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Abstract As it walks, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) 20 

spins a trail of silk threads, that is followed by the predatory mite, Neoseiulus womersleyi Schicha 21 

(Acari: Phytoseiidae). Starved adult female N. womersleyi followed T. urticae trails laid down by 22 

five T. urticae females but did not follow a trail of one T. urticae female, suggesting that the amount 23 

of spun threads and their chemical components should correlate positively with the number of T. 24 

urticae individuals. To examine whether chemical components of T. urticae trails are responsible for 25 

the predatory mite’s trail following, we collected separate T. urticae threads from the exuviae and 26 

eggs, and then washed the threads with methanol to separate chemical components from physical 27 

attributes of the threads. Female N. womersleyi did not follow T. urticae trails that had been washed 28 

with methanol but contained physical residues, but they did follow the direction to which the 29 

methanol extracts of the T. urticae trails was applied. These results suggest that the predatory mite 30 

follows chemical, not physical, attributes of T. urticae trails.  31 

 32 

Key words Tetranychus urticae ▪ Neoseiulus womersleyi ▪ Silk thread ▪ Methanol extracts ▪ Trail 33 

following 34 

35 



 3 

Introduction 36 

Predatory mites are promising biological control agents against tetranychid mites  (e.g. McMurtry 37 

1992; Croft and Slone 1997). For effective use of predatory mites as biological control agents, the 38 

prey-searching cues of the mites must be elucidated. Although volatiles produced by 39 

spider-mite-infested plants are thought to attract predatory mites (Sabelis and Van de Baan 1983; 40 

Dicke et al. 1990), recent observations in open environments suggest that spider mite patches on 41 

plant leaves do not attract predatory mites at a distance on the plant (Zemek et al. 2008; Yano and 42 

Osakabe 2009). On the other hand, Yano and Osakabe (2009) showed that the predatory mite 43 

Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) follows trails left by adult female 44 

Tetranychus urticae, suggesting that the spider mite trail could be a reliable prey-searching cue for 45 

spider patches at a distance.  46 

Tetranychus urticae feeds on various host plant species and is considered an important 47 
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agricultural pest globally (Jeppson et al. 1975). This mite often exhausts its host plant’s resources, 48 

and mated adult females then disperse to new hosts, primarily by walking (Margolies and Kennedy 49 

1985). Ambulatory dispersing adult female T. urticae follow the trails left by preceding females, 50 

which results in aggregation at a new colony site (Yano 2008).  Tetranychus urticae spins a trail of 51 

silk threads when walking (Saito 1977). Silk threads spun by T. urticae have been reported to retain 52 

predatory mites and elicit typical prey-searching behavior (Hislop et al. 1978; Hoy and Smilanick 53 

1981; Hislop and Prokopy 1981). Hoy and Smilanick (1981) reported that the predatory mite 54 

Metaseiulus (=Typhlodromus) occidentalis Nesbitt (Acari: Phytoseiidae) detects silk and other 55 

residuals of T. urticae on spider-mite-infested leaves, which can be removed by washing the leaves 56 

with water. Although they suggested that water-soluble extracts of deposits are likely to serve as a 57 

search cue for the predatory mite, important cues may be physically washed off. Hislop and Prokopy 58 

(1981) showed that although the predatory mite Neoseiulus fallasis (Garman) (Acari: Phytoseiidae) 59 
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preferred methanol extracts of T. urticae silk threads placed on filter paper, it showed a stronger 60 

preference for intact silk. They concluded that N. fallasis may detect the chemical components of T. 61 

urticae silk, although the physical stimulus of silk threads may also be involved.  62 

However, these studies reported on the retention of predatory mites within a spider mite colony,  63 

not on how they were guided toward the colony. Moreover, extracts of T. urticae silk contain 64 

residuals, such as feces, exuviae, and even eggs, the latter of which are food of the above predatory 65 

mites. Hence, these extracts may differ substantially from those of spider mite trails outside colonies. 66 

To determine if predatory mites use the chemical components of spider mite trails to orient 67 

themselves toward spider-mite-infested leaves, residual deposits that are apparently not associated 68 

with trails outside the colony must be excluded. 69 

In this study, we examined the prey-searching behavior of the endemic predatory mite 70 

Neoseiulus womersleyi, which is an important predator of tetranychid mites in Japan (Hamamura 71 
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1986; Ehara and Shinkaji 1996). We collected T. urticae silk threads separately from their residuals. 72 

Using extracts of the collected threads, we examined the hypothesis that N. womersleyi can detect 73 

chemical components of T. urticae trails.  74 

 75 

Materials and methods 76 

Mites 77 

The T. urticae study population was collected from a rose garden in Kyoto, Japan, and maintained on 78 

individual discs of kidney bean Phaseolus vulgaris L. (Leguminosae) leaves pressed onto 79 

water-saturated cotton in Petri dishes (90-mm diameter, 14 mm deep). The N. womersleyi study 80 

population was also collected in Kyoto and was maintained on kidney bean leaf discs that were 81 

heavily infested with T. urticae as prey. The leaf discs were maintained at 25 ± 2°C with 50 ± 5 % 82 

relative humidity and a photoperiod of 16 : 8, light: dark (hereafter described as “laboratory 83 
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conditions”).  84 

 85 

Preference of N. womersleyi for T. urticae trails 86 

We first examined whether female N. womersleyi could follow trails laid down by T. urticae. The 87 

term “trail”, as used in this study, refers to the silk threads and/or other chemical compound(s) 88 

deposited by mated adult female T. urticae (hereafter described as “female T. urticae”). To conduct 89 

dual-choice experiments under laboratory conditions, we connected one Parafilm square (Parafilm 90 

M, American National Can Group, Chicago, IL, USA) and two bean leaf squares (10  10mm) with a 91 

T-shaped Parafilm pathway on water-saturated cotton in Petri dishes (90-mm diameter, 14mm deep). 92 

To induce a spider mite trail, we blocked a randomly selected branch with a piece of wet filte r paper, 93 

and then introduced either one or five 2– to 4-day-old female T. urticae onto the Parafilm square 94 

(Fig.1a). One to five adult female T. urticae correspond to a typical colony size of the mite in the 95 
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wild (Yano, unpublished results). After 1h, when all of the T. urticae females had moved to the 96 

available bean leaf square, we removed the wet filter paper and two bean squares together with the T. 97 

urticae females from each disc, leaving only a trail on the Parafilm (Fig.1b).  98 

We used 1-day-old mated adult female N. womersleyi (hereafter described as “female N. 99 

womersleyi”) that had been previously starved since late deutonymph period. To prepare these 100 

females, we isolated an old deutonymph female and an adult male N. womersleyi in a 1.5-ml 101 

microtube (Treff AG, Degersheim, Switzerland) with a water droplet. We had previously confirmed 102 

that old deutonymph females mature without feeding and that these females most intensively follow 103 

spider mite trails (Yano, unpublished results). To avoid cannibalism and unsuccessful mating, we 104 

used mature females only when both the female and male were alive after 48h. We introduced 105 

individual female mites to the bottom of the T-shaped pathway using a fine brush (Fig.1b) and 106 

recorded which branch they followed to the far end. We used each female N. womersleyi and 107 
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T-shaped Parafilm path only once. The female N. womersleyi that did not reach either end within 108 

5min were not included in the analysis. The number of replicates was 25 for trails made by five 109 

females and 30 for trails made by one female. Experimental outcomes were compared using the 110 

binomial tests (Sokal and Rohlf, 1995), with the common null hypothesis that a female N. 111 

womersleyi would chose either of the two branches with equal probability (i.e. 0.5). 112 

 113 

Preference of N. womersleyi for T. urticae trails washed with methanol 114 

To conduct dual-choice experiments, trails made by five T. urticae females were induced on a 115 

Parafilm pathway in the manner described above. We then transferred the Parafilm to a Petri dish 116 

filled with methanol (Wako Pure Chemical Industries Ltd, Osaka, Japan, min. 99.5%) and gently 117 

shook the dish for 5min. The Parafilm was then completely dried at room temperature and placed on 118 

water-saturated cotton in another Petri dish (Fig.1b). To confirm whether threads were still present 119 
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on Parafilm pathways after they were washed with methanol, we observed threads on the surfaces of 120 

randomly sampled Parafilm pathways using a scanning electron microscope (3D Real Surface View 121 

Microscope VE-8800, Keyence, Osaka, Japan).  122 

We then introduced a starved 1-day-old female N. womersleyi to the base point of the T-shaped 123 

Parafilm in the manner described above (Fig.1b) and recorded the branch that the female first 124 

followed to the far end. Each female N. womersleyi female and T-shaped Parafilm pathway was used 125 

only once. Female N. womersleyi that did not reach an end point within 5min were not included in 126 

the analysis. The number of replicates was 59. The numbers of females were compared using a 127 

binomial test in the same manner described above.  128 

 129 

Preference of N. womersleyi for T. urticae trail extracts 130 

To collect T. urticae silk threads separately from residuals such as exuviae and eggs, we confined 10 131 
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T. urticae females within 6h of maturation in each of ten 1.5-ml microtubes (i.e. 100 females in total) 132 

with a water droplet. We had previously confirmed that T. urticae females within 6h of maturation do 133 

not oviposit when deprived of food.  134 

To allow the females to deposit silk threads inside the microtubes, the tubes were kept under 135 

laboratory conditions for 48h. Each tube was then opened onto a bean leaf disc to release the females. 136 

After 30min, when all the females had exited, 80μl methanol was added to each tube and the tubes 137 

were shaken gently for 20min using a constant temperature shaker (Synthetech Oven SO-1G, Nippon 138 

Genetics Co., Tokyo, Japan) at 30°C. Extracts from the 10 tubes (c. 800μl total) were consolidated 139 

into another tube and centrifuged at 12,000 r.p.m. for 5min. To exclude residual deposits, the top 140 

clear layer in the tube was collected into another tube. To evaporate the methanol, the tube was 141 

opened and placed in the shaker at 30°C for 60min. The final volume of the concentrated extracts was 142 

c.400μl. For the control solvent, the same amount of methanol was poured into new microtubes, 143 
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which were treated in the manner described above.  144 

To conduct the dual-choice experiments, we constructed T-shaped pathways of filter paper 145 

(35  35mm, 2mm wide, Fig.2). Methanol extract of about 40 spider mite’s trails was applied to the 146 

trunk and a randomly selected branch of each constructed pathway, with the control methanol applied 147 

to the other branch. The two solutions were applied uniformly to both sides of the filter paper. Since 148 

a starved N. womersleyi female is 0.25mm wide (1/8 of 2mm wide pathway) at most, N. womersleyi 149 

advancing along the pathway would not contact more than 1/8 of the applied extracts. Since 1/8 of 40 150 

T. urticae females is 5 females, this corresponds to the number of spider mites used in the first 151 

experiment. Using 10μl micropipettes (Calibrated Pipets, Drummond Scientific Co., PA, USA), we 152 

applied each solution little by little at the junction point to minimize mixing. The pathways were 153 

completely dried at room temperature and then placed on three 15 x 15mm cardboard pieces fixed to 154 

a Petri dish (Fig.2). We then introduced a starved 1-day-old female N. womersleyi to the base of the 155 
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T-shaped filter paper and recorded the branch that the females first followed to the far end. Females 156 

that walked on the backside of the filter paper were observed via a 100  100-mm mirror placed 157 

under the Petri dish (Fig.2). Each female N. womersleyi and T-shaped filter paper was used only once. 158 

Female N. womersleyi that did not reach an end point within 5min were not included in the analysis.  159 

The number of replicates was 54. The numbers of females were compared using a binomial test in the 160 

same manner described above. 161 

 162 

Results 163 

Preference of N. womersleyi for T. urticae trails 164 

Female N. womersleyi followed trails created by five female T. urticae (trail : control, 19 : 6; 165 

P=0.0073, binomial test, Fig. 3a), but did not follow the trail made by one female T. urticae (trail : 166 

control, 19 : 11; P = 0.100, binomial test, Fig. 3b). The latter statistically insignificant result, 167 
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however, may in part be due to the low number of replicates. 168 

 169 

Preference of N. womersleyi for T. urticae trails washed with methanol 170 

Although we found T. urticae threads on the Parafilm surfaces after they were washed with methanol, 171 

the female N. womersleyi showed no preference for washed T. urticae trails (trail : control, 29 : 30; P 172 

= 0.60, binomial test, Fig. 3c).  173 

 174 

Preference of N. womersleyi for T. urticae trail extracts 175 

Neoseiulus womersleyi females preferred trail branches with the methanol extract of T. urticae trails 176 

to those with only methanol (trail extracts : methanol, 35 : 19; P = 0.020, binomial test, Fig. 3d), 177 

suggesting that chemical components of T. urticae trails are used as a prey-searching cue. In addition, 178 

we observed that some female N. womersleyi slowed down on the filter paper when they encountered 179 
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the trail extract. We also observed that some turned back from a trail-extract branch and retraced 180 

their steps to the other, methanol-only branch. These behaviors were not observed during the 181 

previous experiment that presented female N. womersleyi with T. urticae trails washed with 182 

methanol.  183 

 184 

Discussion 185 

Not surprisingly, starved female N. womersleyi followed T. urticae trails in a density-dependent 186 

fashion, as the amount of spun threads and their chemical components should correlate positively 187 

with the number of T. urticae individuals used. Conspecific adult females (Yano 2008) and the 188 

predatory mite Phytoseiulus persimilis (Yano and Osakabe 2009) also follow T. urticae trails in a 189 

density-dependent fashion.  190 

Because T. urticae spins silk threads while walking (Saito 1977), large quantities of threads can 191 
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be collected from long-settled mite colonies. However, residual deposits, such as exuviae, feces, 192 

carcasses, and all stages of living mites, cannot be excluded from these samples. Moreover, as the 193 

attractiveness of T. urticae threads appears to decline with time (Yano 2008), the properties of fresh 194 

threads may differ from those collected at spider-mite colonies, which contain old threads. Therefore, 195 

we examined T. urticae threads produced within 48 h, although some feces may have been included 196 

in the extract.  197 

The predatory mite did not follow T. urticae trails that had been washed with methanol, whereas 198 

they did follow extracts of T. urticae trails. These results suggest that chemical, not physical 199 

attributes of T. urticae trails are responsible for trail following by N. womersleyi, although the 200 

washing treatment may have altered the physical properties of T. urticae threads. It is possible that 201 

substances not soluble in methanol may be also responsible for the predatory mite’s trail following. 202 

However, N. womersleyi females did not follow washed T. urticae trails where substances not soluble 203 
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in methanol should remain, suggesting that such substances are unimportant. Some N. womersleyi 204 

females slowed down and exhibited typical prey-searching behavior (Hoy and Smilanick 1981) on 205 

filter paper painted with extracts of T. urticae trails, but no predator engaged in this behavior on 206 

trails washed with methanol. These observations further suggest that the predatory mite responds 207 

positively to chemical components in the T. urticae trails as a prey-searching cue. Therefore, 208 

predatory mites most likely use the chemical cues of T. urticae trails to find prey colonies, and then 209 

use both physical and chemical trail cues after arriving at the colonies, as suggested by Hislop and 210 

Prokopy (1981).  211 

To efficiently attract and retain predatory mites of tetranychid mite colonies, the chemical 212 

components responsible for trail following by predatory mites must be clarified. Methods to collect 213 

efficiently the unadulterated spider-mite threads should also be improved.  214 

 215 
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Figure Legends 272 

Fig.1 Experimental designs for testing the preference of N. womersleyi females for T. urticae trails 273 

and trails washed with methanol. a) To guide T. urticae females in one direction, a piece of wet filter 274 

paper blocked the other path branch; b) A 1-day-old female N. womersleyi was placed on the base 275 

point of the T-shaped Parafilm. We recorded the branch that the female first followed to the far end.  276 

 277 

Fig.2 Experimental design for testing the preference of N. womersleyi for a methanol extract of T. 278 

urticae trails. The methanol trail extract was applied to the trunk of a filter-paper path and a 279 

randomly selected branch; pure methanol was applied as a control to the other branch. 280 

 281 

Fig.3 Summary of the dual-choice experiments. Female N. womersleyi followed T. urticae trails laid 282 

down by a) five females but did not follow a trail of b) one T. urticae female. Moreover, female N. 283 
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womersleyi c) did not follow T. urticae trails that had been washed with methanol but d) did follow 284 

the methanol extracts of the T. urticae trails. 285 
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