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Abstract

An important reason for analyzing panel data is to observe the dynamic nature of an economic

variable separately from its time-invariant unobserved heterogeneity. This paper examines how to

estimate the autocovariances of a variable separately from its time-invariant unobserved heterogeneity.

When both cross-sectional and time series sample sizes tend to infinity, we show that the within-group

autocovariances are consistent, although that they are severely biased when the time series length

is short. The biases have the leading term that converges to the long-run variance of the individual

dynamics. This paper develops methods to estimate the long-run variance in panel data settings and

to alleviate the biases of the within-group autocovariances based on the proposed long-run variance

estimators. Monte Carlo simulations reveal that the procedures developed in this paper effectively

reduce the biases of the estimators for small samples.

Proposed running head: Unbiased estimation of autocovariances
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1 Introduction

An important reason for analyzing panel data is to observe the dynamic nature of an economic variable

separately from its time-invariant unobserved heterogeneity. In time series analysis, the first step in

investigating the dynamics of a variable may be to examine its correlogram. However, in panel data

analysis, it is difficult to analyze autocovariances and autocorrelations, although some textbooks, such

as Cameron and Trivedi (2005, Chapter 21.3), suggest such an analysis. The difficulty comes from

the fact that sample autocovariances and autocorrelations are contaminated by spurious correlations

caused by unobserved heterogeneity. This paper develops statistical tools to estimate autocovariances and

autocorrelations of economic variables using panel data separately from their time-invariant unobserved

heterogeneity.

When the length of the time series of a panel is short, some restrictions on the autocovariance struc-

ture are necessary, otherwise the autocovariances of the individual dynamics are not identified (see, for

example, Arellano (2003, Chapter 5)) and the conventional autocovariance estimators are even asymptot-

ically biased, as pointed out by Solon (1984). For example, early studies on income dynamics (e.g., Lillard

and Willis (1978), MaCurdy (1982), and Abowd and Card (1989)) model the time-varying components

as ARMA processes. Researchers have developed methods to estimate those models. For autoregres-

sive models, the within-group estimator is severely biased when the length of the time series is short

(Nickell (1981)). Anderson and Hsiao (1981) have proposed instrumental variable estimation of first-

order autoregressive (AR(1)) models. Their methods have been extended by Arellano and Bond (1992)

and Holtz-Eakin, Newey and Rosen (1988) to generalized methods of moments estimation. Baltagi and

Li (1994) consider the estimation of the moving average models. Alternatively, the minimum distance

estimator (see Chamberlain (1984)) may be employed as considered by Abowd and Card (1989).

Recently, panel data with moderately long time lengths have become available, and researchers have

developed mathematical tools to handle asymptotic sequences under which two indexes tend to infinity.

These panels and mathematical tools have motivated researchers to look into the asymptotic properties

of the statistics in the case of long panel data. Alvarez and Arellano (2003) and Hahn and Kuersteiner

(2002) study the asymptotic properties of the within-group estimator for panel AR(1) models when both

the cross-sectional sample size (N) and the length of the time series (T ) are large. Kiviet (1995) and Bun

and Kiviet (2006) consider more general (but still AR(1)-type) models that include covariates. Hahn

and Kuersteiner (2002) also develop a bias-corrected within-group estimator for panel AR(1) models.

Lee (2008a) and Hansen (2007) consider AR(p) models and develop methods to correct the biases of

the within-group estimators. Lee (2008a) also considers cases in which the lag order is misspecified and

proposes methods to choose the lag order. While AR(p) models can capture many kinds of dynamics,

these methods still suffer from model misspecification. Moreover, the focus of these articles is on the

estimation of the coefficients in autoregressive models, and the results in the existing literature are not

readily applicable to this project’s purpose.
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This paper addresses a basic, unanswered question of how to estimate the autocovariance structure

of the individual dynamic component of a variable without imposing a specific structure. The statistical

methods developed in this paper have several potential impacts. They should yield a better understanding

of the dynamic nature of key economic variables. They are also useful for the purpose of finding appropri-

ate models in empirical applications, even if we desire a model-based analysis. Moreover, many important

quantities in dynamic panel data analysis, such as autocorrelations and coefficients in panel VAR models,

are written as a function of autocovariances and understanding how to estimate autocovariances is helpful

in developing methods to estimate those quantities.

We study the asymptotic properties of the within-group autocovariances, using double asymptotics,

under which both N and T tend to infinity. We show that the within-group autocovariances are consistent

for the autocovariances of individual dynamics, but that these estimators are heavily biased when T is

only moderately large. The key finding is that the leading terms of the biases of these estimators are

proportional to the long-run variance of the individual dynamics. The presence of long-run variances in

the bias caused by the incidental parameters problem is also observed by Hahn and Kuersteiner (2004)

and Lee (2008a, 2008b).

We consider the estimation of the biases and propose bias-corrected estimators. The key is the estima-

tion of the long-run variance of individual dynamics. There have been numerous procedures proposed for

the estimation of long-run variances in the time series literature. (See, e.g., den Haan and Levin (1997)

for a review, although a large number of articles on this issue has been published since.) We extend the

kernel long-run variance estimators to panel data settings. We then develop methods to alleviate the

biases of the within-group autocovariances using the proposed long-run variance estimator.

We examine the mean squared error (MSE) of the long-run variance estimator and the result reveals

that the bias in the autocovariance estimators also causes bias in the long-run variance estimator. To

address this problem, we consider iterative procedures in which we estimate the long-run variance based

on the bias-corrected estimators of the autocovariances, and we correct the bias using the new long-

run variance estimator. We may repeat this iteration many times. The iteration converges under a

mild condition and the autocovariance estimator obtained as the limit of the iteration has a closed form,

which makes it easy to implement. The theoretical and simulation results show that this iteration reduces

the bias in the long-run estimator and improves the performance of the bias-corrected autocovariance

estimators.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical framework. In

Section 3, we study the asymptotic properties of the within-group autocovariance estimators. Methods to

alleviate the biases of the within-group autocovariance estimators are discussed in Section 4. In Section

5, we report the results of Monte Carlo experiments. We consider several extensions in Section 6.
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2 Setting

Suppose that panel data {yit} for i = 1, . . . , N and t = 1, . . . , T are available. We assume that yit is

generated by the sum of the time-invariant individual effect, ηi, and the time-varying stationary process,

wit:

yit = ηi + wit,

where {{wit}T
t=1}N

i=1 are independently and identically distributed (i.i.d.) across individuals and sta-

tionary over time with mean E(wit) = 0. We do not impose any specific model on the autocovariance

structure of wit.

Let γk denote the k-th order autocovariance of wit (i.e., γk = E(witwit−k)). Our main question is

how to estimate γks when relatively long panel data sets are available.

3 Asymptotic properties of the within-group autocovariances

We examine the asymptotic properties of the k-th within-group autocovariance:

γ̂k =
1

N(T − k)

N∑
i=1

T∑
t=k+1

(yit − ȳi)(yi,t−k − ȳi),

which may be a natural estimator of γk, where ȳi =
∑T

t=1 yit/T . When T is fixed, γ̂k is not consistent

for γk (Solon (1984)). The main source of the inconsistency is that we cannot consistently estimate ηi

when T is fixed. On the other hand, it is shown below that γ̂k is consistent for γk when both N and T

tend to infinity under the following assumption.

Assumption 1. 1. {{wit}T
t=1}N

i=1 are i.i.d. across individuals.

2. wit is strictly stationary within individuals and
∑∞

j=−∞ |γj | < ∞.

3. There exists M < ∞ such that E(|witwikwimwil|) < M for any t, k, m and l.

This set of assumptions is standard. Note that Assumption 1 does not impose any restriction on the

probabilistic nature of ηi, as ηi does not appear in γ̂k. The following theorem shows the consistency of

γ̂k.

Theorem 1. Suppose that Assumption 1 is satisfied. As N → ∞ and T → ∞, we have γ̂k →p γk for

any k.

However, γ̂k may be severely biased when T is not very large relative to N . To see this, we observe

that γ̂k may be decomposed in the following form (see the proof of Theorem 1):

γ̂k =
1

N(T − k)

N∑
i=1

T∑
t=k+1

witwi,t−k − 1
N

N∑
i=1

(w̄i)2 + small.
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The term w̄i(= ȳi − ηi) can be understood as the estimation error for ηi. This estimation error is the

main source of the bias, even when T tends to infinity. Now, we have:

E

{
1
N

N∑
i=1

(w̄i)2
}

= E{(w̄i)2} =
1
T

γ0 + 2
T−1∑
j=1

T − j

T
γj

 ,

which is of order O(1/T ) when
∑∞

j=−∞ |γj | < ∞. Thus, the estimator γ̂k exhibits bias of order O(1/T ),

which may be severe when T is not very large.

To make the argument more formal, we present the theorem below concerning the asymptotic distri-

bution of γ̂k. We make the following assumption that concerns the cumulants of wit. Let cum(t1, . . . , tp)

denote the p-th-order cumulant of (wi,t1 , . . . , wi,tp).

Assumption 2.
∑∞

j2,...,jp=−∞ |cum(0, j2, . . . , jp)| < ∞, for p ≤ 8.

We use Theorem 3 of Phillips and Moon (1999) to prove the next theorem. Assumption 2 is used to

guarantee the uniform integrability condition of {
∑T

t1=k+1(witwi,t−k −γk)/
√

T}2, which is one of the key

conditions of Theorem 3 of Phillips and Moon (1999). To prove the asymptotic normality, Assumption

2 may be relaxed as long as the uniform integrability condition is met. Assumption 2 is also used

to guarantee the existence of the asymptotic variance of γ̂k and is used later to show the asymptotic

properties of the long-run variance estimator.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied. Then, as N → ∞, T → ∞ and N/T 3 → 0,

we have

√
NT

(
γ̂k − γk +

1
T

VT

)
→d N

0,

∞∑
j=−∞

{
γ2

j + γk+jγk−j + cum(0,−k, j, j − k)
} ,

where

VT ≡ γ0 + 2
T−1∑
j=1

T − j

T
γj .

Remark 1. Let V ≡
∑∞

j=−∞ γj denote the long-run variance of wit. We have VT → V as T → ∞. The

leading term of the bias of γ̂k converges to the long-run variance of wit. The next section examines the

possibility of correcting the bias by estimating the long-run variance. This observation also implies that

the bias is large if wit is highly persistent. Note that VT > 0, which implies that the bias is downward and

γ̂k is, on average, smaller than γk. It is also notable that the leading term of the bias does not depend

on the order of the autocovariance, k.

Remark 2. The condition N/T 3 → 0 is required to ignore the bias term of order 1/T 2. This condition

can be relaxed if the bias term of order 1/T 2 is taken into account. However, it makes the expression of

the asymptotic bias complicated and we shall keep the condition N/T 3 → 0.

Remark 3. Although this paper is about the bias correction, the efficiency issue might deserve some

discussion. In time series analysis (i.e., when N = 1), the conventional autocovariance estimators up
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to p-th-order are efficient when the process follows a Gaussian AR(p) model (see, e.g., Porat (1987),

Kakizawa and Taniguchi (1994) and Kakizawa (1999)). Since γ̂k is the sample average of individual

autocovariances and we assume that we have an i.i.d. sample, we may expect that the variance of γ̂k

is the smallest possible when wit follows a Gaussian AR(p) model and k ≤ p. This may be proved by

following the steps used for the efficiency result in Hahn and Kuersteiner (2002). However, this is beyond

the scope of this paper.

Remark 4. Theorem 2 presents the asymptotic distribution of γ̂k for each k. It is easy to find the joint

asymptotic distribution of γ̂k and γ̂j for k ̸= j, because γ̂k has an asymptotic linear form:

√
NT

(
γ̂k − γk +

1
T

VT

)
=

1√
NT

N∑
i=1

T∑
t=k+1

(witwi,t−k − γk) + op(1).

Note that the asymptotic covariance between γ̂k and γ̂j is:

∞∑
t=−∞

{γtγt−k+j + γt+jγt−k + cum(0,−k, t, t − j)} .

4 Bias correction

In this section, we consider ways to alleviate the bias of γk. We propose to use an estimate of VT to

mitigate the bias of γk. Before discussing how to estimate VT , we show that this idea of bias correction

works at least theoretically. Let V̂T denote an estimator of VT . The bias-corrected estimator of γk,

denoted as γ̃k, is obtained by adding V̂T /T to γ̂k:

γ̃k = γ̂k +
1
T

V̂T .

Let rN,T be the inverse of the rate of convergence of V̂T such that V̂T −VT = Op(rN,T ). The next theorem

shows that the asymptotic distribution of γ̃k is centered around zero.

Theorem 3. Suppose that Assumptions 1 and 2 are satisfied. Suppose also that N/T 3 → 0 and

rN,T

√
N/T → 0. Then, as N → ∞ and T → ∞,

√
NT (γ̃k − γk) →d N

0,

∞∑
j=−∞

{
γ2

j + γk+jγk−j + cum(0,−k, j, j − k)
} .

The proof is omitted as it is trivial. This theorem implies that we may obtain estimates of the

autocovariances whose biases are small if we get some estimates of VT . Thus, the main question of this

section is how to construct a good estimator of the long-run variance of wit and discover the rate of

convergence of the long-run variance estimator.

4.1 Estimating the long-run variance

This subsection considers the estimation of the long-run variance of wit. As is known in the time se-

ries literature, while the long-run variance is the sum of the autocovariances, simply summing sample
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autocovariances does not yield a consistent estimator. We must weight the effect of the higher-order

autocovariances downward in order to obtain a consistent estimator for the long-run variance. Following

Parzen (1957) and Andrews (1991), we consider the kernel estimators:

ṼT =
T−1∑

j=−T+1

k

(
j

S

)
T − |j|

T
γ̂j =

T−1∑
j=−T+1

k

(
j

S

)
γ̂+

j ,

where

γ̂+
j =

1
NT

N∑
i=1

T∑
t=|j|+1

(yit − ȳi)(yi,t−|j| − ȳi) =
T − |j|

T
γ̂j

is the within-group autocovariance using T in the denominator instead of T −|j|, k(·) is a kernel function

and the scalar, S, is the bandwidth chosen by the researcher. We assume that the kernel function belongs

to the class K1:

K1 =
{

k(·) : R → [−1, 1]|k(0) = 1, k(x) = k(−x)∀x ∈ R,∫ ∞

−∞
k2(x)dx < ∞, k(·) is continuous almost everywhere and at 0

}
.

An example of a kernel that belongs to K1 is the quadratic spectrum (QS) kernel:

k(x) =
3

(6πx/5)2

{
sin(6πx/5)

6πx/5
− cos(6πx/5)

}
.

Andrews (1991) demonstrates several attractive properties of the QS kernel function. Note that ṼT is

always nonnegative with the QS kernel, which also means that γ̃0 is nonnegative with the QS kernel.

Later, we also consider the truncated kernel:

k(x) =

1 if |x| ≤ 1,

0 otherwise.

We also assume that the kernel function satisfies
∫

k(x)dx < ∞ and
∫
|x|k(x)dx < ∞.

The following theorem shows the consistency of V̂T and gives the rate of convergence of V̂T . The MSE

formula given in the theorem also serves as the device used to choose the bandwidth parameter.

Theorem 4. Suppose that Assumptions 1 and 2 are satisfied. Assume that k(·) ∈ K1,
∫

k(x)dx < ∞

and
∫
|x|k(x)dx < ∞. If S → ∞ and S/T → 0, then,

ṼT − VT →p 0.

Let kq ≡ limx→0{1 − k(x)}/|x|q and V (q) =
∑∞

j=−∞ |j|qγj. Suppose also that Nq+1/T q → 0 and

S2q+1/(NT ) → τ , where 0 < τ < ∞, for some 0 < q < ∞, for which kq and |V (q)| are finite. Then,

lim
N,T→∞

NT

S
MSE(ṼT ) = k2

q

(
V (q)

)2

τ−1 + 2V 2

∫
k2(x)dx.
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On the other hand, suppose that Nq+1/T q → ∞ and Sq+1/T → τ , where 0 < τ < ∞, for some 0 < q < ∞,

for which kq and |V (q)| are finite. Then,

lim
N,T→∞

T 2

S2
MSE(ṼT ) =

{
−kqV

(q)τ−1 − V

∫
k(x)dx

}2

.

The value of q in the theorem represents the smoothness of the kernel function at the origin. A large

value of q for which kq is finite indicates that the kernel function is smooth at zero. For example, the QS

kernel has q = 2.

Remark 5. There are two bias terms that are relevant to this result. The first bias term that is

proportional to kqV
(q) comes from the fact that we use a kernel function. The other bias term that is

proportional to V
∫

k(x)dx stems from the result that each γ̂k is biased. When T is sufficiently large

relative to N (i.e., Nq+1/T q → 0), the MSE has a similar form to that presented by Andrews (1991).

When T is not very large compared with N (i.e., Nq+1/T q → ∞), the second term of the bias becomes

more important than the variance term. Note that the estimator, V̂T , is the sample average of the

long-run variance estimators across individuals and that N affects the variance, but not the bias, of V̂T .

Therefore, when N is large, the variance becomes small relative to the biases and the leading term in the

MSE is the square of the leading terms of the biases. This phenomenon happens when N is proportional

to T and is relevant in practice.

Remark 6. The theorem gives the rate of convergence of V̂T , which is useful in examining the conditions

on the relationship between N and T for asymptotically unbiased estimation of autocovariances. Theorem

3 assumes two conditions, N/T 3 → 0 and rN,T

√
N/T → 0. Theorem 4 gives rN,T = (NT )−q/(2q+1) if

Nq+1/T q → 0, and rN,T = T−q/(q+1) if Nq+1/T q → ∞. When Nq+1/T q → 0, the condition N/T 3 → 0 is

automatically satisfied and rN,T

√
N/T = (N/T 4q+1)1/(4q+2), which is also o(1) under Nq+1/T q → 0. On

the other hand, N/T 3 → 0 is stronger than Nq+1/T q → ∞ and the condition rN,T

√
N/T → 0 becomes

(N q+1/T 3q+1)1/(2q+2) → 0, which is stronger than N/T 3 → 0. Therefore, we need Nq+1/T 3q+1 → 0 for

asymptotically unbiased estimation of autocovariances if we correct the bias by using ṼT .

4.2 Choosing the bandwidth parameter

We choose the bandwidth parameter by minimizing the MSE of ṼT . Let ξ = V (q)/V . Then, the value of

the bandwidth parameter that minimizes the MSE is:

S∗ =


[
{qk2

q/
∫

k2(x)dx}ξ2TN
]1/(2q+1)

, when Nq+1/T q → 0,[
{qkq/

∫
k(x)dx}ξT

]1/(q+1)
, when Nq+1/T q → ∞ and V (q) ≥ 0,[

{kq/
∫

k(x)dx}|ξ|T
]1/(q+1)

, when Nq+1/T q → ∞ and V (q) < 0.

We need to obtain an estimate of ξ. We follow the strategy proposed by Andrews (1991): we estimate

ξ based on the formula that is valid when wit follows an AR(1) process. When wit follows the AR(1)
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process with coefficient δ, then the parameter ξ can be written as:

ξ =
2δ

(1 − δ)2
.

There are many ways to estimate the parameter δ. Here, we consider the estimator in Hahn and Kuer-

steiner (2002):

δ̂ =
T

T − 1

∑N
i=1

∑T
t=2(yi,t−1 − ȳi−)(yi,t−1 − ȳi+)∑N
i=1

∑T
t=2(yi,t−1 − ȳi−)2

+
1

T − 1
,

where ȳi− =
∑T−1

t=1 yit/(T − 1) and ȳi+ =
∑T

t=2 yit/(T − 1). Then, we estimate ξ by ξ̂ = 2δ̂/{(1 − δ̂)2}.

We use the following estimated bandwidth:

Ŝ∗ =


min

{[
{qk2

q/
∫

k2(x)dx}ξ̂2TN
]1/(2q+1)

,
[
{qkq/

∫
k(x)dx}ξ̂T

]1/(q+1)
}

, if ξ̂ ≥ 0,

min
{[

{qk2
q/

∫
k2(x)dx}ξ̂2TN

]1/(2q+1)

,
[
{kq/

∫
k(x)dx}|ξ̂|T

]1/(q+1)
}

, if ξ̂ < 0.

Note that δ̂ converges to the first-order autocorrelation of wit and is bounded in probability. Thus,

the estimation of δ̂ (and ξ̂) does not affect the rate of the bandwidth asymptotically. We see that

C1(TN)1/(2q+1) < C2(T )1/(q+1) for T and N sufficiently large for any constants C1 and C2 if Nq+1/T q →

0 and the opposite result holds if Nq+1/T q → ∞. These observations imply that

Pr

{
Ŝ∗ =

[{
qk2

q/

∫
k2(x)dx

}
ξ̂2TN

]1/(2q+1)
}

→ 1 if Nq+1/T q → 0,

Pr

{
Ŝ∗ =

[{
qk2

q/

∫
k2(x)dx

}
ξ̂2TN

]1/(2q+1)
}

→ 0 if Nq+1/T q → ∞.

Thus, the bandwidth has an appropriate rate in large samples.

In the simulations, we use the QS kernel function, for which we have q = 2, kq ≈ 1.4212,
∫

k(x)dx ≈

1.2930 and
∫

k2(x)dx = 1. The bandwidth is:

Ŝ∗ =

min{1.3221(ξ̂2TN)1/5, 1.3002(ξ̂T )1/3}, if ξ̂ ≥ 0,

min{1.3221(ξ̂2TN)1/5, 1.0320(|ξ̂|T )1/3}, if ξ̂ < 0.

(1)

Remark 7. One may alternatively consider choosing the bandwidth parameter by minimizing the MSE of

γ̃k. In general, the bandwidth parameter that minimizes the MSE of γ̃k is different from that minimizing

the MSE of ṼT . However, the benefit of using this alternative criterion is limited. To see this, consider

the MSE of γ̃k:

E{(γ̃k − γk)2} = E

{(
γ̂k − γk +

1
T

VT

)2
}

+ 2
1
T

E

{(
γ̂k − γk +

1
T

VT

)
(ṼT − VT )

}
+

1
T 2

E{(ṼT − VT )2}.

While the cross term, E{(γ̂k − γk + VT /T ) (ṼT−VT )}/T , depends on the bandwidth, its leading term does

not. The cross term is approximately equal to
∑T−1

j=−T+1 k (j/S) cov(γ̂k, γ̂j)/T . Since NT
∑T−1

j=−T+1 cov(γ̂k, γ̂j)

converges, we have

1
T

E

{(
γ̂k − γk +

1
T

VT

)
(ṼT − VT )

}
= O

(
1

NT 2

)
,
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which implies that the bandwidth does not affect the order of the cross term. Moreover, when N is

relatively large, the cross term is small compared with the MSE of ṼT . For example, when N3/T 4 → ∞,

the order of the term E{(ṼT − VT )2}/T 2 with the QS kernel is T−2−4/3 = T−10/3 and is of an order

larger than O(1/(NT 2)).

4.3 Iterative procedures

Theorem 4 demonstrates that the bias in each γ̂k is relevant even in the estimation of the long-run

variance. To address this problem, we use an iterative procedure. We update the estimate of VT using

the bias-corrected estimators for γk for k = 0, . . . , T − 1. Then, we reestimate γk based on the updated

estimate of VT . This iteration may be repeated many times. As γ̃ks are bias-corrected, we expect that the

long-run variance estimator based on γ̃k is also bias-corrected. The iteration is expressed in the following

way. Let

ṼT (m + 1) =
T−1∑

j=−T+1

k

(
j

Sm

)
T − |j|

T
γ̃j(m),

and

γ̃k(m) = γ̂k +
1
T

ṼT (m), k = 0, . . . , T − 1,

where m denotes the number of iterations, Sm is the bandwidth parameter for the m-th iteration and

γ̃k(0) = γ̂k for k = 0, . . . , T − 1.

Let γ̃(m) = (γ̃0(m), . . . , γ̃T−1(m))′, γ̂ = (γ̂0, . . . , γ̂T−1)′, IT be the T × T identity matrix and ιT be

the T × 1 vector of ones. We consider using the same bandwidth throughout the iterations. Let S denote

the bandwidth parameter. Let

KT =
(

k(0), 2
T − 1

T
k

(
1
S

)
, 2

T − 2
T

k

(
2
S

)
, . . . , 2

1
T

k

(
T − 1

S

))′

.

We can write the iteration formula in the following way:

γ̃(m + 1) = γ̂ +
1
T

ιT K ′
T γ̃(m).

If ι′T KT < T , this iteration converges and the limit, γ̃(∞), can be written as

γ̃(∞) =
(

IT +
1

T − ι′T KT
ιT K ′

T

)
γ̂ =

(
IT − 1

T
ιT K ′

T

)−1

γ̂.

Note that ι′T KT < T is satisfied when k(x) < 1 for x ̸= 0. Most commonly used kernel functions,

including the QS kernel, satisfy this condition. The long-run variance estimator obtained as the limit of

the iteration is

ṼT (∞) = K ′
T γ̃(∞) = K ′

T

(
IT +

1
T − ι′T KT

ιT K ′
T

)
γ̂ =

(
1 +

ι′T KT

T − ι′T KT

)
ṼT .
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The following theorem presents the MSE of ṼT (∞). Since ṼT (∞) is based on the bias-corrected

autocovariance estimators, the second term in the bias becomes small, and we have the usual bias–

variance trade-off. Note that the iterations do not alter the asymptotic distribution of γ̃s, while the rate

conditions for N and T would be affected.

Theorem 5. Suppose that Assumptions 1 and 2 are satisfied. Assume that k(·) ∈ K1,
∫

k(x)dx < ∞

and
∫
|x|k(x)dx < ∞. Suppose also that S → ∞ and S/T → 0. Then, ṼT (∞) − VT →p 0. Let q be a

number that satisfies 0 < q < ∞, for which kq and |V (q)| are finite. Then, as N → ∞ and T → ∞ with

Nq+2/T 3q → 0 and S2q+1/(NT ) → τ , we have:

lim
N,T→∞

NT

S
MSE{ṼT (∞)} = k2

q

(
V (q)

)2

τ−1 + 2V 2

∫
k2(x)dx.

Remark 8. One of the conditions for γ̃k to be asymptotically unbiased is rN,T

√
N/T = o(1), which

is automatically satisfied since rN,T = (NT )−q/(2q+1) and Nq+1/T 3q → 0 under the conditions of the

theorem. On the other hand, Nq+2/T 3q → 0 is typically stronger than N/T 3 → 0 because commonly

used kernel functions have q = 1 or q = 2. For example, the QS kernel has q = 2 and asymptotically

unbiased estimation of autocovariances is possible under N2/T 3 → 0 when the bias correction is done

using ṼT (∞) with the QS kernel.

Remark 9. The estimator γ̃(∞) may be motivated as a continuously updated estimator of γ = (γ0, . . . , γT−1)′.

We note that E(γ̂) ≈ γ−ιT VT /T . By replacing VT with K ′
T γ, we get E(γ̂) ≈ γ−ιT K ′

T γ/T . The estimator

γ̃(∞) can be obtained by solving the following equation: γ̂ = γ̃(∞) − ιT K ′
T γ̃(∞)/T .

As before, we use the MSE formula as the device to choose the bandwidth parameter. The bandwidth

parameter that minimizes the MSE formula is

S∗ =
[{

qk2
q/

∫
k2(x)dx

}
ξ2TN

]1/(2q+1)

.

For the QS kernel function, the bandwidth parameter may be chosen to be:

Ŝ∗ = 1.3221(ξ̂2TN)1/5. (2)

4.4 The truncated kernel

In this subsection, we discuss the bandwidth choice rule for the truncated kernel. Let V̌T and V̌T (∞),

respectively, be the long-run variance estimator and its infinitely iterated version based on the truncated

kernel such that:

V̌T =
S∑

j=−S

T − |j|
T

γ̂j =
S∑

j=−S

γ̂+
j ,

V̌T (∞) =
(

1 +
ι′T K∗

T

T − ι′T K∗
T

)
V̌T ,

12



where K∗
T = (1, 2(T −1)/T, . . . , 2(T −S)/T, 0, . . . , 0). The truncated kernel has not been commonly used

in long-run variance estimation. The main reason is that the truncated kernel does not guarantee the

positive definiteness of the estimator. However, as pointed out by Hahn and Kuersteiner (2007), ensuring

the positive definiteness may not be important if the purpose of estimating the long-run variance is the

bias correction. Given that the truncated kernel provides a good estimate when wit is an M-dependent

process, it is worthwhile to consider the truncated kernel in our context.

The bandwidth choice rules in the previous subsections are not useful for the truncated kernel. We

note that kq = 0 for any finite q for the truncated kernel since it is flat around the origin. Therefore, the

bias term of order S−q disappears from the MSE formula and the bandwidth choice rule presented above

recommends that the bandwidth be as small as possible, which obviously does not work in practice.

This observation implies that we need alternative MSE formulas. The following theorem presents the

leading terms of the MSEs of ṼT and ṼT (∞). The proof is in the Appendix.

Theorem 6. Suppose that Assumptions 1 and 2 are satisfied. Suppose also that S → ∞ and S/T → 0.

Then, V̌T − VT →p 0 and

MSE(V̌T ) =

−2
∞∑

j=S+1

γj − 2V
S

T

2

+ 4V 2 S

NT
+ o


 ∞∑

j=S+1

γj

2

+
S2

T 2
+

S

NT

 .

We also have V̌T (∞) − VT →p 0 and

MSE{V̌T (∞)} = 4

 ∞∑
j=S+1

γj

2

+ 4V 2 S

NT
+ o


 ∞∑

j=S+1

γj

2

+
S

NT

 + O

(
S4

T 4

)
.

The theorem does not explicitly give the rate of convergence of the estimators because it is difficult

to evaluate the order of the term
∑∞

j=S+1 γj .

We choose the bandwidth using the MSE formulas. As before, we estimate the approximate MSEs

based on the formula that is valid when wit follows the panel AR(1) process. Let δ be the AR(1) coefficient

and δ̂ be Hahn and Kuersteiner’s (2002) estimator. In the AR(1) model, we have V = (1 + δ)/(1 − δ)

and
∑∞

j=S+1 γj = δS/(1 − δ). Thus, the bandwidth choice rule for V̌T is

Ŝ∗ = arg min
S∈{1,...,T−1}

(
−2

δ̂S

1 − δ̂
− 2

1 + δ̂

1 − δ̂

S

T

)2

+ 4

(
1 + δ̂

1 − δ̂

)2
S

NT
, (3)

and that for V̌T (∞) is

Ŝ∗ = arg min
S∈{1,...,T−1}

4

(
δ̂S

1 − δ̂

)2

+ 4

(
1 + δ̂

1 − δ̂

)2
S

NT
. (4)

These bandwidth choice rules are similar to that considered by Hahn and Kuersteiner (2007). In partic-

ular,
∑∞

j=S+1 γj is difficult to estimate in panel data settings and the idea of using an AR(1) model to

approximate this term is proposed by Hahn and Kuersteiner (2007).
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5 Monte Carlo simulations

This section reports the results of Monte Carlo simulations. The simulations are conducted on Ox 5.10

(Doornik (2007)).

5.1 Design

The data-generating process used in the experiments is the following:

yit = wit + ηi,

where ηi ∼ i.i.d.N(0, σ2
η), and wit follows an AR(1) process:

wit = αwi,t−1 + ϵit,

and ϵit ∼ i.i.d.N(0, σ2). The initial observations are generated from the stationary distribution. Specifi-

cally, we generate (wi0, ϵi0) from:wi0

ϵi0

 ∼ N

0,

σ2 1
1 − α2

σ2

σ2 σ2

 .

We set the value of σ2 such that γ0 = 1 (i.e., σ2 = 1 − α2) and fix the value of σ2
η at σ2

η = 1. Note

that σ2
η does not affect the results as ηi is eliminated in the estimation of autocovariances. The value

of σ2 only affects the scale of the estimator and does not have any essential effect on the Monte Carlo

results. Each experiment is characterized by the vector of (N,T, α). We set N = 20; T = 5, 10, 25, 50;

and α = 0, 0.5, 0.9. We consider several different procedures. The first procedure considered is the within-

group autocovariances (i.e., γ̂k; we call these “WG”). The other procedures are bias–corrected estimators.

The QS kernel and the truncated kernel are used in the bias correction. For each kernel, we consider three

different procedures: the one-time bias-corrected autocovariance (i.e., γ̃k(1); we call these “BWG”); the

two-time bias-corrected autocovariance (i.e., γ̃k(2); we call these “BWG2”); the autocovariance estimators

obtained after infinite iterations (i.e., γ̃k(∞); we call these “IB”). The bandwidth parameters for the QS

kernel are chosen using formula (1) for “BWG” and formula (2) for “IB”. For “BWG2”, the first iteration

uses formula (1) and the second iteration uses formula (2). Similarly, the bandwidth parameters for

the truncated kernel are chosen using formula (3) for “BWG” and formula (4) for “IB”. Formula (3) is

used for the first iteration of “BWG2” and formula (4) is used for the second iteration. The number of

replications is 5000.

We have also tried other specifications whose results are not reported here. Those results are obtained

from the author upon request and are briefly summarized here. We have tried cases where (wi0, ϵi0) = 0

for all i throughout the simulations. However, the specification of the initial observation does not appear

to affect the simulation results. We have considered other cross-sectional sample sizes. The results

regarding the biases of the estimators are similar across different cross-sectional sample sizes, while the
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cross-sectional sample size affects the standard deviations of the estimators. We have also considered

cases in which wit follows an ARMA model. The results from the ARMA model are similar to the results

we present here.

5.2 Results

Tables 1 and 2 summarize the results of the experiments. Table 1 presents the results for the QS kernel

and Table 2 presents the results for the truncated kernel. For each procedure, we report the biases and

standard deviations (std) of the estimates of the zeroth-, first- and second-order autocovariances. We

also report the theoretical approximation of the bias of γ̂k (i.e., VT /T ) in the column entitled “Tbias”.

[Tables 1-2 about here]

We first examine the results for “WG”. The biases of “WG” are large when the length of the time

series is short and when the degree of persistence is large (α = 0.9). These findings are consistent with

our theoretical results. Moreover, “Tbias” and the biases of “WG” are reasonably similar.

Next, we investigate the performance of the procedures developed in this paper that have bias-reducing

properties. While the “BWG” procedure alleviates the bias, the “BWG2” procedure mitigates the bias

more effectively than does “BWG”. The gain from iterating the bias correction is substantial, particularly

when T is small (T = 5 and 10). The “IB” procedure eliminates the bias even more effectively than does

“BWG2”, although “IB” exhibits somewhat larger standard deviations when T = 5 or α = 0.9. The

effectiveness of our bias correction crucially depends on T and α. (In the current setting, α measures

the persistence of individual dynamics.) When there is no persistence in individual dynamics (α = 0),

our bias correction works very well and can completely eliminate the bias even if T is small. Moreover,

when α = 0, the bias correction does not inflate the standard deviation by much. However, when there is

strong persistence (α = 0.9), a long time series is required to obtain estimates that are mostly unbiased

and the standard deviations of the bias-corrected estimators are somewhat large compared with “WG”.

Nevertheless, our procedures (in particular, “IB”) are able to improve the within-group autocorrelation

estimators substantially. Compared with the QS kernel, the truncated kernel typically yields a better

bias correction. On the other hand, the choice of the kernel function does not have a large impact on the

standard deviations.

[Figures 1-3 about here]

Lastly, we evaluate the quality of the normal approximation. We compare the distribution of each

estimator with the QS kernel for γ0 with the normal distribution with same mean and variance using

QQ plots. These QQ plots are presented in Figures 1-3, where we consider three cases; (N,T, α) =

(20, 5, 0), (20, 5, 0.9) and (200, 5, 0.9), respectively. Figure 1 shows that the normal approximation works

reasonably well when the degree of persistence is low. On the contrary, when α = 0.9 (Figure 2), the

normal approximation may not be accurate. In particular, the distribution of “IB” deviates from the
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normal distribution considerably. Nonetheless, in Figure 3, we see that the normal approximation works

(although the distributions are not centered around the true value due to the bias) when the sample size

is reasonably large even if the degree of persistence is high.

To sum up, we observe that the procedures developed in this paper effectively reduce the biases. They

provide reliable estimates of the autocovariances, particularly when the time dimension is moderately

large or when the persistence is not very large. On the other hand, when the length of the time series

is short and the persistence is large, our procedures may not be able to eliminate the biases completely,

although they perform remarkably better than does the conventional procedure. We also see that the

asymptotic normal approximation is accurate in sample sizes that we often encounter. Given the results

of the experiments, we believe that applied researchers could benefit by using the procedures developed

in this analysis. In particular, the “IB” procedure with the truncated kernel works remarkably well.

6 Extensions

In this section, we consider several extensions of the methods developed in this paper.

6.1 Other related quantities

We consider the estimation of other related quantities and see how the estimators developed in the

previous sections are useful for this purpose.

Let ρk be the k-th-order autocorrelation of wit (i.e., ρk = γk/γ0). We consider estimating ρk based

on estimates of γk and γ0. Let ρ̃k be the estimator for ρk based on bias-corrected estimators:

ρ̃k =
γ̃k

γ̃0
.

It is easy to see that ρ̃k is consistent by the continuous mapping theorem. It is also easy to see that, by

the Delta method, ρ̃k is asymptotically normal with zero mean.

Partial autocorrelation is another popular measure of dependence over time. Let αk signify the kth

partial autocorrelation. Note that αk is the population value of the coefficient on wi,t−k in the regression

of wit on wi,t−1, . . . wi,t−k (this does not mean that wit follows an AR(k) model). We recommend using

bias-corrected estimators of γs to estimate αk. The estimator, α̃k, is obtained by solving the following

equation: 
∗

∗

. . .

α̃k

 =


γ̃0 γ̃1 . . . γ̃k−1

γ̃1 γ̃0 . . . γ̃k−2

. . . . . . . . . . . .

γ̃k−1 γ̃k−2 . . . γ̃0



−1 
γ̃1

γ̃2

. . .

γ̃k

 ,

where ∗s are elements of the vector irrelevant to our discussion. The consistency of α̃k is proved by a

simple application of the continuous mapping theorem. The asymptotic distribution of α̃k can be derived

easily with the Delta method and it is centered around zero.
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Remark 10. The results in Lee (2008a) can be used to find the probability limit and the asymptotic

distribution of a partial autocorrelation coefficient estimator based on γ̂s (not γ̃). However, we cannot

use the bias correction method by Lee (2008a) for the estimation of the partial autocorrelations. The

strategy that Lee (2008a) adopts is to select the correct order of the autoregression and then mitigate

the bias of the estimates of the coefficients in correctly specified AR (p) models.

Lastly, we consider the variance of individual effects. Let σ2
η be the variance of ηi. A natural estimator

of σ2
η may be the between-group variance:

σ̂2
η =

1
N − 1

N∑
i=1

(ȳi − ȳ)2,

where ȳ =
∑N

i=1

∑T
t=1 yit/(NT ). As for γ̂k, we show below that σ̂2

η exhibits bias whose leading term

converges to the long-run variance of wit. However, it turns out that the direction of the bias of σ̂2
η is

upward. A bias-corrected estimator of σ2
η may be given as

σ̃2
η = σ̂2

η − 1
T

V̂T .

We need assumptions on the distribution of ηi in addition to the assumptions on wit to study the

asymptotic properties of the σ̂2
η and σ̃2

η.

Assumption 3. 1. {ηi}N
i=1 are i.i.d. across individuals.

2. E(η4
i ) < ∞.

3. wit and ηi are independent for any t.

Theorem 7. 1. Suppose that Assumptions 1 and 3 are satisfied. Then, as N → ∞ and T → ∞, it

follows that σ̂2
η →p σ2

η.

Suppose that Assumptions 1, 2 and 3 are satisfied. Then, as N → ∞, T → ∞,

√
N

(
σ̂2

η − σ2
η − 1

T
VT

)
→d N

(
0,

[
E{(ηi − µ)4} − σ4

η

])
.

2. Suppose that Assumptions 1, 2 and 3 are satisfied. Suppose also that rN,T T−1
√

N → 0. Then, as

N → ∞, T → ∞,

√
N

(
σ̃2

η − σ2
η

)
→d N

(
0,

[
E{(ηi − µ)4} − σ4

η

])
.

Remark 11. While T → ∞ is required for the consistency of σ̂2
η, the rate of convergence of σ̂2

η is
√

N ,

not
√

NT . Roughly speaking, this is because we can observe only one η for each individual. Note also

that, contrary to the result for γ̂k, we do not need a condition on the relationship between the rates of

N and T for the results for σ̂2
η. The reason is that σ̂2

η does not possess a bias term of order 1/T 2.
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6.2 Fixed-effects regression models

Another extension is the estimation of the autocovariance structure of error terms in panel regression

models. We consider the following panel regression model:

zit = x′
itβ + ηi + wit,

where xit is the vector of regressors and β is the vector of parameters to be estimated. Let β̂ be an

estimator of β. Our analysis is based on the residuals from this estimation:

ŷit = zit − x′
itβ̂.

Let γ̂∗
k be the within-group estimator of the k-th-order autocovariance of wit computed using the residuals

γ̂∗
k =

1
N(T − k)

N∑
i=1

T∑
t=k+1

(ŷit − ¯̂yi)(ŷi,t−k − ¯̂yi),

where ¯̂yi =
∑T

t=1 ŷit/T . We also consider how the estimation error in β̂ affects the long-run variance

estimation. Let Ṽ ∗
T be a long-run variance estimator based on ŷits so that

Ṽ ∗
T =

T−1∑
j=−T+1

k

(
j

S

)
T − |j|

T
γ̂∗

j =
T−1∑

j=−T+1

k

(
j

S

)
γ̂∗+

j ,

where

γ̂∗+
j =

1
NT

N∑
i=1

T∑
t=|j|+1

(ŷit − ¯̂yi)(ŷi,t−|j| − ¯̂yi) =
T − |j|

T
γ̂∗

j .

We rely on the following assumption to study the asymptotic properties of γ̂∗
k and Ṽ ∗

T .

Assumption 4. 1. β̂ − β = Op(1/
√

NT ).

2. {wit, x
′
it − Ei(xit)′} are i.i.d. across individual and strictly stationary over t, where Ei(xit) is the

expectation of xit given ηi.

3. Let vat be the a-th element of the vector (wit, x
′
it −Ei(xit)′)′. We have

∑∞
j=−∞ |E(vatvb,t−j)| < ∞

for any a, b.

4. Let cuma,b,c,d(0, j1, j2, j3) be the fourth-order cumulant of (va0, vbj1 , vcj2vdj3). For any (a, b, c, d),
∞∑

j1=−∞

∞∑
j2=−∞

∞∑
j3=−∞

|cuma,b,c,d(0, j1, j2, j3)| < ∞.

Assumption 4.1 states that β̂ is
√

NT -consistent. For example, the fixed-effects estimator satisfies

this assumption when the regressors are strictly exogenous. Assumption 4.2 allows the individual effect,

ηi, to enter the regressor, xit, in an additive fashion. Assumption 4.3 states that the serial correlation

in (wit, x
′
it − Ei(xit)′)′ vanishes sufficiently fast as the time difference increases. Assumption 4.4 is a

technical assumption and it restricts the magnitude of fourth-order moments.

Let γ̂k and ṼT denote the k-th within-group autocovariance and the long-run variance estimator,

respectively, where we ignore the estimation of β, as considered in previous sections.
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Theorem 8. Suppose that Assumption 4 is satisfied.

1. As N → ∞ and T → ∞, we have:
√

NT (γ̂∗
k − γ̂k) = (E[wit{xi,t−k − Ei(xit)}′] + E[wi,t−k{xit − Ei(xit)}′])

√
NT (β̂ − β) + op(1).

2. Assume that k(·) ∈ K1. As N → ∞, T → ∞, S → ∞ and S2/T → 0, we have

Ṽ ∗
T − ṼT = Op

(
1√
NT

)
.

The proof is included in the Appendix. When the regressors are strictly exogenous such that

E[wi,t1{xit2 − Ei(xit)}′] = 0 for any t1 and t2, the theorem implies that all the asymptotic results

for γ̂k presented in previous sections hold for γ̂∗
k . However, when the regressors are not strictly exoge-

nous (e.g., when the regressors are merely predetermined), the asymptotic distributions of γ̂∗
k and γ̂k are

different and the estimation error of β̂ affects the asymptotic behavior of γ̂∗
k . This observation is well

known in the time series literature (see, e.g., Hayashi (2000, pp. 144-146)). On the other hand, the

estimation error in β̂ does not affect the asymptotic behavior of Ṽ ∗
T because the rate of convergence of

ṼT is slower than 1/
√

NT when the bandwidth is optimally chosen. This implies that we can apply the

bias correction developed for γ̂ks to γ̂∗
ks without any modification.

An application of this procedure is the GLS estimation of fixed effects regression models with strictly

exogenous regressors. Here, the regressors must be strictly exogenous because the GLS estimator is not

necessarily consistent when the regressors are merely predetermined (see, e.g., Hayashi (2000, p. 416)).

The GLS estimation of these models is investigated by Kiefer (1980), Hansen (2007) and Hausman and

Kuersteiner (2008). Let

Υ =


γ0 γ1 . . . γT−1

γ1 γ0 γT−2

...
. . .

...

γT−1 γT−2 . . . γ0

 , Υ̃ =


γ̃0

T−1
T γ̃1 . . . 1

T γ̃T−1

T−1
T γ̃1 γ̃0

2
T γ̃T−2

...
. . .

...
1
T γ̃T−1

2
T γ̃T−2 . . . γ̃0

 .

We note that using the QS kernel guarantees that Υ̃ is positive definite. To see this, we observe the

following decomposition:

Υ̃ =


γ̂0

T−1
T γ̂1 . . . 1

T γ̂T−1

T−1
T γ̂1 γ̂0

2
T γ̂T−2

...
. . .

...
1
T γ̂T−1

2
T γ̂T−2 . . . γ̂0

 +
1

T 2


T T − 1 . . . 1

T − 1 T 2
...

. . .
...

1 2 . . . T

 ṼT .

We note that it is well known in the time series literature that the first term on the right-hand side is

positive semi-definite. Now, we have ṼT > 0 when we use the QS kernel, and the matrix between 1/T 2

and ṼT can be written as:

ιT ι′T +
T−1∑
j=1

ι1,jι
′
1,j +

T−1∑
j=1

ιj+1,k+1ι
′
j+1,k+1,
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where ιa,b is the (k + 1)× 1 vector whose a-th to b-th elements are one and other elements are zero, and

this formula tells us that the matrix is positive definite. It therefore follows that Υ̃ is positive definite.

The GLS transformation of the panel regression model gives

Υ−1/2zi = Υ−1/2xiβ + Υ−1/2ιT ηi + Υ−1/2wi,

for some choice of Υ−1/2, where zi = (zi1, . . . , ziT )′ and xi and wi are defined similarly. This transforma-

tion yields a serially uncorrelated error term. The (infeasible) GLS estimator is obtained by eliminating

the fixed effects by multiplying the annihilator matrix of Υ−1/2ιT and then applying the OLS estimator.

A feasible GLS estimator may be obtained by replacing the matrix Υ by Υ̃ such that

β̂FGLS =

{
1

NT

N∑
i=1

x′
iΥ̃

−1xi −
1

NT

N∑
i=1

x′
iΥ̃

−1ιT (ι′T Υ̃−1ιT )−1ι′T Υ̃−1xi

}−1

×

{
1

NT

N∑
i=1

x′
iΥ̃

−1zi −
1

NT

N∑
i=1

x′
iΥ̃

−1ιT (ι′T Υ̃−1ιT )−1ι′T Υ̃−1zi

}
.

The asymptotic variance of β̂FGLS may be estimated by{
1

NT

N∑
i=1

x′
iΥ̃

−1xi −
1

NT

N∑
i=1

x′
iΥ̃

−1ιT (ι′T Υ̃−1ιT )−1ι′T Υ̃−1xi

}−1

. (5)

We examine the properties of the feasible GLS estimator through simulations. We consider the case

in which xit is scalar. The data are generated in the following way: xit ∼ i.i.d.U [−1, 1]; and yit is

generated in the same way as in the experiments in Section 5. We fix the value of β at β = 1. We set

N = 50, T = 5, 10, 20, α = 0, 0.5, 0.9, σ2
η = 1 and σ2 is set such that γ0 = 1. We examine the following

four estimators of β: the within-group estimator (“WG”); the (infeasible) GLS estimator (“GLS”); the

feasible GLS estimator with Υ̃ based on γ̃k(∞)s (“FGLS”); the estimator considered by Kiefer (1980)

(“KGLS”) which is the feasible GLS estimator applied to the equation transformed by the fixed effects

transformation. For each estimator, we compute the bias and the standard deviation (std). We also

give the mean of the standard error (meanse) for each estimator and the coverage probability of the 95%

confidence interval based on each estimator, where the confidence interval is constructed by the standard

formula: estimate±1.96(standard error). The standard errors are computed using formula (5.2.8) of

Hayashi (2000) for “WG”, formula (5) with Υ instead of Υ̃ for “GLS”, formula (5) for “FGLS”, and the

formula in page 199 of Kiefer (1980) for “KGLS”. We note that the standard error for “WG” allows serial

dependence but it assumes homoskedasticity conditional on the regressor.

Table 3 summarizes the results. The biases of all the estimators are negligible and the estimators

should be compared in terms of their standard deviations. Naturally, “GLS” exhibits the smallest stan-

dard deviation among the estimators compared. Both “FGLS” and “KGLS” exhibit lower standard

deviations than does “WG”. Among these feasible GLS estimators, “FGLS” has the smallest standard

deviation and its standard deviation is similar to that of “GLS”. Moreover, the standard error and the

standard deviation of “FGLS” are reasonably similar. The coverage rate of the 95% confidence interval
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based on “FGLS” is close to 0.95. Although the confidence intervals based on “WG” and “GLS” have

better coverage rates than that of “FGLS” does when α = 0.9, the confidence interval based on ”FGLS”

performs better than does that based on “KGLS”. These results indicate the usefulness of “FGLS”. It has

a small standard deviation and its standard error is reliable. These results imply that the asymptotically

unbiased autocovariance estimators developed in this paper are useful for the GLS estimation of fixed

effects regression models.

[Table 3 about here]

References

Abowd, J. M. & D. Card (1989) On the covariance structure of earnings and hours changes, Econometrica
57(2), 411–445.

Alvarez, J. & M. Arellano (2003) The time series and cross-section asymptotics of dynamic panel data estimators,
Econometrica 71(4), 1121–1159.

Anderson, T. W. & C. Hsiao (1981) Estimation of dynamics models with error components, Journal of the
American Statistical Association 76(375), 598–606.

Andrews, D. W. K. (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econo-
metrica 59(3), 817–858.

Arellano, M. (2003) Panel Data Econometrics, Oxford University Press.

Arellano, M. & S. Bond (1991) Some tests of specification for panel data: Monte Carlo evidence and an application
to employment equations, Review of Economics Studies 58, 277–297.

Baltagi, B. H. & Q. Li (1994) Estimating error component models with general MA(q) disturbances, Econometric
Theory 10, 396–408.

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Holden Day. Inc.

Bun, M. J. & J. F. Kiviet (2006) The effects of dynamic feedbacks on LS and MM estimator accuracy in panel
data models, Journal of Econometrics 132, 409–444.

Cameron, A. C. & P. K. Trivedi (2005) Microeconometrics, Methods and Applications, Cambridge University
Press.

Chamberlain, G. (1984) Panel data, in Z. Griliches and M. D. Intriligator (eds.), Handbook of Econometrics,
Vol. 2, chapter 22, pp. 1247–1318. Elsevier.

den Haan, W. J. & A. T. Levin (1997) A practitioner’s guide to robust covariance matrix estimation, in G. S.
Maddala and C. R. Rao (eds.), Handbook of Statistics, Vol. 15, pp. 299–342. Elsevier.

Doornik, J. A. (2007) Ox, - An Object-Oriented Matrix Programming Language, Timberlake Consultants Press,
London.

Hahn, J. & G. Kuersteiner (2002) Asymptotically unbiased inference for a dynamic panel model with fixed effects
when both n and T are large, Econometrica 70(4), 1639–1657.

Hahn, J. & G. Kuersteiner (2004) Bias reduction for dynamic nonlinear panel models with fixed effects, mimeo.

Hahn, J. & G. Kuersteiner (2007) Bandwidth choice for bias estimators in dynamic nonlinear panel models,
mimeo.

Hansen, C. B. (2007) Generalized least squares inference in panel and multilevel models with serial correlation
and fixed effects, Journal of Econometrics 140, 670–694.

Hausman, J. & G. Kuersteiner (2008) Difference in difference meets generalized least squares: Higher order
properties of hypotheses tests, Journal of Econometrics 144, 371–391.

Hayashi, F. (2000) Econometrics, Princeton University Press.

Holtz-Eakin, D., W. Newey & H. S. Rosen (1988) Estimating vector autoregressions with panel data, Econometrica
6, 1371–1395.

Kakizawa, Y. (1999) Notes on the asymptotic efficiency of sample covariances in gaussian vector stationary
process, Journal of Time Series Analysis 20(5), 551–558.

21



Kakizawa, Y. & M. Taniguchi (1994) Asymptotic efficiency of sample covariances in a gaussian stationary process,
Journal of Time Series Analysis 15, 303–311.

Kiefer, N. M. (1980) Estimation of fixed effect models for time series of cross-sections with arbitrary intertemporal
covariance, Journal of Econometrics 14, 195–202.

Kiviet, J. F. (1995) On bias, inconsistency, and efficiency of various estimators in dynamic panel data models,
Journal of Econometrics 68, 53–78.

Lee, Y. (2008a) Bias correction in dynamic panel models under time series misspecification, mimeo.

Lee, Y. (2008b) Nonparametric estimation of dynamic panel models with fixed effects, mimeo.

Lillard, L. A. & R. J. Willis (1978) Dynamic aspects of earning mobility, Econometrica 46(5), 985–1012.

MaCurdy, T. E. (1982) The use of time series processes to model the error structure of earnings in a longitudinal
data analysis, Journal of Econometrics 18, 83–114.

Nickell, S. (1981) Biases in dynamic models with fixed effects, Econometrica 49(6), 1417–1426.

Parzen, E. (1957) Consistent estimates of the spectrum of a stationary time series, Annals of Mathematical
Statistics 28(2), 329–348.

Phillips, P. C. B. & H. R. Moon (1999) Linear regression limit theory for nonstationary panel data, Econometrica
67(5), 1057–1111.

Porat, B. (1987) Some asymptotic properties of the sample covariances of gaussian autoregressive moving average
process, Journal of Time Series Analysis 8, 205–220.

Solon, G. (1984) Estimating autocorrelations in fixed-effects models, NBER, Technical Working Paper No. 32.

A Technical appendix

A.1 Proof of Theorem 1

Proof. We have the following decomposition:

γ̂k =
1

N(T − k)

N
X

i=1

T
X

t=k+1

witwi,t−k − 1

N

N
X

i=1

(w̄i)
2

−2
k

N(T − k)

N
X

i=1

(w̄i)
2 +

1

N(T − k)

N
X

i=1

k
X

t=1

witw̄i +
1

N(T − k)

N
X

i=1

T
X

t=T−k+1

witw̄i.

The first term on the right-hand side of the equation converges to γk by Lemma 1. The second and third terms
are op(1) by Lemma 2 and the fourth and fifth terms are op(1) by Lemma 3. It follows that γ̂k →p γk.

A.2 Proof of Theorem 2

Proof. We have the following decomposition:

√
NT

„

γ̂k − γk +
1

T
VT

«

=
√

NT
1

N(T − k)

N
X

i=1

T
X

t=k+1

(witwi,t−k − γk) −
√

NT

(

1

N

N
X

i=1

(ȳi − ηi)
2 − 1

T
VT

)

+2
√

NT
k

N(T − k)

N
X

i=1

(w̄i)
2 +

√
NT

1

N(T − k)

N
X

i=1

k
X

t=1

witw̄i +
√

NT
1

N(T − k)

N
X

i=1

T
X

t=T−k+1

witw̄i.

The first term on the right-hand side is asymptotically normal by Lemma 1, and the second and third terms are
op(1) by Lemma 2. The last two terms on the right-hand side are op(1) by Lemma 3.
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A.3 Proof of Theorem 4

Proof. First, we consider the bias:

E(ṼT ) =

T−1
X

j=−T+1

k

„

j

S

«

E(γ̂+
j ).

Note that:

E(γ̂+
j ) =

T − |j|
T

γj −
T − |j|

T

1

T
VT + BjT ,

where

BjT = E

8

<

:

−2
|j|
NT

N
X

i=1

(w̄i)
2 +

1

NT

N
X

i=1

|j|
X

t=1

witw̄i +
1

NT

N
X

i=1

T
X

t=T−|j|+1

witw̄i

9

=

;

.

We have

E
“

ṼT − VT

”

=

T−1
X

j=−T+1

ȷ

k

„

j

S

«

− 1

ff

T − |j|
T

γj

− 1

T
VT

T−1
X

j=−T+1

k

„

j

S

«

T − |j|
T

+

T−1
X

j=−T+1

k

„

j

S

«

BjT .

As shown by Parzen (1957), Sq times the first term on the right-hand side converges to −kqV
(q). This implies

that the first term is of order O(S−q). Next, we consider the second term. Observing that VT → V and
S−1PT−1

j=−T+1 k(j/S) →
R 1

−1
k(x)dx, the second term is of order O(S/T ). The first term is therefore of an order

larger than the second term when Sq+1/T → 0, which is satisfied when Nq+1/T q → 0 and S2q+1/(NT ) → τ . The
first term and the second term are of the same order when Sq+1/T → τ .

We consider the third term on the right-hand side. We observe that

T−1
X

j=−T+1

k

„

j

S

«

E

(

2
|j|
NT

N
X

i=1

(w̄i)
2

)

=

T−1
X

j=−T+1

k

„

j

S

«

2|j|
T 2

VT

≤ 2S

T 2
VT

T−1
X

j=−T+1

k

„

j

S

«

= O

„

S2

T 2

«

,

and that
˛

˛

˛

˛

˛

˛

T−1
X

j=−T+1

k

„

j

S

«

E

0

@

1

NT

N
X

i=1

|j|
X

t=1

witw̄i

1

A

˛

˛

˛

˛

˛

˛

≤
T−1
X

j=−T+1

k

„

j

S

«

|j|
T 2

T
X

m=1

|γm| ≤ S

T 2

T
X

m=1

|γm|
T−1
X

j=−T+1

k

„

j

S

«

= O

„

S2

T 2

«

,

by Lemma 3. Similarly, we can show that

˛

˛

˛

˛

˛

˛

T−1
X

j=−T+1

k

„

j

S

«

E

0

@

1

NT

N
X

i=1

T
X

t=T−|j|+1

witw̄i

1

A

˛

˛

˛

˛

˛

˛

= O

„

S2

T 2

«

.

Therefore, we have

˛

˛

˛

˛

˛

T−1
X

j=−T+1

k

„

j

S

«

BjT

˛

˛

˛

˛

˛

= O

„

S2

T 2

«

.

Therefore, we have that E(ṼT − VT ) → 0 if S → ∞ and S/T → 0. Moreover, when Sq+1/T → 0,

SqE
“

ṼT − VT

”

→ −kqV
(q),
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and, when Sq+1/T → τ , where 0 < τ < ∞, we have

SqE
“

ṼT − VT

”

→ −kqV
(q) − τV

Z

k(x)dx.

Next, we consider the variance. We note that V̂T is the sample average across cross-sections of the long-run
variance estimator for each time series. Let

ṼT =
1

N

N
X

i=1

ṼT,i,

where

ṼT,i ≡
T−1
X

j=−T+1

k

„

j

S

«

1

T

T
X

t=|j|+1

(yit − ȳi)(yi,t−|j| − ȳi).

Therefore, we have

var(ṼT ) =
1

N
var(ṼT,i).

We verify Assumptions B, C and D in Andrews (1991), under which we can use the variance formula for ṼT,i

provided by Andrews (1991). Note that θ, θ̂ and Vt(θ) in Assumptions B, C and D of Andrews (1991) are ηi, ȳi

and yit−ηi, respectively, in our case. Observing that ∂(yit−ηi)/(∂ηi) = −1, we can easily verify that Assumptions
B, C and D are satisfied. Therefore, we have

NT

S
var(ṼT ) → 2V 2

Z

k(x)2dx.

This also implies that var(ṼT ) → 0 if S/(NT ) → 0.
For the first bias term and the variance term to be of the same order, we need S2q+1/(NT ) → τ . For these two

terms to be of larger order than the second bias term, we need Sq+1/T → 0, which is equivalent to Nq+1/T q → 0

when S = O((NT )
1

2q+1 ). Therefore, when Nq+1/T q → 0 and S2q+1/(NT ) → 0, the asymptotic MSE is

lim
N,T→∞

NT

S
MSE(ṼT ) = k2

q

“

V (q)
”2

τ−1 + 2V 2

Z

k2(x)dx.

On the order hand, the first and second bias terms are of the same order when Sq+1/T → τ . These terms are
of larger order than the variance term when {S/(NT )}/(S/T )2 → 0, which is equivalent to Nq+1/T q → ∞ when

S = O(T
1

q+1 ). Therefore, when Nq+1/T q → ∞ and Sq+1/T → τ , the asymptotic MSE is

lim
N,T→∞

T 2

S2
MSE(ṼT ) =

ȷ

−kqV
(q)τ−1 − V

Z

k(x)dx

ff2

.

A.4 Proof of Theorem 5

Proof. In this proof, we use the notation defined in the proof of Theorem 4.
First, note that the asymptotic variance of ṼT (∞) is the same as that of ṼT because

ṼT (∞) =

„

1 +
ι′T KT

T − ι′T KT

«

ṼT =
T

T − ι′T KT
ṼT

and T/(T − ι′T KT ) → 1. Therefore, we have
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S
var{ṼT (∞)} → 2V 2

Z

k(x)2dx.

Next, we consider the bias of ṼT (∞):
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24



As in the proof of Theorem 4, we have

Sq
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ȷ
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as T/(T − ι′T KT ) → 1.
We have
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as ι′T KT /(T − ι′T KT ) = O(S/T ).
Therefore, when (S2/T 2)/S−q = Sq+2/T 2 → 0, we have
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Note that, when S = O((NT )
1

2q+1 ), the square of the bias and the variance are of the same order and Sq+2/T 2 → 0
is equivalent to Nq+2/T 3q → 0.

A.5 Proof of Theorem 6

Proof. We note that we can use the results of Theorems 4 and 5 on the variance of the estimators. Therefore,
observing that

R

k(x)2dx =
R 1

−1
1dx = 2 for the truncated kernel, we have:

var(V̌T ) = 4V 2 S
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+ o
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The bias of V̌T is
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where BjT is defined in the proof of Theorem 4.
We examine the order of each term in the bias. First, we have

−2

T−1
X

j=S+1

T − j

T
γj = −2

∞
X

j=S+1

γj + o

 

∞
X

j=S+1

γj

!

.

Second, it is easy to see that
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Next, we consider BjT . We have
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Similarly,
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Therefore, we have
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To sum up, the bias of the estimator is
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The mean squared error of V̌T is given as the square of the bias plus the variance.
Next, we consider the bias of V̌T (∞). First, we note that
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Given this, we have the decomposition:
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We have already shown that
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Note that here we use the fact that ι′T K∗
T =

PS
j=−S(T − |j|)/T . Therefore, the bias of V̌T (∞) is
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T 2

«

.

The mean squared error formula in the theorem is obtained by the sum of the squares of the bias and the
variance.

A.6 Proof of Theorem 7

Proof. We have the following decomposition:

σ̂2
η =

1

N

N
X

i=1

(ηi − µ)2 +
1

N

N
X

i=1

(ȳi − ηi)
2 − (ȳ − µ)2 +

2

N

N
X

i=1

(ȳi − ηi)(ηi − µ).
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The first term on the right-hand side of the equation converges to σ2
η by applying the Khintchine law of large

numbers, noting that {(ηi − µ)2}N
i=1 is an i.i.d. sequence. The second term is op(1) by Lemma 2.

We now consider the third term. We have E(ȳ − µ) = 0. The variance is

var(ȳ − µ) = var

(

1

NT

N
X

i=1

T
X

t=1

(yit − µ)

)

=
1

N
E

2

4

(

1

T

T
X

t=1

(yit − µ)

)2
3

5

=
1

N

ˆ

E{(w̄i)
2} + σ2

η

˜

≤ 1

N

 

1

T

∞
X

j=−∞

|γj | + σ2
η

!

= O

„

1

N

«

.

Thus, by the Chebyshev inequality, we have

ȳ − µ = Op

„

1√
N

«

.

Thus, the third term is op(1).
Next, we consider the fourth term.

1

N

N
X

i=1

(ȳi − ηi)(ηi − µ) =
1

N

N
X

i=1

w̄i(ηi − µ).

Its expectation is 0, and its variance is:

var

(

1

N

N
X

i=1

w̄i(ηi − µ)

)

=
1

N
E{(w̄i)

2}E{(ηi − µ)2} =
1

NT
VT σ2

η = O

„

1

NT

«

.

By the Chebyshev inequality, we have

1

N

N
X

i=1

(ȳi − ηi)(ηi − µ) = Op

„

1√
NT

«

.

Thus, the fourth term is op(1).
Therefore, it follows that σ̂2

η →p σ2
η.

Next, we examine the asymptotic distribution of σ̂2
η. We have the following decomposition:

√
N

„

σ̂2
η − σ2

η − 1

T
VT

«

=
1√
N

N
X

i=1

{(ηi − µ)2 − σ2
η} +

√
N

(

1

N

N
X

i=1

(ȳi − ηi)
2 − 1

T
VT

)

−
√

N(ȳ − µ)2 +
2√
N

N
X

i=1

(ȳi − ηi)(ηi − µ).

The first term converges to N
`

0,
ˆ

E{(ηi − µ)4} − σ4
η

˜´

by the Lindberg–Levy central limit theorem noting that

{(ηi − µ)2}N
i=1 is an i.i.d. sequence. The other terms are op(1) by Lemma 2 and the arguments given above.

The proof of part 2 is omitted as it is trivial given part 1.

A.7 Proof of Theorem 8

Proof. Part 1). Observing that:

ŷit = zit − x′
itβ̂ = x′

it(β − β̂) + ηi + wit,

we have

γ̂∗
k − γ̂k =

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′(β − β̂)

+
1

N(T − k)

N
X

i=1

T
X

t=k+1

(wi,t−k − w̄i)(xit − x̄i)
′(β − β̂)

+(β − β̂)′
1

N(T − k)

N
X

i=1

T
X

t=k+1

(xit − x̄i)(xi,t−k − x̄i)
′(β − β̂).
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We consider the first term on the right-hand side. We observe

E

(

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′

)

= E[wit{xi,t−k − Ei(xit)
′}] − 1

T (T − k)

T
X

t1=k+1

T
X

t2=1

E[wit1{xit2 − Ei(xit)
′}]

− 1

T (T − k)

T
X

t1=1

T
X

t2=k+1

E[wit1{xit2 − Ei(xit)
′}] + 1

T 2

T
X

t1=1

T
X

t2=1

E[wit1{xit2 − Ei(xit)
′}].

By Assumption 4.3, the second term on the right-hand side is

‚

‚

‚

‚

‚

‚

1

T (T − k)

T
X

t1=k+1

T
X

t2=1

E[wit1{xit2 − Ei(xit)
′}]

‚

‚

‚

‚

‚

‚

≤ 1

T (T − k)

T
X

t1=k+1

T
X

t2=1

‚

‚E[wit1{xit2 − Ei(xit)
′}]
‚

‚ = o(1).

Similarly, the third and fourth terms are o(1) such that

E

(

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′

)

= E[wit1{xit2 − Ei(xit)
′}] + o(1).

Next, we consider the variance:

var

(

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′

)

=
1

N
var

(

1

T − k

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′

)

.

We have the the following decomposition:

1

T − k

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′

=
1

T − k

T
X

t=k+1

wit{xi,t−k − Ei(xit)}′ +
1

T − k

T
X

t=k+1

wit{x̄i − Ei(xit)}′

+
1

T − k

T
X

t=k+1

w̄i{xi,t−k − Ei(xit)}′ + w̄i{x̄i − Ei(xit)}′.

Let uait be the a-th element of the vector {xi,t−k − Ei(xit)}′. We have the following:

var

 

1

T − k

T
X

t=k+1

wituait

!

=
1

(T − k)2

T
X

t1=k+1

T
X

t2=k+1

E(wit1wit2)E(uait1uait2)

+
1

(T − k)2

T
X

t1=k+1

T
X

t2=k+1

E(wit1uait2)E(wit2uait1)

+
1

(T − k)2

T
X

t1=k+1

T
X

t2=k+1

cum1,1,a,a(t1, t2, t1 − k, t1 − k)

= O(1)

by Assumption 4.3-4. Similarly, the variances of
PT

t=k+1 wit{x̄i−Ei(xit)}′/(T−k),
PT

t=k+1 w̄i{xi,t−k−Ei(xit)}′/(T−
k) and w̄i{x̄i − Ei(xit)}′ are also O(1). It therefore follows that

var

(

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′

)

= O

„

1

N

«

.
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Summing up, we have by the Chebyshev inequality

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wit − w̄i)(xi,t−k − x̄i)
′(β − β̂) = E[wit{xi,t−k − Ei(xit)}′](β − β̂) + op

„

1√
NT

«

.

Similarly, we have

1

N(T − k)

N
X

i=1

T
X

t=k+1

(wi,t−k − w̄i)(xit − x̄i)
′(β − β̂) = E[wi,t−k{xit − Ei(xit)}′](β − β̂) + op

„

1√
NT

«

,

and

(β − β̂)′
1

N(T − k)

N
X

i=1

T
X

t=k+1

(xit − x̄i)(xi,t−k − x̄i)
′(β − β̂) = Op

„

1

NT

«

.

Therefore, we have

√
NT (γ̂∗

k − γ̂k) =
`

E[wit{x′
i,t−k − Ei(xit)}] + E[wi,t−k{x′

it − Ei(xit)}]
´

√
NT (β̂ − β) + op(1).

Part 2). We have the following decomposition:

Ṽ ∗
T − ṼT =

T−1
X

j=−T+1

k

„

j

S

«

(γ̂∗+
j − γ̂+

j )

= V wx(β − β̂) + V xw(β − β̂) + (β − β̂)′V xx(β − β̂),

where

V wx =

T−1
X

j=−T+1

k

„

j

S

«

1

NT

N
X

i=1

T
X

t=j+1

(wit − w̄i)(xi,t−j − x̄i)
′,

V xw =

T−1
X

j=−T+1

k

„

j

S

«

1

NT

N
X

i=1

T
X

t=j+1

(wi,t−j − w̄i)(xit − x̄i)
′,

V xx =

T−1
X

j=−T+1

k

„

j

S

«

1

NT

N
X

i=1

T
X

t=j+1

(xit − x̄i)(xi,t−j − x̄i)
′.

We will show that V wx = Op(1), V xw = Op(1) and V xx = Op(1). We use the results of Andrews (1991) to prove
these equalities. We note that

V wx =
1

N

N
X

i=1

V wx,i,

where

V wx
i =

T−1
X

j=−T+1

k

„

j

S

«

1

T

T
X

t=j+1

(wit − w̄i)(xi,t−j − x̄i)
′.

We use Theorem 1 of Andrews (1991) to show that V wx
i →p

P∞
j=−∞ E[wit{xi,t−j − Ei(xit)}] as T → ∞. For

this purpose, we show that Assumptions A and B of Andrews (1991) are satisfied in our case. Note that θ0, θ̂, V ′
t

and (∂/∂θ′)Vt(θ) in Assumptions A and B of Andrews (1991) are (0, Ei(x
′
it)), (w̄i, x̄

′
i), (wit, x

′
it − Ei(xit)

′) and
(−1,−1, . . . ,−1), respectively, in our case. Therefore, the requirements for Theorem 1 of Andrews (1991) are
satisfied in our case by Assumptions 1 and 4. Now, we have shown that V wx

i →p

P∞
j=−∞ E[wit{xi,t−j −Ei(xit)}]

as T → ∞. Since the mean and variance of V wx
i exist and are bounded uniformly over T , ||V wx

i || is uniformly
integrable. Note also that V wx

i is i.i.d. across individuals. Therefore, Corollary 1 of Phillips and Moon (1999)
implies that V wx = Op(1) as N, T → ∞. We can show that V xw = Op(1) and V xx = Op(1) in the exactly same
manner.

Therefore, given that (β − β̂) = Op(1/
√

NT ), we have Ṽ ∗
T − ṼT = Op(1/

√
NT ).
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A.8 Lemmas

Lemma 1. Suppose that Assumption 1 is satisfied. Then, for any k, as N → ∞ and T → ∞,

1

N(T − k)

N
X

i=1

T
X

t=k+1

witwi,t−k →p γk.

Suppose that Assumptions 1 and 2 are satisfied. Then, for any k, as N → ∞ and T → ∞,

√
NT

1

N(T − k)

N
X

i=1

T
X

t=k+1

(witwi,t−k − γk) →d N

 

0,

∞
X

j=−∞

˘

γ2
j + γk+jγk−j + cum(0,−k, j, j − k)

¯

!

.

Proof. We observe that

E

(

1

N(T − k)

N
X

i=1

T
X

t=k+1

witwi,t−k

)

= E(witwi,t−k) = γk.

The variance term is
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(
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N
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T
X
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witwi,t−k
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=
1

N(T − k)2
E

2

4

(

T
X

t=k+1

(witwi,t−k − γk)

)2
3

5

<
M

N
→ 0.

By the Chebyshev inequality, the consistency is proven.
We apply Phillips and Moon’s (1999) Theorem 3 to show the asymptotic normality. It is easy to see that

Conditions (i), (ii) and (iv) of Theorem 3 in Phillips and Moon (1999) are satisfied. Let ait = witwi,t−k − γk.
The sufficient condition for Condition (iii) is

E

2

4

(

√
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1
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T
X

t=k+1
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T 2
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T
X
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ait
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5 < ∞.

We note that E(ait) = 0. Now,

E
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<
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T
X
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=

;

=

T
X
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T
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T
X
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T
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E(ait1ait2ait3ait4)
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<
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T
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T
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=

;
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T
X

t2=k+1

T
X

t3=k+1

T
X

t4=k+1

cuma(t1, t2, t3, t4),

where cuma(t1, t2, t3, t4) is the fourth-order cumulant of (ait1 , ait2 , ait3 , ait4). We have

1

T

T
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t1=k+1

T
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E(ait1ait2) =
1
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T
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t1=k+1

T
X
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→
∞
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˘

γ2
j + γk+jγk−j + cum(0,−k, j, j − k)

¯

by Assumptions 1.2 and 2. Theorem 2.3.2 of Brillinger (1981) states that cuma(t1, t2, t3, t4) can be written as
a sum of products of at most eighth-order cumulants of wit. See Brillinger (1981, pp20-21) for how it can be
written. This implies that

˛

˛

˛

˛

˛

˛

T
X
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T
X

t3=k+1

T
X

t4=k+1

cuma(t1, t2, t3, t4)

˛

˛

˛

˛
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≤
∞
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∞
X
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∞
X

t4=−∞

|cuma(0, t2, t3, t4)| < ∞

by Assumption 2. Therefore, we have E{(
PT

t=k+1 ait)
4}/T 2 = O(1). Thus, the asymptotic normality is shown.

Now, using the result for E(ait1ait2), the asymptotic variance of γ̂k is

lim
T→∞

1

T

T
X

t1=k+1

T
X

t2=k+1

˘

E(wit1wi,t1−kwit2wi,t2−k) − γ2
k

¯

=

∞
X
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¯

.
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Lemma 2. Suppose that Assumption 1 is satisfied. Then, as N → ∞ and T → ∞,

1

N

N
X

i=1

(ȳi − ηi)
2 →p 0.

Suppose that Assumption 1 is satisfied. Suppose also that Assumption 2 is satisfied. Then, as N → ∞ and
T → ∞,

1

N

N
X

i=1

(ȳi − ηi)
2 − 1

T
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„

1√
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«

.

Proof. First, we note that
PN

i=1(ȳi − ηi)
2/N ≥ 0. Its expectation is

E
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)
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1

T
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T
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By the Markov inequality,
PN
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2/N = op(1). Now, the variance is
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by Assumption 2. By the Chebyshev inequality, we obtain the desired result.

Lemma 3. Suppose that Assumptions 1 and 2 are satisfied. Then, as N → ∞ and T → ∞,
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The variance is
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The last equality follows by Assumptions 1.2 and 2.
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Table 1: Monte Carlo results: N = 20, the QS kernel.

WG BWG BWG2 IB
T α k TRUE Tbias bias std bias std bias std bias std

5 0 0 1 -0.2 -0.2 0.13 -0.064 0.15 -0.028 0.15 -0.0037 0.16
1 0 -0.2 -0.2 0.088 -0.061 0.097 -0.026 0.1 -0.0012 0.11
2 0 -0.2 -0.2 0.11 -0.063 0.094 -0.027 0.09 -0.003 0.09

10 0 0 1 -0.1 -0.1 0.095 -0.018 0.1 -0.0054 0.11 -0.0018 0.11
1 0 -0.1 -0.1 0.067 -0.017 0.073 -0.0036 0.076 0.00 0.077
2 0 -0.1 -0.1 0.07 -0.017 0.068 -0.0043 0.068 -0.00079 0.069

25 0 0 1 -0.04 -0.04 0.061 -0.0031 0.064 -0.00038 0.064 -0.00012 0.064
1 0 -0.04 -0.04 0.044 -0.0026 0.046 0.00011 0.046 0.00036 0.046
2 0 -0.04 -0.04 0.045 -0.0031 0.045 -0.00033 0.045 0.00 0.045

50 0 0 1 -0.02 -0.02 0.044 -0.00092 0.044 -0.00017 0.045 -0.00014 0.045
1 0 -0.02 -0.019 0.032 0.0002 0.033 0.00095 0.033 0.00098 0.033
2 0 -0.02 -0.02 0.032 -0.00054 0.032 0.00021 0.032 0.00024 0.032

5 0.5 0 1 -0.44 -0.45 0.097 -0.35 0.11 -0.32 0.12 -0.21 0.17
1 0.5 -0.44 -0.47 0.057 -0.38 0.058 -0.34 0.063 -0.23 0.14
2 0.25 -0.44 -0.46 0.066 -0.37 0.064 -0.34 0.065 -0.22 0.093

10 0.5 0 1 -0.26 -0.26 0.093 -0.17 0.11 -0.14 0.11 -0.078 0.14
1 0.5 -0.26 -0.28 0.073 -0.18 0.087 -0.15 0.092 -0.09 0.12
2 0.25 -0.26 -0.28 0.056 -0.18 0.067 -0.15 0.073 -0.094 0.099

25 0.5 0 1 -0.11 -0.11 0.072 -0.045 0.081 -0.025 0.085 -0.014 0.088
1 0.5 -0.11 -0.12 0.062 -0.048 0.071 -0.028 0.076 -0.016 0.08
2 0.25 -0.11 -0.12 0.053 -0.049 0.063 -0.029 0.067 -0.018 0.071

50 0.5 0 1 -0.058 -0.058 0.054 -0.015 0.059 -0.0059 0.06 -0.0034 0.061
1 0.5 -0.058 -0.058 0.048 -0.015 0.053 -0.0063 0.054 -0.0038 0.055
2 0.25 -0.058 -0.059 0.042 -0.016 0.047 -0.007 0.049 -0.0046 0.049

5 0.9 0 1 -0.8 -0.85 0.031 -0.83 0.033 -0.82 0.036 -0.74 0.079
1 0.9 -0.8 -0.87 0.017 -0.85 0.018 -0.84 0.021 -0.75 0.067
2 0.81 -0.8 -0.86 0.014 -0.84 0.014 -0.83 0.015 -0.75 0.049

10 0.9 0 1 -0.72 -0.73 0.049 -0.7 0.049 -0.69 0.049 -0.58 0.11
1 0.9 -0.72 -0.75 0.042 -0.72 0.041 -0.71 0.041 -0.59 0.1
2 0.81 -0.72 -0.75 0.028 -0.73 0.028 -0.72 0.028 -0.6 0.09

25 0.9 0 1 -0.49 -0.49 0.078 -0.44 0.082 -0.42 0.083 -0.29 0.14
1 0.9 -0.49 -0.5 0.075 -0.45 0.079 -0.43 0.08 -0.3 0.14
2 0.81 -0.49 -0.51 0.07 -0.45 0.073 -0.44 0.074 -0.31 0.13

50 0.9 0 1 -0.31 -0.31 0.086 -0.22 0.098 -0.2 0.1 -0.12 0.14
1 0.9 -0.31 -0.31 0.085 -0.23 0.097 -0.2 0.1 -0.12 0.13
2 0.81 -0.31 -0.32 0.082 -0.23 0.095 -0.2 0.098 -0.12 0.13

Note: This table presents the performances of various estimators with the quadratic spectrum kernel for autoco-
variances when N = 20. T refers to the length of time series. α is the AR(1) coefficient in the data-generating
process. k is the order of autocovariance. “TRUE” is the true value of autocovariance. “Tbias” is the theoretical
value of the bias. “bias” and “std” refer to bias and standard deviation. “WG”, “BWG”, “BWG2” and “IB” refer
to the within-group estimator, the one-time bias-corrected autocovariance estimator, the two-time bias-corrected
autocovariance estimator and the autocovariance estimator obtained after infinite iterations, respectively.
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Table 2: Monte Carlo results: N = 20, the truncated kernel.

WG BWG BWG2 IB
T α k TRUE Tbias bias std bias std bias std bias std

5 0 0 1 -0.2 -0.2 0.13 -0.043 0.15 -0.022 0.16 -0.011 0.16
1 0 -0.2 -0.2 0.087 -0.04 0.083 -0.019 0.1 -0.0088 0.12
2 0 -0.2 -0.2 0.11 -0.04 0.1 -0.018 0.092 -0.0081 0.094

10 0 0 1 -0.1 -0.098 0.095 -0.0075 0.1 -0.00038 0.11 0.00087 0.11
1 0 -0.1 -0.1 0.067 -0.0092 0.067 -0.0021 0.077 -0.00083 0.08
2 0 -0.1 -0.1 0.072 -0.011 0.071 -0.0038 0.069 -0.0025 0.069

25 0 0 1 -0.04 -0.04 0.061 -0.0012 0.063 0.00 0.063 0.00 0.063
1 0 -0.04 -0.04 0.044 -0.0017 0.045 -0.00054 0.047 -0.00048 0.047
2 0 -0.04 -0.04 0.045 -0.0017 0.045 -0.00054 0.045 -0.00048 0.045

50 0 0 1 -0.02 -0.02 0.044 0.00 0.045 0.00026 0.045 0.00027 0.045
1 0 -0.02 -0.02 0.031 -0.00067 0.031 -0.00043 0.032 -0.00042 0.032
2 0 -0.02 -0.02 0.032 -0.00018 0.032 0.00 0.032 0.00 0.032

5 0.5 0 1 -0.44 -0.45 0.095 -0.34 0.11 -0.29 0.12 -0.17 0.19
1 0.5 -0.44 -0.47 0.056 -0.36 0.067 -0.31 0.075 -0.2 0.16
2 0.25 -0.44 -0.46 0.066 -0.35 0.057 -0.3 0.058 -0.19 0.11

10 0.5 0 1 -0.26 -0.26 0.095 -0.14 0.11 -0.099 0.13 -0.052 0.15
1 0.5 -0.26 -0.27 0.074 -0.16 0.095 -0.11 0.11 -0.066 0.13
2 0.25 -0.26 -0.28 0.057 -0.16 0.068 -0.12 0.082 -0.071 0.11

25 0.5 0 1 -0.11 -0.11 0.072 -0.039 0.083 -0.019 0.087 -0.011 0.089
1 0.5 -0.11 -0.12 0.062 -0.042 0.073 -0.022 0.078 -0.015 0.08
2 0.25 -0.11 -0.12 0.052 -0.043 0.063 -0.024 0.068 -0.016 0.071

50 0.5 0 1 -0.058 -0.059 0.054 -0.013 0.059 -0.0051 0.06 -0.0036 0.06
1 0.5 -0.058 -0.06 0.047 -0.014 0.052 -0.0061 0.053 -0.0046 0.054
2 0.25 -0.058 -0.06 0.041 -0.014 0.046 -0.0062 0.048 -0.0047 0.048

5 0.9 0 1 -0.8 -0.85 0.031 -0.82 0.037 -0.81 0.038 -0.73 0.078
1 0.9 -0.8 -0.87 0.018 -0.84 0.023 -0.83 0.024 -0.74 0.066
2 0.81 -0.8 -0.86 0.015 -0.83 0.012 -0.82 0.013 -0.74 0.052

10 0.9 0 1 -0.72 -0.73 0.05 -0.69 0.052 -0.68 0.05 -0.54 0.13
1 0.9 -0.72 -0.74 0.043 -0.71 0.043 -0.7 0.041 -0.55 0.12
2 0.81 -0.72 -0.75 0.029 -0.72 0.029 -0.71 0.028 -0.56 0.11

25 0.9 0 1 -0.49 -0.49 0.078 -0.42 0.076 -0.39 0.078 -0.25 0.16
1 0.9 -0.49 -0.5 0.074 -0.43 0.072 -0.4 0.075 -0.26 0.16
2 0.81 -0.49 -0.51 0.068 -0.44 0.066 -0.41 0.069 -0.27 0.15

50 0.9 0 1 -0.31 -0.31 0.084 -0.2 0.1 -0.16 0.11 -0.092 0.15
1 0.9 -0.31 -0.31 0.083 -0.21 0.1 -0.16 0.11 -0.097 0.15
2 0.81 -0.31 -0.32 0.081 -0.21 0.1 -0.17 0.11 -0.1 0.14

Note: This table presents the performances of various estimators with the truncated kernel for autocovariances
when N = 20. T refers to the length of time series. α is the AR(1) coefficient in the data-generating process.
k is the order of autocovariance. “TRUE” is the true value of autocovariance. “Tbias” is the theoretical value
of the bias. “bias” and “std” refer to bias and standard deviation. “WG”, “BWG”, “BWG2” and “IB” refer
to the within-group estimator, the one-time bias-corrected autocovariance estimator, the two-time bias-corrected
autocovariance estimator and the autocovariance estimator obtained after infinite iterations, respectively.
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Table 3: Monte Carlo results: The performances of the GLS estimators.

T α WG GLS FGLS KGLS
5 0 bias 0.00063 0.00063 0.00082 0.0012

std 0.12 0.12 0.12 0.13
meanse 0.12 0.12 0.12 0.12

cov. rate 0.95 0.95 0.95 0.93
10 0 bias -0.00048 -0.00048 -0.00039 0.00

std 0.081 0.081 0.081 0.086
meanse 0.082 0.082 0.081 0.073

cov. rate 0.95 0.95 0.95 0.9
20 0 bias -0.00022 -0.00022 -0.00024 -0.00023

std 0.056 0.056 0.056 0.063
meanse 0.056 0.056 0.056 0.044

cov. rate 0.95 0.95 0.95 0.83
5 0.5 bias 0.00011 0.00025 0.00032 0.001

std 0.1 0.092 0.093 0.095
meanse 0.1 0.092 0.098 0.088

cov. rate 0.95 0.96 0.96 0.93
10 0.5 bias -0.0013 -0.00038 -0.00053 -0.00068

std 0.074 0.061 0.062 0.066
meanse 0.074 0.062 0.065 0.056

cov. rate 0.95 0.95 0.96 0.89
20 0.5 bias -0.00036 -0.00011 -0.00013 -0.00013

std 0.053 0.043 0.043 0.05
meanse 0.053 0.043 0.044 0.034

cov. rate 0.95 0.95 0.95 0.82
5 0.9 bias 0.00052 0.00023 0.00032 0.00063

std 0.053 0.039 0.041 0.041
meanse 0.053 0.04 0.049 0.038

cov. rate 0.95 0.96 0.98 0.93
10 0.9 bias -0.00048 0.00 -0.00014 -0.00028

std 0.045 0.026 0.027 0.029
meanse 0.045 0.026 0.033 0.024

cov. rate 0.95 0.95 0.98 0.88
20 0.9 bias -0.00016 0.00 0.00 0.00

std 0.039 0.018 0.018 0.024
meanse 0.038 0.018 0.022 0.014

cov. rate 0.95 0.95 0.98 0.75

Note: This table presents the performances of various estimators for a fixed effects regression
model when N = 50. T refers to the length of time series. α is the AR(1) coefficient in
the process of the disturbance term. “bias”, “std”, “meanse” and “cov. rate” refer to bias,
standard deviation, mean of the standard error and coverage rate of the 95% confidence
interval, respectively. “WG”, “GLS”, “FGLS” and “KGLS” refer to within-group estima-
tor, infeasible GLS estimator, feasible GLS estimator proposed in this paper and the GLS
estimator considered by Kiefer (1980), respectively.
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Note: This figure presents four QQ plots, each of which compares the distribution of an estimator for
γ0 (the variance) with the normal distribution with the same mean and the same variance as those
of the estimator, when N = 20 (cross-sectional sample size), T = 5 (time series length) and α = 0
(the AR(1) parameter). The true value of γ0 is 1. “WG”, “BWG”, “BWG2” and “IB” refer to the
within-group estimator, the one-time bias-corrected autocovariance estimator, the two-time bias-corrected
autocovariance estimator and the autocovariance estimator obtained after infinite iterations, respectively.
The QS kernel is used for all the estimators.

Figure 1: QQ plots, N = 20, T = 5, α = 0
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Note: This figure presents four QQ plots, each of which compares the distribution of an estimator for
γ0 (the variance) with the normal distribution with the same mean and the same variance as those
of the estimator, when N = 20 (cross-sectional sample size), T = 5 (time series length) and α = 0.9
(the AR(1) parameter). The true value of γ0 is 1. “WG”, “BWG”, “BWG2” and “IB” refer to the
within-group estimator, the one-time bias-corrected autocovariance estimator, the two-time bias-corrected
autocovariance estimator and the autocovariance estimator obtained after infinite iterations, respectively.
The QS kernel is used for all the estimators.

Figure 2: QQ plots. N = 20, T = 5, α = 0.9
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Note: This figure presents four QQ plots, each of which compares the distribution of an estimator for
γ0 (the variance) with the normal distribution with the same mean and the same variance as those of
the estimator, when N = 200 (cross-sectional sample size), T = 5 (time series length) and α = 0.9
(the AR(1) parameter). The true value of γ0 is 1. “WG”, “BWG”, “BWG2” and “IB” refer to the
within-group estimator, the one-time bias-corrected autocovariance estimator, the two-time bias-corrected
autocovariance estimator and the autocovariance estimator obtained after infinite iterations, respectively.
The QS kernel is used for all the estimators.

Figure 3: QQ plots, N = 200, T = 5, α = 0.9
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