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Linear viscoelasticity of a single semiflexible polymer with internal friction
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The linear viscoelastic behaviors of single semiflexible chains with internal friction are studied
based on the wormlike-chain model. It is shown that the frequency dependence of the complex
compliance in the high frequency limit is the same as that of the Voigt model. This asymptotic
behavior appears also for the Rouse model with internal friction. We derive the characteristic times
for both the high frequency limit and the low frequency limit and compare the results with those
obtained by Khatri et al. © 2010 American Institute of Physics. [doi:10.1063/1.3463427]

I. INTRODUCTION

Recent experimental advances in the manipulation of
single molecules, such as optical tweezers and atomic force
microscopy together with single-molecule fluorescence,'
make us accessible to examine mechanical or relaxation
properties of single polymer chains in the nanoscale with
piconewton sensitivity.z’3 Such experiments have provided us
with some new kinds of information which is difficult to
obtain in bulk experiments.1

Under these experimental developments, viscoelastic
properties of single polymer chains have been investigated
intensively experimentally.4_9 Some of these experiments
show that internal friction, or additional friction due to the
conformational change other than the translational solvent
friction, is needed for analyzing the data.®*’ It should be
noted that, in the present paper, we use the term “internal
friction” as the friction due to the dissipation by the confor-
mational change, which does not include the dissipation due
to rubbing of each segments.

The Rouse model' is often employed for theoretical
studies of polymer dynamics. Khatri et al. investigated the
Rouse model with internal friction (RIF model) and derived
the analytical expression for the linear viscoelasticity of a
single polymer chain."" Quite recently, Deutsch investigated
the dynamics of the RIF model in the absence of solvent and
derived the autocorrelation function of the conformation.'?
However, the Rouse model is not applicable when the stiff-
ness of the chain is dominant. Such a situation occurs even
for very flexible polymer chains when they are strongly
extended.'*'° Biological molecules, such as DNA and cy-
toskelton, are known to have non-negligible stiffness.'”!®
Therefore, theoretical investigation of the dynamics of the
wormlike-chain incorporating the nonlinearity due to the
stiffness and the inextensibility is needed. The simplest
model which takes account of the stiffness is the wormlike-
chain (WLC) model,'”* which is a continuous model of a
chain with the persistence length €, and the finite total length
L. The analytical studies of this model are very limited com-
pared with those of numerical simulations.>* In particular,

YElectronic mail: hiraiwa@ton.scphys.kyoto-u.ac.jp.
YElectronic mail: takao @scphys.kyoto-u.ac.jp.

0021-9606/2010/133(4)/044907/7/$30.00

133, 044907-1

theoretical studies for the dynamics of the wormlike-chain
with internal friction have not been available only with a few
exception.9’29

Recently, we have developed an analytical method to
derive the linear viscoelasticity of a semiflexible polymer
chain,'>'® which is based on the multiple scale analysis de-
veloped by Hallatschek et al>™" for a semiflexible chain
without internal friction. Scaling analysis has also been em-
ployed to explain the power-law exponents for both the high
frequency limit and the low frequency limit.'®

In the present paper, we shall investigate the complex
compliance and complex modulus of a single semiflexible
polymer chain with internal friction. We extend the proce-
dure in the previous papers.15 1 The method takes account of
the nonuniformity of the line tension along the chain®®** and
this formulation allows us to deal with the strong nonlinear-
ity due to the inextensibility and the stiffness of the chain.

The outline of the paper is as follows. In Sec. II, we
present the wormlike-chain model with internal friction, and,
in Sec. III, describe the theory of the linear
Visc:oelasticity.ls’16 In Sec. IV, we derive the general expres-
sion of the complex compliance and complex modulus as
well as the characteristic time scale. In Sec. V, we derive the
characteristic times associated with the viscoelastic relax-
ation at the low frequency limit where the finiteness of the
chain length plays a crucial role and the scale-separation
method breaks down. Summary and discussion are given in
Sec. VL. In the Appendix, we discuss the wormlike-chain
with friction due to rotation of the segments.

Il. MODEL

We start with the wormlike-chain model with the gener-
alized bending rigidities

L &2 2 &3 2
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where ¢ denotes the time, s is the length along the chain from
one end, L is the total length, and r(s,) represents the con-
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formation of the chain. The last term on the right-hand side
(rhs) of Eq. (1) arises from the inextensibility constraint

2
=1 (2)

ar
—(s,7
‘(%( )

The Lagrange multiplier f(s,) can be interpreted as the line
tension.’*** In this paper, we introduce the positive bending
rigidities at all orders k4, x¢,* -+ for generality of the theory.
The ordinary wormlike-chain model is given by retaining
only the k, term. In order to describe the dynamics, we as-
sume that the chain conformation obeys the following over-
damped Langevin equation together with Eq. (1):

£ (50) = = Mr(st) + i( f(s,z)ﬂ(s,t)) T g(s.0) + Es.0),
oJt as das

3)

where L is the friction coefficient tensor operator given by

A @)
a s 21 gs2n”
The other operator M is defined as
o g
M=k g =Ko g+ o+ (- 1)k o (5)

The coefficients ¢ and ¢, (n=2,4,6,---) are defined as ten-
sors. The tensor { means the friction coefficient between
polymer and solvents. The term —&,d°r/ds® represents the
dissipation induced by rotation of the tangent vector and
hence should not be considered as an “internal” friction.
We shall discuss the effect of this term separately in the
Appendix. The simplest nontrivial case,

A
£=g+ §4g’ (6)

has been studied by Poirier et al. % for the internal conforma-
tion rearrangement of the filament with a finite radius. Khatri
et al.’ have employed this kind of wormlike-chain model to
derive the characteristic relaxation time which is in good
agreement with the experimental data. High order friction
coefficients g, g, - are also introduced to study those ef-
fects from a general point of view. The third term g(s,z) on
the rhs of Eq. (3) is the external force and the fourth term
&(s,1) is the random force which has zero-average and satis-
fies the fluctuation-dissipation relation of the second kind

<§i(s9t)>:O’ (7)

(gi(s7t)§j(s,7t,)> = 2kBT[’ij5(s —s")o(t— t’)aij- (®)

The friction coefficient tensor ¢ is divided into the trans-
verse and the longitudinal parts as

dr or or or
l-—® —|+{—®—. )
ds ds s

§:§L< &_ s

The tensor ¢, is also divided similarly. All the scalar coeffi-
cients j, {, {j,» and £, , are assumed to be positive.
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lll. MULTIPLE SCALE ANALYSIS

The multiple scale analysis developed by Hallatschek
et al.>™" for a semiflexible chain without internal friction
can be extended to Eq. (3). Hallatschek et al. have consid-
ered the situation that a chain is elongated by an external
force f applied at the two ends. The conformation vector
r(s,?) is divided into two components. One is parallel to the
elongation direction (along the x-axis) and the other is per-
pendicular to it, i.e., r(s,7)=(s—r,r ). The basic assumption
is the weak bending condition such that (dr(s,?)/ds)?
=0(€é) <1, where the smallness parameter is introduced as
E=kpT/(kyf + ko€?f+- )2 with a characteristic length €.
That is, the elastic energy due to the external force is much
larger than the thermal energy. We assume, for simplicity,
that not only & but also e=kzT/(k,f)">= € is small. In this
situation one has dry/ds=(1/2)(dr  /ds)*+O(&).

The tension propagation equation is derived by means of
the multiple scale analysis.3  We define the time-integration
of the line tension as

F(s,t)=f dif(s,7). (10)
0

Equation for F(s,r) is given in terms of the dimensionless
quantities by

1-exp(-A(4,5.0) 24* (7
exp( (qS3)_Lfdf
0

K & F(3.D) f wdA
—FG.D=| dg — "
a5* 0 c(§)g*+1 b(4)

Xexp(_A(é9§’f)+A(é’§’i)) s (11)

where K=m{, /{; and

R &
F(8,0) = ——F(s,1), (12)
K47'§
A A 26}2 A\ A2 N
A(G.5,0) = —{c(§)gt + F(5,0)} (13)
b(g)

with §=£&q, §=€"25¢ ™" and 7=t/ 7;. The length scale & and the
time scale 7; are given, respectively, by

AR
(=) 14
¢ <fo) (14
K4l |
= . 15
T¢ f% (15)

The Fourier transform is defined by

o0

r,(s,0)=

—0o0

d .
D5 (q.oe. (16)
2

In Egs. (11) and (13), the functions b(3) and ¢(g) are defined,
respectively, by

b(§) =1+rG*+ -+ 126", (17)
c@=1+ u6é2 + 4 u2né2”_4, (18)
where
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We derive the linear force-strain relation from Eq. (11).
The external forces f(0,7) and f(L,t) at the chain ends are
assumed to be given by f(0,f)=f(L,1)=f, for <0 and
F0,0)=f(L,0)=fo+Af(r) for t>0 and we put f(s,t)=f,
+Af(s,r). The relation between the chain extension and the
force Af(r) has been obtained by Hallatschek er al.>**' They
have introduced the concept of the stored excess length de-
fined by

_1fory
p(s,r>-2( - ) . e

Since the parallel component of the end-to-end distance is
given by Ry=L-(r/(L)-r(0)), one obtains the relation

L
(AR)(1) = - f (Ap)(s,0)ds + o(é), (22)
0

where A stands for a deviation from =0 and (---) means a
statistical average. The deviation (Ap(s, 1)) is related with the
line tension as

&+
(AP)(s,1) =— g‘@AF(s,z), (23)

where (Ap(s,t)) is the bulk value of (Ap(s,7)) and AF(s,?)
= [4dxAf(s,x). The relation between AF(s,t) and Af(z) can
be determined through the boundary condition in solving
Eq. (11). Therefore, from Egs. (22) and (23), we obtain
(AR))(2) as a function of Af{(?).

Linearizing Eq. (11) with respect to AF(§,7)=F(8,7) -1,
we obtain

eI o
KFAF(S,(») —N@I®)AF(S,») =0, (24)
3

where the Fourier—Laplace transformation is defined for an
arbitrary function x(r) by

Xw)= f dx(t)exp(- iwt). (25)
0

The dimensionless frequency @ is given by @=w7; and

Y A !
Nio)= 4f0 . b<y>{2y2<c<y>y2+ 1)+ iGb(y)

12
S } (26)

In the high frequency limit ®— o, the function N(i®) be-
comes

T
NG®) ~ T, +i—=2, (27)
w

where
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T =2 J LI (28)
) TG eyt 1
and
o] y4
T,—4 f PR (29)
? 0 yb()’)z

This is valid as long as {,# 0 for n=4 so that the integral in
Eq. (26) converges. It is noted that the real part of N(i®)
tends to a constant 7, whereas the imaginary part is in-
versely proportional to the frequency.

Before closing this section, we mention that the scale
separation breaks down for extremely small values of the
frequency w7 <1 with 7,=L2f;'¢ b(m/L), because the in-
tegral over the wavenumber should be replaced by the sum-
mation of the discrete modes due to the finite size effects.'®
This case will be analyzed in Sec. V.

IV. LINEAR VISCOELASTICITY

The force-strain relation can be obtained from Egs.
(22)-(24)."® We consider the situation that an oscillatory
force is applied at the two ends for 1>0 as

f0,0) = f(L,1) = fo + fa sin(wr). (30)

The scaled complex compliance J(w)=J"(0)+iJ"(w) is de-
fined by

AR(1)) € fa

I zﬂ'zfo[j’(w)sin(wt) —J"(w)cos(wt)].  (31)

Applying the same procedure as the case without internal
friction,”'** we obtain the complex compliance from

Eq. (24) as
N
. 1 — /N
J'(w) = —Im(a\’N(ic?)) tanh(m—(lw))) : (32)
T 2
—
) 1 NGa
J'(w) = —Re(a\rN(id)) tanh(m—(lw))) , (33)
T 2
where
P i L o N B A 2 (34)
212,34 mel, €,

By using the dimensionless constant «, we may introduce
another characteristic time 7 as

kgT{L> o
4Pk A

Note that Egs. (31)—(35) are the same as those for the case
without internal friction.'>'® Only the functional form of
N(i®) is different and contains the information of the internal
friction.

T=

For the low frequency regime J'is independent of w and
J” has a power-law dependence:

. * 1
J () ~ 16713] dq
0

S — 36
(c(@)g*+1)? (36
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A 222
J(w) ~ —=L!2, (37)

2fo
This is the same as the case without internal friction
except for ¢(4) in Eq. (36). In the high frequency limit we

obtain from Eq. (27) as

15,16

) 7, | tanh(C,) | |
J(w) ~ =% + —, 38
(@) aé{ C, 2 cosh?(C)) | w? (38)
. 47T\ 1
7(0) ~ 1 tanh(C))~, (39)
T w

é

with C 1=aT%/ 2/2. It is interesting to see that these
w-dependences are coincident with those of the Voigt model.
This fact implies that, in the high frequency limit, the dy-
namics is governed by the single structural relaxation with
the characteristic time 7y, defined through the dimensionless
time 7y=7yk,/ (£, L") by

Lk J(@— +)
7' =
ot

o (& — + )

-2 1 £y’ (40)
" T, 1+ (aT))/sinh(aT))’ "’

where f(): fol*/ k4. The first equality comes from the fact
that the complex compliance of the Voigt-model obeys
Jw)/ I w)=wTy.

The complex modulus is related with the complex com-
pliance as

. J'
6w = —L (@)
J' () +J"(w)?
R j/r
&)= — (42)
J' (w)* +J"(w)?
In the high frequency limit, we obtain
. T,a] C, c
G’ ~ = + 5 43
(@) 7 {tanh(Cl) sinh?(C,) (43)
R arT, 1
G -~ - 44
(@) 471'T}/2 tanh(Cl)w (44)

The results given by Eqgs. (36)—(44) are valid irrespective of
the highest order derivatives with respect to s in £ and M as
long as the fourth derivative exists. The case that there is no
fourth derivative, £={—&(*/ds%), will be discussed in the
Appendix.

Hereafter, we consider the simplest nontrivial case for
the internal friction where the equation of motion is given by

E) & & J K]
za—:(s,r) ¥ 54?;24“” - K4a—sﬁ(s,z> + g(ﬂs,r)a—gs,ﬂ)

+8(s,0) + &(s,1). (45)

This model has been investigated by Poirier et al.”® and
Khatri et al.’ Poirier ef al. have calculated numerically the
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FIG. 1. f’, j”, G’, and G” as a function of w7 for a=100.0 and for ry=0
(full line), 4=1 (broken line), and r,=10° (dotted broken line), where 7 has
been defined by Eq. (35).

autocorrelation function of the chain conformation omitting
the tension term.”’ Khatri ef al. have evaluated the relaxation
time by neglecting the solvent friction and assuming that the
system has a single relaxation time as the Voigt—model.9 We
apply our general theory to derive the linear viscoelastic be-
havior analytically.

In the system governed by Eq. (45), the functions b(§)
and c(g) are given by 1+r,4* and 1, respectively. The con-
stants T, and T, defined by Egs. (28) and (29), respectively,
are readily evaluated as

al \Er}l/4 -2+ \EVZM]
2(1 +r 4)

Ty(ry) = > (46)

T
Ty(ry)) = —=r;"*. (47)
Ar) =5

Note that 7} and T, diverge in the limit r,— 0. When the
internal friction is absent, i.e., r,=0, the high frequency be-
havior of N(i®) is given by N(i®)~2S,0"*+i4S,&d"* with
Si=[5dg(4g8+1) and  S,=[5dgq*!(4¢®+1).">'®  This
asymptotic behavior is entirely different from that of Eq. (27)
and hence 7| and T, are singular in the limit r,— 0. The
compliance and the modulus for several values of r, are plot-
ted in Fig. 1 for =100 and in Fig. 2 for a=1.

It should be emphasized that from Egs. (46) and (47) and

the relation r4=£ LA]ACO, the fo-dependence of the dimension-
less relaxation time 7y, given by Eq. (40) is characterized

only by a dimensionless parameter { L 4={ 4/ (L LY. The
asymptotic form of the relaxation time is given by

F=4l, 4 (48)

for r,— 0 whereas it is given by
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10*

FIG. 2. j’, j”, é’, and G" as a function of w7 for a=1.0 and for ry=0 (full
line), r,=1072 (broken line) and r,=10> (dotted broken line), where 7 has
been defined by Eq. (35).

2 2172
8= 2514 (49)
fo

for r,—o0. Note that Eq. (48) does not contain the back-
ground constant force fo.

V. LOW FREQUENCY LIMIT AND CHARACTERISTIC
TIME

In this section, we present the linear response for the
extremely small frequency regime w7 <1 [ 7 has been de-
fined below Eq. (29)], in which we cannot employ the mul-
tiple scale analysis given by Eq. (11) since all the modes
enter equally. In this situation, we may approximate the line
tension to be uniform along the chain, i.e.,

f(s.0) = f(1) = fo + f4 sin(wr). (50)

From the transverse part of Eq. (3) together with Eq. (50),
the complex compliance for w7, <<1 is obtained as

2w > !
Tle) = L 7 [ka(na/L)*c(éna/L) + f, ]2 1)
ey 2l L £ blénmiL)

L 7 2mn? [ky(na/L)*c(énm/L) + f, P @
(52)

These are valid for both the clamped-end case and the free-
end case.

Therefore, the characteristic time for the corresponding
Voigt model is given from Egs. (45), (51), and (52) in terms
of the scaled variables by

J. Chem. Phys. 133, 044907 (2010)
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FIG. 3. Dimensionless characteristic time 7y as a function of f'() for (a) the

high frequency limit and (b) the low frequency limit with &14: 1.0.

1 1+2, 4m* | < 1
oy 2700 [(nw)2+f0]3 n=1 [(Vl77)2+f0]2

Ty =
(53)

where 7= TVK4/(§LL4)’ f0=foL2/ Ky, and £ 4= 4/ (£, LY.
Figure 3 displays the fo-dependence of 7. Figure 3(a) shows
7y in the high frequency limit obtained from Egs. (40), (46),
and (47), whereas 7y in the low frequency limit given by Eq.
(53) is shown in Fig. 3(b). We examine the f,-dependence of
7y in the low frequency limit in further detail. In the limit of
the large external force, f‘o/ m>1 and WZAS/ZZLA/S >1,
we may replace 2, by [ ffdc}f‘é/ 2/ and approximate

1+, 4(nm)?* by ¢, 4(nm)* in Eq. (53) so that 7y is evaluated
analytically as

>

A

_b14
V— .

(54)

*® ‘

This clearly indicates that 7, is independent of fo in the high
frequency limit. Note that the factor 1/8 is consistent with the

numerical results in Fig. 3(b) for large values of fo. Khatri et
al’ have obtained a similar result but with the numerical
factor 1/32. On the other hand, 7y for the high frequency

given by Eq. (49) is inversely proportional to fo for ry>1,
i.e., for large values of Z’ 1.4 and fo.

VI. SUMMARY AND DISCUSSION

We have studied the linear viscoelastic behavior of a
single semiflexible chain with internal friction by applying
the multiple scale analysis.30’3' By internal friction, we mean
the friction associated with conformational change of chain.
It is found that the asymptotic behavior in the high frequency
limit coincides with that of Voigt model as Egs. (38) and (39)
as long as n=4. We have investigated the simplest case”?
governed by Eq. (45) in detail and derived the relaxation
times 7y both in the high frequency limit and in the ex-
tremely low frequency regime. It is found that 7, in the high
frequency limit is inversely proportional to the prestretching
force f; for fy— as Eq. (49), whereas 7, in the extremely
low frequency regime is independent of f; for fy—o as
Eq. (54).

The scale separation is justified when the characteristic
length parallel to the chain €, is much larger than the char-
acteristic length perpendicular to the chain € l.16’3o’34 Even
when this is not satisfied, the scale separation occurs in the
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high frequency limit in the absence of internal friction'®
since there is a scaling property such that €,~ @™/® and €,
~ w™""* However, when the internal friction is present, this
is not the case. Both ¢, and €, do not diverge but take a
finite value in the high frequency limit because of the strong
energy dissipation at the small length scale due to the inter-
nal friction.

The Voigt-like power law dependence in the high fre-
quency limit, J' < @™ and J” = w™!, also appears in the Rouse
model with internal friction (RIF model).!" The reason can
be understood as follows. When the internal friction is ab-
sent, the characteristic wavenumber for chain deformations
increases indefinitely as the frequency of the external force is
increased. On the other hand, when the internal friction is
present, the effect of the internal friction is stronger for
shorter wavelength and hence the characteristic wavenumber
is not divergent. This intuitive argument can be confirmed by
the following semiquantitative explanation. First of all, let us
consider the RIF model given by the following equation:

or(n,t Pr n,t J Pr n,t
where  is the friction coefficient between polymer and sol-
vents, {; is the internal friction constant, k is the spring con-
stant between the neighboring pairs, r(n,?) is the position of
the nth monomer, and &(n,1) is the random force acting on
the nth monomer.!" One notes the relation q
~{w/(k+{;w) comparing the left-hand side and the first
and second terms of the right-hand side of Eq. (55), where ¢
and w are the characteristic wavenumber and frequency, re-
spectively. It is evident that ¢ does not diverge for w— o as
long as {; exists. For the WLC model, the analysis is not so
simple because Eq. (3) has a strong nonlinearity. Neverthe-
less, we note that the characteristic wavenumber g=&"y, or
611, in Egs. (26)-(29) is not divergent for w—cc. This is
quite different from the fact that ¢]'~w"?—c when the
internal friction is absent.'®

At present, there are few experiments which can be com-
pared with the theoretical results obtained in this paper. Kha-
tri er al.’ have carried out experiments of strain-stress re-
sponse of a biopolymer by atomic force microscopy. They
have found that the characteristic relaxation time 7y is inde-
pendent of the prestretching force f. In fact, their data indi-
cate that 7,~0.03 [ms] for 30<f,<<200 [pN]. Here, we
examine whether or not this is consistent with our theoretical
result shown in Eq. (53), which should be valid in the ex-
tremely low frequency regime wr<<1. If we identify 7
with 7, and use the relation (54) and the experimental data
k;~1.0 [pNnm?], we have ¢, 4~0.24 [pN ms nm?].
Using the values for unfolded polypeptides 127 in their
experiment,  f,~100 [pN], L~140 [nm], ¢, ~1.9
X107 [pNmsnm™2] and £~0.1 [nm], we obtain 7
=L*f;'¢ b(wg/L)~4 [us]. Since the frequency of oscilla-
tion of the strain is w~ 10 [kHz] in the experiments,9 the
condition w7<<1 is indeed satisfied. It is also noted that
other characteristic quantities are obtained as ¢, L*/ k4~ 7.3
X10° [ms], x4/L*~5.1X107° [pN] and ¢, 4~3.2X 1075,
and we can confirm the condition for asymptotic behavior

J. Chem. Phys. 133, 044907 (2010)

(54) by fo/ ~2.0X10>1 and 72f3%¢, 4/8~1.1X 107
> 1. Although ¢ 1 4=1.0 in Fig. 3(b) is quite different from

the experimentally estimated value Z 1.4~ 107, this does not
cause any inconsistency in the above comparison with ex-

periments since f, is sufficiently large both in Fig. 3(b) and
in the experiments and the asymptotic relation Eq. (54)
holds.

The frequency range of the above experiments of strain-
stress response has been restricted to the extremely small
window. It is desired that experiments by changing the fre-
quency of the external force will be capable so that more
quantitative and precise comparison can be made with the
theoretical results shown in Figs. 1 and 2, and Egs. (51) and
(52).
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APPENDIX:

In this appendix, we consider the following Langevin
equation:
or Pr or 1% ( or )
—(5,0) =& (s,0) =— kg (5,8) + —| f(s,6)—(s,¢
60 = 6o =5 == kg (s.0) + =\ fls.0) 2 (s.0)

+g(s,t) + &(s,1). (A1)

In this case, the function b(§) is given by 1+7,4% The high
frequency behavior of Eq. (26) is not given by Eq. (27) but
by

N(i®) ~ Ts(ry) + iTy(r)) &2, (A2)

where T5(ry) =/ (ré/ 2+r,) and T4(r2)=77r§3/ 2. Therefore, the

complex compliance is given by

. 27T, T5(ry) "2
J'(@) ~ /7; 4(r2)1/2{tanh<a 5(r2)
Cl"TZ: T3(r2) 2
aTz("z)m 1
+ - —a> A3
2 cosh?(aT;(ry) " %12) | w*? (A3)
R 4 T 1/2 T 1/2 1
)~ D T (eTsn) T (A4)
arg 2 w

These are different from the frequency dependence of the
Voigt model. However, the results (A3) and (A4) are not
structurally stable. In fact, if there are terms with higher de-
rivatives like the left hand side of Eq. (3), the asymptotic
behavior of the compliance is given by Egs. (38) and (39).
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