      |                                |
| X 085 A            | 3013   | 31  | 36          | 52.28308             | 130 | 40            | 51.79982             | 163.9        | -2.3                             | -0.8            |      |                                |
| X 080 A<br>X 087 A | 1134   | 31  | 36          | 54.32523             | 130 | 40            | 46.23384             | 162.0        | -1.0                             | -0.1            |      |                                |
| X 088 A            | 1130   | 31  | 36          | 55.01802             | 130 | 40            | 44.37649             | 160.4        | 2.0                              | 0.3             |      |                                |
| X 089 A            | 1036   | 31  | 36          | 56.58288             | 130 | 40            | 43.80242             | 158.5        | 1.7                              | 1.2             |      |                                |
| X 090 A            | 1133   | 31  | 36          | 59.11757             | 130 | 40            | 43.52422             | 157.2        | 0.8                              | -1.8            |      |                                |
| X 091 A            | 1132   | 31  | 37          | 1.2435               | 130 | 40            | 44.59937             | 156.0        | -1.7                             | -0.4            |      |                                |
| X 092 A            | 1127   | 31  | 37          | 4 81931              | 130 | 40            | 45 16101             | 132.7        | -4.9                             | 14.8            |      | Delayed start for 12 s         |
| X 094 A            | 1061   | 31  | 37          | 8.07157              | 130 | 40            | 43.90267             | 93.7         | -0.2                             | 0.7             |      | Delayed start for 6 s.         |
| X 095 A            | 1054   | 31  | 37          | 8.17624              | 130 | 40            | 42.27265             | 92.2         | -0.3                             | -5.3            |      |                                |
| X 096 A            | 1108   | 31  | 37          | 10.09803             | 130 | 40            | 41.80565             | 93.3         | -0.4                             | 1.8             |      |                                |
| X 097 A            | 1153   | 31  | 37          | 11.33476             | 130 | 40            | 40.12811             | 84.2         | -3.4                             | -9.6            | N    | Noisy                          |
| X 098 A<br>X 099 A | 1151   | 31  | 37          | 13.42047             | 130 | 40            | 41.4545              | 80.4<br>87.0 | 0.6                              | -1.4            | N    | noisy                          |
| X 100 A            | 1150   | 31  | 37          | 15.57829             | 130 | 40            | 41.27902             | 85.2         | -1.4                             | 4.8             | a    | F: broken bag and noisy        |
| X 101 A            | 1050   | 31  | 37          | 17.3115              | 130 | 40            | 40.73016             | 81.5         | -1.3                             | 0.2             |      |                                |
| X 102 A            | 1107   | 31  | 37          | 17.8443              | 130 | 40            | 39.12031             | 80.0         | -17.3                            | -52.9           | Ν    | F: moved about 10cm away.      |
| X 103 A            | 1052   | 31  | 37          | 18.968701            | 130 | 40            | 39.01376             | 79.0         | -27.3                            | -65.2           | Ν    |                                |
| X 104 A            | 2027   | 31  | 37          | 21.44062             | 130 | 40            | 40.01875             | 73.4         | 5.1                              | -21.0           |      | TCAL error                     |
| A 105 A<br>X 106 A | 1155   | 31  | 37          | 22.48158             | 130 | 40<br>40      | 40./1697             | 64.5         | 0.9                              | -2.3            |      | noisy<br>periodic hurst noise  |
| X 100 A<br>X 107 A | 1111   | 31  | 37          | 25.37163             | 130 | 40            | 41.39318             | 57.9         | -2.6                             | -2.1            |      | 5 minutes interval noise burst |
| X 108 A            | 1146   | 31  | 37          | 26.57406             | 130 | 40            | 41.66526             | 53.3         | 7.2                              | 2.5             |      |                                |
| X 109 A            | 1175   | 31  | 37          | 27.3984              | 130 | 40            | 41.41663             | 53.0         | 1.5                              | 1.0             |      | Noisy                          |
| X 110 A            | 1103   | 31  | 37          | 28.57939             | 130 | 40            | 41.77059             | 47.4         | 1.2                              | 0.6             |      |                                |
| X 111 A<br>X 112 A | 1056   | 31  | 37          | 29.95277             | 130 | 40            | 41.97757             | 43.0         | 7.4                              | 7.6             | N    |                                |
| A 112 A            | 1040   | 31  | 31          | 01.000000            | 150 | 40            | +1.20000             | +2.0         | 13.4                             | 5.5             | ſN   |                                |

| Station            | Logger | gger (WGS84) |     | Longitude<br>(WGS84) |     |     | Alti-<br>tude | Offset to 2008's station |                  | Rank            | Note    |                                               |
|--------------------|--------|--------------|-----|----------------------|-----|-----|---------------|--------------------------|------------------|-----------------|---------|-----------------------------------------------|
|                    |        | Deg          | Min | Sec                  | Deg | Min | Sec           | (m)                      | Northi<br>ng (m) | Eastin<br>g (m) |         |                                               |
| X 113 A            | 1149   | 31           | 37  | 32.26763             | 130 | 40  | 40.56904      | 39.6                     | 1.9              | -5.8            |         | Noisy                                         |
| X 114 A<br>X 115 A | 1110   | 31           | 37  | 32.97822             | 130 | 40  | 39.87483      | 41.7                     | 0.5              | -0.9            |         | Noisy                                         |
| X 115 A            | 1105   | 31           | 37  | 35.02225             | 130 | 40  | 37.59026      | 42.9                     | 1.3              | 0.4             |         | TCAL error                                    |
| X 117 A            | 1148   | 31           | 37  | 35.96487             | 130 | 40  | 36.28421      | 43.9                     | -4.9             | -6.2            | Ν       |                                               |
| X 118 A            | 1062   | 31           | 37  | 37.81917             | 130 | 40  | 36.09117      | 37.6                     | 1.4              | 1.3             |         |                                               |
| X 119 A            | 1057   | 31           | 37  | 38.89231             | 130 | 40  | 36.70422      | 31.7                     | 0.3              | -0.4            |         |                                               |
| X 120 A            | 1059   | 31           | 37  | 40.38888             | 130 | 40  | 36.9724       | 24.9                     | -0.6             | 0.3             |         | Noisy                                         |
| X 121 A<br>X 122 A | 1152   | 31           | 37  | 41.54559             | 130 | 40  | 38.44712      | 22.3                     | -1.7             | 0.1             |         |                                               |
| X 122 A<br>X 123 A | 1171   | 31           | 37  | 44.0452              | 130 | 40  | 41.40178      | 23.3                     | -25.6            | -21.8           |         | Noisy and doubtful location of 2008's station |
| X 124 A            | 1058   | 31           | 37  | 44.05366             | 130 | 40  | 43.09564      | 23.1                     | -0.1             | 9.4             |         | Opened bag                                    |
| X 125 A            | 1104   | 31           | 37  | 43.94443             | 130 | 40  | 44.90981      | 22.9                     | 1.2              | -0.6            |         |                                               |
| D 001              | 1044   | 31           | 36  | 16.57707             | 130 | 38  | 18.43694      | 366.6                    | -                | -               | Ν       | Noisy                                         |
| D 002              | 1049   | 31           | 36  | 14.64841             | 130 | 38  | 17.6839       | 366.6                    | -                | -               | Ν       | Noisy                                         |
| D 003              | 1140   | 31           | 36  | 13.17312             | 130 | 38  | 17.29204      | 366.6                    | -                | -               | N       |                                               |
| D 004              | 1144   | 31           | 36  | 11                   | 130 | 38  | 16.5          | 364.2                    | -                | -               | N       | Noisy                                         |
| D 005              | 1107   | 21           | 30  | 9.39402              | 130 | 38  | 1/.4//45      | 360.9                    | -                | -               | IN<br>N |                                               |
| D 000              | 7003   | 31           | 36  | 6 20435              | 130 | 38  | 18 85979      | 358.5                    | -                | -               | N       | Noisy                                         |
| D 008              | 1135   | 31           | 36  | 4.10394              | 130 | 38  | 17.36872      | 355.8                    | _                | _               | N       | noisy                                         |
| D 009              | 1166   | 31           | 36  | 2.10682              | 130 | 38  | 17.23455      | 353                      | -                | -               | Ν       | Noisy                                         |
| D 010              | 1190   | 31           | 36  | 0.87665              | 130 | 38  | 18.43465      | 349.6                    | -                | -               | Ν       | Noisy                                         |
| X 001 B            | 1048   | 31           | 36  | 18.11603             | 130 | 38  | 10.14141      | 353.7                    | 6.8              | 4.2             |         | Noisy                                         |
| X 002 B            | 4006   | 31           | 36  | 19.07632             | 130 | 38  | 12.16383      | 363.9                    | -0.2             | -0.6            |         |                                               |
| X 003 B            | 4013   | 31           | 36  | 18.031759            | 130 | 38  | 13.85247      | 372.7                    | 2                | -9.7            |         |                                               |
| X 004 B            | 4012   | 31           | 36  | 18.386165            | 130 | 38  | 16.73705      | 380.8                    | -2.1             | -1.3            |         | Drifting base level                           |
| X 005 B            | 4005   | 31           | 36  | 18.4028              | 130 | 38  | 19.04846      | 367.7                    | -5.1             | -8.7            |         | Naim                                          |
| А 000 В<br>Х 007 В | 1047   | 31           | 30  | 19.416042            | 130 | 38  | 21.30705      | 368.8                    | 0.4              | -0.3            |         | Noisy<br>Delayed start for 6 s, and poisy     |
| X 007 B<br>X 008 B | 1192   | 31           | 36  | 20.81651             | 130 | 38  | 27.67293      | 361.9                    | 1.8              | 9.3             |         | Delayed start for 0 s, and horsy.             |
| X 009 B            | 4011   | 31           | 36  | 20.41565             | 130 | 38  | 30.85663      | 361.7                    | -2.1             | 4.8             |         | Bag broken and short receptacle lost          |
| X 010 B            | 1188   | 31           | 36  | 19.72951             | 130 | 38  | 33.00829      | 356.1                    | -0.7             | 2.5             |         | Broken bag                                    |
| X 011 B            | 1189   | 31           | 36  | 19.39421             | 130 | 38  | 35.9285       | 354.8                    | 0.1              | 0.4             |         | Noisy                                         |
| X 012 B            | 1193   | 31           | 36  | 19.93231             | 130 | 38  | 39.42978      | 351.7                    | 0                | -0.2            |         | Noisy                                         |
| X 013 B            | 4007   | 31           | 36  | 20.82907             | 130 | 38  | 41.32499      | 346.1                    | 0.8              | -0.5            |         |                                               |
| X 014 B            | 1187   | 31           | 36  | 22.54543             | 130 | 38  | 44.63439      | 348.2                    | -0.5             | 0.5             |         | Noisy                                         |
| X 015 B<br>X 016 B | 4008   | 31           | 36  | 23.47348             | 130 | 38  | 46./2434      | 342.9                    | 1.3              | 1.1<br>21.2     |         | Absolutely noisy                              |
| X 010 B<br>X 017 B | 4010   | 31           | 36  | 23.045015            | 130 | 38  | 53 77004      | 341.2                    | -1.9             | 0.3             |         | Noisy                                         |
| X 018 B            | 1143   | 31           | 36  | 24.44309             | 130 | 38  | 57.70517      | 341.4                    | 1.6              | 6.3             |         | Noisy                                         |
| X 019 B            | 1145   | 31           | 36  | 24.88298             | 130 | 39  | 0.86358       | 343.9                    | -0.1             | -0.5            |         | Noisy                                         |
| X 020 B            | 1141   | 31           | 36  | 26.50876             | 130 | 39  | 3.76454       | 335.3                    | 2.1              | -1.3            |         |                                               |
| X 021 B            | 4004   | 31           | 36  | 26.97029             | 130 | 39  | 7.83214       | 329.5                    | 0.9              | 0.2             |         | TCAL error and noisy                          |
| X 022 B            | 1139   | 31           | 36  | 27.27246             | 130 | 39  | 10.12508      | 326.9                    | 0.2              | 0.4             |         |                                               |
| X 023 B            | 1138   | 31           | 36  | 26.73189             | 130 | 39  | 13.83431      | 328.3                    | 9.4              | -1.2            | Ν       |                                               |
| X 024 B            | 2016   | 31           | 36  | 25.7099              | 130 | 39  | 16.911        | 324                      | 0.7              | 5.3             |         |                                               |
| А 025 В<br>У 026 В | 2017   | 21           | 30  | 24.910187            | 130 | 39  | 20.30326      | 328.4                    | -0.7             | 1./             |         |                                               |
| X 020 B            | 2005   | 31           | 36  | 21 40201             | 130 | 39  | 24 43803      | 352.9                    | -0.9             | -0.1            |         |                                               |
| X 028 B            | 3029   | 31           | 36  | 21.822303            | 130 | 39  | 27.85597      | 354.2                    | 0                | 0.5             |         |                                               |
| X 029 B            | 3023   | 31           | 36  | 23.81771             | 130 | 39  | 27.74407      | 341.6                    | -4.9             | 4.5             | Ν       |                                               |
| X 030 B            | 3031   | 31           | 36  | 25.359435            | 130 | 39  | 29.80778      | 325.4                    | -0.6             | 1.7             |         |                                               |
| X 031 B            | 2012   | 31           | 36  | 26.203506            | 130 | 39  | 33.5765       | 331.1                    | 4.2              | 22.9            |         |                                               |
| X 032 B            | 2004   | 31           | 36  | 24.47104             | 130 | 39  | 38.05074      | 345.5                    | -16.8            | 55              |         | Noisy                                         |
| X 033 B            | 2002   | 31           | 36  | 24.52499             | 130 | 39  | 38.08006      | 341.8                    | 4.6              | -5.1            |         |                                               |
| X 034 B            | 2010   | 31           | 36  | 24.922719            | 130 | 39  | 40.8494       | 340.2                    | -3.4             | -6.3            |         | N-i                                           |
| X 036 P            | 2014   | 31           | 36  | 25.385567            | 130 | 39  | 44.01296      | 330.3                    | -1.2             | 3.8             | м       | noisý                                         |
| X 037 B            | 3028   | 31           | 36  | 24.89836             | 130 | 39  | 48.78581      | 325.9                    | -3               | -4.2            | N       | TCAL error                                    |
| X 038 B            | 3021   | 31           | 36  | 27.047052            | 130 | 39  | 51.01002      | 330.5                    | 5.1              | -1.4            |         |                                               |
| X 039 B            | 3022   | 31           | 36  | 29.35194             | 130 | 39  | 53.04261      | 327.7                    | 1.6              | 5.4             |         | Failed and no data                            |
| X 040 B            | 3024   | 31           | 36  | 29.90272             | 130 | 39  | 55.91369      | 319.8                    | -1.2             | -4.4            |         |                                               |
| X 041 B            | 3034   | 31           | 36  | 31.355087            | 130 | 39  | 58.31786      | 325.7                    | 7.4              | 2.2             |         |                                               |
| X 042 B            | 2018   | 31           | 36  | 32.80839             | 130 | 40  | 0.31378       | 320.3                    | -12.3            | -0.8            |         |                                               |
| X 043 B            | 2020   | 31           | 36  | 35.64817             | 130 | 40  | 2.41337       | 313.1                    | -1.7             | -1.2            |         |                                               |
| л 044 B            | 2019   | 31           | 36  | 37.0122              | 130 | 40  | 5.03679       | 315.2                    | 9.2              | 3.7             |         | Noisy                                         |

| Station            | Logger | ger Latitude<br>(WGS84) |          | Longitude<br>(WGS84) |     |     | Alti-<br>tude        | Offset to 2008's station |                  | Rank            | Note |                                                                                                                  |
|--------------------|--------|-------------------------|----------|----------------------|-----|-----|----------------------|--------------------------|------------------|-----------------|------|------------------------------------------------------------------------------------------------------------------|
|                    |        | Deg                     | Min      | Sec                  | Deg | Min | Sec                  | (m)                      | Northi<br>ng (m) | Eastin<br>g (m) |      |                                                                                                                  |
| X 045 B            | 3033   | 31                      | 36       | 39.16868             | 130 | 40  | 8.21703              | 317.6                    | 14.9             | 16.6            |      | Noisy                                                                                                            |
| X 046 B            | 2008   | 31                      | 36       | 38.19713             | 130 | 40  | 10.78392             | 318.4                    | 0.6              | -1.3            |      |                                                                                                                  |
| X 047 B            | 1134   | 31                      | 36       | 37.45507             | 130 | 40  | 13.8898              | 318.4                    | -1.3             | 10              |      |                                                                                                                  |
| X 048 B            | 1035   | 31                      | 36       | 37.42874             | 130 | 40  | 15.78225             | 316.1                    | 0.4              | 0.2             |      | noisy                                                                                                            |
| X 050 B            | 1128   | 31                      | 36       | 37 38841             | 130 | 40  | 23 02546             | 300.6                    | 3.2              | 9.8             |      |                                                                                                                  |
| X 051 B            | 1123   | 31                      | 36       | 37.23567             | 130 | 40  | 26.8142              | 295.6                    | 1                | -0.3            |      | Noisy                                                                                                            |
| B 102              | 1038   | 31                      | 36       | 46.87165             | 130 | 40  | 31.2976              | 231.5                    | -                | -               | Ν    |                                                                                                                  |
| X 101 B            | 1041   | 31                      | 36       | 43.86756             | 130 | 40  | 30.45348             | 257.4                    | 1.5              | -0.1            |      |                                                                                                                  |
| B 100              | 1040   | 31                      | 36       | 41.2902              | 130 | 40  | 30.45592             | 262.6                    | -                | -               | Ν    |                                                                                                                  |
| B 099              | 1124   | 31                      | 36       | 39.09285             | 130 | 40  | 28.69899             | 272.5                    | -                | -               | Ν    |                                                                                                                  |
| B 207              | 2007   | 31                      | 36       | 48.06218             | 130 | 40  | 33.16639             | 217.5                    | -                | -               | N    | Early retrieval                                                                                                  |
| B 206<br>B 205     | 2013   | 31                      | 36       | 48.029               | 130 | 40  | 35.83838             | 200.2                    | -                | -               | N    | Early retrieval, periodic burst noise                                                                            |
| B 203<br>B 204     | 3042   | 31                      | 36       | 47.19881             | 130 | 40  | 38.33208<br>40.76206 | 189.5                    |                  | -               | N    | Early retrieval, and 4 minutes interval burst noise<br>Early retrieval TCAL error 4 minutes interval burst poise |
| B 203              | 3044   | 31                      | 36       | 49.03053             | 130 | 40  | 41.43633             | 176.5                    |                  | _               | N    | Early retrieval                                                                                                  |
| B 202              | 3035   | 31                      | 36       | 50.34128             | 130 | 40  | 42.35098             | 172.8                    |                  | -               | Ν    | Early retrieval, 1 minutes interval burst noise                                                                  |
| B 201              | 2015   | 31                      | 36       | 52.14685             | 130 | 40  | 44.88906             | 165.3                    | -                | -               | Ν    | Early retrieval                                                                                                  |
| X 054 B            | 3020   | 31                      | 36       | 48.34517             | 130 | 40  | 43.94891             | 160.4                    | 45.8             | 7.7             | Ν    | Delayed start for 6 s, noisy                                                                                     |
| X 055 B            | 3018   | 31                      | 36       | 46.16529             | 130 | 40  | 47.24699             | 177.2                    | 0.3              | -0.3            |      |                                                                                                                  |
| X 056 B            | 1033   | 31                      | 36       | 44.69869             | 130 | 40  | 48.91851             | 174.6                    | 2.9              | 0               |      | Delayed start for 6 s                                                                                            |
| X 05/ B            | 1037   | 31                      | 36       | 43.2541              | 130 | 40  | 51.17904             | 171.5                    | 0.6              | -0.2            |      |                                                                                                                  |
| X 059 B            | 3019   | 31                      | 30<br>36 | 42.55405             | 130 | 40  | 57 78741             | 155.6                    | -8.3             | 4.6             |      |                                                                                                                  |
| X 060 B            | 1032   | 31                      | 36       | 43.9179              | 130 | 41  | 0.34142              | 144.1                    | -6.2             | -0.5            |      |                                                                                                                  |
| X 061 B            | 3037   | 31                      | 36       | 43.61897             | 130 | 41  | 2.41541              | 138.2                    | 0.5              | -4.6            |      |                                                                                                                  |
| X 062 B            | 3046   | 31                      | 36       | 42.59274             | 130 | 41  | 5.0038               | 118.6                    | 0.8              | 0.1             |      |                                                                                                                  |
| X 063 B            | 2009   | 31                      | 36       | 40.599               | 130 | 41  | 6.55339              | 115                      | 2.9              | -1.3            |      | Failed and no data                                                                                               |
| X 064 B            | 2001   | 31                      | 36       | 40.62628             | 130 | 41  | 9.47548              | 109.7                    | 1.5              | -0.5            |      |                                                                                                                  |
| X 065 B            | 4002   | 31                      | 36       | 39.92198             | 130 | 41  | 11.90724             | 106.4                    | 0                | -1.9            |      |                                                                                                                  |
| X 067 B            | 3036   | 31                      | 36       | 38 10195             | 130 | 41  | 14.70154             | 104.6                    | 1.1              | -0.0            |      |                                                                                                                  |
| X 068 B            | 3049   | 31                      | 36       | 37.4046              | 130 | 41  | 20.94556             | 102.5                    | 1                | -8.9            |      |                                                                                                                  |
| X 069 B            | 3050   | 31                      | 36       | 36.93444             | 130 | 41  | 25.42401             | 100.6                    | 3.5              | 46.8            | Ν    | Noisy                                                                                                            |
| X 070 B            | 2003   | 31                      | 36       | 34.13613             | 130 | 41  | 23.64751             | 103.5                    | 0.7              | -13.5           |      |                                                                                                                  |
| X 071 B            | 3040   | 31                      | 36       | 32.04122             | 130 | 41  | 24.64749             | 104.8                    | -0.7             | -0.9            |      |                                                                                                                  |
| X 072 B            | 4001   | 31                      | 36       | 30.36313             | 130 | 41  | 28.39478             | 104.6                    | -2.7             | 5.2             |      | Noisy                                                                                                            |
| X 074 B            | 3041   | 31                      | 36       | 28.45477             | 130 | 41  | 30.64/2              | 105.2                    | 0.2              | -1              |      |                                                                                                                  |
| X 074 B<br>X 075 B | 3038   | 31                      | 36       | 23.34904             | 130 | 41  | 32.76385             | 108.1                    | -4.5             | -/              |      |                                                                                                                  |
| X 076 B            | 1170   | 31                      | 36       | 21.78826             | 130 | 41  | 37.79661             | 91.8                     | 5.1              | -3.8            |      |                                                                                                                  |
| X 077 B            | 6012   | 31                      | 36       | 22.96977             | 130 | 41  | 41.23814             | 91.2                     | -28.6            | -60.9           | Ν    | TCAL error                                                                                                       |
| X 078 B            | 1082   | 31                      | 36       | 24.03668             | 130 | 41  | 44.02125             | 91.5                     | 36.8             | 71.6            | Ν    |                                                                                                                  |
| X 079 B            | 1081   | 31                      | 36       | 21.76967             | 130 | 41  | 46.85368             | 84.4                     | 4.2              | 2.7             |      | Noisy                                                                                                            |
| X 080 B            | 1097   | 31                      | 36       | 21.04358             | 130 | 41  | 49.7515              | 83.7                     | -0.9             | -0.5            |      | Noisy                                                                                                            |
| X 082 B            | 1078   | 31                      | 36       | 21.644605            | 130 | 41  | 52.00003             | /5.8<br>75.7             | 5.8<br>-2.4      | -4.6            |      | Noisy                                                                                                            |
| X 083 B            | 1095   | 31                      | 36       | 21.116214            | 130 | 41  | 58.21487             | 74.8                     | 0.1              | -0.3            |      | Noisy                                                                                                            |
| X 084 B            | 1098   | 31                      | 36       | 20.574886            | 130 | 42  | 1.96923              | 66.9                     | 1.8              | 0.4             |      | noisy                                                                                                            |
| X 085 B            | 1099   | 31                      | 36       | 18.304015            | 130 | 42  | 2.79103              | 52.9                     | -1.9             | -1.2            |      |                                                                                                                  |
| X 086 B            | 1076   | 31                      | 36       | 17.5049              | 130 | 42  | 4.90932              | 42.4                     | 2                | -1.4            |      | Noisy                                                                                                            |
| X 087 B            | 6014   | 31                      | 36       | 16.42653             | 130 | 42  | 6.9927               | 42.2                     | 0.3              | 0.8             |      | TCAL error and noisy                                                                                             |
| X 080 P            | 1079   | 31                      | 36       | 14.86746             | 130 | 42  | 8.64761              | 39.7                     | 0.2              | 2               |      | Broken bag                                                                                                       |
| X 000 B            | 1094   | 31                      | 30<br>36 | 13.02873             | 130 | 42  | 13,84707             | 33.0<br>34 1             | -2.3             | -0.2            |      | Dewen dag misure                                                                                                 |
| X 091 B            | 1168   | 31                      | 36       | 13.85804             | 130 | 42  | 15.57627             | 40.5                     | 0.8              | 0.4             |      |                                                                                                                  |
| X 092 B            | 2028   | 31                      | 36       | 12.20498             | 130 | 42  | 15.95159             | 43.1                     | 0                | -0.2            |      |                                                                                                                  |
| X 093 B            | 1101   | 31                      | 36       | 12.85488             | 130 | 42  | 19.6455              | 42.5                     | 0.8              | 2.8             |      | Broken bag and drawed away.                                                                                      |
| X 094 B            | 1100   | 31                      | 36       | 12.80249             | 130 | 42  | 21.80052             | 39.6                     | -0.5             | -1.5            |      |                                                                                                                  |

#### The First Round of the Repeated Seismic Survey in Sakurajima Volcano, South Kyushu, Japan

\*Faculty of Engineering and Resource Science, Akita University,
\*\* Japan Meteorological Agency
\*\*\*Graduate School of Science, Hokkaido University,
\*\*\*\* Graduate School of Science, Tohoku University,
\*\*\*\*\* Earthquake Research Institute, University of Tokyo,
\*\*\*\*\*\* Volcanic Fluid Research Center, Tokyo Institute of Technology,
\*\*\*\*\*\*\* Graduate School of Environmental Studies, Nagoya University,
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*
Faculty of Science, Kyoto University,
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### **Synopsis**

The repetitive seismic prospecting was performed in Sakurajima Volcano on December 2009, aiming at a detection of the structural change accompanying volcanic activity. A part of the seismic lines of 2008's survey was reconstructed. The seismic lines consisted of 15 shot points, and 263 temporal seismic stations. Among these, the reconstructed line consisted of seven reappearance shot-points, and 219 reappearance temporal stations. In reconstruction of a line, 202 points succeeded in the re-installation to the original point. As compared with the previous observation with the same charge size, 0.6 to 2.9 times of the peak amplitude was obtained by the shots. Although no change in the first-arrival time was observed in the obtained record, a systematic change was observed in later phases of the observation record in a northeast part. It is expected that obtained data may leads to a detection of the structural change accompanying activity of the Sakurajima volcano.

Keywords: Sakurajima Volcano, Artificial explosion experiment, Structure transition monitoring