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Abstract

The computational efficiency is improved for the solvation free energy

when the calculation is restricted to the initial and final states of the so-

lute insertion process (pure solvent and solution systems of interest). We

explore the possibility of such “end-point” calculations and assess the per-

formance of several approximate free-energy functionals against benchmarks

for amino-acid analogs in water. The performance is the best and the sec-

ond, respectively, for the method of energy representation and the RISM

(reference interaction site model)/partial-wave expansion supplemented by

semi-empirical corrections for the excluded-volume and hydrogen-bonding

effects, while the chemical accuracy is not achieved for the others.
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1. Introduction

A realistic prediction of the solvation free energy in molecular systems is

one of the central tasks for modern computational physical chemistry. During

the last decade, there has been much progress in the area, especially for small

organic molecules in water [1, 2, 3, 4, 5, 6, 7, 8]. Indeed, the necessity of a

reliable estimation of the solvation free energy is increasing since the role of

solvent is now well recognized for biophysical, interfacial, and electrochemical

processes in solution.

The method to calculate the solvation free energy is categorized as either

implicit- or explicit-solvent model. In the implicit model, the nonpolar part of

the solvation free energy is typically parametrized by cavity-formation term

and the electrostatic part is described by continuum electrostatics, usually

with the Poisson-Boltzmann or Generalized-Born equation [9, 10, 11, 12, 13,

14]. The implicit-solvent method does not require extensive computations

and is amenable to large solutes. It is often difficult, however, to extend

the method beyond the range of model parametrization: for example, to

systems with added cosolvents or salts. Furthermore, it is common to ignore

the molecular structure of the solvent as well as the specific effect of solute-

solvent interaction such as the hydrogen bonding.

In the explicit-solvent model, the molecular details of the solvent are

taken into account and molecular-simulation methods are most often em-

ployed to sample the system configuration at atomic resolution. There have

been developed detailed molecular models for both the solute and solvent

which provide realistic pictures of solvation [2, 3]. With the use of well-tuned

atomistic force field, the solvation free energy of small to medium organic so-
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lute in water can be calculated with a deviation of ∼1 kcal/mol from the

experimental value [2], though an accuracy better than ∼3 kcal/mol is still

a challenge for an arbitrary chosen set of compounds as it has been shown

in a recent blind test [15]. The drawback in the free-energy computation

using the explicit-solvent model is the computational demand. The standard

approach is the free-energy perturbation method and the thermodynamics

integration method, and these methods can be conducted in practice only by

introducing a number of intermediate states of the solute insertion process

connecting the pure solvent and solution systems of interest.

To circumvent the heavy computational load involved in the standard

approaches to the solvation free energy, alternative schemes are formulated

which refer only to the initial and final states of the process of solute insertion

(the pure solvent and solution systems) and use approximate functionals for

the solvation free energy. These “end-point” free-energy calculations are

computationally more efficient, and are shown to be promising even for large

and/or complex solute species when an appropriate assessment is done for

the accuracy [5, 6, 7, 8, 11]. The purpose of the present work is to assess the

performance of “end-point” methods introduced below.

When the solute and solvent are both treated with an explicit model, the

end-point method is classified into two categories. The first category consists

of integral equation theories for molecular liquids [7, 8, 16, 17, 18, 19, 20,

21, 22]. The method of reference interaction site model (RISM) and its

3-dimensional extension (3D-RISM) are commonly known integral-equation

approaches, and operate with the solute-solvent and solvent-solvent radial (or

spatial, 3-dimensional) distribution functions. This approach was introduced

3



by Chandler and Andersen [16] and further developments have been made

towards improving the accuracy [7, 17, 18, 22, 23] and the computational

efficiency [20, 24, 25]. In this molecular theory, there is a family of functionals

with which the solvation free energy is expressed in closed form in terms of the

distribution functions at the end points. The best documented example is the

hypernetted-chain (HNC) functional [26], and there are a few others beyond

HNC. The earliest non-HNC model was developed by assuming the Gaussian

fluctuations (GF) of solvent [27], and an improvement was later proposed on

the basis of the repulsive bridge (RB) correction [28] and the distributed

partial wave (PW) expansion [23]. The accuracy of the PW approach was

further improved with semi-empirical corrections for the excluded-volume

and hydrogen-bonding contributions [7].

The second category of the end-point calculation of free energy refers

to combined approaches of molecular simulation and a theory of solutions.

The simulations are carried out only at the end points (the pure solvent and

solution systems), and the distribution functions obtained are substituted

into a free-energy functional formulated in the theory of solutions [5, 6, 29,

30]. Within this category, the method of energy representation (ER) is a

unique candidate with its accuracy and wide applicability [4, 5, 6, 31, 32, 33].

In this method, the solute-solvent pair interaction energy is taken as the

functional variable, and the solvation free energy is expressed as a functional

of a set of distribution functions of the pair interaction energy. The method

was so far developed in combination with molecular simulation, and the

currently used version of functional is exact to low orders in (solvent) density

and is applicable to inhomogeneous system and to flexible molecules involving
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intramolecular degrees of freedom [5, 6, 32, 33].

In this paper, we assess the performance of the end-point methods de-

scribed above. We focus on the method of energy representation and the

RISM-based schemes, and compare the calculated results against benchmarks

for amino-acid side-chain analogs in water solvent [2, 34]. The set of solute

molecules examined are taken from Ref. [2] and are listed in Table 1.

2. Computational Procedures

The potential function employed for the molecular dynamics (MD) sim-

ulations was the standard TIP3P for water [35] and the OPLS-AA [36, 37]

for the solute molecules with modifications adopted in the benchmark work

[2, 38]. As shown in Refs. [2, 38] from an extensive set of free-energy calcu-

lations, this set of potential functions provides the best agreement with the

experimental values among the commonly used force fields. The Lennard-

Jones parameters between different kinds of atomic sites were combined by

the geometric mean in the MD simulations.

The free-energy calculation with the method of energy representation

(ER) was conducted in combination with MD simulations. In the ER method,

an MD snapshot is sampled to construct the instantaneous histogram ρ̂e of

the solute-solvent pair interaction energy ε defined as

ρ̂e(ε) =
∑

i

δ (v(ψ,xi)− ε), (1)

where ψ is the solute coordinate, xi is the coordinate of the ith solvent

molecule, v is the potential function for the solute-solvent pair interaction,

and the sum is taken over all the solvent molecules. A superscript e is
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attached to emphasize that a function is represented over the energy coor-

dinate ε. For each solute, three MD simulations were performed. One is

the solution system containing a single solute molecule of interest and 900

water molecules. The other two are the pure solvent system consisting only

of 900 water molecules and the single-molecule system of the solute; the

single-molecule MD was employed as a sampling scheme of the intramolec-

ular configuration of the solute at isolation (in the absence of solvent). For

the solution and pure solvent systems, the periodic boundary condition was

adopted and the unit cell was taken to be cubic. The configurations were

generated in the isothermal-isobaric ensemble at 298 K and 1 bar using the

Nosé-Hoover thermostat and the Parrinello-Rahman barostat at time con-

stants of 1.0 ps [39, 40]. The electrostatic interaction was handled by the

particle-mesh Ewald (PME) method [41] with a real-space cutoff of 7.5 Å, a

spline order of 6, a relative tolerance of 10−5, and a reciprocal-space mesh size

of 32 for each of the x, y, and z directions. The Lennard-Jones interaction

was truncated by applying the switching function in the form of Ref. [42],

where the switching range is 7.0-7.5 Å. Although this cutoff is rather short

compared to the common choice, it does not affect the solvation free energies

of the present set of solutes when the long-range correction is appropriately

made for the Lennard-Jones term [2, 38]. The single-molecule MD of the

solute was carried out in the constant-temperature ensemble at 298 K with

the Nosé-Hoover thermostat at a time constant of 1.0 ps. The equation of

motion was integrated with the velocity Verlet algorithm at a time step of

2 fs [43]. The bond lengths in the solutes were fixed with RATTLE [44],

and the water molecule was kept rigid with SETTLE [45]. The above setups
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for MD and the choice of potential functions are the same as those in the

benchmark work [2]. All the MD calculations were done using GROMACS

version 4.0.4 [46].

The MD of the solution system was performed for 100 ps. The solution

system was sampled every 10 fs, and ρ̂e of Eq. 1 was constructed at each

configuration sampled. ρ̂e(ε) was then averaged over 104 configurations to

obtain the average distribution ρe(ε). The length of the simulation was 10 ps

for the pure solvent system and 10 ns for the single-molecule MD of the so-

lute. The sampling frequency was 100 fs for both the pure solvent MD and

the single-solute MD. In the ER scheme, the solute is inserted into the pure

solvent system as a test particle, and ρ̂e in this case refers to the histogram of

the pair interaction between the solute inserted and the solvent. The solute

is flexible in the present work, and the single-solute MD serves to sample

the intramolecular flexibility of the solute. The test-particle insertion of the

solute was carried out at random position and orientation in the pure solvent

with the intramolecular configuration sampled from the single-molecule MD.

The insertion was performed 1000 times for each pure solvent configuration

sampled, and ρ̂e(ε) was calculated 105 times in total to provide the average

distribution ρe
0(ε) and the correlation matrix χe

0(ε, η). The three energy dis-

tribution functions ρe, ρe
0, and χe

0 are then the inputs to the functional for

the solvation free energy. The form of the functional is given in previous

papers [5, 33]. The procedure to fix the potential zero was adopted from

Appendix B of Ref. [6], and the long-range correction for the Lennard-Jones

term was added through the scheme in Ref. [2] to obtain the ER value of the

solvation free energy in Table 1.
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Since the solute insertion into the pure solvent as a test particle does

not affect the solvent trajectory, the MD of the pure solvent system needs

to be performed only once throughout the work and a single trajectory of

pure solvent can be used for the insertions of all the solutes. In addition,

the insertion at random position and orientation averages out the structural

inhomogeneity of the pure solvent system, which might be transiently present

in a rather short MD of 10 ps. As pointed out in Ref. [33], the spatial

inhomogeneity is exploited to reduce the computation time, which should

otherwise be set larger than the relaxation time of the local structure (in

space). In this sense, the averaging over time is replaced by the averaging

over space.

In the RISM calculations, the original TIP3P water model [35] cannot be

used due to the absence of the Lennard-Jones interaction for water hydrogens.

The absence of the Lennard-Jones term at hydrogen leads to divergence of

RISM calculations [18], while it does not cause any problem in MD and ER

because the repulsive core of oxygen prohibits the unphysical configuration

of the hydrogen site. To avoid the numerical difficulty in the RISM method,

we used the Lue-Blankschtein model of water [18], as done in Ref. [7]. This

water model is well adapted to the integral-equation methods and contains

non-zero repulsive Lennard-Jones term at the hydrogen site. Similarly, the

same non-zero repulsive Lennard-Jones terms were assigned in the RISM

calculations to those solute hydrogens which have zero Lennard-Jones pa-

rameters in the original OPLS-AA. Although the Lennard-Jones parameters

between different kinds of atomic sites were combined with the geometric

mean in the MD and ER calculations, the Lorentz-Berthelot rule was em-
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ployed in the RISM solver in order to assure the numerical convergence for

all the solutes. The bulk solvent-solvent correlation functions for the Lue-

Blankschtein model were taken from Ref. [24].

In the RISM calculations in the present work, furthermore, the molecular

structures of the solute and solvent are rigid and fixed. The presence of

intramolecular flexibility is not allowed, unlike the MD and ER schemes

described above. Before performing the RISM calculations, we optimized

the solute geometry at isolation (in the absence of solvent) using quantum-

chemical calculation with the Gaussian 03 software [47] at the MP2 level and

the 6-311G(d,p) basis set. The optimized structure thus obtained was used as

the input to the integral equation; only the solute structure was taken from

the quantum-chemical calculation and the OPLS-AA force field was adopted

for the partial charges and the Lennard-Jones parameters of the solute.

We examined five RISM-based approaches. The first one is the original

RISM integral equation with the HNC closure [17]. Three of the non-HNC

approaches are the Gaussian fluctuation (GF) model [27], the repulsive bridge

(RB) correction [28], and the partial wave (PW) expansion [23]. The last one,

called the PW-corrected (PWC) model, expresses the solvation free energy

as a sum of the PW value and the informatics-based correction term [7].

The correction takes into account the effects of the excluded volume and the

hydrogen bonding, and has two fitting parameters correspondingly. In the

present work, a PWC model from Ref. [7] adapted to the OPLS-AA force

field was employed as described below. It should be noted that even for the

non-HNC schemes, the set of site-site radial distribution functions obtained

as the solution to the original RISM/HNC integral equation was used as
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the input to the functional for the solvation free energy. The RISM/HNC

integral equation was solved using a fast solver [25] at the solvent density of

0.997 g/cm3 and the temperature of 298 K.

The PWC free energy ∆µPWC is expressed as

∆µPWC = ∆µPW + aρVu + bNOH, (2)

where ∆µPW is the solvation free energy calculated by the RISM/HNC in-

tegral equation and the PW free-energy expression, ρ is the number density

of solvent (water), Vu is the excluded volume of the solute given by Eq. (8)

of Ref. [7], and NOH is the number of OH groups in the solute molecule. a

and b are the correction coefficients in the PWC model, and are determined

by the least-square fit of Eq. 2 to the experimental values of the solvation

free energies of a “training” set of solute molecules. In the present work, the

training set consists of the compounds in Table 1 of Ref. [7] except for those

contained also in Table 1 of this paper; the amino-acid analog solutes in Ta-

ble 1 of this paper constitute the “test” set and there is no overlap between

the training and test sets. From the least-square fit, a and b of Eq. 2 were

determined to be -2.7 and 1.6 kcal/mol, respectively. These values of a and b

are different from the ones in the original work [7] since the OPLS-UA force

field was used in Ref. [7]. It is necessary in the present work to adopt the

model coefficients for the OPLS-AA force field. The HNC, GF, RB, PW,

and PWC values of the solvation free energy are listed in Table 1.

3. Results and Discussion

The calculated values of the solvation free energy ∆µ are shown in Ta-

ble 1, together with the experimental and the exactly calculated ones denoted
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as Bennett. The values in exact calculation correspond to the potential func-

tions employed for the MD in the present work (TIP3P for water and OPLS-

AA for the solutes) and were obtained with the Bennett acceptance ratio

method [2, 48]. The comparison is also made graphically in Figure 1 among

the experimental, Bennett, and ER values of ∆µ. Among the ∆µ’s from

the approximate functionals, the ER and PWC are in good agreement with

the experimental and Bennett. To assess the performance of approximate

scheme, we introduce the mean absolute deviation (MAD) by

1

n

∑
i

|∆µi,1 −∆µi,2|, (3)

where ∆µi,1 and ∆µi,2 are the solvation free energies of the ith solute in

the first and second sets of the data, respectively, and n is the number of

solutes examined. The MAD between the experimental and Bennett values

of ∆µ is an indicator for the performance of the force field. It is 0.7 kcal/mol

with TIP3P for water and OPLS-AA for solute, and is better than with

the other commonly used sets of potential functions [2, 38]; ∆µ calculated

with the prevalent force fields deviates typically by 1-2 kcal/mol from the

experimental.

Table 2 lists the MAD of the ∆µ values against the experimental and

Bennett. An exactly same set of potential functions were used in the Bennett

(computationally exact) calculations and the ER (approximate) calculations.

In this case, the MAD between the Bennett and approximate ∆µ represents

the performance of the approximate functional for the solvation free energy.

It is a measure of the approximation level in the computational scheme.

The accuracies of the force field and the approximate functional are mixed

together in the MAD between the experimental and approximate values. This
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MAD is an indicator of the usefulness of the approximate scheme in treating

realistic systems. It should be noted that the potential functions employed

are different between the Bennett and the RISM-based calculations and that

the MAD between them is less informative.

The MAD between the Bennett and ER ∆µ is found to be 0.5 kcal/mol

and is smaller than between the experimental and Bennett. Since the MAD

from the use of an approximate functional is expected to depend weakly on

the choice of force field and the present choice of force field is the best among

the common ones [2, 38], the error from the ER approximation will be smaller

than the error from the use of force field. It is further seen in Table 2 that

the MAD between the experimental and ER values is 0.7 kcal/mol. This is

not different from the MAD between the experimental and Bennett. Thus,

the ER method will be as useful as the computationally exact free-energy

calculation in terms of the accuracy with respect to experiment.

Tables 1 and 2 show that among the RISM-based methods, the HNC

scheme provides too repulsive (too positive) values of ∆µ, while the RB

results are mostly too attractive (too negative). The performance of the

free-energy functional is greatly improved with the introduction of the GF or

PW approximation. The chemical accuracy (∼1 kcal/mol) is then achieved

with the informatics-based correction (the PWC scheme). Our calculations

indicate that the integral-equation method will be quantitative when com-

bined with the informatics which captures structural characteristics of the

solute.

As described in Sec. 2, the solvation free energies ∆µ in the present work

were calculated in the ER method from a 100-ps MD of the solution system
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of interest, a 10-ps MD of the pure solvent, and a 10-ns MD of the single

solute molecule at isolation (in the absence of solvent). Actually, when the

MD of the pure solvent was extended to 50 ps, the deviation of ∆µ from

the 10-ps result was found to be less than 0.1 kcal/mol. It was observed, on

the other hand, that a sampling over ns timescale is necessary for dihedral

degrees of freedom of the solute [38]. We thus examined the convergence

behavior of ∆µ by focusing on the Ile, Met, and Gln analog-solutes which

involve dihedral degrees of freedom.

At isolation, the distributions of the dihedral angles of these solutes were

seen to be converged in 10 ns. The convergence needs to be examined for

the solution system, and we extended the MD to 10 ns for each of the Ile,

Met, and Gln analogs in water. Three values of ∆µ were then calculated

for each solute from the samplings over 100 ps, 1 ns, and 10 ns. It was

found for all the solutes that the three ∆µ values agree among themselves

within 0.1 kcal/mol. In addition, we examined the average sum 〈u〉 of the

solute-solvent interaction energy (〈u〉 = −7.7±0.1, −12.9±0.1, and −29.3±
0.3 kcal/mol for the Ile, Met, and Gln analogs, respectively). This was done

because the computational error of 〈u〉 is only statistical, while the error

of ∆µ is not only statistical but also reflects the use of an approximate

functional. It was observed that the three 〈u〉 values from the 100 ps, 1 ns,

and 10 ns samplings are not different within the statistical error. Actually, it

was pointed out in Appendix C of Ref. [33] that ∆µ is expected to converge

faster than 〈u〉 due to the variational principle in the ER method. The

convergence behavior described above is consistent with this expectation,

indeed.
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According to Sec. 2, the solvation free energy ∆µ is calculated in the

ER method from the three energy distribution functions of ρe in the solution

system and ρe
0 and χe

0 in the pure solvent system with test-particle insertions.

Note also that 〈u〉 is given exactly by

〈u〉 =

∫
dερe (ε), (4)

where ε is the solute-solvent pair interaction energy and serves as the coordi-

nate for the distribution functions in the ER method through Eq. 1. Roughly

speaking, the effect of the attractive part of the solute-solvent interaction is

taken into account by ρe and the effect of the repulsive part is by ρe
0 and χe

0.

For the Ile, Met, and Gln analog-solutes examined, our observation described

above indicates that the attractive-interaction effect depends rather weakly

on the solute intramolecular structure. The effect of the solute structure is

mainly carried by the repulsive-interaction part.

An improvement of the RISM-based approach may be possible through

combination with the molecular simulation. In the combined scheme, the

site-site radial distribution functions are calculated from molecular simula-

tion and are substituted into a RISM-based functional for the solvation free

energy. It should be noted that the radial distribution functions are exact

(within statistical error) under the used set of potential functions when they

are obtained from the molecular simulation, instead of the integral equa-

tion. The computational efficiency for the solvation free energy was then

seen to be achieved compared to the free-energy perturbation and thermo-

dynamic integration methods [29, 30]. The procedure suffers from numerical

instability of several tens of kcal/mol, however. The source of the numerical

trouble is the intramolecular correlation matrices in the range of small recip-
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rocal vector (large distance). When the reciprocal vector approaches zero,

the intramolecular correlation matrices become ill-conditioned and the direct

correlation function exhibits a long-range decay of Coulombic form [30, 49].

4. Conclusions

In the present work, we assessed the performance of end-point functionals

for the solvation free energy against a benchmark dataset for amino-acid

side-chain analogs in water. Among the functionals examined, the method

of energy representation (ER) and the partial-wave corrected (PWC) model

are the best and the second in terms of accuracy, respectively. The mean

absolute deviation (MAD) of (less than) ∼1 kcal/mol is achieved only with

these two methods. In addition to the speed compared to the exact free-

energy methods, the ER method is advantageous for its wide applicability;

the intramolecular flexibility and/or the system inhomogeneity is not the

limitation of the method [6, 32, 33]. The RISM-based schemes are more

restricted in this sense, although the computational efficiency is the highest.

With the informatics-based correction, the PWC model can further achieve

the accuracy.
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Amino acid Analog solute Experimentala) Bennettb) ERc) HNC GF RB PW PWC

Ala methane 1.9 2.2 1.9 13.2 4.3 -1.1 6.9 2.7

Val propane 2.0 2.3 2.8 25.9 5.4 -2.4 10.2 2.4

Leu iso-butane 2.3 2.3 3.2 33.6 4.3 1.1 10.1 1.4

Ile n-butane 2.2 2.4 3.0 33.2 5.1 -2.1 10.9 1.9

Phe toluene -0.8 -0.9 -0.1 33.0 1.7 -11.0 8.9 -2.0

Ser methanol -5.1 -4.5 -5.2 4.4 -6.9 -12.4 -0.9 -3.9

Thr ethanol -4.9 -4.2 -4.8 7.9 -9.1 -15.9 -2.0 -6.7

Tyr p-cresol -6.1 -5.5 -5.2 25.5 -9.0 -20.5 1.0 -8.3

Cys methanethiol -1.2 -0.6 -0.7 12.3 0.9 -5.5 5.2 -0.7

Met methyl ethyl sulfide -1.5 -0.4 -0.2 30.3 3.7 1.8 10.1 -0.6

Asn acetamide -9.7 -8.5 -9.2 7.4 -10.6 -18.3 -2.7 -8.6

Gln propionamide -9.4 -8.6 -9.2 13.3 -11.1 -19.2 -2.2 -9.7

Hidd) 4-methylimidazole -10.3 -8.9 -9.2 15.0 -9.7 -22.0 -1.0 -9.3

Hied) 4-methylimidazole -10.3 -9.1 -9.1 15.0 -9.7 -22.0 -1.0 -9.3

Trp 3-methylindole -5.9 -4.9 -4.2 36.6 -5.2 -19.4 5.2 -7.3

a) Taken from Ref. [34].

b) This column shows the exact values calculated using the Bennett acceptance ratio method in Ref. [2].

c) The standard error is 0.1 kcal/mol or less in the ER calculation of the solvation free energy.

d) Hid and Hie refer to the neutral, protonated states of His, in which the proton is attached to the δ and ε

nitrogens, respectively. See Ref. [2] for the details. The distinction of Hid and Hie is made only in the MD and

ER calculations (the columns of Bennett and ER). No distinction is made in the other cases, and the values for

Hid and Hie are identical in the columns of Experimental, HNC, GF, RB, PW, and PWC.

Table 1: Solvation free energy in water in the unit of kcal/mol.

Bennett ER HNC GF RB PW PWC

Experimental 0.7 0.7 24.2 2.3 7.9 7.7 1.0

Bennett — 0.5 23.5 2.3 8.4 7.0 0.9

Table 2: Mean absolute deviation (MAD) in the unit of kcal/mol.
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Figure 1: Solvation free energy ∆µ in the unit of kcal/mol. Shown are the experimental,

Bennett (computationally exact), and ER values.
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