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ASYMPTOTICS OF STOCHASTIC RECURSIVE ECONOMIES
UNDER MONOTONICITY

TAKASHI KAMIHIGASHI AND JOHN STACHURSKI

ABSTRACT. This paper presents a new mixing condition for dy-
namic economies with a Markov structure. The mixing condi-
tion is stated in terms of order, and generalizes a number of well-
known conditions used to establish stability of monotone dynamic
models. By generalizing the key insights of the original condi-
tions, we derive a set of results with applications to many theoret-
ical and time series models.

1. INTRODUCTION

In what was to become a seminal contribution to the theory of eco-
nomic dynamics, Razin and Yahav (1979, theorem 1) proposed a
technique for assesssing the stability of stochastic steady states (i.e.,
stationary distributions) for Markovian models with the property
that transitions are monotone increasing1 in the state variable. Their
mixing condition was subsequently extended to n-dimensional pro-
cess by Stokey and Lucas (1989), and to general partially ordered
compact metric spaces by Hopenhayn and Prescott (1992). It has
been widely used to assess the stability of theoretical and applied
economic models.

In a related line of research, Bhattacharya and Lee (1988) and Bhat-
tacharya and Majumdar (2001) developed a “splitting condition” for
Markov models that is defined in terms of an ordering on the state
space. Splitting is closely related to the mixing condition discussed
above, and, using different methods, these authors showed that split-
ting can be used to prove stability.

Date: January 20, 2009.
1Here and below increasing is synonymous with nondecreasing.
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Both of these classes of results provided stability conditions that are
simple to state, and apply to a number of different economic settings.
In this paper we seek to identify the essence of these monotone sta-
bility results and extend them to a broader class of applications. To
do so, we introduce a new concept, referred to below as order mix-
ing. A Markov process is called order mixing if, given any two inde-
pendent realizations (Xt)t≥0 and (X′t)t≥0, we have2

(1) P{∃t ≥ 0 s.t. Xt ≤ X′t} = P{∃t ≥ 0 s.t. X′t ≤ Xt} = 1

We show that, taken together, monotonicity and order mixing guar-
antee global stability whenever a stationary distribution exists.

The economic intuition for condition (1) is straightforward. For ex-
ample, if the state variable represent household wealth in a given
model of savings and investment, then (1) states that, regardless of
initial wealth, any pair of households receiving mutually indepen-
dent, idiosyncratic shocks will attain both orderings (household A is
richer than household B and vice versa) at some point in time with
probability one. This rules out multiple disjoint absorbing sets.

We provide a number of sufficient conditions via which order mixing
can be verified in applications. Using these results, we demonstrate
that the models considered in Razin and Yahav (1979, theorem 1),
Bhattacharya and Lee (1988, theorem 2.1), Stokey and Lucas (1989,
theorem 12.12), Bhattacharya and Majumdar (2001, theorem 2.1) and
Hopenhayn and Prescott (1992, theorem 2) all satisfy our definition
of order mixing. However, the set of order mixing models is larger
those treated in these papers. Thus, we extend the domain of appli-
cation for monotone stability methods to a broader class of economic
and econometric models.3

It is worth noting that our method also provides a clear link to the
classical theory of stability for Markov processes initiated by Doeblin
(1938). In his analysis, stability is proved for systems such that, given

2The distributions of the initial conditions X0 and X′0 are permitted to be dis-
tinct, but both processes are updated according to the same transition law.

3We do not claim to encompass all of the theory in the papers cited above, each
of which contains unique and important results. Our contribution is to generalize
the order-theoretic mixing ideas that appear in all of these papers.
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any two independent copies (Xt)t≥0 and (X′t)t≥0 of the same process,
we have

(2) P{∃t ≥ 0 s.t. Xt = X′t} = 1

Intuitively such systems have a form of long run history indepen-
dence, and Doeblin showed this property is sufficient for a strong
form of stability. Our order mixing condition (1) is clearly weaker
than (2). Nevertheless, we prove that (1) is sufficient for stability
when paired with monotonicity of the law of motion.

Our proof of this result is based on coupling theory. Coupling is a
means of comparing two distributions ψ and ψ′ by constructing ran-
dom variables X and X′ such that DX = ψ and DX′ = ψ′. (Here
DY = φ means that Y has distribution φ.) The essential idea is that
many pairs X and X′ have this property, and a careful choice can
simplify the analysis of ψ and ψ′ one wishes to perform.4 For sta-
bility of Markov processes, the two distributions in question are the
time t distribution ψt of Xt and the stationary distribution ψ∗. Here
coupling is used to show that ψt → ψ∗ as t→ ∞.

One of the advantages of the order mixing concept introduced in the
paper is that through coupling we are able to provide a purely prob-
abilistic proof of the main result, without any topological or order-
theoretic arguments. By separating our theory from topological con-
siderations, we are able to isolate more clearly the implications on
monotone mixing.

The paper is structured as follows. Section 2 begins with an overview
of the main theorem. Section 3 provides background on Markov pro-
cesses, while section 4 gives a formal discussion of order mixing.
Section 5 states the main stability result. Section 6 gives applications
of our results. Remaining proofs are given in the appendix.

2. OUTLINE OF THE METHOD

We begin with an overview of stability via monotonicity and order
mixing, setting aside measure-theoretic details until the next section.

4A general discussion of coupling techniques is given in Lindvall (1992).
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To do so, we consider a model that evolves according to the stochas-
tic recursive sequence Xt+1 = F(Xt, Wt+1), where the shocks (Wt)t≥1
are independently drawn from distribution φ on shock space Z, and
the initial condition X0 is given. A large class of economic models
can be formulated in this manner for suitable choices of F and the
state space.

We assume Xt takes values in a partially ordered space such as Rn,
and that the process is monotone increasing, in the sense that, for all
z ∈ Z, we have F(x, z) ≤ F(x′, z) whenever x ≤ x′. We suppose
further that a stationary distribution ψ∗ exists. Our objective is to
show that under order mixing, the distribution of Xt converges to
ψ∗, independent of X0.

To this end, let X∗t+1 = F(X∗t , W∗t+1) be a second version of the pro-
cess where (W∗t )t≥1 is another IID-φ sequence, and DX∗0 = ψ∗. By the
definition of stationarity, we have DX∗t = ψ∗ for all t. Consider also a
third process XL

t+1 = F(XL
t , WL

t+1) where XL
0 = X0 and WL

t = Wt un-
til the first time τ such that Xt ≤ X∗t . From then on we set WL

t = W∗t .
Since this process starts off at X0 and initially shares the same draws
as the first process (Xt)t≥0, it tracks (Xt)t≥0 up until date τ. At this
point in time we have

XL
τ = Xτ ≤ X∗τ

From τ on, (XL
t )t≥0 receives the same shocks as (X∗t )t≥0. Since these

processes receive the same shocks, it follows from our monotonicity
assumption that the time τ ordering XL

τ ≤ X∗τ is preserved at all
future dates (i.e, XL

t ≤ X∗t for all t ≥ τ). See figure 1.

Observe that order mixing implies Xt ≤ X∗t for some t with proba-
bility one. Equivalently, τ is finite with probability one. For large t,
then, we have XL

t ≤ X∗t with high probabilily (because t ≥ τ with
high probability, and XL

t ≤ X∗t whenever t ≥ τ).

Another pertinent feature of (XL
t ) is that DXL

t = DXt for all t ≥ 0.
The reason is that both processes start off at the same initial condition
X0, and both are subsequently updated by IID shocks from the same
distribution φ. In the case of (XL

t ), the source of shocks changes from
(Wt) to (W∗t ) at τ, but since the distributions of the shocks are the
same, this change does not alter the distribution of XL

t .
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(XL
t )

τ time

(Xt)

X∗0

X0 = XL
0

0

(X∗t )

FIGURE 1. XL
t ≤ X∗t for all t ≥ τ

Regarding stability, the assertion we wish to prove is that
∫

hdψt →∫
hdψ∗ for every increasing bounded real-valued function h, where

ψt is the distribution of Xt.5 In our set up, this is equivalent to the
assertion that limtEh(Xt) = limtEh(X∗t ) for any such h. Let us fix h
and consider the claim that limtEh(Xt) ≤ limtEh(X∗t ).

Our first observation is that since DXt = DXL
t , we need only show

that limtEh(XL
t ) ≤ limtEh(X∗t ). Now if t is large, then by order

mixing we have XL
t ≤ X∗t with high probability. Since h is increasing,

this implies h(XL
t ) ≤ h(X∗t ) with high probability. Using monotonic-

ity of E and taking limits, we obtain limtEh(XL
t ) ≤ limtEh(X∗t ), as

was to be show.6

So far we have sketched the proof that limt
∫

hdψt ≤
∫

hdψ∗ for ev-
ery increasing bounded real-valued function h. The reverse inequal-
ity can now be obtained in a similar way, this time replace (XL

t ) with
a process (XU

t ) which is eventually larger than X∗t . These arguments
are made precise throughout the remainder of the paper.

5For any common state space, this convergence is stricter than the standard
notion of convergence in distribution. See below for details.

6For more precise arguments, see theorem 5.1 and its proof.
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3. DISCRETE-TIME MARKOV PROCESSES

We begin with some fundamental properties of discrete time Markov
processes on an arbitrary measurable space. Let (E, E ) be such a
space, and let P(E) be the probability measures on (E, E ). A sto-
chastic kernel on E is a function Q : E× E → [0, 1] such that

(1) B 7→ Q(x, B) ∈P(E) for all x ∈ E, and
(2) x 7→ Q(x, B) is E -measurable for all B ∈ E .

A discrete-time, E-valued stochastic process X = (Xt)t≥0 on proba-
bility space (Ω, F ,P) is said to be Markov-(Q, µ) if X0 has distribu-
tion µ ∈ P(E) and Q(x, ·) :=: Q(x, dy) is the conditional distribu-
tion of Xt+1 given Xt = x. More precisely:

Definition 3.1. E-valued stochastic process X = (Xt)t≥0 is called
Markov-(Q, µ) if

DX0 = µ and P[Xt+1 ∈ B |Ft] = Q(Xt, B) for all B ∈ E

where Ft is the σ-algebra generated by the history X0, . . . , Xt.

In economics and econometrics, most Markov processes are gener-
ated by a stochastic recursive sequence (SRS). For example, suppose
that X = (Xt)t≥0 is generated by the model

(3) Xt+1 = F(Xt, Wt+1) and DX0 = ψ

where Xt takes values in E and the shock sequence (Wt)t≥1 is IID and
takes values in a measurable space (Z, Z ) according to distribution
φ.7 This process is Markov-(P, ψ) on E for P defined by

(4) P(x, B) =
∫
1B[F(x, z)]φ(dz) (x ∈ E, B ∈ E )

Indeed, if h : E→ R is any bounded measurable function, then

E[h(Xt+1) |Ft] = E[h[F(Xt, Wt+1)] |Ft] =
∫

h[F(Xt, z)]φ(dz)

Specializing to the case of h = 1B and using (4) gives

P[Xt+1 ∈ B |Ft] =
∫
1B[F(Xt, z)]φ(dz) = P(Xt, B)

7The initial condition X0 is independent of the shocks (Wt)t≥1, and both are
defined on some underlying probability space (Ω, F ,P).
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This confirms that X is Markov-(P, ψ).

Returning to the general case, let E∞ = ×t≥0 E be the set of all E-
valued sequences (xt)t≥0 and let E ∞ = ⊗t≥0 E be the product σ-
algebra. The following result is standard (cf., e.g., Pollard, 2002,
p. 101). It describes the joint distribution of any Markov-(Q, µ) pro-
cess on the sequence space (E∞, E ∞).

Theorem 3.1. For each µ ∈ P(E) and stochastic kernel Q on (E, E )
there exists a unique probability measure PQ

µ on (E∞, E ∞) such that for
any finite collection (Bi)n

i=0 with Bi ∈ E the measure PQ
µ satisfies

(5) PQ
µ (B0 × · · · × Bn × E× E× · · · ) =∫

B0

µ(dx0)
∫

B1

Q(x0, x1) · · ·
∫

Bn−1

Q(xn−2, dxn−1)
∫

Bn
Q(xn−1, dxn)

If an E-valued process X := (Xt)t≥0 on probability space (Ω, F ,P) is
Markov-(Q, µ), then the distribution of X on (E∞, E ∞) is given by PQ

µ . At
least one Markov-(Q, µ) process exists.8

In (5) the integrals are computed from right to left, with the inte-
grand written to the right of the integrating measure. If the initial
condition µ is the probability measure δx ∈ P(E) concentrated on
x ∈ E, then it is traditional to write PQ

x rather than PQ
δx

. A generating
class argument applied to (5) shows that

(6) PQ
µ (B) =

∫
PQ

x (B)µ(dx) (B ∈ E ∞, µ ∈P(E))

Let Qn be the n-th order kernel, defined by

Q1 := Q Qn(x, B) :=
∫

Qn−1(y, B)Q(x, dy)

Note that each Qn is a stochastic kernel in its own right, and that
Qn(x, B) is used to represent the probability of transitioning from x
to B in n steps. We will make use of the fact that if an E-valued pro-
cess (Xt)t≥0 on (Ω, F ,P) is Markov-(Q, µ), then for any n ∈ N the
process (Xt×n)t≥0 is Markov-(Qn, µ). Also, for a suitably integrable
h : E→ Rwe adopt the standard notation

Qnh(x) :=
∫

h(y)Qn(x, dy) (x ∈ E)

8The last statement is easily verified using coordinate projections.
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A probability measure µ∗ ∈P(E) is called stationary for Q if

µ∗(B) =
∫

Q(x, B)µ∗(dx) for all B ∈ E

It can be verified from (5) that if µ∗ is stationary for Q and X =
(Xt)t≥0 is Markov-(Q, µ∗) then X is a stationary stochastic process,
and, in particular, DXt = µ∗ for all t ≥ 0.

Let B ⊂ E and let VB ⊂ E∞ be the set of E-valued sequences which
visit B at least once:

VB :=
∞⋃

n=0
{(xt)t≥0 : xn ∈ B}

A set B ∈ E is called Harris recurrent if PQ
x (VB) = 1 for all x ∈

E.9 Note that if X = (Xt)t≥0 is Markov-(Q, x) on probability space
(Ω, F ,P) and B is Harris recurrent for Q, then since PQ

x is the distri-
bution of X we have

P{X ever enters B} := P{X ∈ VB} = PQ
x (VB) = 1

Let WB ⊂ E∞ be those sequences which visit B infinitely often:

(7) WB :=
∞⋂

m=0

⋃
n≥m
{(xt)t≥0 : xn ∈ B}

We will make use of the following elementary facts concerning Har-
ris recurrence.

Lemma 3.1. If B is Harris recurrent for Q, then PQ
x (WB) = 1 for all

x ∈ E. In other words, if x ∈ E and X is Markov-(Q, x), then X visits B
infinitely often with probability one.

Lemma 3.2. Let Q be a stochastic kernel on E, let ` ∈ N and let B ∈ E . If
B is Harris recurrent for Q` then B is Harris recurrent for Q.

For completeness, both lemmas are proved in the appendix.

Finally, let us consider product processes and product kernels, which
represent pairs of independent Markov processes. As before, let Q

9Definitions vary. In Meyn and Tweedie (1993), B is called Harris recurrent if
PQ

x (VB) = 1 for all x ∈ B.
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be any stochastic kernel on E, and let Q×Q be the stochastic kernel
on E× E defined by

(8) (Q×Q)((x, x′), A) =
∫ ∫

1A(y, y′)Q(x, dy)Q(x′, dy′)

for (x, x′) ∈ E× E and A ∈ E ⊗ E . The kernel Q× Q corresponds
to the bivariate chain (Xt, X′t)t≥0 where (Xt)t≥0 and (X′t)t≥0 are inde-
pendent with stochastic kernel Q. An inductive argument confirms
that for any n ∈ Nwe have Qn ×Qn = (Q×Q)n.

4. ORDER MIXING

We are now ready to define order mixing and investigate its prop-
erties. In what follows, we consider processes that take values in a
measurable space (S, S ) with partial order ≤. We let P(S) denote
the set of probability measures on (S, S ), and let ibS denote the set
of increasing bounded functions from S into R.10 A set B ⊂ S is
called increasing if its indicator function 1B is an increasing func-
tion; that is, if x ≤ x′ and x ∈ B implies x′ ∈ B. Increasing sets
are assumed to be elements of S , from which it follows that ibS is
contained in the S -measurable functions.

4.1. Definitions. In the product space (S× S, S ⊗S ), the sets

(9) L := {(x, x′) ∈ S× S : x ≤ x′}, U := {(x, x′) ∈ S× S : x′ ≤ x}

are assumed to be measurable (i.e., elements of S ⊗S ). Using these
sets, we can now give a precise definition to the concept of order
mixing.

Definition 4.1. Let P be a stochastic kernel on S. The kernel P is de-
fined to be order mixing if the sets L and U in (9) are Harris recurrent
for the joint kernel P× P.

This is just a formalization of the idea discussed in the introduction.
If P is order mixing, then any independent bivariate chain (Xt, X′t)t≥0
starting at arbitrary initial conditions (x, x′) ∈ S × S (that is, any
Markov-(P × P, (x, x′)) process) visits L at least once—which is to

10Thus, h ∈ ibS if supx∈S |h(x)| < ∞ and h(x) ≤ h(x′) whenever x ≤ x′.
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say that Xt ≤ X′t occurs at least once—with probability one. The
same is true for the set U.

From Definition 4.1 it is clear that order mixing is purely a restriction
on the stochastic kernel P. Also, when proving order mixing of P it
is sufficient to prove that P` is order mixing for some ` ∈ N:

Lemma 4.1. Let P be a stochastic kernel on S. If P` is order mixing for
some ` ∈ N then P is also order mixing.

4.2. Order Inducing Sets. In order to identify order mixing in ap-
plications, we introduce the concept of order inducing sets. Loosely
speaking, processes which return to order inducing sets infinitely of-
ten are order mixing. Order inducing sets are defined as follows:

Definition 4.2. Let P be a stochastic kernel on S. A set C ∈ S is
called order inducing for P if there exists an m ∈ N and an ε > 0 such
that for any (x, x′) ∈ C× C we have

(10) (P× P)m((x, x′), L) ≥ ε and (P× P)m((x, x′), U) ≥ ε

where L and U are the sets defined in (9).

In other words, C is order inducing if there is an m ∈ N and an
ε > 0 such that, for any x, x′ ∈ C, independent processes (Xt)t≥0
and (X′t)t≥0 run from these initial conditions attain Xm ≤ X′m and
X′m ≤ Xm with at least ε probability. Clearly, any measurable subset
of an order inducing set is also order inducing.

The definition of order inducing sets is stated in terms of joint ker-
nels, but conditions stated in terms of the individual kernel P are
easily derived. For example, a set C ∈ S is order inducing when-
ever there exists a c ∈ S, and ε > 0 and an m ∈ N such that, ∀ x ∈ C,

(11) Pm(x, {y : y ≤ c}) ≥ ε and Pm(x, {y : y ≥ c}) ≥ ε

To see that (11) implies that C is order inducing, consider the first
inequality in (10). Since {(y, y′) : y ≤ c ≤ y′} ⊂ L, we have

(P× P)m((x, x′), L) ≥ (P× P)m((x, x′), {(y, y′) : y ≤ c ≤ y′})
= (P× P)m((x, x′), {y : y ≤ c} × {y′ : c ≤ y′})
= Pm(x, {y : y ≤ c})Pm(x′, {y′ : c ≤ y′}) ≥ ε2

The argument for the second inequality in (10) is similar.
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Example 4.1. Consider the Monotone Mixing Condition (MMC) of
Hopenhayn and Prescott (1992, p. 1397), which generalizes the ideas
of Razin and Yahav (1979) and Stokey and Lucas (1989), and pertains
to state spaces S with a least element a and greatest element b.11 Re-
call that P is called monotone increasing if x 7→ P(x, B) is increasing
for every increasing set B. In this setting, the MMC is said to hold
for kernel P whenever there exists a c ∈ S and m ∈ N such that
Pm(a, [c, b]) > 0 and Pm(b, [a, c]) > 0.

Under the MMC, the entire state space S is order inducing. To verify
this, observe from monotonicity of P that x 7→ Pm(x, [c, b]) is mono-
tone increasing. The assertion that S is order inducing now follows
from the sufficient condition presented in (11). Indeed, for any x ∈ S,
we have

Pm(x, {y : y ≥ c}) = Pm(x, [c, b]) ≥ Pm(a, [c, b]) > 0

The proof of the other case is similar.

Example 4.2. Bhattacharya and Lee (1988) and Bhattacharya and Ma-
jumdar (2001) consider a “splitting condition” and its relationship to
stability. Their environment consists of a sequence of IID random
maps (αt)t≥1 on some probability space (Ω, F ,P), and a process
(Xt)t≥0 generated by

Xt = αtXt−1 = αt ◦ · · · ◦ α1(x)

where x ∈ S is the initial condition. Their splitting condition requires
the existence of a c ∈ S and m ∈ N such that

(a) P{αm ◦ · · · ◦ α1(x) ≤ c, ∀x ∈ S} > 0; and
(b) P{αm ◦ · · · ◦ α1(x) ≥ c, ∀x ∈ S} > 0

Under this condition, the entire state space S is again order inducing.
To see this, observe that (11) is satisfied for the same choice of c and
m, with ε as the infimum of the two probabilities in (a) and (b) above.
Indeed, if P is the corresponding stochastic kernel, then for any x ∈ S
we have

Pm(x, {y : y ≤ c}) = P{αm ◦ · · · ◦ α1(x) ≤ c}
≥ P{αm ◦ · · · ◦ α1(x) ≤ c, ∀x ∈ S} ≥ ε

11That is, a ≤ x ≤ b for all x ∈ S.



12 TAKASHI KAMIHIGASHI AND JOHN STACHURSKI

The argument for the second inequality in (11) is similar. Hence S is
order inducing.

Thus, existing results correspond to the case where, in our notation,
the entire state space S is order inducing. As we will see, this is
sufficient but not necessary for order mixing. Indeed, the set of order
mixing models is considerably larger than the set of models such that
S is order inducing, as the next example demonstrates.

Example 4.3. Consider the elementary AR(1) process

(12) Xt+1 = aXt + Wt+1

where S = R and (Wt)t≥1 is a univariate and standard normal. For
this model, S is not order inducing whenever a 6= 0, and hence nei-
ther the MMC nor the splitting condition is satisfied. Let’s check
this for a > 0. Given two processes (Xt) and (X′t) following (12)
with X0 = x and X′0 = x′, one can show that Xm = U + amx and
X′m = U′ + amx′ for some normally distributed U and U′. It follows
that for any fixed m ∈ Nwe have

P{Xm ≤ X′m} = P{U + amx ≤ U′ + amx′}
= P{U −U′ ≤ am(x′ − x)} → 0 as (x, x′)→ (∞,−∞)

Hence S is not order inducing. The case a < 0 is similar.

On the other hand, sets of the form [−K, K] are order inducing, as can
be seen from (11): Let c = 0 and m = 1. For any x ∈ [−K, K] we have

P{X1 ≥ c |X0 = x} = P{ax + W1 ≥ 0}
= P{W1 ≥ −ax} ≥ P{W1 ≥ |a|K} > 0

The reverse case P{X1 ≤ c |X0 = x} follows from a similar argu-
ment.

While for the AR(1) model S is not order inducing, the model is order
mixing whenever |a| < 1. If one fixes an K ∈ N, then [−K, K] is
order inducing. Moreover, the mean reverting assumption |a| < 1
implies that if we run two independent copies (Xt)t≥0 and (X′t)t≥0
of the process, then the pair Xt and X′t will return simultaneously to
[−K, K] infinitely often with probability one. After each visit there
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is an ε > 0 probability of achieving the orderings X ≤ c ≤ X′ and
X′ ≤ c ≤ X. These facts can be shown to imply order mixing.

Rather than making this argument rigorous, we now turn to the gen-
eral case, using similar intuition to link order inducing sets to the
property of order mixing.

4.3. Sufficient Conditions. Our most general sufficient condition
for order mixing is given next. To state the theorem, recall that WC×C
is defined in (7) as all sequences in S× S which visit C× C infinitely
often.

Theorem 4.1. A kernel P is order mixing if, for each pair (x, x′) ∈ S× S,
there exists an order inducing set C ⊂ S with

PP×P
(x,x′)(WC×C) = 1

The theorem states that if, for each initial condition of the bivariate
process (Xt, X′t)t≥0, there exists an order inducing set C such that the
bivariate process visits C × C infinitely often with probability one,
then P is order mixing. Although the proof is nontrivial, the intu-
ition behind the theorem is straightforward: If C is order inducing,
then each time Xt and X′t are both in C, the event Xt+m ≤ X′t+m oc-
curs with some positive probability ε. Independent events that occur
with positive probability infinitely often must occur eventually with
probability one. Hence P{∃t ≥ 0 s.t. Xt ≤ X′t} = 1. The argument
for P{∃t ≥ 0 s.t. X′t ≤ Xt} = 1 is similar.

It was previously mentioned without proof that if the entire state
space S is order inducing for a given kernel P, then P is order mixing.
This is an immediate corollary of theorem 4.1:

Corollary 4.1. If S is order inducing, then P is order mixing.

While theorem 4.1 is suitably general, it is not particularly conve-
nient, because it is a restriction on the product kernel P × P. The
next two theorems are more specialized, but concern P rather than
P× P. To state the first one, we introduce the idea of order norm-like
functions.
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Definition 4.3. A measurable function v : S → R+ is called order
norm-like if, for every K ∈ R+, the sublevel set {x ∈ S : v(x) ≤ K} is
order inducing.

Example 4.4. In the case of the AR(1) model in Example 4.3, the func-
tion v(x) = |x| is order norm-like, because for every K ≥ 0 the set

C := {x ∈ S : v(x) ≤ K} = {x ∈ S : |x| ≤ K} = [−K, K]

is order inducing (see Example 4.3).

We can now state the following key result:

Theorem 4.2. Let P be a stochastic kernel on S. The kernel P is order
mixing whenever there exists an order norm-like function v : S→ R+ and
constants ` ∈ N, α ∈ [0, 1) and β ∈ R+ such that

(13) P`v(x) :=
∫

v(y)P`(x, dy) ≤ αv(x) + β (x ∈ S)

The drift condition (13) is a form of mean reversion, implying that
the process returns to sets on which v is bounded. By the definition
of v, these sets are order inducing. In fact, (13) can be used to show
that the process returns to an order inducing set C infinitely often.
The proof is in the appendix.

Example 4.5. The AR(1) model satisfes the conditions of the theo-
rem whenever |a| < 1, because v(x) = |x| is order norm-like (see
example 4.4) and∫

v(y)P(x, dy) = E|ax + W|

≤ |ax|+E|W| = |a|v(x) +E|W|

Lastly, we consider a sufficient condition for order mixing which is
useful when S has a topology. Specifically, we assume that S is a
Polish space, and take S to be the Borel sets. In this case a condi-
tion closely related to existence and stability of stationary distribu-
tions is tightness of the marginal distributions.12 Following Meyn
and Tweedie (1993, p. 145), we say that P is bounded in probability if
(Pt(x, ·))t≥1 is tight for every x ∈ S.

12Recall that a collection M of probabilities on S is called tight if, for all ε > 0,
there exists a compact set K ⊂ S such that µ(K) ≥ 1− ε for all µ ∈M .
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Theorem 4.3. If P is bounded in probability and all compact subsets of S
are order inducing, then P is order mixing.

5. STABILITY VIA ORDER MIXING

Our main result concerning order mixing and stability is stated in
terms of the SRS

(14) Xt+1 = F(Xt, Wt+1), DX0 = ψ

Here Xt takes values in the partially ordered set S, and the shock se-
quence (Wt)t≥1 is IID and takes values in a measurable space (Z, Z )
according to distribution φ. The function F is assumed to be (S ⊗
Z , S )-measurable. The process (Wt)t≥1 and the initial condition X0
are independent and defined on probability space (Ω, F ,P). The
stochastic kernel P corresponding to (14) is as defined in (4).

Note that the formulation (14) is relatively general. Many models
with additional lags and non-IID shocks can be expressed in the form
(14) by readjusting the definition of the state variables. Further, if S
is separable and completely metrizable (as is the case for every Gδ

subset ofRk), then every stochastic kernel P on S can be represented
by an SRS in the form of (14).13

Regarding the process (14) we make the following assumptions:

Assumption 5.1. The process (14) is monotone increasing.

Assumption 5.2. The kernel P corresponding to (14) is order mixing.

We can now state the main result of the paper. In the statement of the
theorem, ψt is the distribution of Xt, where (Xt)t≥0 is Markov-(P, ψ).

Theorem 5.1. If Assumptions 5.1 and 5.2 hold and ψ∗ is stationary for P,
then given any ψ ∈P(S), we have

(15)
∫

hdψt →
∫

hdψ∗ as t→ ∞, ∀ h ∈ ibS

13In other words, for each kernel P there exists a representation (14) such that
the process (Xt)t≥0 is Markov-(P, ψ). See Kifer (1986).
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Here ibS is the set of increasing bounded functions from S to R. For
the benchmark case where S is a Borel subset ofRk and S is the Borel
sets, the convergence in (15) is stronger than the standard definition
of convergence in distribution (i.e., “weak” convergence).14

Corollary 5.1. If Assumptions 5.1 and 5.2 hold and ibS separates the
points of P(S), then P has at most one stationary distribution.15

Proof of Corollary 5.1. The proof is trivial. If ψ∗ and ψ∗∗ are both sta-
tionary, then (15) implies that

∫
hdψ∗ =

∫
hdψ∗∗ for every h ∈ ibS.

Since ibS separates P(S), we have ψ∗ = ψ∗∗. �

5.1. Existence. The conditions of theorem 5.1 are too general to im-
ply the existence of a stationary distribution—even when the state
space is a well behaved space such as R. For example, consider the
random walk Xt+1 = Xt + Wt+1 with Wt ∼ N(0, 1). This process
is order mixing (since the 2-dimensional random walk is recurrent)
and monotone but has no stationary distribution.

However, drift conditions such as (13) are also used in the Markov
process literature to establish existence. For example, (13) is known
to imply existence of a stationary distribution when the sublevel sets
of v are compact and F is continuous in its first argument (cf., e.g.,
Meyn and Tweedie, 1993, prop. 12.1.3). If the compact sets are also
order inducing, then v is order norm-like, and theorem 5.1 implies
uniqueness and global stability. The next theorem packages this re-
sult:

Theorem 5.2. Let S be a Borel subset of Rk, and suppose that there exists
a measurable function v : S → R+ and constants α ∈ [0, 1) and β ∈ R+
such that the drift condition (13) holds. If

(1) all sublevel sets of v are compact,
(2) all compact subsets of S are order inducing, and
(3) the map x 7→ F(x, z) is increasing and continuous for all z ∈ Z,

14Recall that ψt → ψ∗ weakly if
∫

hdψt →
∫

hdψ∗ for all bounded continuous
h : S→ R. See Torres (1990, Corollary 6.5) for details.

15The set ibS separates the points of P(S) if for any µ and ν in P(S) such that∫
hdµ =

∫
hdν for all h ∈ ibS we have µ = ν. This holds whenever the increasing

subsets of S generate S , as is the case for the Borel subset ofRk.
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then a unique, globally stable stationary distribution exists.

Example 5.1. A simple example is provided by the AR(1) model in
Example 4.3 when a ∈ [0, 1). We saw above that the drift condition
(13) holds for v(x) = |x|. Sublevel sets of v take the form [−K, K],
and hence are compact. It was shown that sets of the form [−K, K]
are order inducing, and the argument is easily extended to include
any compact set. The function x 7→ ax + z is increasing and continu-
ous for every z ∈ R.

Example 5.1 is for illustrative purposes only, as stability of the AR(1)
model is trivial. However, many of the special properties of the
AR(1) model can be relaxed without violating the conditions of the-
orem 5.2. We now turn to more sophisticated applications.

6. APPLICATIONS

6.1. A Standard Result. Stokey and Lucas (1989, thm. 12.12) prove a
widely cited result, which can be translated into our notation as fol-
lows. Consider the SRS (14). Let S be the order interval [a, b] ⊂ Rk.
Suppose that S 3 x 7→ F(x, z) ∈ S is continuous and increasing for
every z ∈ Z, and that the MMC holds (see above). Stokey and Lu-
cas then show that the process has a unique stationary distribution
which is globally stable in the sense of weak convergence.

This is a special case of theorem 5.2. To see this, let v = 0, so that
all sublevel sets of v are equal to S. For this choice of v the drift con-
dition (13) is trivially satisfied, and all sublevel set of v are compact.
Moreover, under the MMC, the entire state space S is order inducing
(see above). Since measurable subsets of order inducing sets are or-
der inducing, all compact subsets of S are order inducing. Condition
(3) of theorem 5.2 is true by assumption.

As suggested by the AR(1) example, theorem 5.2 is more general
than the result of Stokey and Lucas. This will be further illustrated
in the examples below.

6.2. The Brock–Mirman Model. Next let us consider benchmark
single sector stochastic optimal growth model studied by Brock and
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Mirman (1972). For the sake of concreteness we adopt the same as-
sumptions as Zhang (2007), and show how his results can be ob-
tained as a special case of theorem 5.2.

Let (Wt)t≥1 be an IID sequence on S := (0, ∞) with common distri-
bution φ, and let f : R+ → R+ be a standard neoclassical production
function. Following Zhang (2007, Assumptions 1–5) we assume that

Assumption 6.1. The production function satisfies f (0) = 0, f ′ > 0,
f ′′ < 0, limx→0 f ′(x) = ∞ and limx→∞ f ′(x) = 0.

Assumption 6.2. The distribution φ satisfies both
∫

zφ(dz) < ∞ and∫
z−1φ(dz) < ∞. The shocks are unbounded in the sense that for

any x ∈ S we have φ{z ≤ x} > 0 and φ{z ≥ x} > 0.16

Let u be a differentiable, strictly concave and strictly increasing util-
ity function with limx→0 u′(x) = ∞, and consider the maximization
problem

(16) max
(kt)t≥0

E

[
∑
t≥0

δtu(yt − kt)

]
s.t. yt+1 = f (kt)Wt+1

where kt ∈ [0, yt] for all t and δ ∈ (0, 1) is a discount factor. Un-
der certain regularity conditions17 on u there exists a unique optimal
policy σ : R+ → R+ such that (kt)t≥0 defined by kt = σ(yt) solves
(16). The policy σ is known to be continuous, interior and strictly
increasing. It generates an optimal path for income defined by

(17) yt+1 = f (σ(yt))Wt+1 with y0 given

To prove stability of (17) on S = (0, ∞), let us begin by observing
that sets of the form [a, b] ⊂ S are all order inducing. To see this,
pick any C := [a, b] ⊂ S and fix c ∈ C. For any y ∈ C we have

P{yt+1 ≥ c | yt = y} = φ{z : f (σ(y))z ≥ c}
= φ{z : z ≥ c/ f (σ(y))} ≥ φ{z : z ≥ c/ f (σ(a))} > 0

16The case of bounded shocks can also be treated using order mixing. The proof
is not much different from Hopenhayn and Prescott (1992, section 6B).

17We refer to conditions under which the dynamic programming problem is
finite and well defined. See Kamihigashi (2007) for a comprehensive discussion.
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where the second last inequality follows from y ≥ a and the last
inequality follows from unboundedness of the shock. A similar ar-
gument shows that P{yt+1 ≤ c | yt = y} is also bounded away from
zero over y ∈ C, thereby completing the proof that C is order induc-
ing.

Let v(x) := u′(x − σ(x)) + x. By manipulating the Euler equation,
Nishimura and Stachurski (2005) show that for this choice of v there
exist constants ` ∈ N, α ∈ [0, 1) and β ∈ R+ such that the drift
condition (13) holds. Moreover, v is order-norm like, since (i) every
sublevel set of v is contained in an interval [a, b] ⊂ S for sufficiently
inducing a and large b, (ii) subsets of order inducing sets are order
inducing, and (iii) every interval [a, b] ⊂ S is order inducing (as dis-
cussed above).

The remaining conditions of theorem 5.2 are easily verified, imply-
ing existence of a unique and globally stable stationary distribution.
We have now obtained the results of Zhang (2007) as a consequence
of theorem 5.2.

6.3. Credit Constrained Growth. Next let us consider a model of
growth in a small open economy due to Matsuyama (2004). In Mat-
suyama’s model production is deterministic and multiple steady states
may exist. When production is stochastic the set of dynamics is
richer. We show that when shocks are sufficiently large global sta-
bility holds.18 The stability problem is challenging as a result of the
nonlinearities inherent in the law of motion.

In the model, agents live for two periods, with a unit mass of young
born at the start of each period. At time t, the old own a total stock of
the capital good given by kt. This is combined with the labor of the
young to produce per capita output of the consumption good given
by f (kt)ξt, where ξt is a stochastic productivity term. The production
function f satisfies f (0) = 0, f ′ > 0, f ′′ < 0, f ′(0) = ∞ and f ′(∞) =
0. Factor markets are competitive, with return on capital given by

18Despite global stability, strong persistence of initial conditions remains, repli-
cating the poverty trap dynamics observed by Matsuyama. However, “growth
miracles” occur with nonzero probability.
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f ′(kt)ξt and wages by

wt := w(kt, ξt) := [ f (kt)− kt f ′(kt)]ξt

The young now invest their wages, either in international credit mar-
kets at the risk free world interest rate R, or in a domestic project
which converts one unit of the consumption good into one unit of
the capital good next period. Due to indivisibilities agents can start
at most one such project, so 0 ≤ kt+1 ≤ 1.

From profit maximization (assume risk neutrality) we obtain the re-
striction

R ≤ f ′(kt+1)E [ξt+1|ξt]

which says that expected return on the project must dominate the
risk free rate. If the inequality is strict it means that all young agents
invest in the project, whence kt+1 = 1. The excess cost of the project
above wages, i.e., 1− wt, is financed by borrowing abroad.

Due to imperfect credit markets, the liabilities R(1 − wt) of those
agents borrowing abroad to finance the project cannot exceed a frac-
tion λ of expected net worth at t + 1, which is f ′(kt+1)E [ξt+1|ξt].
Thus we have the additional restriction

R(1− wt) ≤ λ f ′(kt+1)E [ξt+1|ξt]

which binds when 1− wt > λ. We can combine these last two re-
strictions by setting

R ≤ Θ(wt) f ′(kt+1)E [ξt+1|ξt]

where Θ(w) is equal to λ/(1 − w) if 1 − w > λ, and 1 otherwise.
Again, if the inequality is strict then we have the corner solution
kt+1 = 1. Letting g be the inverse of f ′ and incorporating the corner
solution gives

kt+1 = min
{

g
(

R
Θ(wt)E [ξt+1|ξt]

)
, 1
}

Assume that the productivity process (ξt)t≥0 follows the positively
correlated AR(1) law

(18) ξt+1 = ρξt + Wt+1
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where ρ ∈ [0, 1) and (Wt)t≥1 is an IID sequence of nonnegative ran-
dom variables with finite mean µ. From this law we can compute
E [ξt+1|ξt] to give

(19) kt+1 = h(kt, ξt) := min
{

g
(

R
Θ(w(kt, ξt))(ρξt + µ)

)
, 1
}

Equations (18) and (19) together with initial conditions k0 and ξ0 de-
fine a Markov process (kt, ξt)t≥0 on S := [0, 1]×R+.

If the support of the innovation W is bounded then the law of motion
for capital may have multiple steady states. If, on the other hand,
the distribution has support equal to R+ (consider, for example, the
lognormal density) then global stability can be established using the-
orem 5.2. This is significant because stability cannot be established
using classical methods without additional assumptions.19 Nor do
the methods of Razin and Yahav (1979), Stokey, Lucas and Prescott
(1989) and Hopenhayn and Prescott (1992) apply, since S is not com-
pact. Finally, the process is not an average contraction as studied in,
for example, Santos and Peralta-Alva (2005).

To prove stabilty using theorem 5.2, first observe that for v : S→ R+
defined by v(k, ξ) = ξ we have

E [ v(k1, ξ1) | (k0, ξ0) = (k, ξ)]

= E [ ξ1 | (k0, ξ0) = (k, ξ)] = ρξ + µ = ρv(k, ξ) + µ

and since ρ ∈ [0, 1) the drift condition (13) is satisfied. To check
the remaining conditions of theorem 5.2, note that the joint law of
motion

F((k, ξ), z) = (h(k, ξ), ρξ + z)
is increasing and continuous in (k, ξ) when z is held fixed. Thus
the conditions of the theorem are satisfied if we can show that the
sublevel sets

{(k, ξ) ∈ S : v(k, ξ) ≤ K} = {(k, ξ) ∈ S : ξ ≤ K} = [0, 1]× [0, K]

are compact and order inducing in S. Since compactness is imme-
diate we need only verify that sets of the form [0, 1]× [0, K] are or-
der inducing. So in the definition of order inducing sets we take

19For example, irreducibility fails without additional assumptions on the shock
process and even then is generally difficult to verify.
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C = [0, 1] × [0, K], c = (1, K) and m = 2. First we show that the
probability that (k2, ξ2) ≥ c = (1, K) is bounded below for any fixed
initial condition (k0, ξ0) = (k, ξ) ∈ C. Since Θ(w) ≥ λ for all w and
g is decreasing we have

k2 ≥ g
(

R
λ(ρξ1 + µ)

)
≥ g

(
R

λρW1

)
for any initial (k, ξ) ∈ C. In particular k2 ≥ 1 whenever

g
(

R
λρW1

)
≥ 1 ⇐⇒ W1 ≥

R
λρ f ′(1)

On the other hand, regarding ξ2 we have

ξ2 = ρ2ξ + ρW1 + W2

and hence ξ2 ≥ K whenever W1 ≥ K/ρ. In summary,

(k2, ξ2) ≥ c := (1, K) whenever W1 ≥ max
{

R
λρ f ′(1)

,
K
ρ

}
Since the support of W1 is R+ the event on the right hand side has
positive probability ε′. We have shown that

P{(k2, ξ2) ≥ c | (k0, ξ0) = (k, ξ)} ≥ ε′ ∀ (k, ξ) ∈ C

Similarly, one can establish that there is a positive ε′′ such that

P{(k2, ξ2) ≤ c | (k0, ξ0) = (k, ξ)} ≥ ε′′ ∀ (k, ξ) ∈ C

and then set ε := min{ε′, ε′′} in the definition of order inducing sets.

To check the last assertion, note that since k2 ≤ 1 always holds, we
have (k2, ξ2) ≤ c = (1, K) whenever ξ2 ≤ K. Now observe that

ξ2 = ρ2ξ + ρW1 + W2 ≤ ρ2K + ρW1 + W2

where the inequality follows from (k, ξ) ∈ C. Hence ξ2 ≤ K when

ρ2K + ρW1 + W2 ≤ K ⇐⇒ ρW1 + W2 ≤ K(1− ρ2)

Since the support of W is R+ this event occurs with positive proba-
bility ε′′. That C is order inducing has now been established.
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7. APPENDIX

This appendix collects all remaining proofs.

Proof of lemma 3.1. Meyn and Tweedie (1993, prop. 9.1.1) show that if
PQ

x (VB) = 1 for all x ∈ B, then PQ
x (VB) = PQ

x (WB) for all x ∈ E. Thus
if B is Harris recurrent, then PQ

x (WB) = 1 for all x ∈ E. �

Proof of lemma 3.2. Let Q, ` ∈ N and B ∈ E be as in the statement
of the lemma. Pick any x ∈ E. Let X = (Xt)t≥0 be an E-valued
stochastic process on (Ω, F ,P) which is Markov-(Q, x). It follows
that Y = (Yt)t≥0 defined by Yt := Xt×` is Markov-(Q`, x). We have

PQ
x (VB) = P{X ever enters B} ≥ P{Xt×` ∈ B for some t ≥ 0}

= P{Y ever enters B} = PQ`

x (VB) = 1

In other words, B is Harris recurrent for Q, as was to be shown. �

Proof of lemma 4.1. Let P and ` ∈ N be as in the statement of the
lemma. We wish to show that the sets L and U defined in (9) are
Harris recurrent for P× P. By assumption, L is Harris recurrent for
P`× P`. But P`× P` = (P× P)`, so L is Harris recurrent for (P× P)`.
Lemma 3.2 then implies that L is Harris recurrent for P× P. A simi-
lar argument shows that U is also Harris recurrent for P× P. �

In order to prove theorem 4.1, we begin with a lemma regarding
visits of a sample path to a given set B. In the lemma, we take E
to be any set, E∞ the E-valued sequences, B ⊂ E and (xt)t≥0 any
element of E∞. Define Nt := ∑t

i=0 1{xi ∈ B} to be the number of
visits to B up until date t, and let

J1 := inf{t ≥ 0 : xt ∈ B}, Ji+1 := inf{t ≥ Ji + 1 : xt ∈ B}
so that Ji is the date of the i-th visit to B. We will be concerned below
with visits to a set that are at least m periods apart, where m is a
given integer. To this end, define

K1 := J1 Ki+1 := inf{t ≥ Ki + m : xt ∈ B}
In what follows, the elements of (Ki)i≥1 are called the m-separated
visits to B. Regarding (Ki)i≥1 and (Nt)t≥0 we have the following re-
lationship.
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Lemma 7.1. Let n ∈ N. If Nt > n×m, then Kn + m ≤ t.

In other words, if, as of date t, the number of visits to B exceeds
n×m, then the n-th m-separated visit to B occurs prior to t−m.

Proof of lemma 7.1. Fix n ∈ N. As Ki+1 ≥ Ki + m, we have Kn ≥
K1 + (n− 1)m, and hence Kn + m ≤ K1 + n×m = J1 + n×m. As a
result, the proof will be complete if we can show that

(20) J1 + n×m ≤ t

In general, Ji+1 ≥ Ji + 1 and hence Ji+k ≥ Ji + k.

∴ Ji ≤ Ji+k − k

∴ J1 ≤ Jn×m+1 − n×m
Since Nt > n×m, we have Jn×m+1 ≤ t. From this and the previous
inequality we obtain J1 ≤ t − n × m. This is precisely (20), which
completes the proof of lemma 7.1. �

We will also make use of the following lemma.

Lemma 7.2. Suppose that PQ
x (WB) = 1 for some x ∈ E and B ∈ E ,

and that X = (Xt)t≥0 is Markov-(Q, x). If Nt := ∑t
i=0 1{Xi ∈ B}

counts the number of visits to B prior to t, then for any j ∈ N we have
P{Nt ≤ j} → 0 as t→ ∞.

Proof. Let Nt and X be as defined in the lemma. Evidently

∪j ∩t {Nt ≤ j} = {X ∈WB}c

Since P{X ∈WB}c = PQ
x (Wc

B) = 0, for any j ∈ Nwe have

lim
t→∞

P{Nt ≤ j} = P∩t {Nt ≤ j} = 0

�

We are now ready to prove theorem 4.1. In the proof we will make
use of the strong Markov property,20 which states that if σ is a stop-
ping time and B ∈ E then any Markov-(Q, µ) process (Xt)t≥0 satis-
fies

(21) P[Xσ+n ∈ B |Fσ] = Qn(Xσ, B) (n ≥ 0)
20See Meyn and Tweedie (1993, prop. 3.4.6).
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Proof of theorem 4.1. Fix (x, x′) ∈ S× S. Let VL (resp., VU) be the set
of sequences in (S× S)∞ which visit L (resp., U) at least once, where
L and U are defined in (9). To establish order mixing, we must show
that

PP×P
(x,x′)(VL) = PP×P

(x,x′)(VU) = 1

Let (Xt, X′t)t≥0 be any Markov-(P× P, (x, x′)) process. If

τ := inf{t ≥ 0 : Xt ≤ X′t} and σ := inf{t ≥ 0 : X′t ≤ Xt}

then, since (Xt, X′t)t≥0 has distribution PP×P
(x,x′), it suffices to prove that

P{τ < ∞} = P{σ < ∞} = 1

We will restrict attention to the case of τ, as the proof for σ is similar.
To show that P{τ < ∞} = 1, let C be the set in the statement of the
theorem. Since C is order inducing, there exists an m ∈ N and an
ε > 0 such that

(22) (P× P)m((x, x′), L) ≥ ε, ∀ (x, x′) ∈ C× C

Let Nt be the number times (Xt, X′t)t≥0 visits C× C up until date t:

Nt :=
t

∑
i=0
1{(Xi, X′i) ∈ C× C}

Consider the decomposition

(23) P{τ > t} = P{τ > t, Nt ≤ n×m}+P{τ > t, Nt > n×m}

Let us consider first the second term on the right hand side of (23).
We claim that for n, t with n×m ≤ t we have

(24) P{τ > t, Nt > n×m} ≤ (1− ε)n

To see this, let (Ki)i≥1 be the m-separated visits of (Xt, X′t)t≥0 to C×
C. That is,

K1 := inf{t ≥ 0 : (Xt, X′t) ∈ C× C}

Ki+1 := inf{t ≥ Ki + m : (Xt, X′t) ∈ C× C}
In view of lemma 7.1, {Nt > n×m} ⊂ {Kn + m ≤ t}. As a result,

(25) P{τ > t, Nt > n×m} ≤ P{τ > t, Kn + m ≤ t}

Consider the set {τ > t, Kn + m ≤ t}. If a path is in this set, then
as τ > t, for any index j with j ≤ t we have Xj � X′j. In addition,
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Ki + m ≤ Kn + m ≤ t for any i ≤ n, so we have XKi+m � X′Ki+m for
every i ≤ n.

(26) ∴ P{τ > t, Kn + m ≤ t} ≤ P
[

n⋂
i=1

{XKi+m � X′Ki+m}
]

We now show that the term on the right hand side is bounded by
(1− ε)n, which verifies the claim in (24). This can be demonstrated
as follows.

P

[
n⋂

i=1

{XKi+m � X′Ki+m}
]

= P

[
P

[
n⋂

i=1

{XKi+m � X′Ki+m} |FKn

]]

= P

[
n−1⋂
i=1

{XKi+m � X′Ki+m} P[XKn+m � X′Kn+m |FKn ]

]
Using the strong Markov property (21) we have

P[XKn+m ≤ X′Kn+m |FKn ] = (P× P)m((XKn , X′Kn
), L) ≥ ε

where the last inequality uses (22) and the fact that both XKn and X′Kn
are by definition contained in the order inducing set C.

∴ P[XKn+m � X′Kn+m |FKn ] ≤ (1− ε)

∴ P

[
n⋂

i=1

{XKi+m � X′Ki+m}
]
≤ (1− ε)P

[
n−1⋂
i=1

{XKi+m � X′Ki+m}
]

Continuing to iterate backwards in this way yields

P

[
n⋂

i=1

{XKi+m � X′Ki+m}
]
≤ (1− ε)n

Combining this inequality with (25) and (26) verifies the claim in
(24). Returning to (23), then, we have

P{τ > t} = P{τ > t, Nt ≤ n×m}+ (1− ε)n

≤ P{Nt ≤ n×m}+ (1− ε)n

for any t and any n such that n × m ≤ t. Fix n ∈ N. Since C × C
is Harris recurrent for the bivariate process, lemma 7.2 implies that
P{Nt ≤ n×m} → 0 as t→ ∞. Hence

lim sup
t→∞

P{τ > t} ≤ (1− ε)n, ∀ n ∈ N

Therefore limtP{τ > t} = 0, and P{τ < ∞} = 1. �
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Next we turn to the proof of theorem 4.2. In the proof we can and
do assume that ` = 1. The reasoning is as follows. Suppose that
the theorem is true for the case ` = 1. Now pick any other ` ∈ N
and suppose the conditions of the theorem hold. Since Q := P` is
a stochastic kernel in its own right, and since the theorem holds for
` = 1, the kernel Q is order mixing. But if Q = P` is order mixing
then P itself is order mixing by lemma 4.1. In all of what follows we
set ` = 1 in (13) without further comment.

To prove theorem 4.2 we will make use of the next two lemmas.

Lemma 7.3. Let (E, E ) be any measurable space, let B ∈ E , and let Q be a
stochastic kernel on E. If there exists a measurable function w : E→ [1, ∞)
and a λ ∈ [0, 1) such that Qw(x) ≤ λw(x) whenever x /∈ B, then B is
Harris recurrent for Q.

Proof. Pick any x ∈ E, and let (Xt)t≥0 be Markov-(Q, x). Define η :=
min{t ≥ 0 : Xt ∈ B}. We will show that P{η > t} → 0 as t → ∞.
To this end, let Mt := w(Xt)1{η > t − 1} with M0 := w(x). This
process is a supermartingale. Indeed,

E[w(Xt+1)1{η > t} |Ft] = E[w(Xt+1) |Ft]1{η > t}
= Qw(Xt)1{η > t}
≤ λw(Xt)1{η > t}
≤ λw(Xt)1{η > t− 1}

Taking expectations we obtain EMt+1 ≤ λEMt, and, iterating back-
wards to M0, EMt ≤ λtw(x) for all t. As a result we have

P{η > t} ≤ E1{η > t}w(Xt+1) = EMt+1 ≤ λt+1w(x)→ 0

It follows that P{η = ∞} = 0, and B is Harris recurrent. �

Lemma 7.4. If P satisfies the conditions of theorem 4.2, then there exists
an order inducing set C, a measurable function w : S × S → [1, ∞) and
constant λ ∈ [0, 1) such that

(27) (P× P)w(x, x′) ≤ λw(x, x′) whenever (x, x′) /∈ C× C

Proof. Let P be any stochastic kernel on S, and let v, α and β be as
in theorem 4.2. We can without any loss of generality assume that
v ≥ 1, as simple algebra shows that if the conditions in theorem 4.2
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hold for given v, α and β, then they also hold for v′, α′ and β′, where
v′ := v + 1, α′ := α and β′ := β + 1.

So suppose that v ≥ 1. Choose any d such that α + β/d < 1. Let
C := {x ∈ S : v(x) ≤ 2d}, which is order inducing by the defintion
of v. Define the function w and constant λ by

w(x, x′) :=
v(x) + v(x′)

2
, λ := α +

β

d
Evidently w ≥ 1 and λ < 1. Thus it remains only to show that (27)
holds on S× S. In doing so we will make use of the inequality

(P× P)w(x, x′) ≤ αw(x, x′) + β, (x, x′) ∈ S× S

which can be verified with some straightforward calculations.

Now pick any (x, x′) /∈ C × C. Then v(x) + v(x′) > 2d, and hence
w(x, x′) > d.

∴
(P× P)w(x, x′)

w(x, x′)
≤ α +

β

w(x, x′)
< α +

β

d
=: λ

This proves (27), and hence lemma 7.4. �

Proof of theorem 4.2. In view of lemmas 7.3 and 7.4, there exists an
order inducing set C such that C × C is Harris recurrent for P × P.
Order mixing now follows from lemma 3.1 and theorem 4.1. �

Proof of theorem 4.3. Our first claim is that if P is bounded in probabil-
ity on S, then P× P is bounded in probability on S× S.21 To see this,
pick any (x, x′) ∈ S× S. Fix ε > 0. Since P is bounded in probability,
we can choose compact sets K and K′ such that Pn(x, K) ≥ (1− ε)1/2

and Pn(x′, K′) ≥ (1− ε)1/2 for all n. It follows that

(P× P)n((x, x′), K× K′) = (Pn × Pn)((x, x′), K× K′)

= Pn(x, K)Pn(x′, K′) ≥ 1− ε, ∀ n ∈ N
Since K × K is compact in S× S, the sequence of measures in tight,
and P× P is bounded in probability as claimed.

By Meyn and Tweedie (1993, prop. 12.1.1), for any given pair (x, x′) ∈
S× S, there exists a compact set M ⊂ S× S such that PP×P

(x,x′)(WM) =

21The topology on S× S is the product topology.
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1. Since M is compact we can choose a compact C ⊂ S such that M ⊂
C×C. The set C is order inducing by assumption, and PP×P

(x,x′)(WC×C) =
1. theorem 4.1 now implies that P is order mixing. �

Proof of theorem 5.1. Now let us turn to the proof of theorem 5.1, an
outline of which was presented in section 2. Let ψ∗ and ψ be as in
the statement of the theorem. Let (Wt)t≥1 and (W∗t )t≥1 to be inde-
pendent Z-valued processes defined on probability space (Ω, F ,P),
all having distribution φ. Let X = (Xt)t≥0 and X∗ = (X∗t )t≥0 be
defined by

Xt+1 = F(Xt, Wt+1), DX0 = ψ

X∗t+1 = F(X∗t , W∗t+1), DX0 = ψ∗

where X0 and X∗0 are mutually independent. The first process is
Markov-(P, ψ) on S, while the second is Markov-(P, ψ∗). By con-
struction, the process X∗ := (X∗t )t≥0 is stationary, satisfying DX∗t =
ψ∗ for all t ≥ 0. We aim to establish (15).

To begin, we introduce the pair of stopping times

(28) τ := inf{t ≥ 0 : Xt ≤ X∗t } and σ := inf{t ≥ 0 : X∗t ≤ Xt}

with the usual convention that inf ∅ = ∞. By the order mixing as-
sumption we have

P{τ < ∞} = P{σ < ∞} = 1

To verify this claim, note that the distribution of the bivariate chain
(Xt, X∗t )t≥0 in the sequence space ((S× S)∞, (S ⊗S )∞) is precisely
PP×P

ψ×ψ∗ , where the product kernel P× P is defined in (8), and the joint

distribution PP×P
ψ×ψ∗ is defined in (5).22 This is true because (Xt, X∗t )t≥0

is Markov-(P× P, ψ× ψ∗), as can be shown by checking the require-
ments of Definition 3.1. (The measure-theoretic details are routine
and hence omitted.)

Now let VL the set of sequences (xt, x′t)t≥0 in (S× S)∞ such that xt ≤
x′t for some t. Evidently

{ω ∈ Ω : τ(ω) < ∞} = {ω ∈ Ω : (Xt(ω), X∗t (ω))t≥0 ∈ VL}

∴ P{τ < ∞} = PP×P
ψ×ψ∗(VL)

22Here ψ× ψ∗ is the product measure of ψ and ψ∗ on S× S.
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Since P is order mixing we have PP×P
(x,x′)(VL) = 1 for all pairs (x, x′) ∈

S× S. Applying (6) now gives

P{τ < ∞} = PP×P
ψ×ψ∗(VL) = 1

The proof that P{σ < ∞} = 1 is similar and hence omitted.

To continue with the proof of stability, consider the two auxillary
processes XL = (XL

t )t≥0 and XU = (XU
t )t≥0 defined by

(29) XL
t+1 =

{
F(XL

t , Wt+1) if t < τ

F(XL
t , W∗t+1) if t ≥ τ

and XL
0 = X0

(30) XU
t+1 =

{
F(XU

t , Wt+1) if t < σ

F(XU
t , W∗t+1) if t ≥ σ

and XU
0 = X0

They can be understood as follows: XL is identical to the original
process X defined in (3) until t = τ; that is, until the first time that X
falls below X∗. At τ its source of shocks switches from (Wt)t≥1, the
shocks driving X, to (W∗t )t≥1, the shocks driving X∗. The process XU

is similar, but switches shocks when X first exceeds X∗.

Two properties of XL and XU are crucial for the proof:

(i) DXL
t = DXU

t = Xt for all t ≥ 0; and
(ii) if t ≥ τ then XL

t ≤ X∗t , while if t ≥ σ then XU
t ≥ X∗t .

The first claim follows from the next lemma.

Lemma 7.5. The processes XL and XU defined in (29) and (30) respectively
are both Markov-(P, ψ) on S.

The intuition was discussed in section 2. The formal proof is some-
what routine and given below.

Claim (ii) follows from monotonicity. Consider for example the state-
ment t ≥ τ implies XL

t ≤ X∗t . By the definition of τ we have
Xτ ≤ X∗τ . Since XL

τ = Xτ, this implies that XL
τ ≤ X∗τ also holds. The

source of shocks for XL now switches from (Wt)t≥1 to (W∗t )t≥1, so
XL

τ and X∗τ are updated with the same shocks. Monotonicity implies
that processes updated with the same shocks maintain their initial
order. In particular,

XL
τ ≤ X∗τ implies XL

τ+1 = F(XL
τ , W∗τ+1) ≤ F(X∗τ , W∗τ+1) = X∗τ+1
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Iterating forward now gives XL
t ≤ X∗t for all t ≥ τ.

To establish global stability of ψ∗ we will show that

(31) ∀ h ∈ ibS, lim sup
t→∞

∫
hdψt ≤

∫
hdψ∗ ≤ lim inf

t→∞

∫
hdψt

To do so, fix any h ∈ ibS, and consider the left hand inequality in
(31). In view of (ii) above, on the set {τ ≤ t} we have XL

t ≤ X∗t ,
and hence h(XL

t ) ≤ h(X∗t ). By order mixing the probability of the set
{τ ≤ t} converges to one as t → ∞, and as a result we obtain the
inequality in the next lemma. (The proof is below.)

Lemma 7.6. We have lim supt→∞Eh(XL
t ) ≤ lim supt→∞Eh(X∗t ).

It follows that

lim sup
t→∞

∫
hdψt ≤ lim sup

t→∞
Eh(X∗t ) (∵ DXL

t = DXt = ψt)

∴ lim sup
t→∞

∫
hdψt ≤

∫
hdψ∗ (∵ DX∗t = ψ∗, ∀ t ≥ 0)

Thus we have established the inequality on the left hand side of (31).
The proof of the right hand inequality is similar.23 �

Proof of lemma 7.5. We prove only the case of XL, as that of XU is sim-
ilar. Pick any bounded measurable function h : S→ R. We have

h(XL
t+1) = h(XL

t+1)1{t < τ}+ h(XL
t+1)1{t ≥ τ}

∴ E[h(XL
t+1) |Ft] =

E[h(XL
t+1)1{t < τ} |Ft] +E[h(XL

t+1)1{t ≥ τ} |Ft]

From the definition of τ we have

h(XL
t+1)1{t < τ} = h[F(XL

t , Wt+1)]1{t < τ}

h(XL
t+1)1{t ≥ τ} = h[F(XL

t , W∗t+1)]1{t ≥ τ}
Taking expectations gives

E[h(XL
t+1)1{t < τ} |Ft] = E[h[F(XL

t , Wt+1)]1{t < τ} |Ft]

= E[h[F(XL
t , Wt+1)] |Ft]1{t < τ} =

∫
h[F(XL

t , z)]φ(dz)1{t < τ}

23Use XU in place of XL and σ in place of τ.
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A similar calculation shows that

E[h(XL
t+1)1{t ≥ τ} |Ft] =

∫
h[F(XL

t , z)]φ(dz)1{t ≥ τ}

Adding the last two expressions gives

E[h(XL
t+1) |Ft] =

∫
h[F(XL

t , z)]φ(dz)

Specializing to the case h = 1B gives

P[XL
t+1 ∈ B |Ft] =

∫
1B[F(XL

t , z)]φ(dz) = P(XL
t , B)

This proves our claim that (XL
t )t≥0 is Markov-(P, ψ) on S. �

Proof of lemma 7.6. We claim that

lim sup
t→∞

Eh(XL
t ) ≤ lim sup

t→∞
Eh(X∗t ) =

∫
hdψ∗ (h ∈ ibS)

Note that since h is increasing we have h(XL
t ) ≤ h(X∗t ) on the set

{τ ≤ t}. Thus h(XL
t )1{τ ≤ t} ≤ h(X∗t )1{τ ≤ t}, and hence

Eh(XL
t )1{τ ≤ t} ≤ Eh(X∗t )1{τ ≤ t}

Since h(XL
t ) = h(XL

t )1{τ ≤ t}+ h(XL
t )1{τ > t} we have

lim sup
t→∞

Eh(XL
t )

≤ lim sup
t→∞

Eh(XL
t )1{τ ≤ t}+ lim sup

t→∞
Eh(XL

t )1{τ > t}

By assumption h is bounded by some constant M, and

lim sup
t→∞

Eh(XL
t )1{τ > t} ≤ M lim sup

t→∞
P{τ > t} = 0

∴ lim sup
t→∞

Eh(XL
t ) ≤ lim sup

t→∞
Eh(XL

t )1{τ ≤ t}

∴ lim sup
t→∞

Eh(XL
t ) ≤ lim sup

t→∞
Eh(X∗t )1{τ ≤ t}

The inequality in (7) will thus be verified if we can show that

(32) lim sup
t→∞

Eh(X∗t )1{τ ≤ t} =
∫

hdψ∗
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This equality holds because

Eh(X∗t )1{τ ≤ t} = Eh(X∗t )−Eh(X∗t )1{τ > t}

=
∫

hdψ∗ −Eh(X∗t )1{τ > t}

And boundedness of h gives Eh(X∗t )1{τ > t} → 0 as t→ ∞. �
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