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1 Introduction

Recently, the accumulation of public debt has become one of the most important policy and

political issues in most developed countries. The disturbances of national finance in Greece,

Spain, and Portugal, which surfaced in 2010, provoked debates about the sustainability of

public debt. Even other than Greece, Spain, and Portugal, many countries have built up

significant amounts of public debt, often oriented to bigger governments (Neck and Sturm

(2008)). For instance, the public debt in Japan has almost reached 200% of its GDP in 2009.

Whether public debt that has substantially piled up is sustainable or not is one of the most

important questions in public finance. Many researchers including Chalk (2000), Rankin and

Roffia (2003) and Bräuninger (2005) have provided conditions under which public debt is

sustainable with specific fiscal rules in overlapping generations economies.

However, they do not take into consideration the direct relationship between economic

growth and fiscal sustainability. While Yakita (2008) and Arai (2008) incorporate the gov-

ernment investment in the final production function so that they can study the relationship

among fiscal policies, fiscal sustainability, and economic growth, no studies, to the best of our

knowledge, focus on the relationship among fiscal sustainability, credit market imperfections,

and economic growth.1

Credit market imperfections are important in understanding macroeconomic phenomena.

For instance, the empirical literature on finance and growth has produced evidence for the

positive effect of financial development on economic growth (e.g., King and Levine (1993),

Levine, et al. (2000), and Aghion, et al. (2005)). The positive effect has been demonstrated

theoretically in an extensive literature as well (e.g., Greenwood and Jovanovic (1990), Galor

and Zeira (1993), Greenwood and Smith (1997), and Aghion, et al. (2005)).2 The contri-

1The vital importance of the initial amount of public debt for its sustainability was discovered in Chalk’s
(2000) pioneering work first. By contrast, there is also an extensive literature in which the inter-temporal
budget constraint of a government, rather than the initial amount of public debt, is emphasized in order
to test the fiscal sustainability. See, for instance, Hamilton and Flavin (1986), Trahan and Walsh (1988),
Hakkio and Rush (1991), Bohn(1998), and Chalk and Hemming(2000).

2Other than finance and growth, there is an extensive literature dealing with macroeconomic phenomena.
For business cycles and credit market imperfections, see for instance Kiyotaki and Moore (1997). For financial
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bution of this paper is to fill the gap between the literature on finance and growth and the

literature on fiscal sustainability.

Following the literature pioneered by Chalk (2000), by fiscal sustainability we mean that

the public-debt/GDP ratio does not diverge but converges to a certain finite level in the

long run under a given fiscal policy rule. This definition implies that if the GDP growth is

smaller than the public-debt growth, then the GDP cannot support public debt in the long

run. Of course, in this case, public debt is not sustainable.

We address the following questions: Does the dissipation of credit market imperfections

promote or foil the sustainability of public debt? Can an economy experience sustainable

economic growth under a sustainable fiscal policy? If the government alters fiscal policy

rules, how does the alternation affect social welfare for each generation? In order to answer

these questions, we develop an overlapping generations model with public debt.

While the basic structure of our model is similar to those of Yakita (2008) and Arai(2008),

heterogeneity of agents in entrepreneurial talents within a generation is assumed in our

model. Agents are heterogeneous in creating capital goods, which are input for the final

goods production. Due to the heterogeneity and credit constraints, less talented agents

become savers and more talented agents become entrepreneurs in equilibrium. In other

words, savers and entrepreneurs appear endogenously.

Credit market imperfections influence fiscal sustainability via two channels. On the one

hand, if the degree of credit market imperfections is relaxed, then more resources are used

by higher skilled entrepreneurs than when it is severe. Accordingly, the productivity in an

economy is promoted. On the other hand, if the degree of credit market imperfections is

relaxed and higher skilled entrepreneurs increase their borrowing, the demand for and supply

of financial resources are changed by an increase in the interest rate.

An increase in the interest rate and productivity growth are very important for fiscal

sustainability because if an interest rate goes up, then it becomes a burden of the government

market globalization and credit market imperfections, see for instance Matsuyama (2007).
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and because if productivity is promoted and economic growth is boosted, then the public

debt/GDP ratio decreases, other things being equal. In other words, there are two conflicting

effects of the dissipation of credit market imperfections on fiscal sustainability.

In order to investigate these two conflicting effects, we examine two different fiscal policy

rules. One is a so-called golden rule in which the government deficit is used for public

investment which is beneficial to the future generation. The other is a balanced budget rule

in which the primary balance is always zero. We will demonstrate that either one of the

conflicting effects dominates the other under the two different fiscal policy rules.

These fiscal policy rules are targeted in many countries and have been used in many

previous studies. The golden rule conforms to the budget rule of the Maastricht Treaty

convergence criteria. Meanwhile, the level of primary balance is targeted in some other

countries.3

While as mentioned, this paper fills the gap between the literature on finance and growth

and the literature on fiscal sustainability, it can be also allocated to the literature on finance

and inequality (e.g., Galor and Zeira (1993) and Banerjee and Newman (1993)). The differ-

ence between the existing literature and our paper is that our model investigates the effects

of financial development on income inequality under various fiscal policies, whereas the exist-

ing literature on finance and inequality does not consider fiscal policies. In turn, while there

is an extensive literature on optimal fiscal policies in growth models (e.g., Chamley (1986),

Judd (1985), Barro (1990), Saint-Paul (1992), and Futagami, et al. (1993) among others),

few studies consider income distribution when they study social welfare.4 By contrast, we

investigate social welfare, counting income distribution.

To measure social welfare, we do not use the concept of Pareto optimality because it

does not pronounce income distribution. Since individuals in our model are heterogeneous

within a generation, per capita income is not an appropriate measure for social welfare,

3For example, the Japanese cabinet announced that they aim to archive primary surplus by around 2020
in the Fiscal Management Strategy 2010.

4An exception is Fiaschi (2002) who studies social welfare with income distribution and the fiscal policy
by developing an endogenous growth model.
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either. Instead, we use the social welfare function that Sen (1976) derives. Sen’s social

welfare function is suitable for capturing income distribution as well as per capita income.

Our main findings are as follows. Under the golden rule, as credit constraints become

less severe (more severe), public debt is more likely sustainable (unsustainable). Under the

balanced budget rule, as credit constraints become more severe (less severe), it is more likely

sustainable (unsustainable). These two completely opposite consequences are related to the

two conflicting effects of credit market imperfections mentioned above. Under the golden

rule, since public deficit is strictly associated with the proportion of the total output, the

law of motion of public debt is not subject to the market interest rate. This implies that

an efficiency-correcting effect of the dissipation of credit market imperfections is dominant.

Then, with less severe (more severe) credit constraints, public debt is more likely to be

sustainable (unsustainable). Meanwhile, under the balanced budget rule, an interest-rate

effect is dominant, implying that the law of motion of public debt is affected by the market

interest rate and it becomes a burden of the government.

Under both of the fiscal rules, even though the government debt is on a sustainable

path, we obtain various growth patterns of per capita output depending upon the degree of

credit market imperfections. For instance, when the degree of credit market imperfections

is severe, an economy falls in a poverty trap. While this consequence is not surprising in

the existing literature on finance and growth (e.g., King and Levine (1993) and Aghion, et

al. (2005)), the novelty is that we clarify how growth patterns are affected by the degree of

credit constraints and population growth under the two different fiscal policy rules.

The consequence on social welfare is as follows. The balanced budget rule is more ben-

eficial to the super-near future generations than the golden rule, whereas the golden rule is

more beneficial to the near future generations than the balanced budget rule. However, to

the far future generations, the balanced budget rule once again becomes more beneficial than

the golden rule. This alternation of dominant fiscal policy rules is caused by the differences

in a tax burden effect and a crowding-out effect of each fiscal rule in each period.
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This paper proceeds as follows. In the next section, we model an overlapping generations

economy where individuals within a generation are heterogeneous in entrepreneurial talents.

Each of them faces a credit constraint when they make a decision on investment. In section

3, we investigate the sustainability of public debt under the two different fiscal policy rules,

by deriving the equilibrium dynamics for public debt and section 4 provides analyses on

growth patterns when public debt is sustainable. In section 5, we study social welfare, where

we take into account not only per capita consumption but also income distribution at each

point in time in measuring it. We make concluding remarks in section 6.

2 Model

2.1 Individuals

An economy consists of overlapping generations, i.e., young and old agents. Time is discrete

and expands from 0 to ∞. Each individual lives for two periods and exclusively obtains the

utility from his second-period consumption ct+1. Since he is risk-neutral, the utility function

is given by u(ct+1) := ct+1. The population of young agents at time is Lt, which grows at a

constant rate n, namely Lt+1 = (1 + n)Lt.

In the first period, each individual decides on how much he invests, borrows, and/or

deposits. The budget constraints in the first and second periods are respectively given by:

kt + dt ≤ wt (1)

and

ct+1(1 + τ̃t+1) ≤ qt+1ϕkt +Rt+1dt, (2)

where kt is an investment in a project and dt is a deposit when positive and a debt when

negative. As seen in Eq.(2), if an agent starts an investment project in the first period, then

he can create capital goods ϕkt in the second period, which are sold to the final production

sector with the price qt+1. Rt+1 is the gross (real) interest rate at time t+ 1 and τ̃t+1 is the
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rate of consumption tax. If we let 1 + τ̃t+1 := 1
1−τt+1

where 0 ≤ τt+1 < 1, then Eq.(2) is

rewritten as:

ct+1 ≤ (qt+1ϕkt +Rt+1dt)(1− τt+1). (3)

We assume that there is an infinitely-lived representative financial intermediary. Follow-

ing Aghion, et al. (2005), a credit constraint that the representative financial intermediary

imposes on each individual is given by:

dt ≥ −νwt, (4)

where ν ∈ [0,∞) is the measure of the degree of credit constraints. We note that individuals

can borrow financial resources up to ν times their wealth, which is wages earned when they

are young. In other words, we can regard wt as down-payment for the investment. In

appendix, the microfoundation for Eq.(4) is provided.5 The non-negativity constraint for

the investment is given by:

kt ≥ 0. (5)

The heterogeneity of individuals in productivity of capital creation is introduced. More

concretely, the productivity ϕ varies between individuals and is distributed uniformly over

[0, a] (a > 0). In other words, the distribution function of ϕ in [0, a] is given by G(ϕ) := ϕ
a
.

Each individual knows his own productivity at his birth, while other individuals or even the

financial intermediary does not know his productivity.6

Each individual maximizes ct+1 subject to inequalities (1), (3)-(5). The maximization

problem is rewritten as:

max
dt

(rt+1 − ϕqt+1)dt

5This type of assumption for credit market imperfections is often imposed in the literature (e.g., Aghion,
et al. (1999), Aghion and Barnergee (2005), and Aghion, et al. (2005)). The credit constraint expressed
by inequality (4) can be replaced by the one associated with investment. In particular, even if we replace
inequality (4) with bt ≥ −µkt where µ ∈ [0, 1), this alternative credit constraint is equivalent to inequality
(4) and thus the same results will be obtained.

6As discussed in Microfoundation I in appendix, only when an individual chooses not to repay his obli-
gations, the financial intermediary monitors the individual. This assumption is along the same line as the
costly state verification approach (e.g., Townsend (1979)). In this paper, we abstract from our model a case
in which officials in the financial intermediary monitor individuals’ talents. Instead, they check individuals’
down-payments (or equivalently investments) when they loan to the individuals.
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subject to

− µ

1− µ
wt ≤ dt ≤ wt,

where µ := ν
1+ν

. When rt+1−ϕqt+1 > 0, it is optimal for an individual to choose dt = wt and

kt = 0, whereas when rt+1−ϕqt+1 < 0, then it is optimal to choose dt = − µwt

1−µ
and kt =

wt

1−µ
.

Formally, we obtain:

Lemma 1 Let ϕt :=
Rt+1

qt+1
. The following hold.

• If ϕt > ϕ, then kt = 0 and dt = wt.

• If ϕt < ϕ, then kt =
wt

1−µ
and dt = − µwt

1−µ
.

2.2 Financial Intermediary

The financial sector is competitive and thus the representative financial intermediary cannot

acquire profits from its business.7

In addition to imposing credit constraints, the financial intermediary accepts deposits

from individuals and loans resources to them. The financial intermediary buys government

bonds with an excess of saving. Let Bt+1 be government bonds issued at time t and redeemed

at time t+ 1. The balance sheet of the financial intermediary is given by:

Ft +Bt+1 = Dt,

where Ft and Dt are respectively the aggregate loan and deposit. We assume that B1 is

greater than zero, namely, at time zero the public debt piles up. In order to finance the

public debt, the government has to issue the government bonds. In other words, B1 is a

predetermined variable.8

7This type of financial intermediary is often assumed in the literature. See for instance Grandmont (1983)
and Rochon and Polemarchakis (2006).

8Implicitly, we assume that all the transactions including the government sector and the private sector
are done in real terms, implying that there are no nominal contracts nor nominal money. Therefore, B1

cannot jump at time zero.
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2.3 Production Sector

A representative firm produces final goods from capital goods and labor. We assume a

Cobb-Douglas production function as follows:

Yt = AZα
t (gtLt)

1−α,

where Yt is the output, Lt is the aggregate young labor, and Zt is the aggregate capital goods.

Following Baro (1990), we incorporate per capita capital stock of the government gt into the

production function. From a view point of the private agents, gt is exogenously given. We

assume that both private and public capital goods depreciate entirely in one period.

The production sector is perfectly competitive so that the production factors are paid

their marginal products:

qt = αYt/Zt

wt = (1− α)Yt/Lt,

where qt is the price of the capital goods and wt is the wage rate at time t.

2.4 Government

The budget constraint of the government at time t+ 1 is given by:

Bt+2 + Tt+1 = Rt+1Bt+1 + Igt+1, (6)

where Tt+1 is a tax collected at time t + 1 and Igt+1 is the investment executed by the

government.

The tax collected at time t+ 1 is given by:

Tt+1 = τt+1

[∫ a

0

(qt+1ϕkt +Rt+1dt)LtdG(ϕ)

]
,

which is reritten by using lemma 1 as follows:

Tt+1 = τt+1

[
qt+1wtLt

1− µ
F (ϕt) +Rt+1Bt+1

]
. (7)
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We will compare the outcomes of two different fiscal policy rules. The first one is a so-

called golden rule, where the government can borrow only to invest in public capital goods.

It holds that Bt+2 − Bt+1 = λIgt+1, where λ ∈ [0, 1). In addition, the government invests a

certain proportion of output of a corresponding year in public capital goods, i.e., it holds

that Igt+1 = θYt+1 where θ ∈ (0, 1). Thus, it follows that Bt+2 − Bt+1 = λIgt+1 = λθYt+1. We

call this fiscal rule the “golden rule,” following the literature on public finance. While this

fiscal rule seems ad hoc, in reality by the Stability and Growth Pact in the European Union,

the member countries must respect that public debt should be less than 60% of the GDP.9

The second one is a balanced-budget fiscal policy where the primary balance is equal to

zero, namely, Tt+1 − Igt+1 = 0.10 In addition to this fiscal policy rule, the government invests

a certain proportion of output in public capital goods: Igt+1 = θYt+1 as in the golden rule

case. We call this fiscal policy the “balanced budget rule.”

Under both of the fiscal policy rules, we assume that θ ≤ α so as for the tax rate τt+1 to

be less than one for all t ≥ 0.

2.5 Market equilibrium

From Igt+1 = gt+1Lt+1 = θYt+1, the first-order conditions of the production sector becomes:

qt = αA1/αθ(1−α)/α := q̄ (8)

wt = (1− α)A1/αθ(1−α)/αzt, (9)

where zt :=
Zt

Lt
.

From lemma 1, we obtain the total supply of capital goods at time t+ 1 as follows:

Zt+1 =

∫ a

ϕt

wt

1− µ
ϕLtdG(ϕ),

or equivalently,

zt+1 =
(1− α)q̄F (ϕt)

α(1− µ)(1 + n)
zt, (10)

9Yakita (2008) investigates the sustainability of public debt with this type of fiscal policy setting in an
overlapping generations economy with a perfect credit market.

10Alternatively, we could assume that the primary balance is not equal to zero such that Tt+1 − Igt+1 =
ηYt+1. See our companion paper, Arai(2008) and Kunieda (2010) for the investigation into this fiscal policy.

10



where F (ϕt) =
∫ a

ϕt
ϕdG(ϕ) = a

2
(1− (ϕt

a
)2).

The total loan at time t is given by Ft =
µwtLt

1−µ
(1−G(ϕt)) and the total deposit is given by

Dt = wtLtG(ϕt). Thus, from the balance sheet of the financial intermediary, Bt+1 = Dt−Ft

is given by:

Bt+1 = wtLt
G(ϕt)− µ

1− µ
. (11)

As mentioned, at time zero public debt piles up and thus B1 is predetermined. Since the

government debt is financed by excess saving in the private sector, ϕ0 is subject to the initial

government debt so that the government bond market clears. We should note that even

though qt+1 and Rt+1 are forward-looking variables, their expectations are not independently

established. Accordingly, ϕ0 is a predetermined variable as well.

3 Sustainability

In the literature, public debt is said to be sustainable if the public-debt/GDP ratio converges

to a certain finite level in the long run. We follow this definition for fiscal sustainability in

discussing the sustainability of public debt in what follows.

3.1 Under the golden rule

Under the golden rule, it follows that Bt+2 −Bt+1 = λθYt+1. The government imposes taxes

on private agents so that the government budget constraint (6) holds. The tax rate τt+1

is computed from the fiscal policy rule, and from Eqs.(6)-(11) we obtain a tax rate τt+1 as

follows:

τt+1 =
ϕt(G(ϕt)− µ) + θF (ϕt)/α− (1− α)(G(ϕt+1)− µ)F (ϕt)/(α(1− µ))

F (ϕt) + ϕt(G(ϕt)− µ)
.

We note that under the assumption θ ≤ α, τt+1 is always no greater than one.

From Bt+2 −Bt+1 = λθYt+1, we have:

G(ϕt+1)− µ

1− µ
=

α(1− µ)

(1− α)q̄F (ϕt)

(
G(ϕt)− µ

1− µ

)
+

λθ

1− α
. (12)
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Since B1 ≥ 0, we have G(ϕ0) − µ ≥ 0. By applying a mathematical induction to Eq.(12),

we note that for all t ≥ 0, G(ϕt)−µ ≥ 0. Accordingly, we only investigate the case in which

ϕt ≥ aµ and thus Bt+1 ≥ 0 for the dynamical system (12).

We transform the dynamical system (12) into a system with respect to the public

debt/GDP ratio. Denoting B̃t+1

1−α
:= Bt+1

(1−α)Yt
= G(ϕt)−µ

1−µ
, we rewrite Eq.(12) for t ≥ 1 as:

B̃t+1 =
α(1− µ)

(1− α)q̄

B̃t

F [a((1− µ) B̃t

(1−α)
+ µ)]

+ λθ

=
2α

(1− α)aq̄

B̃t(
1− B̃t

1−α

)(
1 + µ+ (1− µ) B̃t

1−α

) + λθ := Ψx(B̃t;λ, µ, θ), (13)

where we should note that B̃t ∈ [0, 1 − α), i.e., Bt should be supported by the savings of

young agents at time t.

Lemma 2 Ψx(B̃t;A, λ, µ, θ) is strictly increasing and strictly convex with respect to B̃t.

Proof: Let us define a function as Ψ̃(B̃t) := B̃t

F [a((1−µ)
B̃t
1−α

+µ)]
. It suffices to demonstrate

that Ψ̃(B̃t) is strictly increasing and convex with respect to B̃t.
∂Ψ̃(B̃t)

∂B̃t
> 0 is obvious

because F (.) is decreasing with respect B̃t. By taking a derivative of Ψ̃(B̃t), we obtain

∂Ψ̃(B̃t)

∂B̃t
= 1

F (.)
+

B̃t((1−µ)
B̃t
1−α

+µ)a 1−µ
1−α

(F (.))2
. From the last, ∂Ψ̃(B̃t)

∂B̃t
is increasing with respect to B̃t and

thus Ψ̃(B̃t) is strictly convex again because F (.) is decreasing with respect B̃t. �

The most important parameters for the sustainability of public debt under the golden rule

are λ and µ, which are associated with the government policy and the degree of credit market

imperfections, respectively. The zero deficit case in which λ = 0 is a suitable benchmark to

discuss the sustainability of public debt. Therefore, we start our study with this case.

Lemma 3 Suppose that λ = 0. Then, the following hold:

• If 1 + µ ≤ 2α
a(1−α)q̄

, then there is no non-trivial steady state for the dynamical system

(13).

• If 1 + µ > 2α
a(1−α)q̄

, then there is a non-trivial steady state for the dynamical system

(13).
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Proof: Since Ψx(B̃t) is strictly increasing and convex and Ψx(0) = 0, it follows that if

Ψ′
x(0) ≥ 1, then there is no non-trivial steady state, whereas if Ψ′

x(0) < 1, then there is a non-

trivial steady state. Therefore, the proof follows from the fact that Ψ′
x(0) =

α(1−µ)
(1−α)q̄

1
F (aµ)

≥

(<)1 is rewritten as F (aµ) ≤ (>)α(1−µ)
(1−α)q̄

⇐⇒ 1 + µ ≤ (>) 2α
a(1−α)q̄

. �

When the average productivity of agents is small or when the public investments are few

(i.e., a or θ is small), the first case in proposition 1 is more likely obtained. In this case, the

public debt is unsustainable if B̃1 is greater than zero. Even though the economy exhibits

endogenous growth initially, the government debt crowds out the private investments and

the number of investors decreases. Consequently, the growth rates are reduced as time goes

by and then the total saving cannot support the built-up public debt.

Henceforth, we focus on the second case of lemma 3, i.e., the case in which there exists

a non-trivial steady state if the government conducts the zero-deficit fiscal policy. Figure 1

provides a phase diagram for this case. Let Bx denote the non-trivial steady state of the

dynamical system. We note that if B̃1 is greater than Bx, the public debt is not sustainable.

[Figure 1 around here.]

While this result is not surprising in the existing literature, our interest is in what would

happen if credit market imperfections become less severe. Since it is easily shown that with

B̃t given,
F [a((1−µ)

B̃t
1−α

+µ)]

1−µ
is increasing with respect to µ, Ψx(.) is decreasing with respect

to µ. Then, it follows from lemma 2 that the non-trivial steady state is increasing with µ.

This means that as credit market imperfections become less severe, the sustainable public

debt is more likely achievable in the golden rule. This happens because as credit market

imperfections are resolved, resource allocation is corrected and then productivity of the whole

economy is improved. As a consequence, the rate of economic growth goes up, which implies

that the economy can support more public debt than when credit market imperfections are

severe. Meanwhile, under the golden rule, the dynamical system (13) is independent of the

interest rate. Therefore, the burden of the government does not increase even though the
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interest rate goes up.

Next, we will see the positive deficit case, which is a simple extension of the zero deficit

case. As seen in Figure 2, if λ gradually goes up from zero to one with other things being

equal, another non-trivial steady state appears because the increase in λ shifts up the dy-

namical system (13). We call the high steady state BH , which was actually Bx when λ = 0,

and the low steady state BL, which was the trivial steady state. From the dynamical system

(13), the locus for ∆B̃ := B̃t+1 − B̃t = 0 (henceforth, we call this the ∆B̃ = 0 locus) is

given by B̃t = BL and B̃t = BH . From Figure 2, we note that if B̃t < BL or B̃t > BH , then

∆B̃ > 0, which implies that {B̃t} is increasing. If BL < B̃t < BH , then ∆B̃ < 0 and thus

{B̃t} is decreasing. If the public debt is sustainable, {B̃t} eventually converges to BL.

[Figure 2 around here.]

Since Ψx(B̃t) is convex and increasing with respect to B̃t, if λ increases, then BH de-

creases. This implies that as the government deficit goes up, the region where the initial

public debt provides the feasible path of the future public debt narrows. In particular, both

λ and θ are close to one, the public debt is unsustainable no matter what initial value it

takes because B̃t should be less than one.

Again, these consequences are not surprising in the existing literature (e.g., Yakita (2008)

and Arai (2008)). However, there is novelty in that as µ goes up, Ψx(B̃t) shifts down and the

public debt becomes more likely sustainable as in the case in which the government conducts

the zero-deficit fiscal policy. Proposition 1 below provides a summary of this section.

Proposition 1 Suppose the government follows the golden rule. Then, as credit market

imperfections become less severe, public debt becomes more likely sustainable and the rate of

growth of public debt goes down.
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3.2 Under the balanced budget rule

Under the balanced budget rule, the tax rate for t ≥ 1 is obtained from Eqs.(6), (7), and

(10) as follows:

τt =
θ

α + B̃t+1

.

Again, we can verify that under the assumption θ ≤ α, τt is always no greater than one

because B̃t ≥ 0 for all t ≥ 1.

Under the balanced budget rule, the dynamical system for {B̃t} for t ≥ 1 is given by

B̃t+1 = RtB̃t, or equivalently,

B̃t+1 =
α(1− µ)

1− α

a
(
µ+ (1− µ) B̃t

1−α

)
B̃t

F (a(µ+ (1− µ) B̃t

1−α
))

=
2α

1− α

B̃t

(
µ+ (1− µ) B̃t

1−α

)(
1− B̃t

1−α

)(
1 + µ+ (1− µ) B̃t

1−α

) := Ψp(B̃t;µ). (14)

Lemma 4 Ψp(B̃t;µ) is strictly increasing and strictly convex with respect to B̃t.

Proof: Since B̃t

F (a(µ+(1−µ)
B̃t
1−α

))
is strictly increasing and strictly convex with respect to B̃t

from the proof of lemma 2 and µ+ (1− µ) B̃t

1−α
is increasing and convex with respect to B̃t,

the claim is proven. �

lemma 5 below provides us with the information about a phase diagram for the dynamical

system (14).

Lemma 5 The following hold:

• If 1+ 1
µ
≤ 2α

1−α
, then there is no non-trivial steady state for the dynamical system (14).

• If 1 + 1
µ
> 2α

1−α
, then there is a non-trivial steady state for the dynamical system (14).

Proof: Since Ψp(B̃t) is strictly increasing and convex and Ψp(0) = 0, it follows that if

Ψ′
p(0) ≥ 1, then there is no non-trivial steady state, whereas if Ψ′

p(0) < 1, then there is a

non-trivial steady state. The proof follows from the fact that Ψ′
p(0) =

aαµ(1−µ)
1−α

1
F (aµ)

≥ (<)1

is rewritten as F (aµ) ≤ (>)aαµ(1−µ)
1−α

⇐⇒ 1 + 1
µ
≤ (>) 2α

1−α
. �
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In lemma 5, the greater is µ, the more likely we have the first case. However, if α is

around one third, as assumed in the literature, the first case is implausible. We obtain a

phase diagram for the second case of lemma 5 in Figure 3. The non-trivial steady state is

denoted by Bp. As in the case of the golden rule, only when B̃1 ∈ [0, Bp], the public debt is

sustainable.

[Figure 3 around here.]

It is easily shown that ∂Ψp(B̃t)/∂µ > 0 with B̃t given. This implies that as a credit

constraint is relaxed, public debt is less likely sustainable. This is because, contrasting with

the golden rule, the balanced budget rule is subject to the interest rate. As credit market

imperfections are resolved, the interest rate goes up with other things being equal because

financial resources are intensively used by capable agents. The higher interest rate becomes

a burden of the government. As in the previous section, a summary is given in proposition

2 below.

Proposition 2 Suppose the government follows the balanced budget rule in the sense that

Tt+1 − Igt+1 = 0 for all t ≥ 0. Then, as credit market imperfections become more severe,

public debt becomes more likely sustainable and the rate of growth of public debt goes down.

3.3 Discussion

We have clarified how credit market imperfections affect the sustainability of public debt,

depending upon the fiscal rules. This discovery has an important policy implication.

The parameter µ is thought of as a measure of the degree of financial development.

Now suppose that the government is concerned about the sustainability of the public debt.

As demonstrated in our model, if an economy has a poorly developed financial sector, the

government should conduct the balanced budget rule because the smaller is µ, the more

likely is the public debt sustainable. On the other hand, if an economy has a fully developed

financial sector, the government should execute the golden rule because as µ becomes big,
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the public debt is more likely sustainable.

Probably, the governments in the real world more or less follow an intermediate case

between the golden rule and the balanced budget rule such as a convex combination of them

unless a fiscal regulation is imposed as in the EU countries. The policy implication of the

current model tells us in which direction a government should shift its fiscal policy depending

upon the country’s financial development so that it can attain the sustainable public debt.

4 Economic Growth

In this section, we investigate economic growth in terms of per capita output when public

debt is sustainable. Our study is focused on the balanced growth paths in which the growth

rates of per capita output and capital goods are the same and constant. In both cases of the

golden rule and the balanced budget rule, as the parameter of credit market imperfections µ

goes up, the growth rate of an economy goes up. While this consequence is not surprising in

the existing literature (e.g., King and Levine (1993) and Aghion, et al. (2005)), the novelty

is that we clarify a relationship between credit market imperfections and economic growth

when an economy incurs public debt.

4.1 Under the golden rule

From wt = (1− α)Yt/Lt and Eq.(10), we obtain:

yt =
(1− α)q̄F (ϕt−1)

α(1− µ)(1 + n)
yt−1, (15)

where yt := Yt/Lt. The dynamical system of this economy for t ≥ 1 consists of Eqs.(15) and

Eq.(13) that is inserted again below:

B̃t+1 =
α(1− µ)

(1− α)q̄

B̃t

F (ϕt−1)
+ λθ, (16)

where ϕt−1 = a((1− µ) B̃t

(1−α)
+ µ).

In the balanced growth path, it follows that B̃t = BL. To make the dynamical system

simple and to clarify the effects of the degree of credit constraints and population growth,
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we let ỹt := (B̃t+1 − λθ)yt. Then, the dynamical system consisting of Eqs.(15) and (16) is

redefined as the one consisting of Eq.(16) and:

ỹt =
1

1 + n

(
ỹt−1 +

λθỹt−1

B̃t − λθ

)
. (17)

Since Eqs.(16) and (17) are respectively independent of population growth and the degree

of credit constraints, we can easily investigate the effects of them. We note that since {B̃t}

is bounded and BL > λθ, if {ỹt} grows unboundedly, then the economy exhibits endogenous

growth, whereas if {ỹt} converges to zero, then the economy shrinks and per capita output

converge to zero.

We denote the growth rate of per capita output in the balanced growth path as γy :=
ỹt

ỹt−1
.

From Eq.(17), γy is given by 1
1+n

( BL

BL−λθ
). Henceforth, we assume n ≥ 0.11 Then, we note

that if γy > 1 ⇐⇒ BL < ( 1
n
+ 1)λθ := Bz, then the economy exhibits endogenous growth

and if γy < 1 ⇐⇒ BL > Bz, then the economy shrinks as time goes by and falls in a poverty

trap.

Since BL is independent of population growth, if the rate of population growth is zero,

then the economy endogenously grows without fail. This is because if the rate of popula-

tion growth is equal to zero, the condition for the sustainability of public debt guarantees

large productivity enough for the economy to exhibit endogenous growth. By contrast, if

population growth is so big that BL > Bz, it falls in a poverty trap. Meanwhile, we note

that if the government conducts a zero deficit fiscal policy, namely, λ = 0, then the economy

experiences endogenous growth because 0 = BL < Bz always holds.

While BL is not affected by population growth, it is subject to the degree of credit

market imperfections. From the discussion in section 2, it is easily noted that ∂BL/∂µ < 0.

Since limn→0 Bz = ∞ and limn→∞ Bz = λθ, the patterns of economic growth depend upon

the degree of credit market imperfections, i.e., µ under a relatively large rate of population

growth.

11When −1 < n < 0, the economy always attains endogenous growth.
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To see this, the transition paths to the balanced growth paths of the two countries, whose

degrees of credit constraints are different, are illustrated in Figure 4. Let us suppose that

there are two countries, country 1 and country 2 and that country i with µ = µi has B
i
L. We

assume that the parameters other than µ are the same between the two countries. However,

due to the difference in the degree of credit constraints, it follows that B1
L ∈ (Bz − ϵ, Bz),

and B2
L ∈ (Bz, Bz + ϵ) where ϵ is very small. In this case, we have µ2 < µ1. The difference

between µ1 and µ2 is very small or even infinitesimal. Although the fundamentals of the two

economies are almost the same and they start with the same amount of per capita capital,

the fates of the two countries are completely different.

At first, both of them follow very similar transition paths as seen in Figure 4. Policymak-

ers in each country must be happy because public debt is small and they seemingly experience

economic growth. However, when country 2 reaches Bz, the economy starts shrinking. While

the policymaker in country 2 sees endogenous growth of country 1, they probably do not

understand what is going on in their own country. This example demonstrates that due to

an infinitesimal difference in the degrees of credit constraints, the fates of countries are quite

different.

[Figure 4 around here.]

4.2 Under the balanced budget rule

Since the characteristics of the balanced growth path under the balanced budget rule are

simple relative to the case of the golden rule, we provide a brief sketch of them. In the

balanced gowth path, it holds that B̃t = 0 and thus γz =
a(1−α)q̄(1+µ)

2α(1+n)
.

In contrast with the case of the golden rule, even though population growth is zero, the

economy might not be able to exhibit endogenous growth if the productivity parameters a

and A or the degree of credit market imperfections µ is so small that a(1−α)q̄(1+µ)
2α

< 1. This is

because the condition for the sustainability of public debt is independent of the productivity
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parameters a and A. In other words, the sustainable condition for public debt does not

require for the productivity parameters to be high.

This result implies that under the balanced budget, while as in the case of the golden

rule, an infinitesimal difference in the degree of credit constraint can give quite different

economic growth patterns, growth-enhancing factors, such as financial sector development,

do not necessarily lead to sustainable public debt.

5 Social Welfare

5.1 Gini coefficient and Sen’s social welfare function

In this section, we investigate social welfare when an economy incurs public debt and faces

credit market imperfections. In our model, since individuals are heterogeneous, it is not

enough to measure social welfare simply by aggregating consumption in the second period.

Then, we take into account income distribution between agents.

On the basis of our consideration, Sen’s (1976) social welfare function is used, which is

given by:

SWt := c̄t(1−Gt) (18)

from t = 1 onwards, where c̄t is per capita disposable income and Gt is a Gini coefficient

at time t. For simplicity, we assume that population is normalized to one, implying that

there is no population growth (n = 0), and ϕ has a uniform distribution in [0, 1] (a = 1)

henceforth.12

From a national income identity, we have per capita income (or equivalently per capita

consumption) c̄t as follows:

c̄t = Yt −Kt − Igt , (19)

where Kt is the aggregate investment at time t. Since we have Kt = (1−α)Yt(1−G(ϕt))
1−µ

and

12Even though we assume n ̸= 0 and a ̸= 1, the results obtained below will not change.
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Igt = θYt, Eq.(19) is rewritten as:

c̄t = (α− θ + B̃t+1)Yt. (20)

It is surprising that given Yt, if B̃t+1 increases, then c̄t goes up. This happens because of a

general equilibrium effect of a fiscal policy, namely, if B̃t+1 goes up, the tax rate goes down

because Igt is determined by a fiscal policy rule. Eq.(20) means that since we employ an

overlapping generations model, Ricardian equivalence does not hold. There is a possibility

that an increase in public debt raises social welfare in an economy.13

We have derived c̄t from a macroeconomic perspective. In turn, in order to obtain the

Lorenz curve, we will compute c̄t from a microeconomic perspective. Consumption is given

by ct = ϕt−1q̄wt−1(1 − τt) for individuals with ϕ < ϕt−1 and ct =
ϕ−µϕt−1

1−µ
q̄wt−1(1 − τt) for

individuals with ϕ > ϕt−1, respectively. Therefore, we obtain:

c̄t
q̄wt−1(1− τt)

= ϕt−1

∫ ϕt−1

0

dϕ+
1

1− µ

∫ a

ϕt−1

(ϕ− µϕt−1)dϕ,

=
1

2(1− µ)
(ϕ2

t−1 − 2µϕt−1 + 1). (21)

From Eq.(21), the Lorenz curve, L(x; t), is given by:

L(x; t) =

∫ x

0

ct
c̄t
dϕ =


2(1−µ)ϕt−1x

ϕ2
t−1−2µϕt−1+1

if 0 ≤ x < ϕt−1

ϕ2
t−1−2µϕt−1x+x2

ϕ2
t−1−2µϕt−1+1

if ϕt−1 ≤ x ≤ 1.

(22)

Since the Gini coefficient is formulated by Gt = 1− 2
∫ 1

0
L(x; t)dx, we have:

1−Gt = −
2(ϕ3

t−1 − 3ϕ2
t−1 + 3µϕt−1 − 1)

3(ϕ2
t−1 − 2µϕt−1 + 1)

. (23)

From Eqs.(20) and (23), the log of Sen’s social welfare function is given by:

log[SWt] = log

[
−
2(ϕ3

t−1 − 3ϕ2
t−1 + 3µϕt−1 − 1)

3(ϕ2
t−1 − 2µϕt−1 + 1)

]
+ log[(α− θ + B̃t+1)] + log[Yt], (24)

where ϕt−1 = (1−µ) B̃t

1−α
+µ. Sen’s social welfare consists of the three parts. The first term of

the right-hand side is an effect of equity and the second term is an effect of allocation within

13At a glance, this phenomenon seems related to dynamic efficiency. In fact, it is not related to it because
an increase in c̄t associated with B̃t+1 is an issue of resource allocation within a period.
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a period. The third term comes from per capita output. Since the first and second terms

converge to the steady-state values, the social welfare is dominated by per capita output

in the long run and thus an economy with the higher rate of growth can eventually attain

the higher social welfare. However, on the transitional path, the first and second terms are

important, implying that some generations may gain the higher welfare, whereas the other

generations incur the lower welfare under a specific fiscal rule.

This discussion is politically very important because the government in power in a period

tends to increase the social welfare of the current generation at the sacrifice of the social

welfare of the future generations who are not born yet. Therefore, it is significant to do

numerical experiments of the evolution of social welfare.

5.2 Numerical analysis

In order to compute the social welfare, we have to pin down five parameters: α, A, λ,

θ, and µ. Following the macroeconomics literature, let α take one third, α = 1/3. θ is

the government expenditure share of the gross domestic product. From the International

Financial Statistics created by the International Monetary Fund, we compute the average

of the government expenditure share in the United States from 2000 to 2007 and obtain

θ = 0.154. We can also observe the total central government debt of the United States in the

OECD database. We regard an increase in it as the budget deficit, Bt+1 −Bt, and compute

λ = 0.086, which is the average value from 2000 to 2007.14 As with µ, we note from lemma

1 that µ is the ratio of the newly issued aggregate private credit to the investments. By

using the database for financial structure created by Levine, et al. (2000) and updated by

themselves in 2010, we compute µ = 0.636, which is the average value from 2001 to 2005.

The parameter A is determined so that for any value µ ∈ [0, 1) and θ = 0.154, the second

case of lemma 3 may hold and we set A = 6. While this value is ad hoc, A is eventually

cancelled out when we compare the two fiscal policy rules. Then, a parameter set is given

14Of course, if we include the budget deficits of the local governments in our computation, then λ should
be greater than 0.086.
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as follows:

(α,A, µ, λ, θ) = (1/3, 6, 0.636, 0.086, 0.154).

From Eqs.(9) and (10), the law of motion of output for t ≥ 1 is given by:

Yt =
q̄(1− α)

2α

(
1− B̃t

1− α

)(
1 + µ+ (1− µ)

B̃t

1− α

)
Yt−1. (25)

Meanwhile, under the golden rule, the law of motion of the public debt/GDP ratio for t ≥ 1

is given by:

B̃t+1 =
2α

(1− α)q̄

B̃t(
1− B̃t

1−α

)(
1 + µ+ (1− µ) B̃t

1−α

) + λθ, (26)

and under the balanced budget rule, it is given by:

B̃t+1 =
2α

1− α

B̃t

(
µ+ (1− µ) B̃t

1−α

)(
1− B̃t

1−α

)(
1 + µ+ (1− µ) B̃t

1−α

) . (27)

The cutoff ϕt−1 is determined by:

ϕt−1 =
1− µ

1− α
B̃t + µ. (28)

The social welfare is computed recursively by using Eqs.(24), (25), (26) (under the golden

rule), and (28) or Eqs.(24), (25), (27) (under the balanced budget rule), and (28).

We set the initial level of public debt and output as in table 1.

Case 1 B1(initial public debt) = 1 Y0(initial output) = 3
Case 2 B1(initial public debt) = 1 Y0(initial output) = 5
Case 3 B1(initial public debt) = 1 Y0(initial output) = 10

Table 1: The setting on initial level of public debt and output in the three cases.

We examine the social welfare for the six cases, i.e., three cases [Case1, case2, case3] ×

two cases [GR(the golden rule), BBR(the balanced budget rule)]. We compute the social

welfare, SWt, in each period for t ≥ 1 until the economy converges to the balanced growth

path.
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For each case, we derive a ratio of social welfare of the golden rule to that of the balanced

budget rule, which is standardized as follows:

SWratiot :=
SWGR

t − SWBBR
t

SWBBR
t

× 100(%),

where SW i
t is defined as social welfare at time t under the i fiscal rule (i = GR,BBR).

[Figures 5 , 6 , and 7 around here]

Figures 5, 6, and 7 provide the results. We note that relative to the golden rule (the

balanced budget rule), the balanced budget rule (the golden rule) provides the higher (lower)

social welfare for the far-future generations. This consequence is intuitive. Since the public-

debt/GDP ratio, B̃t, converges to zero under the balanced budget rule, the private investment

is not crowed out by public debt in the long run. Meanwhile, under the golden rule, the

public-debt/GDP ratio converges to a certain positive level. This implies that the private

investment is retarded by public debt even in the long run. Therefore, the growth rate in

the golden rule is less than in the balanced budget rule in the far future. Nevertheless, as

seen in Figure 5, it takes very long time for the balanced budget rule to overtake the golden

rule when the economy starts with very low per capita output.

The balanced budget rule provides the higher social welfare for the super-near future

generations than the golden rule, whereas it provides the lower social welfare for the near

future generations.

We can understand this alternation of the dominant fiscal rules by looking at Eq.(20).

As seen in the later, the social welfare under both rules is mostly affected by per capita

consumption and the effect of the Gini coefficient is limited. Under the balanced budget

rule, even more government bonds are issued in the super-near future than under the golden

rule, implying that the balanced budget rule imposes the lower rate of tax than the golden

rule. The crowding-out effect of public debt on per capita output is limited in the super-short

run. Therefore, the balanced budget rule dominates the golden rule in the super-short run.
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Meanwhile, in the near future, more government bonds are issued under the golden rule

than the balanced budget rule and the golden rule imposes the lower rate of tax than the

balanced budget rule in the short run. The crowding-out effect of public debt on per capita

output is still limited in the short run. Therefore, the golden rule dominates the balanced

budget rule. However, since in the long run, the crowding-out effects of public debt on per

capita output accumulate, the level of per capita output in the balanced budget rule becomes

far more than that in the golden rule. Thus, the balanced budget rule becomes a dominant

fiscal rule once again.

We compare the effects of 1 − Gt and c̄t on social welfare. Since the social welfare

function consists of these two components, it is important to investigate which factor more

significantly affects social welfare. We define Gratiot as a ratio of 1 − Gt of the two fiscal

rules, which is standardized as:

Gratiot =
(1−GGR

t )− (1−GBBR
t )

1−GBBR
t

× 100(%).

Likewise, c̄ratiot is a ratio of per capita consumption under the two rules:

c̄ratiot =
c̄GR
t − c̄BBR

t

c̄BBR
t

× 100(%).

By the numerical calculation, we find that the effect of per capita consumption on social

welfare is much greater than the effect of inequality in all cases. As seen in Figures 8-13,

the scale of the consumption ratio is about ten times as large as that of (1 − Gt). It is not

surprising that the Gini coefficient has a small effect on social welfare in the long-run because

an economy endogenously grows. In the short run, however, the effect of the Gini coefficient

on social welfare is very small relative to the effect of per capita consumption as well. In

the super-near future generations, the balanced budget rule leads to more equity than the

golden rule. However, in the near and far future generations, the golden rule provides more

equity than the balanced budget rule.

[Figures 8-13 around here.]
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6 Concluding Remarks

Does the dissipation of credit market imperfections promote or foil the sustainability of

public debt? In order to answer this question, we have developed an overlapping generations

model with public debt. Our findings are as follows. Whether the sustainability of public

debt is promoted or not when credit market imperfections are relaxed depends upon the

fiscal policy rules. Under the golden rule, as credit constraints become less severe (more

severe), public debt is more likely sustainable (unsustainable). On the contrary, under the

balanced budget rule, as credit constraints become more severe (less severe), it is more likely

sustainable (unsustainable).

We have also found that a fiscal policy has significant effects on social welfare via eco-

nomic growth, resource allocation, and income distribution. For the social welfare, we have

compared the outcomes of the golden rule and the balanced budget rule. The dominant fiscal

policies alternates depending upon generations. The balanced budget rule is more beneficial

than the golden rule for the super-near future generations and the golden rule is more ben-

eficial than the balanced budget rule for the near future generations. However, for the far

future generations, the balanced budget rule becomes more beneficial than the golden rule

once again.

Appendix

Microfoundation for credit constraints

In this appendix, we provide two kinds of microfoundations for credit constraints. One is

based on the idea of Aghion and Banerjee (2005) and the other is based on that of Antras

and Caballero(2009).
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Microfoundation I

Following Aghion and Banerjee (2005), we provide a microfoundation for a credit constraint

facing each individual.15 The credit market imperfections simply come from the possibility

that borrowers may not repay the financial intermediary their obligation.

Each agent prepares his own wealth wt to invest, which is wages earned when he is young.

If he is a borrower, his total resources are kt = wt − dt. From Eq.(2), the return on one

unit of investments is qt+1ϕ. If a borrower earnestly repays the financial intermediary his

obligation, then he gets a net income, qt+1ϕkt + Rt+1dt. In turn, if he chooses not to repay

his obligations, then he incurs a cost, δkt to hide his revenues. When he does not repay his

obligations, the financial intermediary monitors the borrower and it is able to capture the

borrower with probability pt+1. In this case, the expected income of the borrower is given

by qt+1ϕkt − δkt + pt+1Rt+1dt

Under this loan contract, the incentive compatibility constraint so as for a borrower not

to default is given by:

qt+1ϕkt +Rt+1dt ≥ [qt+1ϕ− δ]kt + pt+1Rt+1dt, (29)

which is rewritten as:

dt ≥ − δ

Rt+1(1− pt+1)
kt, (30)

The left-hand side of Eq.(29) is the revenues when the borrower invests in a project and

repay the financial intermediary, whereas the right-hand side of Eq.(29) is the gain when the

borrower defaults. Eq.(30) is independent of the return on one unit of investments qt+1ϕ.

In order to attain the probability pt+1 to detect the borrower’s stalling, the financial

intermediary incurs an effort cost, dtC(pt+1), which is increasing and convex with respect

to pt+1. As in Aghion and Banerjee (2005), we assume C(pt+1) = κ log(1 − pt+1), where

κ is strictly greater than δ so that all borrowers face severer credit constraints than their

15Aghion, et al. (1999) and Aghion, et al. (2005) provide a microfoundation for a credit constraint in the
same line as Aghion and Banerjee (2005).

27



natural debt limits. The financial intermediary can choose an optimal probability to solve a

maximization problem such that:

max
pt+1

− pt+1Rt+1dt − κ log(1− pt+1)dt.

Since −dt > 0, this maximization problem is rewritten as:

max
pt+1

pt+1Rt+1 + κ log(1− pt+1).

From the first-order condition, we have:

Rt+1 =
κ

1− pt+1

. (31)

As the interest rate Rt+1 increases, the financial intermediary chooses the high probability

to detect the borrower’s hiding his revenues. This is because if Rt+1 goes up, borrowers have

higher incentives to default and thus the financial intermediary makes more efforts to detect

their stalling even though it incurs more costs. From Eqs.(30) and (31), we obtain:

dt ≥ − δ

κ
kt,

or equivalently,

dt ≥ − δ

κ− δ
wt. (32)

Since the individual’s productivity ϕ is not observable, the financial intermediary does not

impose individual-specific credit constraints. However, it has to know how much wealth,

wt, individuals have. As long as it imposes a credit constraint given by inequality (32) on

individuals, no one will default in equilibrium. Since δ < κ, we can let ν := δ
κ−δ

∈ [0,∞)

and thus:

dt ≥ −νwt,

which is a credit constraint in the main text.

28



Microfoundation II

We extend a microfoundation for a credit constraint developed by Antras and Caballero

(2009) to the one suitable for our model. In particular, we consider a participation constraint

of the financial intermediary and an incentive compatibility condition of borrowers so as for

them not to default.

We impose an assumption on the behavior of borrowers. It is assumed that at the end

of the first period of their lifetime and after investment has occurred, any borrower can

escape with no cost from engaging his investment project, taking some of fractions of his

investment, (1 − µ)(wt − dt), where 0 < µ < 1 and not repaying the financial intermediary

his obligations. In this case, he will be engaged in capital production somewhere and sell

capital goods in a market.

If a borrower walks away at the end of the first period, then the financial intermediary

can take back the amount of the remainder of investment, µ(wt − dt). We assume that the

financial intermediary can lend the remainder of investment in the financial market again.

Therefore, when the financial intermediary makes a financial contract with a borrower, it

faces a participation constraint such that:

Rt+1µ(wt − dt) ≥ −Rt+1dt,

or equivalently

dt ≥ − µ

1− µ
wt. (33)

On the other hand, the incentive compatibility constraint for a borrower not to escape

from engaging his project at the end of the first period is given by:

ϕqt+1(wt − dt) +Rt+1dt ≥ ϕqt+1(1− µ)(wt − dt). (34)

For individuals with ϕ such that Rt+1 − µϕqt+1 ≤ 0, Eq.(34) always holds. Therefore, we

focus on individuals with ϕ such that Rt+1 − µϕqt+1 > 0. Then, Eq.(34) is rewritten as:

dt ≥ − µ

(ϕt/ϕ)− µ
w. (35)
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Since ϕt/ϕ ≤ 1 in equilibrium, it follows that − µ
(ϕt/ϕ)−µ

≤ − µ
1−µ

, implying that Eq.(35)

is redundant.

To be summarized, if the financial intermediary imposes a credit constraint dt ≥ − µ
1−µ

wt,

which is the participation constraint of the financial intermediary, borrowers never default.

By letting µ
1−µ

:= η, we have a credit constraint dt ≥ −ηwt in the main text.
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Figure 1: The phase diagram under the golden rule when deficit is zero.
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Figure 2: The phase diagram under the golden rule when deficit is non-zero.
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Figure 5: The social welfare ratio under the case 1 (B1 = 1 and Y0 = 3). [Horizontial axis:
the number of generations, Vertical axis: the social welfare ratio.]
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Figure 6: The social welfare ratio under the case 2 (B1 = 1 and Y0 = 5). [Horizontial axis:
the number of generations, Vertical axis: the social welfare ratio.]
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Figure 7: The social welfare ratio under the case 3 (B1 = 1 and Y0 = 10). [Horizontial axis:
the number of generations, Vertical axis: the social welfare ratio.]
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Figure 8: Gratio under the case 1 (B1 = 1 and Y0 = 3). [Horizontial axis: the number of
generations, Vertical axis: Gratio.]
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Figure 9: c̄ratio under the case 1 (B1 = 1 and Y0 = 3). [Horizontial axis: the number of
generations, Vertical axis: c̄ratio.]
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Figure 10: Gratio under the case 2 (B1 = 1 and Y0 = 5). [Horizontial axis: the number of
generations, Vertical axis: Gratio.]
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Figure 11: c̄ratio under the case 2 (B1 = 1 and Y0 = 5). [Horizontial axis: the number of
generations, Vertical axis: c̄ratio.]
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Figure 12: Gratio under the case 3 (B1 = 1 and Y0 = 10). [Horizontial axis: the number of
generations, Vertical axis: Gratio.]
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Figure 13: c̄ratio under the case 3 (B1 = 1 and Y0 = 10). [Horizontial axis: the number of
generations, Vertical axis: c̄ratio.]
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