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Abstract—A new online, unsupervised method for Voice Activity
Detection (VAD) is proposed. The conventional VAD methods often
rely on heuristics to adapt the decision threshold to the estimated
SNR. The proposed VAD method is based on the Variational Bayes
(VB) approach to the online Expectation Maximization (EM), so
that it can automatically adapt the decision level and the statistical
model at the same time. We consider two parallel classifiers, one for
the noise-only case, and the other for speech-and-noise case. Both
models are trained concurrently and online using the VB frame-
work. The VB framework also provides an explicit approximation
of the log evidence called free energy. It is used to assess the re-
liability of the classifier in an online fashion, and to decide which
model is more appropriate at a given time frame. Experimental
evaluations were conducted on the CENSREC-1-C database de-
signed for VAD evaluations. With the effect of the model compar-
ison, the proposed scheme outperforms the conventional VAD al-
gorithms, especially in the remote recording condition. It is also
shown to be more robust with respect to changes of the noise type.

Index Terms—, Sequential estimation, speech analysis, varia-
tional Bayes (VB), voice activity detection (VAD).

I. INTRODUCTION

V OICE activity detection (VAD) is a task of automatically
segmenting speech boundaries from audio signals, and is

important for many speech applications, such as speech coding
and automatic speech recognition (ASR) [1]. In noisy environ-
ments, it is often observed that the number of insertion errors
in the ASR system increases because of false detection of noise
segments as speech [2], thus a noise-robust VAD becomes cru-
cial for overall performance of ASR systems.

VAD has been recently tackled in a supervised training con-
text, where labeled training data are assumed to be available for
trainingclassifierssuchasGaussianmixturemodels(GMMs)[3],
linked hidden Markov models (HMMs) [4] and support vector
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machines (SVMs) [5]. However, assuming training data with la-
bels is not always practical, for example, when the acoustic con-
dition of the target environment is unknown or changes in time.
If the training data and testing data have significantly different
statistical characteristics, degradation of performance is gener-
ally observed. In this paper, we investigate an approach of un-
supervised, online classification, where no training data is as-
sumed to be available. Such classifiers often rely on a threshold
for the frame-level classification [6]. This threshold is adapted to
the noise level, which needs to be estimated separately. As noted
in [7], this adaptation depends on heuristics on the noise floor
estimation. The scheme of unsupervised classification based on
online expectation–maximization (EM) provides a solid frame-
work to the problem because it can automatically adapt the de-
cision level to the signal [8]. However, the underlying statistical
model is not flexible in a sense that it assumes that speech and
noise data are constantly available. The goal of this study is to
develop a more flexible statistical scheme which can adaptively
switch the model for the case where only noise data are available.
For this purpose, we introduce a reliability measure derived from
statistical model comparison.

In the proposed scheme, we assume a scalar feature is used.
Specifically in this paper, we adopt high-order statistics (HOS
[6], [9]) which will be explained in Section IV. Both speech and
noise distributions are assumed to follow a normal distribution
whose mean and variance change in time. In the case where both
speech and noisearepresent in the signal, the model is then equiv-
alent to a binary mixture of Gaussians, whose parameters are es-
timated in an online fashion. On the other hand, when only noise
is present in the signal, the problem is reduced to online estima-
tion of a normally distributed random variable. An example of the
distributions of the feature dealt within this framework is shown
in Fig. 1. Hence, an online model comparison is defined to distin-
guish between those two situations for VAD, and we propose to
use the Variational Bayes (VB) framework to solve the problem.
The VB framework [10] provides an explicit approximation of
the log-evidence called free energy, which can be used for model
comparison [11], [12]. Online extension of VB based on a sto-
chastic approximation [13] of the free energy [14] is used for on-
line model comparison, to take into account possible changes in
the acoustical environment. As the VB framework also provides
an explicit form of the posterior of model parameters, both pa-
rameter estimation and model comparison are conducted with the
same underlying statistical scheme. The proposed VAD method
is thus based on estimation of two models concurrently (one for
the speech-and-noise situation, and the other for the noise-only
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Fig. 1. Histogram of the feature used in this work: histogram for the speech-
plus-noise parts (top) and noise-only (bottom). The exact feature is described in
Section IV, and the dataset in Section V.

situation), which are assessed with the online free energy and se-
lectively used, for every time frame.

The organization of the paper is as follows. Online EM for
unsupervised classification as well as its limitations for VAD is
first presented in Section II. We review the VB-EM framework
for explicit optimization of the free energy for model compar-
ison in Section III. Its application to the VAD task is described
in Section IV, and the proposed VAD method is evaluated on the
CENSREC-1-C database in Section V, where it is compared to
conventional VAD methods and the online EM classifier without
the model comparison.

II. ONLINE EM FOR UNSUPERVISED CLASSIFICATION

When we try unsupervised classification without training
data, the classification often relies on a threshold adapted from
the noise floor. The threshold is estimated and updated from the
background noise level, and the frame-level speech/non-speech
classification is converted to speech boundaries using a hang-
over scheme. This is the most straightforward method for
unsupervised classification. As noted in [7], the noise floor is
often estimated using heuristics.

When we use a statistical framework instead, presence/ab-
sence of speech can be regarded as the realization of a binary
random variable , and the feature values as the realization of a
random variable (or vector for multidimensional features) . If
we assume each class to be normally distributed, the observa-
tion model is a GMM, and estimation can be tackled using the
EM algorithm [15] applied to latent models. As each iteration of
the EM algorithm requires the whole dataset, it cannot be used
for online classification where the observations come one after
the other. An online extension of the EM algorithm based on a
stochastic approximation has been proposed recently [16], [17],
and we applied it to VAD in [8]. In this section, we will briefly
review the principles of this online extension, as well as its lim-
itations when applied to VAD.

A. EM Algorithm

The maximum-likelihood estimation (MLE) is hard to com-
pute explicitly for latent models, and the EM algorithm is

a method to optimize the log-likelihood for a wide range of
models where the MLE is intractable. Given independent
and identically distributed (i.i.d.) observations ,
the log-likelihood of is defined as

(1)

The key principle of EM applied to the MLE framework is to
build an auxiliary function which is easier to maximize
than the observed log-likelihood , while its maximization
will give a reasonable estimate of the MLE applied directly to

. The standard EM algorithm defines the function as the ex-
pected log-likelihood of some complete data condition-

ally on the observations only, where are
latent variables

(2)

(3)

where is the parameter estimated at the iteration. Itera-
tively running (2) and (3) gives a sequence which con-
verges to a local maximum of the log-likelihood in general
settings [18]. In particular, if the complete data follow a
density in the (Natural) Exponential Family1 (EF, [19])

(4)

(5)

where is a function of of the same dimension as and is
sufficient statistic (SS) for , the scalar product, a func-
tion of , and another function of , then the computation of

is reduced to the conditional-expectation of under the
density :

(6)

(7)

where the terms which do not depend on have been omitted,
and is defined as the expected (or averaged) SS under
the parameter :

(8)

(9)

Noting the function

(10)

The EM algorithm [(2) and (3)] can then be succinctly written
as follows:

(11)

Practical implementations of the EM algorithm are possible
when can be optimized efficiently and explicitly, which is the
case for GMM and HMM with Gaussian mixture distributions.

1
� is also said to follow a density in the Exponential Hidden Family (EHF).
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B. Online EM

When the observation comes one after another, and the clas-
sification is needed after each observation, the EM algorithm
cannot be used as it is because each iteration of the E step (2)
needs all the data at once. Online extensions of the EM algo-
rithm have been studied, first to alleviate the relatively intensive
computational and memory cost, and later for online estimation
problems. A recent approach is based on recursively approxi-
mating itself, while keeping the M step essentially the same
[16], [17]. The online approximation of is based on the
following recursion:

(12)

where is a learning parameter. The M step is kept the same
as for the offline EM, that is is set as the maximum of

; each iteration of this procedure is repeated once for each
new observation (the iteration index and the sample index
are now the same). When the complete data follow a density
in the EF, the online update (12) can then be reduced to online
estimation of the averaged SS

(13)

(14)

This method can be considered as a stochastic approximation
of the expected log-likelihood [16], [17], [20]. The learning pa-
rameter must follow the usual conditions for the stochastic
approximation to converge [13]

(15)

(16)

(17)

The properties of the procedure defined by (13) and (14),
including theoretical considerations on convergence can be
found in [20]. In particular, it is proved that the series
defined by (13) and (14) converges to a stationary point of the
Kullback–Leibler divergence between the observation density
and the model density under some technical assumptions.
Since only depends on the observation at time , this
procedure defines a practical online estimation when both and

can be computed explicitly and efficiently. In this case, the
practical implementation can be derived from the conventional,
batch EM implementation [20].

In the case of a Gaussian mixture, in which , and
represent the component weight, mean and precision for

component , the online-EM procedure becomes

(18)

Fig. 2. Example of online-EM applied to a one dimension feature extracted
from input signals. Means (top), standard deviations (middle) and weights
(bottom) estimated with the online EM are displayed. The dashed line corre-
sponds to speech, and the solid line to noise.

where is the responsibility for sample

(19)

and their functional form is exactly the same as in the conven-
tional EM, thus the parameters are updated as follows:

(20)
The exact derivation of (18) and (20) is reviewed in Appendix A.

C. Application to Voice Activity Detection and Limitations

Online EM is used for concurrent noise/speech level estima-
tion as follows. Each class (speech and noise) is assumed to be
normally distributed, and the observed model is thus a binary
mixture of Gaussian distributions, where one class
corresponds to noise and the other to speech. Online
EM gives a new set of estimated parameters for each frame, and
as such the decision level is defined as

(21)

which is automatically adapted on a per-frame basis. Although
the assumption of Gaussianity for each class is simple, the
scheme allows for the actual distribution of each class to be
more complex over a long time period, since its parameters are
allowed to change over time. This is shown in Fig. 2, where the
online EM procedure is applied on a one-dimensional feature,
which is described in Section IV-A.

This method was shown to give reasonable results in [8], but
suffers from some inherent limitations. First, at the beginning of
the signal, because there is only noise or speech, the training of
the Bayesian classifier is unreliable. This
can be observed in Fig. 2. For the first few seconds, because no
speech frame is available, the means of the binary mixture are
close to each other. Once some speech frames were input to the
online EM, the corresponding classifier can be used effectively
(after five seconds in Fig. 2). This problem can be somewhat alle-
viatedbyusingsomeheuristics (asused inmanyworks, assuming
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that the first seconds of the signal are noise-only), but we present
a more theoretically sound solution. Moreover, when there is no
speech for a long time, the means of the mixture components will
become close to each other, and as such, the classifier will also
be unreliable. Both problems are related to the fact that, when the
Gaussian distributions of the mixture are mostly overlapping, the
mixture doesnot properly represent two-class model as designed.
In this paper, we use model comparison to detect the cases where
the estimated model does not represent a two-class model.

III. FREE ENERGY MAXIMIZATION IN THE VARIATIONAL

BAYES APPROACH

The statistical model used in Section II can be seen as a bi-
nary mixture, whose state changes in time. To solve the problem
mentioned above, we propose to use the Bayesian framework
for inference, in particular for model comparison; it is used to
compare whether the data are better explained by a model with
one or two components in our application to VAD. This section
reviews the principles of Bayesian model comparison, and the
Variational Bayes (VB [10], [21]) framework to make the com-
putation tractable.

A. Using Bayesian Inference for Model Comparison

Bayesian inference assumes parameters to be random vari-
ables, and Bayesian estimators are based on posterior proba-
bilities.2 Since models themselves can be seen as parameters,
they can also be inferred using the observations (see for ex-
ample chapter 28 in [11]). For a given Gaussian mixture model

with components, the joint probability density function
(pdf) for the observations , the latent data , and the parame-
ters is given by the pdf . Bayesian estimators are
then based on the posterior

(22)

(23)

where is a prior of the parameters given the model .
As the model itself is also a random variable, a model poste-
rior can be computed as well

(24)

(25)

The marginalized likelihood , also called the evidence,
is obtained by marginalizing over both the parameters and the
latent variables

(26)

Thus, one of the advantages of Bayesian inference is that a
second level of inference is possible [11], namely, once a prior

2We note ������ instead of ���� ��; we keep the notation ���� �� when � is
not considered random.

on the model is given, scoring different models can be
done using the evidence [(26)] through (25) [11], [22], [23]. By
computing the integral (26) for different models , these
models can be compared. For example, assuming a flat prior on

, the model posterior defined in (25) is pro-
portional to the evidence . However, the integrals are in-
tractable for latent models; hence, approximation schemes are
needed. The VB framework provides a solution, and is based on
making some assumptions on the integrand of (26). The log-ev-
idence [(26)] is then approximated by a functional called Free
Energy, which provides an explicit measure for model compar-
ison. For a large class of models, it can be shown that the free
energy and the Bayesian information criterion (BIC) converge
to the same value in the limit of large samples ([24], Chapter 2).
But unlike the BIC, model comparison with free energy is not
based on a large number of samples hypothesis, and it can be
naturally extended to the online case.

B. Free Energy for Model Comparison

The VB provides a tractable lower bound of the marginalized
log-likelihood by restricting the possible functional forms of the
posterior. For any function over the hidden data and
parameters , the Kullback–Leibler divergence between and
the true posterior can be computed as follows:

(27)

where the free energy is a functional,3 and is defined as

(28)

and the inequality (27) is by definition of the Kullback–Leibler
divergence, and a consequence of the Jensen inequality applied
to the concave function ln. Inequality (27) shows that is a
lower bound of the marginalized log-likelihood for any . Thus,
maximizing the negative free energy with respect to the
approximate distributions will give an approximation of the
marginalized log-likelihood. As Bayesian model comparison is
based on evaluating for different models, if is tight
enough, it may be used in place of the marginalized log-likeli-
hood.

C. VB-EM

The negative free energy cannot be explicitly maxi-
mized as it is; the VB method is based on restricting the possible
functional forms of to factorized forms .4

is then minimized with respect to and , using the tools

3We note � ��� for functionals, where the argument � is a function, and � ���
for functions of a variable �.

4Hereafter, the model parameter � will be implied and dropped from the
density parameters.



COURNAPEAU et al.: ONLINE UNSUPERVISED CLASSIFICATION WITH MODEL COMPARISON IN THE VB FRAMEWORK FOR VAD 1075

of calculus of variations. Minimization of is then reduced to
a set of two coupled equations, similar to the EM algorithm [10]

(29)

(30)

As the equations are coupled, the optimization has to be done
iteratively, from initial values for both and . One can note
that (30) is similar to the M step for EM applied to the MLE
framework, except that is assumed random; more accurately,
the right side is exactly the optimized quantity with respect to
(w.r.t.) in the maximum a posteriori (MAP) context, where

is replaced by the usual responsibilities. Thus, the main dif-
ference compared to the simple MAP extension of EM is (29),
which considers the posterior on as well, whereas the tradi-
tional MAP only considers a prior on . In the EM algorithm
applied to MAP, the M step gives a point estimate [10]
(that is, MAP is not concerned with an explicit posterior over ).

For practical computation, the VB method is usually re-
stricted to densities within the Exponential Hidden Family
(EHF), as in Section II, that is will be given by (5). In
a Bayesian context, the EHF also has the advantage to always
have at least one prior conjugate to the likelihood, that is the re-
sulting posterior has the same functional form as the prior [19]

(31)

where are the prior’s hyper-parameters. The vector
has the same dimension as and is interpreted as a prior value
on the parameter . The hyper-parameter is a scalar, and can
be interpreted as the pseudo count of the prior, e.g., for ob-
servations, a ratio will be representative of
a weak prior. The normalization constant can be de-
rived by integration

(32)

The main advantage of considering EHF models is the conser-
vation of the conjugacy property; at the end of each iteration ,
the posterior is conjugate to the prior [10]. One iteration
of the VB-EM procedure applied to the EHF can be written as
follows [10]:

(33)

(34)

(35)

where we note

(36)

(37)

(38)

(39)

(40)

Because itself is in the EF, which is the first moment of
under can be derived from the normalization factor of the

posterior considered as a function of the hyper-parameters

(41)

A comparison of (33)–(35) with the standard equations for the
EM for MLE [(8), (9) and (11)] highlights the main differences
between both procedures. The functional form of the averaged
sufficient statistics is exactly the same, but it is computed for
an average parameter in the VB-EM procedure. The pos-
terior update is replaced by hyper-parameters updates. As our
main motivation for using the VB-EM framework is model com-
parison, the free energy also needs to be estimated. The free en-
ergy is a function of the averaged SS and both prior and posterior
hyper-parameters, and thus can be estimated from the quantities
computed in (38)–(40). The exact formulation in the case of a
mixture of Gaussians is reviewed in Appendix B.

From an implementation point of view, the computation of
is the main additional cost of the VB-EM procedure when

applied to GMM, as the hyper-parameter updates in the M step
are similar to the M step of the conventional EM algorithm.
For a GMM of components of dimension , computing
involves evaluation of points of the digamma
function and the determinant of matrices of dimension .

A preliminary application of the VB framework to VAD
was presented in [25], where we applied the free energy in a
mini-batch manner to detect speech-and-noise (two Gaussians)
against noise-only situations (one Gaussian). Although it gave
promising improvements compared to the conventional online
EM algorithm, the mini-batch application of the free energy
is ad-hoc. Detecting speech-and-noise against noise-only sit-
uation on a frame-per-frame basis, using the same underlying
models for both detection and classification would be more
appropriate. The next section presents online extensions of the
VB framework in that regard.

D. Online Extension

As in the conventional MLE, the VB-EM procedure requires
all the data to be available at once. Several online extensions
have been studied [10], [14]. A direct online update of the poste-
rior as in [10] has been found ineffective to track acoustical envi-
ronmental changes when applied to VAD. Our proposed method
for VAD is instead based on a stochastic approximation of the
free energy [14].

1) Variational Bayes as Parametrized Free Energy Optimiza-
tion: The online derivation of VB-EM is similar to the on-
line extensions of the standard EM algorithm as reviewed in
Section II-B. Online EM in the MLE framework was a sto-
chastic approximation to estimate the maximum of the expected
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log-likelihood. To practically derive the online extension as a
stochastic approximation, the VB-EM procedure may be ex-
pressed in a form similar to (11), that is as the optimization of a
function with respect to a set of parameters. As noted in [23] and
explicitly conducted in [14], the VB-EM version of (33)–(35)
can be derived directly from the optimization of a parametrized
free energy, noted , with respect to the hyper-parameters (re-
viewed in Appendix C).

In this form, the VB-EM procedure is similar to the conven-
tional EM algorithm, where plays the same role as , and
the hyper-parameters play the same role as . The rela-
tionship with the EM algorithm is clear when the VB-EM pro-
cedure [(33)–(35)] is succinctly written as

(42)

(43)

(44)

where is a function which depends only on the
hyper-parameters of the prior; the functional form is entirely
determined by . Both and functional forms are kept
the same between iterations of the VB-EM procedure.

As the VB-EM procedure [(42)–(44)] is equivalent to the
minimization of w.r.t. hyper-parameters, an online deriva-
tion becomes similar to online EM [(14)]: making a stochastic
approximation to minimize as a function of the hyper-pa-
rameters, and defining online hyper-parameter updates as the
minimization of at every frame, similarly to how online EM
was described in Section II-B. This is the approach developed
in [14].

2) Online VB-EM: The online extension of the VB method
is thus in principle similar to the online extension of EM applied
to the MLE. is recursively approximated by as was
by

(45)

and the estimated hyper-parameters and are defined as
the values which minimize . Thus, the online procedure for
VB-EM can be written as follows:

(46)

(47)

(48)

Those online updates of hyper-parameters can be used to com-
pute , which can be used as an online model comparison
measure [14]. For online VB-EM, a practical implementation
of the stochastic approximation requires an explicit relation-
ship between the updated hyper-parameters (corresponding to

Fig. 3. Online VB-EM procedure applied on high SNR speech data. The
bottom axis is the relative order between � and � : if positive, � � � , and
� � � otherwise. The sampled model state is changed at sample 50 and 100.

the parameters in the case of online EM) and the averaged suffi-
cient statistics, that is as defined in (44) must be made explicit.

3) Application to Mixture of Gaussians: For GMM, the sto-
chastic approximation of the averaged SS is exactly the same as
that for online EM [(65)]:

(49)

with defined by (46). The definition of for GMM is given in
Appendix B. This justifies a posteriori the derivation of VB-EM
for the EHF, instead of directly deriving the equations for GMM
from (29) and (30) in Section III, by making the relationship be-
tween and the updated hyper-parameters explicit.
Our implementation of the VB procedure follows (42)–(44);
thus, the online extension implementation [(46)–(48)] follows
directly.

4) Example: An example of this procedure is shown in Fig. 3,
where we sample data from an artificial binary mixture (sample
displayed on the second bottom plot). The first 50 samples are
sampled from a well separated mixture, then almost overlap-
ping from sample 50 to 100, and then back to the first state
starting at sample 100. The weights, means and variances are
updated online. We ran VB-EM for both models with one and
two components, and evaluated the online free energy in each
case; the bottom axis shows value 1 when and 1
when . It is observed that the online free energy can
track model changes, at least on this simple example. The in-
fluence of the learning parameter is also observed, as there is
a latency between the change of the sampling model (at frame
50 and 100) and the estimated online free energy. The learning
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parameter is necessary to gradually forget the old input data
in the online VB-EM procedure.

IV. APPLICATION TO VOICE ACTIVITY DETECTION

In this section, we describe details on the feature and the clas-
sifier used in our VAD method.

A. Enhanced Kurtosis as a Feature for VAD

As an effective scalar feature for VAD, which is modeled as a
bimodal Gaussian distribution in the speech-and-noise situation,
we have investigated the kurtosis and other cumulants of the
linear prediction coding (LPC) residual [6], [9]. The kurtosis is
defined as

(50)

where and are the mean and variances of . The kurtosis
is robust against Gaussian noise ( for normally dis-
tributed ), and it has also been observed that using cumulants
alone may not work for cases such as transient noises, as those
noises are characterized by high energy over a short period of
time, and the estimated kurtosis has a high value. To alleviate
this problem, we have proposed in [8] to combine the kurtosis
with a feature which is robust against transient noises and does
not affect the desired properties of the kurtosis for speech sig-
nals and Gaussian-like noises. Specifically, we use the normal-
ized autocorrelation, defined as below for a frame of samples

:

(51)

The normalized autocorrelation has strong peaks for speech sig-
nals, which are robust against transient noises. We use the am-
plitude of the highest peak noted as a feature

(52)

where we disregard the initial peak of the self-correlation. Then,
the feature is combined with the kurtosis to obtain the enhanced
kurtosis

(53)

The enhanced kurtosis is shown in Fig. 4, where the signal is an
extract of the CENSREC-1-C dataset. One can observe that the
enhanced kurtosis is more robust against transient noises com-
pared to the kurtosis in the first five seconds (corresponding to
walking steps in the background). One can also confirm that
the desired behavior of the kurtosis for speech segments is not
significantly altered by the combination with the normalized
autocorrelation peak. The enhanced kurtosis is computed over
overlapping windows of 256 samples at 8 kHz (32 ms) with an
overlap of 50% (16 ms).

B. Online VB-EM-Based Classifier

For the VAD based on online EM (Section II), we make an as-
sumption that each class (speech and noise) is locally distributed

Fig. 4. Sample of speech from CENSREC-1 (high SNR). Spectrogram (top),
energy (second), log-kurtosis (third) and proposed feature (fourth). This is the
same signal used as in Fig. 1.

as Gaussian random variables. Instead of always assuming a
model where “speech-and-noise” follow a bimodal distribution,
we also estimate an additional model where only noise is as-
sumed to be present. Both models are estimated with the same
input data, using online VB-EM described in the previous sec-
tion. At each frame, the online free energy of each model is com-
pared, and the model with the highest free energy is used for
classification. Thus, we design and implement a VAD method
where both model comparison and classifier parameters are es-
timated online with the online VB-EM procedure. The overall
scheme is depicted in Fig. 5, and summarized as follows.

1) The feature is computed frame per frame.
2) We conduct two online VB-EM in parallel, one with one

component to model the situation “noise-only,” and the
other with two components, to model the situation “speech-
and-noise.” Both are updated frame per frame.

3) Compare the two models:
a) , we set the classifier to the “speech-and-

noise” mode.
b) When , we set the classifier to the “noise-

only” mode.
4) When the classifier is in the “speech-and-noise” mode,

we apply the conventional Bayesian classifier with two
classes, each modeled with a Gaussian, to the corre-
sponding frame. The parameters of the Bayesian classifier
are updated frame-by-frame through the VB-EM proce-
dure corresponding to two Gaussians, considering all the
data seen so far, with more weight on recent data through
the learning parameter .

5) When the classifier is in “noise-only” mode, the signal is
judged as noise only.

Both classifier parameters and classifier reliability are estimated
from the same underlying statistical model. Although having
several modes for the classifier has already been proposed for
VAD, for example in [6], our proposed method uses the online
free energy as a criterion for switching the modes instead of
some heuristics.
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Fig. 5. Proposed scheme based on online VB-EM.

C. Practical Considerations

The VB-EM procedure requires initial values for the poste-
rior, as well as prior hyper-parameter values.

• The posterior hyper-parameters are initialized using a con-
ventional k-means method, as often used in conventional
EM methods. The first two seconds of the signals are used
as input data for the k-means procedure.

• We used a weak prior , identically set for each
component. In this setting, it was observed that the hyper-
parameter values did not have significant influence on the
results.

After the initialization, the latency of the classification is one
frame. It was also observed that not updating at the beginning
of the online procedure led to a more stable behavior. In our
implementation, the value of is kept unchanged for the first
60 frames, i.e., approximately one second. The implemented
method uses a learning rate suggested in [14]

(54)

with defined as

(55)

As discussed in [14] (Section III-C), controls the learning
speed in the early stage, and controls the effective decreasing
mode in the later stage. The value for the learning parameter
was found to be more sensitive to the value . Small values
imply that old data are forgotten more quickly in the online pro-
cedure, and may prevent a stable behavior. In our implementa-
tion, was set to 100 and to 0.01 (as in [14]).

Compared to online EM, the main additional cost of the on-
line VB-EM procedure is the computation of , which
needs to be done at every frame in real time. However, the cost
is not prohibitive since online VB-EM is applied to very simple
models in our case. In our current implementation which was
mostly done with the Python interpreted language and not care-
fully optimized, the whole VAD process takes a real time factor
(RTF) equal to 0.03.5

V. EVALUATION

For the evaluation purpose, we use the CENSREC-1-C
database [26], a Japanese dataset specifically designed for VAD
evaluations. This database consists of noisy contiguous digit
utterances in Japanese. The audio signals were recorded in two

5Comparable or not slower than the Sohn’s method used for evaluation in the
next section.

kinds of noisy environments (street and restaurant), in both
low and high SNR conditions. For each of these conditions,
close recordings (where the speakers were using a headset
microphone) and remote recordings (where the speakers were
approximately 50 cm away from the microphone) are available
[26]. The speech signals were recorded with natural noise, i.e.,
noises were not artificially mixed. In the case of restaurant
noise, low-SNR data were recorded in crowded situations,
whereas high-SNR data were recorded in less busy hours. In the
case of street noise, low-SNR data were recorded near an actual
highway, whereas high-SNR data were recorded further away.
For each recording situation (remote versus close recordings),
approximately two hours of data are available. Each (noise
type, noise level) combination makes data of approximately 30
minutes.

The results are measured by two kinds of error rates: false
alarm rate (FAR: ratio of noise frames detected as speech di-
vided by the number of noise frames) and false rejection rate
(FRR: ratio of speech frames detected as noise divided by the
number of speech frames).

To evaluate the effectiveness of the proposed method, we
compare it against other published methods for VAD:

1) The first method corresponds to the method in [8]: it uses
the same enhanced feature, and online VB-EM for classifi-
cation without model comparison,6 i.e., only one model is
estimated. It is equivalent to the proposed method except
that it assumes that the model with two components is al-
ways selected. It is used to confirm whether the proposed
model comparison scheme actually improves the classifi-
cation performance.

2) The second method is the one proposed by Sohn et al. [27],
[28]. This method is based on modeling silence/speech
state transitions using an HMM, with a noise model esti-
mated on the first frames of the signal, which are assumed
to be noise only. The features are frequency-band energies
(the underlying statistical model for the speech-and-noise
feature is similar to the one proposed in [29]).

A. Evaluation on Close Recordings

We first compare the results in Table I for the close recording
data. For each method, the threshold was set so as to get roughly
equal error rates FAR FRR on the whole data set (all SNRs
and noise types). Compared with online VB-EM without model
comparison, an overall improvement is observed with the pro-
posed method: both FAR and FRR are reduced to a more than
half. It was observed that online model comparison helps at the

6The method in [8] is based on online EM instead of online VB-EM. We
preliminary confirmed that both online EM and online VB-EM without model
comparison performed comparatively.
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TABLE I
RESULTS OF THE ONLINE VB-EM WITH MODEL COMPARISON VAD ON

THE Close DATASET, COMPARED TO THE SOHN VAD AND ONLINE VB-EM
WITHOUT MODEL COMPARISON, BY SNR LEVELS

TABLE II
RESULTS OF THE ONLINE VB-EM WITH MODEL COMPARISON VAD ON THE

Close DATASET, COMPARED TO THE SOHN VAD, BY NOISE TYPE

TABLE III
RESULTS OF THE ONLINE VB-EM WITH MODEL COMPARISON VAD ON THE

Remote DATASET, COMPARED TO THE SOHN VAD, AND ONLINE VB-EM
WITHOUT MODEL COMPARISON, BY SNR TYPE

beginning of each file, when no speech data are available. It pre-
vents spurious detection of speech if only noise data are avail-
able, but without requiring the usually made assumption that
only noise is input at first.

We display in Table II the comparison by the noise type
(restaurant and street combining low and high SNRs). Both
proposed method and the Sohn VAD show comparable results,
but the proposed method performs more consistently across
different conditions (in particular FAR for restaurant noise
versus street noise).

B. Evaluation on Remote Recordings

Next, we tested on the remote recording data. The results are
first given in terms of low and high SNRs in Table III, and in
terms of restaurant and street noise in Table IV. The tendency
in the close recordings is observed in the remote recordings as
well, and the proposed method significantly outperforms the
Sohn VAD. In particular, the sensitivity to the noise type is more
significant for the Sohn VAD, whereas the proposed method is
more consistent against different noise conditions.

TABLE IV
RESULTS OF THE PROPOSED VAD ON THE Remote DATASET, COMPARED

TO THE STATISTICAL VAD, BY NOISE TYPE

Fig. 6. ROC curves of the proposed method (solid line) against the Sohn VAD
(dashed line). The plain circle represents the operating point corresponding to
overall equal error rates.

This behavior is confirmed on receiver operating character-
istic (ROC) curves displayed in Fig. 6. It is observed that the
performance of the proposed method is consistently better than
that of the Sohn VAD in all conditions, except for the high-SNR
street-noise case, where both methods are comparable. It is also
shown that the operating point corresponding to the equal error
rates, displayed by a plain circle, is consistent for the four cases
in the proposed method, suggesting robustness of the method.

VI. CONCLUSION

An enhanced scheme to online, unsupervised VAD based
on online VB-EM is proposed. It considers two parallel statis-
tical models for classification, one for noise-only and the other
for speech-and-noise. Both models are estimated in an online
manner. The online free energy, an online approximation of the
log-evidence in the VB framework, is used to assess the classi-
fier’s reliability, and to decide which model to be used at a given
time frame. The decision level is adapted automatically from
the data, without the need for an a priori knowledge of the noise
level. Thus, we can avoid some heuristics and complexity made
in conventional VAD methods in an unsupervised context. The
performance of the proposed method has been evaluated on the
CENSREC-1-Cdatabase,and theproposedmethodimproved the
standard online EM and outperformed the other VAD methods.
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APPENDIX I
ONLINE EM FOR MIXTURE OF GAUSSIANS

For the particular case of a mixture of Gaussians, the la-
tent data may be defined as a discrete random variable such
as is the probability for the observation to be
in component . Noting the weights,

the means, and the precisions (in-
verse of variance) of the normal components, the complete data
model is defined as

(56)

where is the Kronecker delta, and the normal
density of mean and precision matrix

(57)

where is the dimension of the random variable , is the
determinant of a square matrix, and the transpose of vector

. Rewriting the complete data model to follow a form similar
to (5)

(58)

From (58), noting , with defined as

(59)

and the corresponding sufficient statistics ,
with defined as follows:

(60)

we obtain a parametrization of a GMM as a EHF defined in (5).
The derivation of the conventional EM and online EM follows
this parametrization. Noting the responsibilities:

(61)

the per-component averaged SS for a GMM are

(62)
Following the convention of (8), we note

(63)

The usual update equations for M-step [(11)] applied to a GMM
may be written as follows for iteration :

(64)

Eq. (64) gives an explicit formulation for the function defined
in (10), and the averaged SS can be computed from (62). The
online EM update equations for the GMM follow directly. For
a GMM, (14) becomes

(65)

and the online estimation of the parameters is derived from (64)
by replacing the averaged SS with the approximated SS as
defined by (65)

(66)

In summary, the online EM equations for the GMM can be
retrieved from the conventional EM formulas once they are
written in the form of (14). The approximated SS [(65)] can
be derived directly from the conventional averaged SS used
for the batch EM [(62)], and the online estimates of the GMM
parameters are obtained from replacing the averaged SS by
the approximated SS in the M step [20].

APPENDIX II
ONLINE VB-EM FOR MIXTURE OF GAUSSIANS

For a mixture of Gaussians, a conjugate prior is the product
of a Dirichlet prior on the weights and Normal–Wishart priors
on the mean and precision for each component. The
prior is written as follows:

(67)

where we keep the conventions of Appendix I, i.e.,
, and similar notations for , ,

and . , , and are strictly positive scalars, a
vector of dimension , and is a positive definite matrix of
dimension . The Dirichlet prior is defined as

(68)
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Fig. 7. Graphical model representing the Bayesian mixture of Gaussians
model. Square nodes correspond to deterministic variables (hyper-parameters),
circles are random variables and dashed nodes are the observed values.

with the Gamma function. The Normal–Wishart is de-
fined as

(69)

with the Wishart defined as [23]

(70)

The model is summarized in Fig. 7.
The prior can be rewritten in the same form as (31) with

the following parametrization [14]:

(71)

Those equations define the natural parametrization for the
conjugate prior hyper-parameters, as for one component, (31)
becomes

(72)

where we dropped the component index for notational pur-
pose. This gives the explicit formulas for the M step through
(39) and (40), since the posterior has the same form as the prior.
The expression for is exactly the same as for the con-
ventional EM algorithm in the MLE framework [(63)], but pa-
rametrized by the averaged parameters . For mixtures of
Gaussians, noting , , , , and the hyper-parame-
ters of the posterior after the iteration, the explicit form of

is found from the responsibilities [23], [30]

(73)

where

(74)

and is the digamma function. Equation (73) and
(74) give the explicit formulas for the E-step of the VB-EM
procedure. Equation (71) with (39) and (40) gives the explicit
formulas for the M-step

(75)

where

(76)

APPENDIX III
VARIATIONAL BAYES AS PARAMETRIZED FREE

ENERGY OPTIMIZATION

We note and the parametrized posterior
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where is the responsibilities under parameters and
has the same functional form as the prior , (31). and

are by definition equal to and at the end of the E step

and M step iteration respectively, when , ,
and . The parametrized free energy is then
defined as the free energy [(28)] with replaced by

(77)

Whereas the free energy was a functional of argument ,
the parametrized free energy is a function of parameters

. This parametrized free energy can be rewritten as
follows:

(78)

The derivation of w.r.t. each of its arguments can be done
explicitly [14]. Ignoring the terms which do not depend on

(79)

and using the following property of the score function for EF

(80)

one obtains [14]

(81)

Similarly, ignoring the terms which do not depend on
in (78)

(82)

where we note

(83)

and we used (41)

(84)

Hence, one obtains [14]

(85)

and

(86)

The derivation of w.r.t. each argument can be succinctly
written as

(87)

(88)

where is the Hessian of

(89)

Thus, the VB-EM version of (33)–(35) are derived from the sta-
tionary points of [14]. Maximizing w.r.t. each of its ar-
guments is equivalent to the VB-EM procedure for complete
data models in the EF. The E-step is derived from (87) and the
M-step is derived from (88). If the E-step is in-
corporated in the parametrized free energy, this can be rewritten
as [14]

(90)
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