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STOCHASTIC OPTIMAL POLICIES WHEN THE
DISCOUNT RATE VANISHES

KAZUO NISHIMURA AND JOHN STACHURSKI

Abstract. Dutta (J. Econom. Theory, 1991, 55, 64–94) showed

that long-run optimality of the limit of discounted optima when the

discount rate vanishes is implied by a certain bound on the value

function of the optimal program. We introduce a new method to

verify this bound using coupling techniques.

1. Introduction

Discounted dynamic programming is a standard paradigm for analyz-

ing economic outcomes when expectations are rational and information

is perfect. (For dynamics in imperfect information economies see, for

example, Chiarella and Szidarovzky [3] and references.) An established

theory exists, along with practical methods of numerical computation.

However, optimal behavior when the future is not discounted has also

been studied, perhaps most famously in the classic paper of Ramsey

[12].1 Another well-known example is the no-discounting paper by

Brock and Mirman [2], albeit much less so than its famous discounting

cousin [1].

A number of no-discounting criteria exist for optimality. In the math-

ematical literature on stochastic dynamic programming, however, no-

discounting research is now mainly focused on long-run average reward

Date: July 26, 2005.

Key words and phrases. Dynamic programming, Long-run optimality.
The authors thank the anonymous referees for suggestions which led to important

extensions of our initial results.
1According to Ramsey, “discount[ing] later enjoyments in comparison with ear-

lier ones [is] ethically indefensible, and arises merely from the weakness of the

imagination” [12, p. 543].
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(AR) optimality, which maximizes the average of the undiscounted se-

quence of period rewards.2 For example, AR-optimalization is routinely

applied to on-line computer task scheduling and network routing.3

It is of great practical interest to identify relationships between dis-

counted reward (DR) optimal policies and AR-optimal policies. For

example, if π% is a DR-optimal policy for discount factor % ∈ (0, 1),

and if π% converges to a limit π1 when % ↑ 1, it seems likely that π1 will

be—at least in some sense—long-run optimal. One would like to know

under what conditions, if any, π1 is AR-optimal.

An important contribution to our understanding of the relationship

between DR- and AR-optimality is the study of Dutta [6]. He showed

that when the pointwise limit π1 exists it is AR-optimal, provided that

the optimal program satisfies a certain “value boundedness” condition,

which is stated in terms of the value function. We introduce a new

method for verifying this condition, based on coupling techniques.

Coupling involves making statements about two probability distribu-

tions P and P ′ by setting up random elements X and X ′ on a common

probability space, where X (resp., X ′) has marginal distribution P

(resp., P ′). In our case the random elements are sequences generated

by the same optimal program, but having different initial conditions.

Their distributions are used to calculate value functions.4

Two applications are given. The first is for economies satisfying the

“monotone mixing” conditions of Stokey, Lucas and Prescott [14] and

Hopenhayn and Prescott [7]. The second verifies the conjecture that

π1 defined above is AR-optimal for a relatively general neoclassical

stochastic optimal growth model.

2If (rt)t≥0 is a bounded sequence of rewards, then the average is usually defined

to be lim inft→∞(1/t)
∑t−1

s=0 rs.
3In economic growth another popular criterion for optimality is “overtaking,”

which requires that expected period reward eventually dominates that of other

policies. This is closely related to so-called turnpike theory. For a survey of the

literature see McKenzie [10].
4It has been said that coupling proofs are like jokes: Detailed explanation ruins

them. Unfortunately our paper is no exception. In applying coupling techniques,

a number of our ideas draw on the study of ergodicity in Rosenthal [13].



VANISHING DISCOUNT 3

2. Formulation of the Problem

Let A and S be well-behaved topological spaces.5 Let Γ be a contin-

uous, nonempty, compact valued correspondence from S to A, repre-

senting feasible choices for each state x ∈ S, and let

K := {(x, a) ∈ S × A : a ∈ Γ(x)}.

Let r : K → R be a bounded reward function which is jointly measur-

able on K, with a 7→ r(x, a) continuous on Γ(x) for each fixed x ∈ S.6

Finally, let (ξt)
∞
t=0 be an independent and identically distributed col-

lection of random variables on probability space (Ω, F , P), all taking

values in (Z,Z ) and having distribution ν, and let h : K × Z → S

be a jointly measurable function, which updates the state according to

x′ = h(x, a, ξ).7

Define Π to be the set of all feasible policies, which are measurable

functions π : S → A satisfying π(x) ∈ Γ(x) for all x ∈ S. Each π ∈ Π

determines a Markov process (xt)
∞
t=0 for the state via

(MAR) xt+1 = h(xt, π(xt), ξt), x0 given.

For each % ∈ (0, 1) and each π ∈ Π let

v%(x0, π) := E

[
∞∑

t=0

%tr(xt, π(xt))

]
,

where (xt)
∞
t=0 is given by (MAR). The optimal investment problem is

then to solve

(DR-%) max
π∈Π

v%(x0, π).

5It is sufficient that they be separable and completely metrizable. All Gδ subsets

of Rn have this property.
6In this paper, measurability in reference to functions on topological spaces al-

ways refers to Borel measurability.
7Note there is little loss of generality in assuming that (ξt)∞t=0 is iid. If, for

example, (ξt)∞t=0 is first order Markov, one can always rewrite the transitions in

the form x′ = h(x, a, ζ) where (ζt)∞t=0 is iid, by a suitable transformation of the

function h and the state space S.
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A policy is called DR-%-optimal if it solves (DR-%) for all x0 ∈ S. It

is well-known that under the current assumptions at least one DR-

%-optimal policy exists. The value function v% is defined at x0 by

supπ∈Π v%(x0, π).

The other optimality criterion we consider is AR-optimality. A policy

is called AR-optimal if it solves

(AR) max
π∈Π

lim inf
t→∞

E

[
1

t

t−1∑
s=0

r(xs, π(xs))

]
,

where again π determines the process (xt)
∞
t=0 via (MAR).

One of the most useful conditions for linking DR- and AR-optimality

is value boundedness:

Definition 2.1. The dynamic programming problem (Γ, r, h, ν) is called

value bounded if there exists an x′ ∈ S, a function m1 : S → R and a

constant m2 < ∞ such that

m1(x) ≤ v%(x)− v%(x
′) ≤ m2, ∀x ∈ S, % ∈ (0, 1).

For a standard class of optimal programs, Dutta [6] showed that any

pointwise limit of DR-% optimal policies is AR-optimal whenever value

boundedness holds.

3. Results

We now develop an inequality which has obvious application in deter-

mining when economies are value bounded. The inequality is given in

Theorem 3.1 below.

To begin, let (ξ′t)
∞
t=0 be another sequence of iid random variables on the

initial probability space (Ω, F , P), again taking values in (Z,Z ) and

having distribution ν. Assume that (ξ′t)
∞
t=0 and the original sequence

(ξt)
∞
t=0 are independent. Also, for fixed % ∈ (0, 1), let π% be any DR-%-

optimal policy, and let (xt)
∞
t=0 and (x′t)

∞
t=0 be two sequences satisfying

xt+1 = h(xt, π%(xt), ξt) and x′t+1 = h(x′t, π%(x
′
t), ξ

′
t), and starting from

x0 and x′0 respectively. Define the random variable

(1) τ%(x0, x
′
0) := inf{t ≥ 0 : v%(xt) ≤ v%(x

′
t)},
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with the usual convention that inf ∅ = ∞. Thus, τ% is the first time

that v%(xt) falls below v%(x
′
t). The relevance of this “swapping time”

follows from

Theorem 3.1. Let x0, x
′
0 ∈ S, and let % ∈ (0, 1). If r̄ := supx,a r(x, a),

then

v%(x0)− v%(x
′
0) ≤ 2r̄ E τ%(x0, x

′
0).

Remark 3.1. If v%(x0) ≤ v%(x
′
0) then τ%(x0, x

′
0) ≡ 0 and the bound

holds trivially. The more interesting case is where v%(x0) > v%(x
′
0). In

this case the intuition is as follows: The function v% ranks points in

the state space according to their value. If an economy starting at the

higher value state x0 is expected to move quickly into an area of the

state space with lower value than an economy which started at x′0 (i.e.,

if v%(xt) ≤ v%(x
′
t) is expected to occur for small t), then the relative

advantage of starting at the higher value state x0 cannot be too large.

Remark 3.2. In general, the easiest way to prove that E τ%(x0, x
′
0) is

finite is to show that P{τ%(x0, x
′
0) > t} goes to zero quickly with t, in

which case the tail of the distribution is light and the mean is small.

Proof of Theorem 3.1. Since % is fixed in this proof we omit to use it

as a subscript. To begin, note that

v(x0) = E
τ−1∑
t=0

%tr(xt, π(xt)) + E
∞∑

t=τ

%tr(xt, π(xt))

= E
τ−1∑
t=0

%tr(xt, π(xt)) + E %τv(xτ ).

The intuitively plausible second step is given a formal justification in

the appendix. A similar argument for v(x′0) gives

v(x′0) = E
τ−1∑
t=0

%tr(x′t, π(x′t)) + E %τv(x′τ ).
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By the definition of τ we have E %τv(xτ ) ≤ E %τv(x′τ ), so subtracting

one equality from the other gives

v(x0)− v(x′0) ≤ E
τ−1∑
t=0

%tr(xt, π(xt))− E
τ−1∑
t=0

%tr(x′t, π(x′t))

≤ E
τ−1∑
t=0

%t|r(xt, π(xt))− r(x′t, π(x′t))| ≤ E
τ−1∑
t=0

2r̄.

The last term is just 2r̄Eτ , so the proof is done. �

Evidently Theorem 3.1 has applications to the problem of value bound-

edness. In particular, the following corollary holds:

Corollary 3.1. If there exists an m : S → R s.t. Eτ%(x, y) ≤ m(y),

∀x ∈ S, ∀% ∈ (0, 1), then the dynamic program defined by (Γ, r, h, ν) is

valued bounded.

Proof. Fix x′ ∈ S. By Theorem 3.1 and the hypothesis we have

v%(x)− v%(x
′) ≤ 2r̄Eτ%(x, x′) ≤ m2, ∀x ∈ S, % ∈ (0, 1),

where m2 := 2r̄m(x′). By the same argument we have

v%(x
′)− v%(x) ≤ 2r̄Eτ%(x

′, x) ≤ m1(x), ∀x ∈ S, % ∈ (0, 1),

where m1(x) := 2r̄m(x).

∴ m1(x) ≤ v%(x)− v%(x
′) ≤ m2, ∀x ∈ S, % ∈ (0, 1).

�

Remark 3.3. We make one further remark on the general theory.

Clearly |v%(x) − v%(x
′)| ≤ 2r̄/(1 − %) holds for any x and x′, where as

before r̄ := sup r. Therefore when establishing value boundedness one

can always restrict attention to % ∈ [%̂, 1) for some fixed %̂ ∈ (0, 1).

4. Application: Monotone Mixing

Our first application concerns monotone dynamic programs which sat-

isfying a well-known monotone mixing condition. The mixing condition

was popularized by Stokey, Lucas and Prescott [14, Assumption 12.1]
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and Hopenhayn and Prescott [7, Theorem 2], who used it to study

ergodicity.

For each % ∈ (0, 1), let π% be a corresponding optimal policy. Our

monotonicity requirement is as follows:

Assumption 4.1. The state space S is an order interval [a, b] of Rn

with its usual pointwise ordering. The map x 7→ h(x, π%(x), z) is

monotone increasing on S for all z ∈ Z and % ∈ (0, 1). The map

x 7→ r(x, π%(x)) is also increasing for each % ∈ (0, 1).

This is in part an assumption on the optimal policies, which are not

primitives of the model. However, conditions for monotonicity of op-

timal policies have been extensively investigated, so we do not persue

the matter here.8 One can easily verify from Assumption 4.1 that v% is

monotone increasing on S.

The next assumption is the monotone mixing condition:

Assumption 4.2. There exists an ε > 0, a c ∈ S and an N ∈ N such

that for all % ∈ (0, 1) we have

P{xt+N ≥ c |xt = a} ≥ ε and P{xt+N ≤ c |xt = b} ≥ ε.

Combined with Assumption 4.1, Assumption 4.2 says that for any x ∈
S, both P{xt+N ≥ c |xt = x} and P{xt+N ≤ c |xt = x} exceed ε, and ε

does not depend on %.9

Remark 4.1. In view of Remark 3.3, Assumption 4.2 need only hold

for % is a neighborhood of 1 .

Theorem 4.1. If Assumptions 4.1 and 4.2 both hold, then the dynamic

program (Γ, r, h, ν) is value bounded.

8See, for example, Hopenhayn and Prescott [7], or Mirman, Morand and Reffett

[8] and references.
9Conditional expectations of the form P{xt+N ∈ B |xt = x} are interpreted as

the cannonical conditional expectation associated with x 7→ h(x, π%(x), z) and ν,

and as such are uniquely defined. See the discussion of Markov kernels later in this

section.
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The intuition is straightforward. Pick initial conditions x and x′. By

Corollary 3.1, it is sufficient to show that Eτ%(x, x′) is bounded above

by a finite constant which is independent of x and %. By Assump-

tion 4.1 the value function is increasing for all %. Thus, if xt ≤ x′t

then τ%(x, x′) ≤ t. Every N steps, (xt)
∞
t=0 has an at least ε probability

of entering [a, c], as does (x′t)
∞
t=0 for the set [c, b]. By independence,

both events occur simultaneously with probabilty ε2. If they do, then

xt ≤ x′t. Thus, every N steps, there is an ε2 chance that v%(xt) ≤ v%(x
′
t),

which suggests the bound

(2) P{τ%(x, x′) > kN} ≤ (1− ε2)k, ∀k ≥ 0.

This rate of decrease is sufficient for Eτ% to be finite. In particular,

since P{τ%(x, x′) > t} is decreasing in t we get

Eτ% =
∞∑

t=1

tP{τ% = t} ≤
∞∑

t=1

tP{τ% ≥ t}

=
∞∑

t=1

tP{τ% > t− 1}

≤ N
∞∑

k=1

kNP{τ% > (k − 1)N},

which is dominated by N2
∑

k k(1− ε2)(k−1) < ∞ as a result of (2).

It remains to give a formal justification for (2). Some new notation will

be helpful. Recall that a Markov kernel on topological space T is a map

N : T ×B(T ) → [0, 1], where B(T ) is the Borel sets on T , and N has

the following properties: x 7→ N(x, B) is Borel measurable for all B ∈
B(T ), and B 7→ N(x, B) is a Borel probability measure for all x ∈ T .

One defines iterates of N by setting Nt(x, B) :=
∫

N(x, dy)Nt−1(y, B).

Intuitively, Nt(x, B) is the probability of the state moving from x now

into set B t periods hence.

A sequence of T -valued random variables (yt)
∞
t=0 on (Ω, F , P) adapted

to filtration (F )∞t=0 is called a Markov process with Markov kernel N

if P{yt+1 ∈ B |Ft} = N(yt, B), for all B ∈ B(T ) and all t ≥ 0. In

this case one can establish that P{yt+j ∈ B |Ft} = Nj(yt, B) for any

j ∈ N, and in fact the same is true if we replace t with a stopping time.
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For both our processes (xt)
∞
t=0 and (x′t)

∞
t=0 the relevent kernels are given

by M%(x, B) = P{h(x, π%(x), ξt) ∈ B}. The kernels are the same be-

cause ξt and ξ′t both have identical distribution ν. The joint process

(xt, x
′
t)
∞
t=0 is Markov on S × S, and in what follows (Ft)

∞
t=0 is always

the natural filtration for this process. If M̂% is the Markov kernel for

(xt, x
′
t)
∞
t=0, then independence of (xt)

∞
t=0 and (x′t)

∞
t=0 implies that

M̂%(x, x′, B ×B′) = M%(x, B)×M%(x
′, B′).

Returning to the proof of Theorem 4.1, note that if Qi := {x′iN < xiN},
then {τ%(x, x′) > k ·N} ⊂ ∩k

i=1Qi. It is sufficient, therefore, to establish

that

P ∩j+1
i=1 Qi ≤ (1− ε2)P ∩j

i=1 Qi, ∀j ∈ N.

So pick any j ∈ N. We have

P ∩j+1
i=1 Qi = P(P(∩j+1

i=1Qi |FjN)) = P(∩j
i=1QiP(Qj+1 |FjN)).

We need only show that P(Qj+1 |FjN) ≤ (1−ε2), or, equivalently, that

P(Qc
j+1 |FjN) ≥ ε2. But

Qc
j+1 ⊃ {x(j+1)N ≤ c} ∩ {x′(j+1)N ≥ c}

and by the Markov property we have

P({x(j+1)N ≤ c} ∩ {x′(j+1)N ≥ c} |FjN) = M̂N
% (xjN , x′jN , [a, c]× [c, b]),

which is

MN
% (xjN , [a, c])×MN

% (x′jN , [c, b]) ≥ MN
% (b, [a, c])×MN

% (a, [c, b]),

which in turn is greater than or equal to ε2 by Assumption 4.2.

5. Application: Optimal Growth

Recall the neoclassical infinite horizon economy of Brock and Mirman

[1]. At time t income yt is observed, a savings decision kt is made, the

current shock ξt is then revealed to the agent, and production takes

place, realizing at the start of t + 1 random output yt+1 = f(kt, ξt),

which is net of depreciation. The process then repeats.

Preferences are specified by period utility function u and discount factor

% ∈ (0, 1). Define Π to be the set of all feasible savings policies, which
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are Borel functions π from the positive reals to itself satisfying π(y) ≤ y

for all y. Each π ∈ Π determines a Markov process for income (yt)
∞
t=0

via (MAR), which in this case is

(3) yt+1 = f(π(yt), ξt)

where y0 is given. The optimal investment problem is to solve (DR-%),

which is now

max
π∈Π

E
∞∑

t=0

%tu(yt − π(yt)),

with (yt)
∞
t=0 given by (3).

Assumption 5.1. The utility function u is strictly increasing, differ-

entiable, bounded and strictly concave, with limc→0 u′(c) = ∞.

Assumption 5.2. The sequence (ξt)
∞
t=0 is iid on probability space

(Ω, F , P), with cumulative distribution function G on R. We suppose

that there exists a ξ ∈ R with 0 < G(x) < 1 for all x > ξ.

Assumption 5.3. The production function f : [0,∞) × R → [0,∞)

satisfies the following assumptions. The map k 7→ f(k, z) is bounded,

strictly increasing, strictly concave and continuously differentiable on

(0,∞), with f(0, z) = 0 and limk→0 f ′(k, z) = ∞, for each z ∈ R.

The map z 7→ f(k, z) is measurable and limz→∞ f(k, z) = ∞ for all

k ∈ (0,∞).

Most of the assumptions in 5.1–5.3 are standard. Requiring that the

limit limz→∞ f(k, z) = ∞ for all k ∈ (0,∞) incorporates the most

common case where the shock is multiplicative. Under this assumption

the state space must be all of the positive reals.

In economics it is common to take the utility function as unbounded

above (although rigorous justification of the dynamic programming ar-

guments is not always provided). Note that if u has this property, then

value boundedness never holds. The reason is that v%(y) ≥ u(y), so for

fixed y′ the difference

v%(y)− v%(y
′) ≥ u(y)− v%(y

′)

cannot be bounded above by any constant.
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We have also required that k 7→ f(k, z) is bounded. Whether or not

this assumption can be relaxed is a more subtle issue. We leave it as

an important open question.

We also need the following technical condition to manipulate the Euler

equation. It holds in many situations we wish to consider (for example,

when ξt is multiplicative and lognormally distributed).

Assumption 5.4. Together, f and G satisfy
∫

f ′(k, z)−1G(dz) < ∞
for all k ∈ (0,∞).

It is well-known that under our assumptions there is a unique DR-

%-optimal policy π% ∈ Π for each % ∈ (0, 1). Moreover, the DR-%-

optimal policy π% is pointwise increasing in % [4, Theorem 5.1]. In other

words, agents who discount the future more slowly invest more in all

states. Given this monotonicity, we can always define π1 := lim%↑1 π%.

It is natural to conjecture that π1 is AR-optimal.10 In this connection,

Dutta’s result [6, Theorem 3] shows that for this to be the case it is

sufficient that the program satisfies value boundedness.

The main result of this section is

Proposition 5.1. Under Assumptions 5.1–5.4, the stochastic neoclas-

sical growth model is value bounded.

For the proof we wish to apply Corollary 3.1. Fix %̂ ∈ (0, 1), and let

% ∈ [%̂, 1). Let S be the space (0,∞), and let x and x′ be any two initial

conditions. Let π% be the unique DR-%-optimal policy associated with

%. Consider two economies with identical structure (u, f, G), both of

which discount future utility according to % and follow policy π%. The

first has initial condition y0 = x, and is perturbed by the sequence

of shocks (ξt)
∞
t=0, with (yt)

∞
t=0 defined by (3). The second has initial

10The interpretation of AR-optimality for the optimal growth model is clearest

when (yt)∞t=0 is ergodic. In that case the sequence E u(ys − π ◦ ys) and then the

average
[

1
t

∑t−1
s=0 E u(ys − π ◦ ys)

]
converge to the integral

∫
u(y − π(y))F ∗π (dy),

where F ∗π is the ergodic distribution corresponding to π. Then AR-optimality

becomes equivalent to maximizing expected utility of consumption at the stochastic

steady state—a generalization of the Phelps–Solow golden rule.
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condition y′0 = x′, and is perturbed by independent sequence (ξ′t)
∞
t=0,

with (y′t)
∞
t=0 defined by (3).

The value function v% is known to be increasing (c.f., e.g., Mirman and

Zilcha [9]). As a result, if x ≤ x′ then τ%(x, x′) ≡ 0. Suppose instead

that x′ < x. Although for our model there is a positive probability that

y′t exceeds yt in every period, that probability will be arbitrarily small

if y′t−1 is much smaller than yt−1. However, we will show that (y′t)
∞
t=0

must return to a set (c,∞) infinitely often, where c > 0, and once in

that set there is an ε > 0 probability that y′t exceeds yt in the following

period. As a result, we show that P{τ%(x, x′) > t} → 0 at a geometric

rate depending only on x′, and this is sufficient for Corollary 3.1. The

details follow.

The first step concerns construction of the set (c,∞) with the properties

discussed above. We do this using a “Lyapunov” technique.

Lemma 5.1. There are positive constants λ, β and a decreasing, real

valued function w on (0,∞), all independent of %, x and x′, such that

(i) w ≥ 1, (ii) w(y) →∞ as y → 0, (iii) λ < 1, and

(4) E[w ◦ y′t+1 |Ft] ≤ λ · w ◦ y′t + β P-a.s.

Before beginning the proof, note that from (3) it is intuitively clear (and

follows formally from the Markov property) that if w is any bounded

or nonnegative real function then our time t prediction of the value

w ◦ yt+1 satisfies

(5) E[w ◦ yt+1 |Ft] =

∫
w[f(π%(yt), z)]G(dz) P-a.s.

A similar relation holds for y′t and y′t+1.

Also, we have an Euler equation to work with:

Theorem 5.1 (Mirman and Zilcha [9]). For each % ∈ (0, 1), the value

function v% is concave and differentiable, and the optimal policy π% is

interior. Let y ∈ S and % ∈ (0, 1). For c%(y) := y − π%(y) we have

(6) u′(c%(y)) = %

∫
u′(c%(f(π%(y), z)))f ′(π(y), z)G(dz).

Both π% and c% are increasing functions of y.
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Proof of Lemma 5.1. We use an argument which draws on Nishimura

and Stachurski [11, Proposition 4.2]. Our first candidate for w is the

map w(y) =
√

u′ ◦ c%̂(y). By the Cauchy-Schwartz inequality we have∫ √
u′ ◦ c%̂(f(π%̂(y), z))f ′(π%̂(y), z)

√
1

f ′(π%̂(y), z)
G(dz)

≤

√∫
u′ ◦ c%̂(f(π%̂(y), z))f ′(π%̂(y), z)G(dz)×

∫
1

f ′(π%̂(y), z)
G(dz).

Using the definition of w and the Euler equation gives∫
w(f(π%̂(y), z))G(dz) ≤ w(y)

√∫
1

%̂f ′(π%̂(y), z)
G(dz).

Using our assumptions and the Dominated Convergence Theorem, one

can show that given λ ∈ (0, 1), there exists a δ > 0 such that

y < δ =⇒

√∫
1

%̂f ′(π%̂(y), z)
G(dz) ≤ λ.

Therefore,

y < δ =⇒
∫

w(f(π%̂(y), z))G(dz) ≤ λw(y).

Since % ≥ %̂ implies π%(y) ≥ π%̂(y) for all y, we can in fact say that

y < δ =⇒
∫

w(f(π%(y), z))G(dz) ≤ λw(y), ∀% ≥ %̂.

In addition,

y ≥ δ =⇒
∫

w(f(π%(y), z))G(dz) ≤
∫

w(f(π%̂(y), z))G(dz)

≤
∫

w(f(π%̂(δ), z))G(dz) =: β < ∞.

Putting it together we get

(7)

∫
w(f(π%(y), z))G(dz) ≤ λw(y) + β, ∀y ∈ S, ∀% ≥ %̂.

This in turn implies that ∀% ≥ %̂ we have

(8)

∫
w(f(π%(y

′
t), z))G(dz) ≤ λw(y′t) + β.

Using the relation (5) we finish with

(9) E[ w ◦ y′t+1 |Ft] ≤ λw ◦ y′t + β P-a.s.



14 KAZUO NISHIMURA AND JOHN STACHURSKI

as was to be shown. Note that w, β and λ are all independent of %.

The only claim of Lemma 5.1 which is still in doubt is that w ≥ 1. For

w(y) :=
√

u′ ◦ c%̂ this is not necessarily true. However, we can replace

w with ŵ := w + 1 if necessary, because when the bound (4) holds for

w, λ and β then it also holds for ŵ, λ̂ := λ and β̂ := β + 1− λ. To see

this, observe that

E[ ŵ ◦ y′t+1 |Ft] = E[ w ◦ y′t+1 |Ft] + 1

≤ λw ◦ y′t + β + 1

= λ(w ◦ y′t + 1) + β + 1− λ =: λ̂ ŵ ◦ y′t + β̂.

All claims in the Lemma have now been verified. �

The following corollary is an easy consequence of Lemma 5.1. From it

we can infer that (y′t)
∞
t=0 must return relatively quickly to (c,∞).

Corollary 5.1. There is a constant c > 0 and an α ∈ (0, 1), both

independent of %, x and x′, such that

(10) E[w ◦ y′t+1 |Ft] · 1{y′t ≤ c} ≤ α · w ◦ y′t · 1{y′t ≤ c}.

Proof. By (ii) there is a c > 0 such that w(c) > β(1− λ)−1. Since w is

decreasing, w(x) ≥ w(c) for all x ∈ (0, c]. Define

α := λ +
β

w(c)
,

so that λ < α < 1. By Lemma 5.1, then,

E[w ◦ y′t+1 |Ft] · 1{y′t ≤ c} ≤ (λ · w ◦ y′t + β) · 1{y′t ≤ c}.

∴
E[w ◦ y′t+1 |Ft] · 1{y′t ≤ c}

w ◦ y′t
≤

(
λ +

β

w ◦ y′t

)
1{y′t ≤ c}

≤ α1{y′t ≤ c}.

�

Let Nt :=
∑t

i=0 1{y′i > c}, so that Nt is the number of times y′i > c in

the period 0, . . . , t. Fix j ≤ t. Omitting the subscript %, we have

(11) P{τ > t} = P{τ > t} ∩ {Nt > j}+ P{τ > t} ∩ {Nt ≤ j}.
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The two terms on the right hand side need to be bounded.

It is convenient to begin with the second term in (11). For this purpose,

let B := α−1
∫

w[f(π%̂(c), z)]G(dz), which can be shown to be finite

using (4). Next, let Mt := α−tB−Nt−1 w ◦ y′t, where N−1 := 0, so

M0 = w ◦ y′0 ≡ w(x′).

Lemma 5.2. The sequence (Mt)
∞
t=0 is a supermartingale with respect

to the filtration (Ft)
∞
t=0.

Proof. Clearly Mt is Ft-measurable. It will be integrable provided that

we can verify the key supermartingale property E[Mt+1 |Ft] ≤ Mt. To

this end, let F := 1{y′t > c} and F c := 1− F = 1{y′t ≤ c}, so that

E[Mt+1 |Ft] = E[Mt+1 |Ft] · F + E[Mt+1 |Ft] · F c.

Consider the first term. On F we have Nt = Nt−1 + 1, so

E[Mt+1 |Ft] · F = α−(t+1)B−Nt−1B−1E[w ◦ y′t+1 |Ft] · F

= α−(t+1)B−Nt−1B−1

∫
w(f(π% ◦ y′t, z))G(dz) · F

≤ α−(t+1)B−Nt−1B−1

∫
w(f(π%̂(c), z))G(dz) · F

≤ α−tB−Nt−1F.

Using this bound and w ≥ 1 gives E[Mt+1 |Ft] · F ≤ Mt · F . Also, on

the set F c we have Nt = Nt−1, and Corollary 5.1 applies. Hence,

E[Mt+1 |Ft] · F c = α−tB−Nt−1α−1E[w ◦ y′t+1 |Ft] · F c

≤ α−tB−Nt−1w ◦ y′t · F c.

∴ E[Mt+1 |Ft] · F c ≤ Mt · F c.

∴ E[Mt+1 |Ft] ≤ Mt.

�
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In view of the supermartingale property we have EMt ≤ E M0 = w(x′),

whence

P{τ > t} ∩ {Nt ≤ j} ≤ P{Nt−1 ≤ j}

= P{B−Nt−1 ≥ B−j} (∵ B ≥ 1)

≤ Bj E B−Nt−1 (∵ Chebychev’s ineq.)

≤ αtBj E Mt (∵ w ≥ 1)

≤ αtBj w(x′).

Now we return to the first term in (11), which has the following simple

bound.

Lemma 5.3. There is an ε > 0 independent of %, x and x′ such that

P{τ > t} ∩ {Nt > j} ≤ (1− ε)j.

The intuition is that whenever y′t > c the income ranking reverses with

independent probability at least ε. Before starting on the proof, let σj

be the time of the j-th visit of (y′t)
∞
t=0 to (c,∞). We can define these

random variables recursively by σ1 := inf{t ≥ 0 : y′t > c}, and

σj+1 := inf{t ≥ σj + 1 : y′t > c}.

All of these stopping times are finite P-a.s., because {σj = ∞} ⊂
∩∞t=0{Nt < j}, and P{Nt < j} ≤ αtBj+1w(x′), as was previously shown.

Proof of Lemma 5.3. Let Qi := {y′σi+1 < yσi+1}. In other words, Qi

is the event that no swap occured in the period after the i-th visit of

(y′t)
∞
t=0 to (c,∞). For Qi so defined, we have

(12) P{τ > t} ∩ {Nt > j} ≤ P ∩j
i=1 Qi.

To see this, observe that when Nt > j we have σj < t. If τ > t is also

true, we know that neither this visit to (c,∞) nor any of the previous

ones resulted a reversal of incomes. In other words, the statement

∩j
i=1Qi is true.

It therefore suffices to bound P ∩j
i=1 Qi. To this end, let

W := {(z, z′) ∈ R2 : f(π%̂(c), z
′) ≥ lim

x→∞
f(x, z)}.
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It is not difficult to see that Qi ⊂ {(ξσi
, ξ′σi

) /∈ W}, because if (ξσi
, ξ′σi

) ∈
W , then y′σi+1 = f(π%(y

′
σi

), ξ′σi
) ≥ f(π%̂(y

′
σi

), ξ′σi
) ≥ f(π%̂(c), ξ

′
σi

) ≥
limx→∞ f(x, ξt) ≥ f(π%(yσi

), ξσi
) = yσi+1. It is also clear that ε :=

P{(ξt, ξ
′
t) ∈ W} is a strictly positive number independent of %.11

Now suppose we can show for this ε that P(∩k+1
i=1 Qi) ≤ (1−ε)P(∩k

i=1Qi)

holds for any k. In view of (12) this will complete the proof, as iterating

backwards gives P ∩j
i=1 Qi ≤ (1− ε)j.

So pick any k ∈ N. We have

P ∩k+1
i=1 Qi = P(P(∩k+1

i=1 Qi |Fσk+1)) = P(∩k
i=1QiP(Qk+1 |Fσk+1))

We need only show that P(Qk+1 |Fσk+1) ≤ (1 − ε), or, equivalently,

that P(Qc
k+1 |Fσk+1) ≥ ε. But Qc

k+1 ⊃ {(ξσk+1
, ξ′σk+1

) ∈ W}, which is

independent of Fσk+1 and has probability ε. The proof is done. �

Let’s now complete the proof of Proposition 5.1. Choose n ∈ N such

that δ := αnB < 1, and set j = t/n, so that αtBj = δt/n.

Eτ%(x, x′) ≤
∞∑

t=0

tP{τ%(x, x′) ≥ t}

=
∞∑

t=0

(t + 1)P{τ%(x, x′) > t}

≤
∞∑

t=1

(t + 1)[(1− ε)t/n + δt/nw(x′)].

∴ Eτ%(x, x′) ≤ S + T · w(x′),

where constants S and T are independent of % and x. The conditions

of Corollary 3.1 are therefore met.

Appendix A

Here we justify E
∑∞

t=τ %tr(xt, π(xt)) = E %τv(xτ ) from the proof of

Theorem 3.1. We assume the reader is familiar with stopping times,

11To verify strict positivity, choose N ∈ N s.t. ν{z ∈ R : b(z) ≤ N} > 0,

where b(z) := limx→∞ f(x, z). Since (ξt, ξ
′
t) ∈ W is implied by f(π%̂(c), ξ′t) ≥ N

and b(ξt) ≤ N , and since these last two events are independent and have strictly

positive probability, it follows that ε > 0.
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the strong Markov property and composition of Markov kernels. We

set Mtg(x) to be
∫

g(y)Mt(x, dy). For all of the underlying theory and

other notation see, for example, Durrett [5].

We can and do assume that τ%(x0, x
′
0) is finite P-almost surely (other-

wise the bound in Theorem 3.1 is trivial). We then have

E
∞∑

t=τ

%tr(xt, π(xt)) = E

[
E

[
∞∑

t=τ

%tr(xt, π(xt)) |Fτ

]]

= E

[
∞∑

t=τ

%tE[r(xt, π(xt)) |Fτ ]

]

= E

[
%τ

∞∑
t=0

%tMtr(xτ , π(xτ ))

]
= E%τv(xτ ).

References

[1] Brock, W. A. and L. Mirman (1972): “Optimal Economic Growth and Uncer-

tainty: The Discounted Case,” Journal of Economic Theory 4, 479–513.

[2] Brock, W. A. and L. Mirman (1973): “Uncertainty and Economic Growth:

The No-Discounting Case,” International Economic Review, 14 (3), 560–573.

[3] Chiarella, C. and F. Szidarovsky (2001): “The Nonlinear Cournot Model un-

der Uncertainty with Continuously Distributed Time Lags.” Central European

Journal of Operations Research, 9 (3), 183–196.

[4] Danthine, J-P. and J. B. Donaldson (1981): “Stochastic Properties of Fast vs.

Slow Growth Economies,” Econometrica, 49 (4), 1007–1033.

[5] Durrett, R. (1996): Probability: Theory and Examples, 2nd ed., Duxbury

Press, California.

[6] Dutta, P. K. (1991): “What do Discounted Optima Converge to? A Theory

of Discount Rate Asymptotics in Economic Models,” Journal of Economic

Theory, 55, 64–94.

[7] Hopenhayn, H.A. and E.C. Prescott (1992): “Stochastic Monotonicity and

Stationary Distributions for Dynamic Economies,” Econometrica, 60, 1387–

1406.

[8] Mirman, L. J., O. F. Morand and K. Reffett (2005): A Qualitative Approach

to Markovian Equilibrium in Infinite Horizon Economies with Capital, manu-

script.

[9] Mirman, L. J. and I. Zilcha (1975): “On Optimal Growth under Uncertainty,”

Journal of Economic Theory, 11, 329–339.

[10] McKenzie, L.W. (1998): “Turnpikes,” American Economic Review, 88 (2),

1–14.



VANISHING DISCOUNT 19

[11] Nishimura, K. and J. Stachurski (2004): “Stability of Stochastic Optimal

Growth Models: A New Approach,” Journal of Economic Theory, in press.

[12] Ramsey, F. (1928): “A Mathematical Theory of Saving,” Economic Journal,

38, 543–559.

[13] Rosenthal, J. S. (2003): “Asymptotic Variance and Convergence Rates of

Nearly-Periodic MCMC Algorithms,” Journal of the American Statistical As-

sociation, 98, 169–177.

[14] Stokey, N. L., R. E. Lucas and E. C. Prescott (1989): Recursive Methods in

Economic Dynamics, Harvard University Press, Massachusetts.

Institute of Economic Research, Kyoto University, Yoshida-honmachi,

Sakyo-ku, Kyoto 606-8501, Japan

E-mail address: nishimura@kier.kyoto-u.ac.jp

Department of Economics, The University of Melbourne, Melbourne

VIC 3010, Australia

E-mail address: j.stachurski@econ.unimelb.edu.au


