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Abstract

We study the dual descriptions recently discovered for the Seiberg-Witten theory in the presence

of surface operators. The Nekrasov partition function for a four-dimensional N = 2 gauge

theory with a surface operator is believed equal to the wave-function of the corresponding

integrable system, or the Hitchin system, and is identified with the conformal block with a

degenerate field via the AGT relation. We verify the conjecture by showing that the null state

condition leads to the Schrödinger equations of the integrable systems. Furthermore, we show

that the deformed prepotential emerging from the period integrals of the principal function

corresponds to monodromy operation of the conformal block. We also give the instanton

partition functions for the asymptotically free SU(2) gauge theories in the presence of the

surface operator via the AGT relation. We find that these partition functions involve the

counting of two- and four-dimensional instantons.
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1 Introduction

TheN = 2 supersymmetric gauge theories provide us an interesting framework where symmetry

constrains non-perturbative dynamics and is powerful enough to lead to exact result of the

low energy effective action [1, 2]. It has been known that this exact solution possesses an

interpretation in terms of integrable systems [3, 4, 5, 6, 7, 8, 9]. The Seiberg-Witten curve of

an N = 2 supersymmetric gauge theory is identified with the spectral curve of the integrable

system. The low energy prepotential of gauge theory can therefore be obtained by the period

integrals of the meromorphic one form on the spectral curve.

This interpretation was further sophisticated recently by [10] to the relation between the

prepotential with a nonzero deformation parameter, which Nekrasov’s partition function [11]

gives, and quantization of the integrable system. The nonzero deformation parameter plays the

role of the Planck constant for the quantum integrable system. See also [12, 13, 14]. It was

also proposed that the above deformed prepotential can be obtained by the similar procedure

to Seiberg-Witten theory, i.e. period integrals, where the meromorphic one form is changed to

the quantum corrected one [15]. The exact WKB solution for the Schrödinger equation of the

integrable model gives this quantum one form. This was further studied in [16, 17, 18].

Meanwhile, a new insight has been added to N = 2 gauge theories. In [19], it was found

that the compactification of the six-dimensional (2,0) AN−1 theory on a Riemann surface leads

to a colossal class of N = 2 superconformal SU(N) quiver gauge theories. The Seiberg-Witten

curve for a theory in this class is realized as a N -tuple cover of this Riemann surface. Then,

a remarkable relation between the Nekrasov partition function [11] of N = 2 superconformal

SU(2) gauge theory and the conformal block of two-dimensional Liouville field theory was

proposed by Alday, Gaiotto and Tachikawa [20]. (We refer to this as AGT relation.) This

conjecture was generalized to the relation between the asymptotically free SU(2) gauge theories

and irregular conformal blocks [21, 22], and also to the higher rank case [23, 24].

The AGT relation is very useful to analyze various observables in gauge theories. In partic-

ular, the partition function in the presence of a surface operator is identified with the conformal

block with an additional insertion of the degenerate field in the Liouville theory [25]. It was

also conjectured that the Wilson and t’ Hooft loop operators correspond to the monodromy

operations for the degenerate field inserted conformal block along some cycles of the Riemann

surface [25, 26]. (See also [27, 28, 29].)

In this paper, we relate the quantization of the integrable system with the insertions of

the surface and the Wilson-t’ Hooft loop operators in the gauge theory partition function,

concentrating on the Liouville and SU(2) gauge theories. It is well-known that a conformal

block with degenerate fields satisfies a differential equation [30]. For the degenerate field Φ2,1(z)
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with momentum − b
2
(or Φ1,2(z) with − 1

2b
) which is the case we will consider in this paper, the

differential equation is quadratic since the null state condition is also quadratic in the Virasoro

generators ((L−1)
2 + b2L−2)Φ2,1(z) = 0. By taking the limit where one deformation parameter

goes to zero, we interpret the reduced differential equation as the Schrödinger equation of

the associated integrable system. The Hamiltonian of the system can therefore be read off

from the Liouville theory consideration. We confirm that the Hamiltonian obtained from the

torus conformal block which corresponds to the N = 2∗ gauge theory is that of the elliptic

Calogero-Moser system. We also consider degenerate field insertion in the conformal block

corresponding to the SU(2) gauge theory with four flavors, and in the irregular conformal

blocks corresponding to asymptotically free theories. These cases also support the conjecture

that a Schrödinger system is associated with a gauge theory.

Based on these observations, we find that the proposal in [15] that the deformed prepotential

would be obtained from the solution of the Schrödinger equation is equivalent to expected

monodromies of the conformal block with the degenerate field inserted. The A- and B-cycle

monodromies are expected to be the phase shift by the expectation value of vector multiplet

scalar a and the shift of the vev a as a → a + ϵ2 respectively. We will see that assuming the

proposal [15] leads to the monodromy conditions stated above. Conversely, the monodromy

conditions verify the proposal. While we see this correspondence at lower orders in the Planck

constant (deformation parameter), we expect that this relation is valid even at higher orders.

We study the details of the irregular Virasoro conformal blocks with the degenerate field

which are expected to be equal to the Nekrasov partition functions for SU(2) asymptotically

free theories in the presence of a surface operator. By expanding it in the Verma module,

we obtain the Nekrasov-like partition function which has two expansion parameters Λ and z.

We can recast it into the expansion in terms of the four-dimensional instanton factor Λ4 and

two-dimensional one Λ2z. The irregular Virasoro conformal block with the degenerate field

therefore describes the two- and four-dimensional instanton counting for the surface operator.

This result supports our expectation that the insertion of the degenerate field leads to the

Nekrasov instanton partition function in the presence of a surface operator for superconformal

theories, and also for asymptotically free theories.

The organization of this paper is as follows. In section 2, we consider the proposal in [15]

which relates the quantization of the integrable system with the deformation of the prepotential

of the gauge theory. We will analyze N = 2∗ gauge theory and SU(2) gauge theory with four

flavors as examples. In section 3, we show that the null state condition for the (irregular)

conformal blocks in the presence of the degenerate field implies the Schrödinger equations for

the associated integrable systems. We also see the equivalence between the proposal stated
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in section 2 and monodromy operation of the conformal block with the degenerate field. In

section 4, we study the structure of the irregular Virasoro conformal blocks with the degenerate

field in the perspective of the instanton counting. We conclude with discussions in section 5.

In appendix A, we briefly review the Nekrasov partition function. In appendix B, the explicit

calculation of the energy eigenvalue in section 2 will be presented. In appendix C, we consider

the action of the degenerate field on the Verma module.

While preparing this paper, [31, 32, 33] which have some overlap with this paper appeared.

2 Quantum Integrable Systems

It is already known that the Seiberg-Witten solutions for an N = 2 gauge theory is described by

a classical integrable system. The family of the Seiberg-Witten curves is realized as the family

of the energy-levels of the Hamiltonian for the system. Then quantum integrable systems can

be associated with some extension of the Seiberg-Witten theory, such as Nekrasov’s theory of

instanton counting. It was conjectured in [10] that “ϵ deformation” of the prepotential, which

defined by

F(ϵ1) = lim
ϵ2→0

(−ϵ1ϵ2)ZNek, (2.1)

where ZNek is the Nekrasov partition function [11], are related to the quantization of the inte-

grable system (see appendix A for a review of the Nekrasov partition function). In [15] it was

proposed that the deformed prepotential can also be obtained by considering the Schrödinger

equation of the system.

In this section we will see that this proposal works by evaluating the deformed prepotential

from several integrable models. First of all, let us briefly see the proposal. We consider the

Schrödinger equation of a model

HΨ(0)(z) = EΨ(0)(z), (2.2)

where Hamiltonian is H = −ϵ21∂2z +V (z; ϵ1). The meaning of the subscript of the wave-function

will be clear in next section. (In a few examples below, the right hand side would be further

multiplied by a z-dependent factor. However, this will not affect the generic analysis below.)

We then write the wave-function in terms of a one form P (z)dz

Ψ(0)(z) = exp

(
− 1

ϵ1

∫ z

P (z′; ϵ1)dz
′
)
. (2.3)

This is just the exact WKB ansatz, since the one form is expanded in a power series of the

Planck constant ϵ1. The claim [15] is that the integrals of the one form over the A- and B-cycles
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can be written as

2πiâi(E; ϵ1)=

∮
Ai

P (z; ϵ1)dz,

1

2

∂F̂
∂âi

(E; ϵ1)=

∮
Bi

P (z; ϵ1)dz, (2.4)

and that after eliminating E by using the first equation, F̂ coincides with the deformed prepo-

tential of an N = 2 gauge theory F(ϵ1) (2.1). In other words, this means that the monodromies

of the wave-function around the A- and B-cycles are

Ψ(0)(z + Ai)= exp

(
−2πiâi

ϵ1

)
Ψ(0)(z),

Ψ(0)(z +Bi)= exp

(
− 1

2ϵ1

∂F̂
∂âi

)
Ψ(0)(z), (2.5)

where i = 1, . . . , g (g is genus of the curve).

Note that in order for the claim to be meaningful, we have to specify which potential

corresponds to particular N = 2 gauge theory. Before mentioning it, we first give a generic

prescription to obtain the deformed prepotential. By substituting (2.3) into the Schrödinger

equation, we obtain

−P 2 + ϵ1P
′ + V (z; ϵ1) = E, (2.6)

where P and V are expanded in ϵ1 as

P (ϵ1; z) =
∞∑
k=0

ϵk1Pk(z), V (z; ϵ1) =
∞∑
k=0

ϵk1Vk(z). (2.7)

At lower orders, (2.6) gives the following recursion relations:

−P 2
0 + V0 =E,

−2P0P1 + P ′
0 + V1 =0,

−2P0P2 − P 2
1 + P ′

1 + V2 =0. (2.8)

Therefore, we obtain the expansion of the one form

P0 =
√
V0 − E, P1 =

1

2P0

(P ′
0 + V1), P2 =

1

2P0

(P ′
1 − P 2

1 + V2), (2.9)

and so on. In the first equation, we have chosen the plus sign. As we will see that in explicit

examples, a contour integral of the ϵ1-deformed one form,
∮
Pdz, is written as an action of an

operator Ô on the classical (zero-th order) one:
∮
P = Ô

∮
P0 = (1 + ϵ1Ô1 + ϵ21Ô2 + . . .)

∮
P0.

The remaining task is the following (we focus on the case of SU(2) gauge group where the

curve P 2
0 = V0 − E is genus one, in what follows):
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1. calculate the A-cycle integral: 2πia(E) =
∮
A
P0dz,

2. obtain ∂F
∂a
(E) by calculating the B-cycle integral, or by using a known result of F(a)

(from, e.g. the Nekrasov partition function) and then substituting a(E) obtained in the

step 1 into it: ∂F
∂a
(a) = ∂F

∂a
(a(E)) as in [16],

3. act the operator Ô on both ones obtained in the steps 1 and 2:

â(E; ϵ1) = Ô
[
a(E)

]
,

∂F̂
∂â

(E; ϵ1) = Ô
[
∂F
∂a

(E)

]
, (2.10)

4. rewrite E in terms of â: E = E(â) and substitute it into ∂F̂
∂â
(E; ϵ1). By integrating over

â, we obtain F̂(â; ϵ1).

Finally, we compare this result with the deformed prepotential (2.1).

In the gauge theory point of view, integrable systems described above correspond to gauge

theories with SU(2) gauge group. At classical level (zero-th order in ϵ1), the correspondence

with Seiberg-Witten theory can be accomplished by the identification of the curve P 2
0 = V0−E

with the Seiberg-Witten curve. More precisely, the potential is identified with ϕSW
2 (z) in the

Seiberg-Witten curve x2 = ϕSW
2 obtained from the M-theory construction [34, 19, 35] without

the term depending on the Coulomb moduli u. The Coulomb moduli u plays the role of the

energy eigenvalue of the Schrödinger equation (2.2). The quantum correction promotes the

Seiberg-Witten theory to the deformation of the prepotential in the presence of Ω-background.

It is known that for pure Yang-Mills and N = 2∗ theories, the corresponding integrable

systems are the periodic Toda and the elliptic Calogero-Moser theories respectively [3, 4, 7].

(For SU(2) case, the periodic Toda is precisely the sine-Gordon model.) Gauge theories with

fundamental hypermultiplets have also been considered in [9].

The above proposal has been verified in [15] by calculating lower order ϵ1 expansion of F̂(â)

in the sine-Gordon model, that is the model with the potential

V (θ) = Λ2 cos θ (2.11)

and by comparing it with the deformed prepotential. Note that the coordinate θ was introduced

by z = eiθ.

There is another interesting property in this method. It is known that the derivative of the

prepotential with respect to the gauge coupling constant corresponds to the Coulomb moduli

u [36, 37, 38]. This is even true in the ϵ-deformed case as found in [39, 40]. It would therefore

be natural to expect that the energy obtained in the last step E = E(â) coincides with the

derivative of the deformed prepotential F(a; ϵ1)|a=â with respect to the gauge coupling constant.
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Namely, the energy E(â) can be identified with the “deformed” Coulomb moduli. We can check

this property in the sine-Gordon model above.

To see further validity of the claim and also the property stated just above, let us consider

a few examples below.

N = 2∗ gauge theory

Let us consider the integrable system corresponding to the N = 2∗, SU(2) gauge theory, that is

the SU(2) gauge theory with an adjoint hypermultiplet with mass m. The Hamiltonian which

we will consider below is that of elliptic Calogero-Moser system H = −ϵ21∂2z +m(m − ϵ1)P(z)

where P(z) is the Weierstrass elliptic function (with periods π and πτ). In other words, the

potential is given by

V (ϵ1; z) = m(m− ϵ1)P(z). (2.12)

We will confirm this choice from the Liouville theory point of view in section 3. In this case,

V0 = m2P(z), V1 = −mP(z) and all the others vanish. Therefore, P (z) can be written as

P0 =
√
m2P(z)− E, P1 =

1

2P0

(P ′
0 −mP(z)), . . . . (2.13)

In the following, we will consider the contour integral of P . By explicit computation, the

contour integral of P1 is simplified as∮
P1dz=−m

2

∮
P(z)

P0

dz = −1

2

∂

∂m

∮
P0dz. (2.14)

Therefore, the operator Ô becomes in this case,

Ô = 1− ϵ1
2

∂

∂m
+O(ϵ21). (2.15)

We first note that at leading order in ϵ1, the curve P
2
0 = m2P(z)−E is the Seiberg-Witten

curve of the N = 2∗, SU(2) gauge theory [6] (see also [19]). Therefore, the A- and B-cycle

integrals lead to the gauge theory prepotential [41, 40, 42]. We then consider the periods of the

quantum corrected one form Pdz. For the first order calculation in ϵ1, a powerful simplification

occurs because the first order term in Ô is merely the derivative with respect to the mass

parameter. Indeed, the actions of the operator Ô at the first order are simply the following

shift

â(E) = a(E)|mk→mk−kϵ1mk−1/2,
∂F̂
∂â

(E) =
∂F
∂a

(E)|mk→mk−kϵ1mk−1/2. (2.16)
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Then, we solve the first equation for E: E = E(â; ϵ1) = E(a)|a→â, mk→mk−kϵ1mk−1/2, where

E(a) is the classical expression of the energy. By substituting this into the second equation

of (2.16), we obtain ∂F̂
∂â
(â, ϵ1) =

∂F
∂a
(a)|a→â, mk→mk−kϵ1mk−1/2 + O(ϵ21). Therefore, at this order,

the deformed prepotential is simply given by F̂(â, ϵ1) = F(a)|a→â, mk→mk−kϵ1mk−1/2 + O(ϵ21).

Actually, we can calculate the instanton part

F̂inst(â)=
m4

2â2
q +

m4(96â4 − 48â2m2 + 5m4)

64â6
q2 + . . .

−
[
m3

â2
q +

m3(48â4 − 36â2m2 + 5m4)

16â6
q2 + . . .

]
ϵ1 +O(ϵ21), (2.17)

where q = e2πiτ . This agrees with the deformed prepotential which obtained from the Nekrasov

partition function of the N = 2∗ theory with ϵ2 = 0 while keeping ϵ1 finite. This observation is

quite simple, but already non-trivial result.

The property stated before was that the energy can be expressed as the derivative of the

prepotential. The above argument also shows this at least at the first order in ϵ1, once we

verify the property at the classical level. For completeness let us check this. In order to get the

expression of E, we have to compute the A-cycle integral of the one form P0dz. As analyzed

in [42], it is convenient to introduce M = m2/a2 and write 2πia =
∮
A
P0dz as

π =

∮
A

√
E − M

4
P(z), (2.18)

where E = E/4a2. By solving this, we obtain the series E =
∑

i=0 Ei(q)M i where E0 = 1 and

the higher coefficients are functions only of the coupling q. We will give explicit expressions of

lower order Ei(q) in appendix B. It follows from these that

E = 4

(
a2 − m2

12
+
m2(4a2 +m2)

2a2
q +

m2(192a6 + 96m2a4 − 48m4a2 + 5m6)

32a6
q2 + . . .

)
.(2.19)

This can be written as

E = 4q
∂

∂q

(
F(a)− 2m2 ln η(τ)

)
≡ 4q

∂F̃(a)

∂q
, (2.20)

where η(τ) is Dedekind eta function. Note that the one-loop contribution does not appear since

this is q derivative. It deserves mentioning that the difference between E and ∂F
∂ ln q

has already

observed in [2, 43, 40]. This is due to the difference ũ = ⟨Trϕ2⟩+ . . . where ũ corresponds here

to E, the variable in the curve, and ⟨Trϕ2⟩ to the derivative of the prepotential.

Since we know that the action of Ô on F(a) gives rise to F̂(â) as in (2.17), the corrected

energy is evaluated as

E(â) = 4q
∂

∂q

(
F̂(â)− 2(m2 −mϵ1) ln η(τ)

)
, (2.21)

at the first order in ϵ1.
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SU(2) gauge theory with Nf = 4

Then, let us consider a more complicated theory. The potential corresponding to the SU(2)

gauge theory with four flavors is

V =
m̃2

1 −
ϵ21
4

z2
+
m0(m0 − ϵ1)

(z − 1)2
+
m1(m1 − ϵ1)

(z − q)2
− m0(m0 − ϵ1) +m1(m1 − ϵ1) + m̃2

1 − m̃2
0

z(z − 1)
.

(2.22)

We will also see the origin of this potential in section 3. It is easy to see the leading order

potential

V0 =
m̃2

1

z2
+

m2
0

(z − 1)2
+

m2
1

(z − q)2
− m2

0 +m2
1 + m̃2

1 − m̃2
0

z(z − 1)
(2.23)

is almost the Seiberg-Witten curve [19] except for the Coulomb moduli term − (1−q)u
z(z−1)(z−q)

. Also,

the higher order terms are V1 = −1
2

(
∂

∂m0
+ ∂

∂m1

)
V0 and V2 = − 1

4z2
. Similar to the above case,

lower order terms in P can be evaluated as

P0 =

√
V0 −

(1− q)E

z(z − 1)(z − q)
, P1 = −1

2

(
∂

∂m0

+
∂

∂m1

)
P0 + d

(
1

2
logP0

)
, . . . (2.24)

Note that P0dz is the same as the Seiberg-Witten one form [19, 44, 45]. Therefore, at the

classical level, the gauge theory prepotential can be obtained from its A- and B-cycle integrals.

The first order correction P1 is mass derivative of P0. Therefore, the simplification similar

to the N = 2∗ theory occurs. We can check that the deformed prepotential can be obtained

by the action of the operator Ô. For instance, the prepotential is computed from the Nekrasov

instanton partition function (see appendix A for a review)

Finst(a) =
1

2a2
(
a4 + (m2

0 +m2
1 − m̃2

1 − m̃2
0)a

2 + (m2
0 − m̃2

0)(m
2
1 − m̃2

1)
)
q +O(q2). (2.25)

By acting Ô, we obtain the first order ϵ1 deformation:

− ϵ1
2a2

(
(m0 +m1)a

2 −m0m̃
2
1 +m2

0m1 +m0m
2
1 − m̃2

0m1

)
, (2.26)

which agrees with the deformed prepotential as in appendix A. We have verified this for lower

instanton expansion.

Let us here check that E(â) is given by the derivative of the deformed prepotential with

respect to the gauge coupling constant. For simplicity, let us consider the equal mass case where

m0 = m1 = m and m̃0 = m̃1 = 0. (Actually, these parameters are the linear combinations of

the masses of four hypermultiplets and the equal mass case corresponds to the above choice
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(B.14).) At the classical level, we can compute the A-cycle integral of P0dz and obtain (see

appendix B) for a detailed calculation)

E= a2 −m2 +
a4 + 2m2a2 +m4

2a2
q +

13a8 + 36m2a6 + 22m4a4 − 12m6a2 + 5m8

32a6
q2 +O(q3).

(2.27)

We can easily check that this is the derivative of the prepotential F(ϵ1 = 0) with respect to

ln q (with additional terms a2 −m2 whose origin will be found in subsection 3.1).

Then, we apply the operator Ô. As we have seen in the last paragraph, this action is, at

the first order in ϵ1, merely the shift of the mass parameter. Thus, at this order, it is easy to

obtain E(â) = ∂F̂(â)
∂ ln q

−m2+mϵ1. We expect that this relation is satisfied even at higher orders.

This relation will become important in the subsequent section.

In summary, we have seen that the deformed prepotential with finite ϵ1 is obtained from

the quantization of the Schrödinger system at the first order in ϵ1 in several examples above.

We expect that this is still satisfied for higher order terms. The reason of this will be explained

in the subsequent section, by relating this problem to monodromy operation of the correlation

function with the degenerate field insertion in the Liouville theory.

3 Liouville Field Theory and Deformed Prepotential

So far, we have seen that the deformed prepotentials can be obtained from the quantum inte-

grable systems. In that, the choice of the potential was somewhat heuristic. In this section,

we will see that the form of the potential can be dictated from the degenerate field insertion

in the conformal block. After a brief review of the AGT relation, we consider the differential

equations which are satisfied by the conformal blocks (the correlation function in the case on a

torus) with one degenerate field in subsection 3.1. Irregular conformal blocks [21] which have

been identified with the Nekrasov partition functions of the asymptotically free SU(2) gauge

theories will be analyzed in subsection 3.2. Then, we relate the proposal in the previous section

to the monodromy condition on the degenerate field inserted conformal block in subsection 3.3.

3.1 Degenerate field and surface operator

A class of four-dimensional N = 2 superconformal gauge theory can be obtained from six-

dimensional (2, 0) theory on a Riemann surface of genus g with n punctures [34, 19]. The AGT

relation [20] relates the Nekrasov instanton partition function of N = 2 superconformal SU(2)

gauge theory with the conformal block of the Liouville field theory on the Riemann surface:

Zinst(ap,mi; ϵ1, ϵ2) = B(αint
p , αi; b) (3.1)
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where the primary fields with Liouville momenta αi are inserted at the points of the punctures.

We note that when discussing the conformal block, we have to specify the choice of pants

decomposition of the Riemann surface. This corresponds to the weak coupling description of

the gauge theory. Various possible pants decompositions are related by the mapping class group

of the Riemann surface which is interpreted as S-duality transformation in the gauge theory

point of view [19].

The instanton partition functions of the gauge theories analyzed in the previous section,

the SU(2) gauge theory with four flavors and the N = 2∗ SU(2) gauge theory, are identified

with the conformal blocks on a sphere with four punctures and on a torus with one puncture.

More precise identification of the parameters in the relation (3.1) are as follows. The vacuum

expectation value of the vector multiplet scalar a is related with the primary field in intermediate

line by

∆int
p =

Q2

4
−
a2p
ℏ2
, (3.2)

where p = 1, . . . , 3g− 3+ n and Q = b+1/b (b is the Liouville parameter). The number of the

SU(2) gauge groups is equal to 3g−3+n. The mass parameter, roughly speaking, corresponds

to the field inserted at the puncture. Note however that this parameter is the one associated

with an SU(2) flavor symmetry as (B.14) and also some of m’s are shifted by Q/2 from the

gauge theory values [20], e.g., for the four point conformal block on a sphere,

∆α1 =
Q2

4
− m̃2

0

ℏ2
, ∆α2 =

m0

ℏ
(Q− m0

ℏ
), ∆α3 =

m1

ℏ
(Q− m1

ℏ
), ∆α4 =

Q2

4
− m̃2

1

ℏ2
. (3.3)

The deformation parameters are related with the parameter of the Liouville theory b via

ϵ1 =
ℏ
b
, ϵ2 = ℏb. (3.4)

Finally, the coupling constants defined at UV region qi = e2πiτi of the SU(2)3g−3+n gauge groups

are identified with the complex structures of the Riemann surface.

We have to note the definition of the conformal block. The chiral half of the full Liouville

correlation function can be written as, e.g., for the four-point function,

⟨Vα1(∞)Vα2(1)Vα3(q)Vα4(0)⟩ = q∆
int−∆3−∆4B(αint, αi; b), (3.5)

up to the DOZZ factors. As in (3.1), B was identified with the Nekrasov instanton partition

function and is expanded in q as B = 1+O(q). However, in the rest of this subsection, we call

the left hand side of (3.5) as conformal block.

The prepotential of the gauge theory is obtained by taking the limit of the Nekrasov partition

function [11, 46]. Therefore, by making use of the AGT relation, it can be extracted from the

10



conformal block: F = limϵ1,ϵ2→0(−ϵ1ϵ2)B. The deformed prepotential (2.1) can also be obtained,

via the AGT relation, as follows:

F(ϵ1) = lim
ϵ2→0

(−ϵ1ϵ2)B. (3.6)

Also, as pointed out in [20], the “quantum” Seiberg-Witten curve is given by the insertion of

the energy-momentum tensor:

x2 = ϕ2(z) ≡
⟨T (z)

∏n
i=1 Vαi

(zi)⟩
⟨
∏n

i=1 Vαi
(zi)⟩

, (3.7)

where T (z) =
∑

n∈Z Ln/z
n+2. Indeed, this reduces in the limit ϵ1,2 → 0 to the Seiberg-Witten

curve in [19]

x2 = lim
ϵ1,2→0

1

ϵ1ϵ2
ϕ2(z) = ϕSW

2 (z). (3.8)

We consider an additional insertion of the degenerate field in the conformal block. We con-

centrate on the degenerate field Φ2,1 (or Φ1,2), which is the operator with Liouville momentum

− b
2
(or − 1

2b
):

Ψ(ap, z) =

⟨
Φ2,1(z)

n∏
i=1

Vαi
(zi)

⟩
. (3.9)

Due to the null field condition (b2L−2+(L−1)
2)Φ2,1(z) = 0, Ψ satisfies the second order differen-

tial equation [30]. In [25], Ψ was identified with the surface operator insertion in the Nekrasov

instanton partition function. Compared with the conformal block, Ψ depends on z.

Let us consider the limit where ϵ2 → 0 while ϵ1 fixed. In this limit the dependence of z

would appear in the subleading term in ϵ2:

Ψ = exp

(
− 1

ϵ1ϵ2
(F(ϵ1) + ϵ2W(z; ϵ1) +O(ϵ22))

)
, (3.10)

where the first term is the deformed prepotential (3.6) with additional terms due to the differ-

ence similar to (3.5). By solving the differential equation as in section 2, it is possible to obtain

W(z; ϵ1).

We can also consider the insertion of the degenerate field Φ1,2. However, this leads to the

similar equation with ϵ1 and ϵ2 exchanged. Therefore, we concentrate on Φ2,1 insertion in what

follows. We will derive the differential equations in the following examples.

11



Sphere with four punctures

To begin with, let us consider the conformal block on a sphere with four punctures. Before

considering the degenerate field insertion, we see that the insertion of the energy-momentum

tensor (3.7), for the four-point conformal block, gives rise to

ϕ2(z) =
4∑

i=1

(
∆i

(z − zi)2
+

1

z − zi

∂

∂zi

)
⟨

4∏
i=1

Vαi
(zi)⟩/⟨

4∏
i=1

Vαi
(zi)⟩. (3.11)

Since the four-point conformal block satisfies 0 =
∑4

i=1 Λ̂a

⟨∏4
i=1 Vαi

(zi)
⟩
(a = −1, 0, 1), where

Λ̂−1 =
4∑

i=1

∂

∂zi
, Λ̂0 =

4∑
i=1

(zi
∂

∂zi
+∆i), Λ̂1 =

4∑
i=1

(z2i
∂

∂zi
+ 2∆izi), (3.12)

we can rewrite zi derivative in (3.11) in terms of a derivative with respect to only one position,

say z3. Then, we choose the position of the puncture as z1 = ∞, z2 = 1, z3 = q and z4 = 0.

After some algebra, we obtain ϕ2(z) = ϕ̂2(z)
⟨∏4

i=1 Vαi
(zi)
⟩
/
⟨∏4

i=1 Vαi
(zi)
⟩
with

ϕ̂2 =
∆4

z2
+

∆3

(z − q)2
+

∆2

(z − 1)2

− 1

z(z − 1)(z − q)

(
(1− q)

∂

∂ ln q
+ (z − q)(

4∑
i=2

∆i −∆1)

)
. (3.13)

This reproduces the Seiberg-Witten curve of the SU(2) gauge theory with four flavors in the

limit where ϵ1,2 → 0.

Then, we consider the insertion of the degenerate field Φ2,1(z) in the conformal block:

Ψ(z) =
⟨
Φ2,1(z)

∏4
i=1 Vαi

(zi)
⟩
. To study the constraint equation which the null state condition

((L−1)
2 + b2L−2)Φ2,1 = 0 implies, we compute the action of these Virasoro operators on the

degenerate field. Let us introduce the action of the Virasoro operators as

T (w)Φ(z) =
∑
n∈Z

1

(w − z)n+2
LnΦ(z). (3.14)

By differentiating the above OPE with respect to z, we obtain the OPE between descendant

field ∂Φ and the energy-momentum tensor

T (w)∂Φ(z) =
2∆

(w − z)3
Φ(z) +

n+ 1

(w − z)2
∂Φ(z) +

1

w − z
∂2Φ(z) + · · · . (3.15)

The action of (L−1)
2 on the primary is thus given by the differential operation (L−1)

2 Φ(z) =

∂2zΦ(z). By combining this and the action of L−2, the null state condition leads to the following

differential equation

0 =

[
b−2∂2z +

4∑
i=1

(
∆i

(z − zi)2
+

1

z − zi

∂

∂zi

)]
Ψ(z). (3.16)

12



Since Ψ satisfies the similar relation to (3.12) (in this case the indices run from 1 to 4 and also

z), we obtain

0 =

[
b−2∂2z + ϕ̂2 −

1

z(z − 1)(z − q)

(
(2z − 1)

∂

∂z
+∆

)]
Ψ(z), (3.17)

where ϕ̂2 is the same as (3.13) and ∆ is the conformal dimension of the degenerate field:

∆ = −1
2
− 3b2

4
.

We translate the parameters to the gauge theory ones by using (3.2) – (3.4). We then take

a limit where ϵ2 → 0, where the conformal dimensions behave as ∆α1ℏ2 =
ϵ21
4
− m̃2

0 + O(ϵ2),

∆α2ℏ2 = m0(ϵ1 −m0) +O(ϵ2) and so on. Thus, we obtain

0 =

(
−ϵ21∂2z + V (z; ϵ1)−

(1− q)

z(z − 1)(z − q)

∂F(ϵ1)

∂ ln q

)
Ψ(0)(z), (3.18)

where V (z; ϵ1) is the same one as (2.22) and Ψ(0) = limϵ2→0 Ψ/⟨
∏
Vαi

(zi)⟩. We have used the

asymptotics (3.10) and therefore ∂F(ϵ1)
∂ ln q

= a2 −m2
1 − m̃2

1 +m1ϵ1 +
∂Finst(ϵ1)

∂ ln q
, where the first four

terms come from −(∆int − ∆3 − ∆4) because of the definition of the conformal block (3.5).

Note that in the case ϵ1 = 0, the second and the third terms in the right hand side of (3.18)

is ϕSW
2 except that the Coulomb moduli is changed to ∂F

∂ ln q
. Therefore, we have “derived” the

Schrödinger equation analyzed in the previous section. The wave-function and the degenerate

conformal block Ψ(0) play the similar roles.

Note that while in the analysis in section 2, the energy was a priori unknown parameter, we

“know” its value here by using the AGT relation. This will be an important point in subsection

3.3.

We could extend this argument to a generic quiver gauge theory. The Schrödinger equation

obtained by inserting the degenerate field then involves one variable z. While a quiver gauge

theory corresponds to an integrable system with many canonical variables, it is expected that

the Hamiltonian of the Schrödinger equation is not for this many body system itself, but for

the wave-function associated with the Baker-Akhiezer function related with the system [47, 48].

This leads to the Schrödinger equation with single variable z.

It may be helpful to comment on the relation to the Hitchin system. In [49] it was shown that

the Hitchin system associated with a four-punctured sphere is the Gaudin model of SL(2)-type.

Let Φa
i be the representations of the generators of SL(2):

Φ−
i =

∂

∂ti
, Φ0

i = ti
∂

∂ti
+ ji, Φ+

i = t2i
∂

∂ti
+ 2jiti. (3.19)

We introduce the Higgs field

Φ =

(
Φ0 Φ+

Φ− −Φ0

)
, (3.20)
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where

Φa =
4∑

i=1

Φa
i

z − zi
. (3.21)

Then the quantum spectral curve

det (Φ(z)− ϵ∂z) = 0 (3.22)

implies the so-called Gaudin Hamiltonians Hi:

ϵ2
∂2

∂z2
−
∑
i

(
ji(ji + 1)

(z − zi)2
+

Hi

z − zi

)
= 0 (3.23)

This equation resembles the differential equation (3.17). Let us give a rough sketch of the

connection between them. In the limit b → 0 the last term of (3.17) reduces to the accessory

parameter terms Ci/(z − zi). Since in [50] the accessory parameters Ci are identified with

the eigenvalues of the Gaudin Hamiltonians Hi through the H+
3 -Liouville correspondence, the

Schrödinger system for SU(2) gauge theory with four flavors corresponds to the quantization

of the Hitchin system for the four-punctured sphere. See [31] for recent development.

Torus one-point function

The torus one-point conformal block was identified with the Nekrasov instanton partition

function of the N = 2∗, SU(2) gauge theory [20]: ZN=2∗
inst (a,m; ϵ1, ϵ2) = B(αint, α; b), where

⟨Vα(0)⟩fullτ =
∫
dαint . . . |q∆int− c

24B|2. In order to obtain the differential equation, we consider

the full correlation function with one additional degenerate field insertion:

⟨Φ2,1(z)Vα′(0)⟩fullτ . (3.24)

Note that we have shifted the momentum of the external field in (3.24) as α′ = α+ b/2 due to

the degenerate field insertion.

Due to the null field condition, the correlation function (3.24) satisfies the following differ-

ential equation [51]:(
−b−2∂2z − η1 + (ζ(z)− 2η1z)∂z −∆α′(P(z) + 2η1)

)
⟨Φ2,1(z)Vα′(0)⟩fullτ

=

(
2i

π

∂

∂τ
+ η1 −

1

2πImτ

)
⟨Φ2,1(z)Vα′(0)⟩fullτ , (3.25)

where ζ(z) and η1 are defined in appendix B. We write the correlation function as [42]

⟨Φ2,1(z)Vα′(0)⟩fullτ = (ϑ1(z|τ))b
2/2 (η(τ))2∆α′−1−2b2 Ψ(z|τ). (3.26)
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Here ϑ1(z|τ) is elliptic theta function. In terms of Ψ, the differential equation gets simplified

as (
−b−2∂2z − (∆α′ − 1

2
− b2

4
)P(z)− η1(1 +

3b2

2
) +

1

2πImτ

)
Ψ(z|τ) = 2i

π

∂

∂τ
Ψ(z|τ). (3.27)

By translating the parameters to the gauge theory ones, as in the case of a sphere with four

punctures, the above equation leads to(
−ϵ21∂2z +m(m− ϵ1)P(z) +O(ϵ2)

)
Ψ(z|τ) = 2i

π
ϵ1ϵ2

∂

∂τ
Ψ(z|τ), (3.28)

where we have used that ∆α′ℏ2 = (m+ ϵ
2
)(ϵ+ −m− ϵ

2
) = m(ϵ1 −m) +O(ϵ2) and the fact that

all the terms in the left hand side in (3.27) except for ∆α′ term and the derivative term are of

order O(ϵ2). Then, we consider the limit where ϵ2 → 0. Since Ψ is the correlation function, the

chiral half of should behave as

exp

[
− 1

ϵ1ϵ2

(
a2 ln q + F̃inst(ϵ1) +O(ϵ2)

)]
, (3.29)

where the first term comes from q∆
int− c

24 in the full correlation function. We claim that the

leading term F̃inst(ϵ1) is the same as the one obtained by the same limit in the one-point

conformal block:

B = (η(τ))
2m(ϵ1−m)

ϵ1ϵ2 exp

(
− 1

ϵ1ϵ2

(
F̃inst(ϵ1) +O(ϵ2)

))
. (3.30)

Note that we have multiplied (η(τ))
2m(ϵ1−m)

ϵ1ϵ2 in order to be consistent with (3.26), and therefore

F̃inst(ϵ1)(= Finst(ϵ1)−2(m2−mϵ1) ln η(τ)) is different from the instanton prepotential of SU(2)

gauge theory. Note also that the first factor ϑ
b2/2
1 in (3.26) is of order

ϵ22
ϵ1ϵ2

which is irrelevant

in our analysis. Then, by ignoring ϵ2 terms, we obtain the following differential equation:

(
−ϵ21∂2z +m(m− ϵ1)P(z)

)
Ψ(0)(z|τ) = 4

∂F̃(ϵ1)

∂ ln q
Ψ(0)(z|τ), (3.31)

where we have defined ∂F̃
∂ ln q

= a2 + ∂F̃inst

∂ ln q
, including the classical part. The left hand side is

the Hamiltonian of the elliptic Calogero-Moser system introduced in section 2. Note that the

elliptic Calogero-Moser system is also the Hitchin system for a torus with a puncture [6].

3.2 Insertion of degenerate field into irregular conformal blocks

The original AGT relation is the map between the Virasoro conformal blocks and the instanton

partition functions for the N = 2 superconformal SU(2) quiver gauge theories. It is to be
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anticipated that we can formulate analogous relation for the SU(2) asymptotically free theories

[21]. We then have to define the “irregular” conformal blocks in the CFT side which correspond

to the “wild” singularities of the quadratic differentials ϕSW
2 (z) of these gauge theories. Coherent

states [21] which live in the Verma module, which are called the Gaiotto states, are the basic

building blocks of these irregular conformal blocks for SU(2) gauge theories with Nf = 0, 1, 2, 3

flavors.

The Nekrasov instanton partition function for the SU(2) pure super Yang-Mills theory is

Zinst(a,Λ, ϵ1, ϵ2) =
∞∑
k=0

Λ4kZk(a; ϵ1, ϵ2) =
∞∑
k=0

Λ4k

(ϵ1ϵ2)2k
Zk (α; b) , (3.32)

where α = a/
√
ϵ1ϵ2 and b =

√
ϵ2/ϵ1 are dimensionless parameters. (For a moment we also use

the dimensionless dynamical scale Λ → Λ
√
ϵ1ϵ2.) See appendix A for details of the construction

of the partition function. Notice that the k-instanton factor Zk is a homogeneous function with

degree −4k. Gaiotto found out in [21] that the partition function is equal to a certain irregular

conformal block of the Virasoro algebra as follows

Zinst(α, Λ; b) = ⟨∆,Λ2|∆,Λ2⟩, (3.33)

where the conformal dimension is ∆(α) = Q2/4− α2. Here the two Gaiotto states |∆,Λ2⟩ are
associated with the two wild singularities of the punctured sphere on which the conformal block

is defined. The Gaiotto state |∆,Λ2⟩ = |∆⟩+ · · · satisfies the coherent state condition

L0|∆,Λ2⟩ =
(
∆+

Λ

2

∂

∂Λ

)
|∆,Λ2⟩, L1|∆,Λ2⟩ = Λ2|∆,Λ2⟩, (3.34)

and Ln|∆,Λ2⟩ = 0 for n ≥ 2, where |∆⟩ is the highest weight state with conformal dimension

∆.

In [22, 52] the explicit solution for the Gaiotto state |∆,Λ2⟩ is given in terms of the Shapo-

valov matrix Q∆(Y ;Y ′). The Shapovalov matrix is the following Gram matrix:

Q∆(Y ;Y ′) = ⟨∆|LYL−Y ′|∆⟩. (3.35)

Here Y = {Y1, Y2, · · · } = [1m12m2 · · · ] is a Young diagram with |Y | =
∑
Yi =

∑
j mj boxes,

and L−Y denotes L−Yl
· · ·L−Y2 · L−Y1 . In [22, 52] the authors proved that the following state

solves the constraint equations (3.34)

|∆, n⟩ =
∑
|Y |=n

Q−1
∆ ([1n];Y )L−Y |∆⟩. (3.36)
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This result also means that the existence of the Gaiotto state has been proved. In this way, we

can rewrite the AGT relation for the pure SU(2) Yang-Mills into the following form

Z pure
inst (α, Λ; b) =

∑
n

Λ4nQ−1
∆ ([1n]; [1n]). (3.37)

In order to rewrite the Nekrasov partitions for gauge theories with fundamental matters as

irregular conformal blocks, we introduce the coherent state |∆,Λ,m⟩ which satisfies

L1|∆,Λ,m⟩ = −2mΛ|∆,Λ,m⟩, L2|∆,Λ,m⟩ = −Λ2|∆,Λ,m⟩, (3.38)

and Ln|∆,Λ,m⟩ = 0 for n ≥ 3, where m corresponds the mass of a hypermultiplet in the gauge

theory side. By using this coherent state, we can recast the Nekrasov partition functions for

Nf = 1, 2 theories in the following irregular conformal blocks [21]

Z
Nf=1
inst (α, m, Λ; b) = ⟨∆,Λ,m|∆,Λ2/2⟩, (3.39)

Z
Nf=2
inst (α, m1, m2, Λ; b) = ⟨∆,Λ,m2|∆,Λ,m1⟩. (3.40)

See [22] for the relation to the Shapovalov matrix elements. These non-conformal AGT relations

have been proved recently in [53], by using the Zamolodchikov recursion relation [54, 55, 56].

In the rest of this subsection, we study the differential equations which the null state con-

dition impose on the irregular conformal blocks, as in the previous subsection. We will follow

the discussion of [57] where the case of the pure super Yang-Mills theory was discussed.

SU(2) pure super Yang-Mills theory

We study the insertion of the degenerate field Φ2,1 into the irregular conformal blocks. The

irregular conformal block for the pure super Yang-Mills theory in the presence of the degenerate

field is given by

Ψ(z) = ⟨∆′,Λ2|Φ2,1(z)|∆,Λ2⟩. (3.41)

We set ∆′ = ∆(α + b/4) and ∆ = ∆(α − b/4) in accordance with the fusion rule. In order to

derive the differential equation for Ψ, we consider the insertion of the energy momentum tensor

in the conformal block. Since the higher-order Virasoro generators annihilate the Gaiotto state

17



Ln≥2|∆,Λ2⟩ = 0, we can rewrite it as follows:

⟨∆′,Λ2|T (w)Φ2,1(z)|∆,Λ2⟩

=
∞∑
n=0

1

wn+2
⟨∆′,Λ2|[Ln, Φ2,1(z)]|∆,Λ2⟩

+
1

w
⟨∆′,Λ2|L−1Φ2,1(z)|∆,Λ2⟩+ 1

w2
⟨∆′,Λ2|Φ2,1(z)L0|∆,Λ2⟩+ 1

w3
⟨∆′,Λ2|Φ2,1(z)L1|∆,Λ2⟩

=

(
z

w(z − w)

∂

∂z
+

∆2,1

(w − z)2
+

(
Λ2

w
+

Λ2

w3

))
Ψ(z) +

1

w2
⟨∆′,Λ2|Φ2,1(z)L0|∆,Λ2⟩, (3.42)

where we have used the coherent state condition (3.34). The following relation holds for the

last term of the above equation

⟨∆′,Λ2|Φ2,1(z)L0|∆,Λ2⟩ = 1

2

(
Λ

2

∂

∂Λ
+∆+∆′ −∆2,1 − z

∂

∂z

)
Ψ(z). (3.43)

We can show this relation by using the commutation relation [L0,Φ2,1(z)] = (z∂z+∆2,1)Φ2,1(z)

and (3.34):

Λ

2

∂

∂Λ
Ψ(z) = ⟨∆′,Λ2|(L0 −∆′) Φ2,1(z)|∆,Λ2⟩+ ⟨∆′,Λ2|Φ2,1(z)(L0 −∆)|∆,Λ2⟩

= −(∆ +∆′)Ψ(z) + ⟨∆′,Λ2|[L0,Φ2,1(z)]|∆,Λ2⟩+ 2⟨∆′,Λ2|Φ2,1(z)L0|∆,Λ2⟩

= −
(
∆+∆′ −∆2,1 − z

∂

∂z

)
Ψ(z) + 2⟨∆′,Λ2|Φ2,1(z)L0|∆,Λ2⟩. (3.44)

By substituting (3.43) into (3.42), we obtain the following expression

⟨∆′,Λ2|T (w)Φ2,1(z)|∆,Λ2⟩ =
[ z

w(z − w)

∂

∂z
+

∆2,1

(w − z)2
+

(
Λ2

w
+

Λ2

w3

)
+

1

2w2

(
Λ

2

∂

∂Λ
+∆+∆′ −∆2,1 − z

∂

∂z

)]
Ψ(z). (3.45)

Let us study the constraint equation for Ψ following from the null state condition ((L−1)
2+

b2L−2)Φ2,1 = 0. As analyzed in subsection 3.1, the action of (L−1)
2 on the degenerate field is

simply (L−1)
2Φ2,1 = ∂2zΦ2,1. The action of L−2 can be evaluated by extracting the term with

the power w0 from (3.45). The result is

⟨∆′,Λ2|L−2Φ2,1(z)|∆,Λ2⟩ =
[
− 1

z

∂

∂z
+ Λ2

(
1

z
+

1

z3

)
+

1

2z2

(
Λ

2

∂

∂Λ
+∆+∆′ −∆2,1 − z

∂

∂z

)]
Ψ(z). (3.46)
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Now we are ready to complete the formulation of the Schrödinger equation. The null state

condition and (3.46) imply the following differential equation[
b−2z2

∂2

∂z2
+ Λ2

(
z +

1

z

)
− 3z

2

∂

∂z
+

Λ

4

∂

∂Λ
+

∆+∆′ −∆2,1

2

]
Ψ(z) = 0, (3.47)

for the irregular conformal block in the presence of the degenerate field. We will interpret

this equation as the Schrödinger equation for the Nekrasov partition function in the presence

of the surface operator. As in subsection 3.1, we recover all Ω-backgrounds ϵ1,2 by scaling

the parameters as Λ → Λ/ℏ , ∆ → ∆/ℏ2. Now we take the limit ϵ2 → 0, while keeping ϵ1

finite. Then, this limit simplifies the differential equation for the normalized function Ψ(0)(z) =

limϵ2→0Ψ(z) /Zinst[
ϵ21z

2 ∂
2

∂z2
+ Λ2

(
z +

1

z

)]
Ψ(0)(z) =

[
a2 − ϵ21

4
+

Λ

4

∂F(ϵ1)

∂Λ

]
Ψ(0)(z). (3.48)

This takes the form of the Schrödinger equation for the sine-Gordon system(
−ϵ21

∂2

∂θ2
+ 2Λ2 cos θ

)
Ψ(eiθ) = EΨ(eiθ), (3.49)

where the Ω-background plays the role of the Planck constant. Notice that the right hand side

a2 +Λ∂ΛF(ϵ1)/4 is precisely the classical and the instanton part of u. This quantum Coulomb

moduli thus corresponds to the energy eigenvalue of the sine-Gordon system. It is known that

the sine-Gordon model is the 2-periodic Toda-chain system. Since a degeneration of the Hitchin

system on a torus with a marked point, which is the elliptic Calogero-Moser system, implies

the Toda-chain system [58, 59], the sine-Gordon system corresponds to the Hitchin system on

a sphere with two degenerate points. We expect that a quantum Hitchin system describes

the corresponding asymptotically free gauge theory as well as superconformal one. Then the

degeneration of the Hitchin system plays a key role [60].

As we explain in appendix C, the wave-function Ψ takes the form of the expansion
∑

n=0 cnz
δ+n.

Let us consider the normalized wave-function

ψ(z) = z−δΨ(z) = exp

(
− 1

ϵ1ϵ2
(F(ϵ1) + ϵ2W(ϵ1; z) + · · · )

)
. (3.50)

For this normalized correlation function, the differential equation take the form[
b−2

(
z
∂

∂z

)2

+ b−2 (2δ − 1) z
∂

∂z
+ δ

(
b−2(δ − 1)− 3

2

)
+ Λ2

(
z +

1

z

)
− 3z

2

∂

∂z
+

Λ

4

∂

∂Λ
+

∆+∆′ −∆2,1

2

]
ψ(z) = 0. (3.51)
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Notice that we can eliminate the constant term of this differential operator by using the following

identity

δ

(
b−2(δ − 1)− 3

2

)
= −∆+∆′ −∆2,1

2
. (3.52)

Then, the normalized wave-function also satisfies the following simple equation[
b−2

(
z
∂

∂z

)2

− 2a b−1 z
∂

∂z
+ Λ2

(
z +

1

z

)
+

Λ

4

∂

∂Λ

]
ψ(z) = 0, (3.53)

where we use b−2(2δ − 1) = −2ab−1 + 3/2. When the Ω-background is recovered by rescaling,

we obtain the equation of the form[
ϵ21

(
z
∂

∂z

)2

− 2a ϵ1 z
∂

∂z
+ Λ2

(
z +

1

z

)
+ ϵ1ϵ2

Λ

4

∂

∂Λ

]
ψ(z) = 0. (3.54)

Note that this equation is not singular at ϵ1,2 = 0. Then, we obtain the wave function in the

limit ϵ2 → 0[
ϵ21

(
z
∂

∂z

)2

+ Λ2

(
z +

1

z

)]
ψ(z) =

(
2a z

∂W(ϵ1; z)

∂z
+

Λ

4

∂F(ϵ1)

∂Λ

)
ψ(z). (3.55)

SU(2) gauge theory with one flavor

Let us next consider the SU(2) gauge theory with one fundamental flavor. Since the irregular

conformal block for the theory is given by the inner product of two different Gaiotto states, the

insertion of the degenerate field implies

Ψ(z) = ⟨∆′,Λ,m|Φ2,1(z)|∆,Λ2/2⟩, (3.56)

where m corresponds to the mass of the flavor. We again consider the insertion of the energy-

momentum tensor

⟨∆′,Λ,m|T (w)Φ2,1(z)|∆,Λ2/2⟩=

[
∞∑
n=0

w−n−2zn
(
z
∂

∂z
+∆2,1(n+ 1)

)
− Λ2 − 2mΛ

w
+

Λ2

2w3

]
Ψ(z)

+
1

w2
⟨∆′,Λ,m|Φ2,1(z)L0|∆,Λ2/2⟩.

By using L0|∆,Λ,m⟩ = (∆ + Λ∂Λ)|∆,Λ,m⟩, we find the following relation:

Λ
∂Ψ

∂Λ
= −(∆′ + 2∆)Ψ + ⟨∆′,Λ,m|[L0,Φ2,1(z)]|∆,Λ2/2⟩+ 3⟨∆′,Λ,m|Φ2,1(z)L0|∆,Λ2/2⟩.
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Then, we obtain the relation

⟨∆′,Λ,m|T (w)Φ2,1(z)|∆,Λ2/2⟩

=

[
z

w(w − z)

∂

∂z
+

∆2,1

(w − z)2
− Λ2 − 2mΛ

w
+

Λ2

2w3
+

1

3w2

(
Λ
∂

∂Λ
+∆′ + 2∆−∆2,1 − z

∂

∂z

)]
Ψ(z).

The power expansion in w gives the action of the Virasoro generator L−2

⟨∆′,Λ,m|L−2Φ2,1(z)|∆,Λ2/2⟩

=

[
−1

z

∂

∂z
− Λ2 − 2mΛ

z
+

Λ2

2z3
+

1

3z2

(
Λ
∂

∂Λ
+∆′ + 2∆−∆2,1 − z

∂

∂z

)]
Ψ(z).

Now we can derive the differential equation for the irregular conformal block. The null state

condition implies the constraint on Ψ(
b−2z2

∂2

∂z2
− 4

3
z
∂

∂z
+ z2

(
Λ2

2z3
− 2mΛ

z
− Λ2

)
+

1

3

(
Λ
∂

∂Λ
+∆′ + 2∆−∆2,1

))
Ψ(z) = 0.

(3.57)

Let us recover the ϵ1,2 by rescaling the parameters. We again obtain the Schrödinger system in

the limit ϵ2 → 0[
ϵ21z

2 ∂
2

∂z2
+ z2

(
Λ2

2z3
− 2mΛ

z
− Λ2

)]
Ψ(0)(z) =

[
a2 − ϵ21

4
+

Λ

3

∂F(ϵ1)

∂Λ

]
Ψ(0)(z). (3.58)

It also takes the form of the Schrödinger equation where the potential is similar to ϕSW
2 (z) in

the Seiberg-Witten curve. The energy eigenvalue is the quantum Coulomb moduli u(ϵ1) again.

Let us derive another differential equation for the normalized wave function ψ(z) = z−δΨ(z).

We can simplify this differential equation by using the following identities

δ

(
b−2(δ − 1)− 4

3

)
= −∆′ + 2∆−∆2,1

3
, b−2(2δ − 1)− 4

3
= −2ab−1 +

1

6
. (3.59)

Then, we obtain the differential equation(
b−2

(
z
∂

∂z

)2

−
(
2ab−1 − 1

6

)
z
∂

∂z
+ z2

(
Λ2

2z3
− 2mΛ

z
− Λ2

)
+

1

3
Λ
∂

∂Λ

)
ψ(z) = 0. (3.60)

Taking the limit ϵ2 → 0, we obtain the Schrödinger equation for the gauge theory with one

flavor(
ϵ21

(
z
∂

∂z

)2

+ z2
(
Λ2

2z3
− 2mΛ

z
− Λ2

))
ψ(z) =

(
2a z

∂W(ϵ1; z)

∂z
+

Λ

3

∂F(ϵ1)

∂Λ

)
ψ(z). (3.61)
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SU(2) gauge theory with two flavors

Let us move on to the SU(2) gauge theory with two flavors. The irregular conformal block

with a degenerate field is given by the inner product of the Gaiotto states |∆,Λ,m⟩ as

Ψ(z) = ⟨∆′,Λ,m2|Φ2,1(z)|∆,Λ,m1⟩. (3.62)

Again we insert the energy-momentum tensor into the conformal block

⟨∆′,Λ,m2|T (w)Φ2,1(z)|∆,Λ,m1⟩

=

[
z

w(w − z)

∂

∂z
+

∆2,1

(w − z)2
− Λ2 − 2m2Λ

w
− 2m1Λ

w3
− Λ2

w4

]
Ψ(z)

+
1

w2
⟨∆′,Λ,m2|Φ2,1(z)L0|∆,Λ,m1⟩. (3.63)

As we have studied in the cases of Nf = 1, 2, we obtain

Λ
∂Ψ

∂Λ
= −(∆′ +∆)Ψ + ⟨∆′,Λ,m|[L0,Φ2,1(z)]|∆,Λ2/2⟩+ 2⟨∆′,Λ,m|Φ2,1(z)L0|∆,Λ2/2⟩.

(3.64)

Combining these results, we can write down the expectation value ⟨∆′,Λ,m2|L−2Φ2,1(z)|∆,Λ,m1⟩.
We then find the differential equation associated with the null state condition:(
b−2z2

∂2

∂z2
− 3

2
z
∂

∂z
+ z2

(
−Λ2

z4
− 2m1Λ

z3
− 2m2Λ

z
− Λ2

)
+

1

2

(
Λ
∂

∂Λ
+∆′ +∆−∆2,1

))
Ψ(z) = 0.

In the limit ϵ2 → 0, this equation reduces to the following Schrödinger equation(
ϵ21z

2 ∂
2

∂z2
+ z2

(
−Λ2

z4
− 2m1Λ

z3
− 2m2Λ

z
− Λ2

))
Ψ(0)(z)

=

(
a2 − ϵ21

4
+

Λ

2

∂F(ϵ1)

∂Λ

)
Ψ(0)(z). (3.65)

Again, the Schrödinger equation for the gauge theory with two flavors has the potential which

is similar to ϕSW
2 (z). The energy eigenvalue is just the deformed Coulomb moduli u(ϵ1). We

expect these characteristics are universal for asymptotically free N = 2 gauge theories.

The differential equation for the normalized partition function is also given by(
b−2

(
z
∂

∂z

)2

− 2ab−1z
∂

∂z
+ z2

(
−Λ2

z4
− 2m1Λ

z3
− 2m2Λ

z
− Λ2

)
+

Λ

2

∂

∂Λ

)
ψ(z) = 0. (3.66)

By taking the limit ϵ2 → 0, we obtain another Schrödinger equation for the gauge theory with

Nf = 2 flavors(
(ϵ1)

2

(
z
∂

∂z

)2

+ z2
(
−Λ2

z4
− 2m1Λ

z3
− 2m2Λ

z
− Λ2

))
ψ(z)

=

(
2a z

∂W(ϵ1; z)

∂z
+

Λ

2

∂F(ϵ1)

∂Λ

)
ψ(z). (3.67)
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3.3 Monodromy of Ψ and relation with quantum integrable system

As found in [25], the monodromies of the conformal block with the degenerate field insertion

along the A- and B-cycles correspond to the Wilson and t’ Hooft loop operators on the surface

operator in the gauge theory. In [25, 26], these monodromies have been calculated in the

Liouville theory:

Ψ±(ai, z + Aj)= exp

(
∓2πiaj

ϵ1

)
Ψ±(aiz),

Ψ±(ai, z +Bj)=Ψ±(ai ∓
ϵ2
2
δji, z), (3.68)

where Ψ(z + A(or B)) denotes the monodromy along the A(or B) cycle. The ± sign in (3.68)

reflects the two-fold degeneracy of the solution to the quadratic differential equation obtained in

the previous subsections. Since Ψ is expanded in ϵ2 as (3.10), the second equation is equivalent

to the condition

Ψ±(ai, z +Bj) = exp

(
∓ 1

2ϵ1

∂F(ϵ1)

∂aj
+O(ϵ2)

)
Ψ±(ai, z). (3.69)

These indicate that the monodromies of Ψ around A and B cycles are, in the ϵ2 → 0 limit, the

multiplications of the phase factors e
∓

2πiaj
ϵ1 and e

∓ 1
2ϵ1

∂F(ϵ1)
∂aj , respectively. Therefore, these lead

to the monodromies of W(z; ϵ1) in (3.10)

W±(z + Aj; ϵ1) = ±2πiaj, W±(z +Bj; ϵ1) = ±1

2

∂F(ϵ1)

∂aj
. (3.70)

These are reminiscent of the proposal (2.5). We will see that these conditions are indeed

related with the analysis in section 2. Note that the relation between the loop operators in the

asymptotically free gauge theory and the irregular conformal block with the degenerate field

insertion analyzed in the previous subsection has not yet been found. However, it is natural

that the monodromy condition (3.68) holds even in the asymptotically free case.

As we have seen in subsections 3.1 and 3.2, the differential equation in the limit ϵ2 → 0

becomes generally to (
−ϵ21∂2z + V (z; ϵ1)

)
Ψ(0)(z) = g(z)u(ϵ1)Ψ

(0)(z), (3.71)

where g(z) is a function of z whose choice depends on the choice of a particular gauge theory.

As observed in the above examples, the zero-th order part in ϵ1 of V (z; ϵ1) is the Seiberg-Witten

curve modulo moduli dependent term. This V (ϵ1) is the same one which we have introduced

in section 2 as a potential. Furthermore, u(ϵ1)(∝ q ∂F(ϵ1)
∂q

) in the right hand side corresponds to

the energy E in section 2.
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Now, recall that Ψ can be written as (3.10). The differential equation is solved order by

order as in section 2

−x2 + ϵ1x
′ + V (z; ϵ1) = g(z)u(ϵ1). (3.72)

where we have defined as W =
∫ z
x(z′; ϵ1)dz

′. We expand x, V and u as

x =
∞∑
k=0

ϵk1xk, V =
∞∑
k=0

ϵk1Vk, u =
∞∑
k=0

ϵk1uk. (3.73)

At lower orders, we obtain

−x20 + V0= g(z)u0,

−2x0x1 + x′0 + V1= g(z)u1,

−2x0x2 − x21 + x′1 + V2= g(z)u2, (3.74)

and so on. Note that compared with the situation in section 2, u(ϵ1) has ϵ1-dependence which

leads to the nonzero values in the right hand sides of higher order equations. Similar to (2.9),

xk can be written as

x0=
√
V0 − g(z)u0, x1 =

1

2x0
(x′0 + V1 − g(z)u1), x2 =

1

2x0
(x′1 − x21 + V2 − g(z)u2).

(3.75)

The ϵ1-dependence of u(ϵ1) has led to the last terms in xk (k > 0). Note that there could be

the choice of sign of x0: x0 = ±
√
V0 − gu0. This would result in the two-fold degeneracy in

(3.68). Here we have chosen the plus sign for simplicity.

In order to relate this with the proposal in section 2, let us consider the contour integral of

xdz. We analyze these only in the lower orders in ϵ1. The contour integral of the differential

x1dz becomes ∮
x1dz=

∮
x′0 + V1
2x0

dz + u1
∂

∂u0

∮
x0dz =

[
Ô1 + u1

∂

∂u0

] ∮
x0dz, (3.76)

where Ô1 is the same one defined in section 2. In the next order, the contour integral of x2dz

becomes ∮
x2dz=

[
Ô2 + u1

∂

∂u0
Ô1 +

u21
2

∂2

∂u20
+ u2

∂

∂u0

] ∮
x0dz. (3.77)

Since Ô1 and Ô2 are the same as the ones considered in section 2, the proposal in section 2

implies that

1

2πi

∮
A

xdz= â(E = u0) + (ϵ1u1 + ϵ21u2 + . . .)
∂

∂u0
â(E = u0)

+

(
ϵ21u

2
1

2
+ . . .

)
∂2

∂u20
â(E = u0) + . . . , (3.78)
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and similar equation for the B cycle integral. Therefore, we obtain

1

2πi

∮
A

xdz = â(E = u(ϵ1)),
1

2

∮
B

xdz =
∂F̂
∂â

(E = u(ϵ1)), (3.79)

up to O(ϵ31) terms. At this stage, recall that we have already known the form of u(ϵ1), which

is the derivative of the deformed prepotential with respect to the gauge coupling constant ln q.

Recall also that, in section 2, we have seen that the following relation holds

u(ϵ1; a) = E(â; ϵ1)|â→a. (3.80)

where E is the energy obtained in section 2 by computing the A cycle integral, namely E(â)

in the step 4. It follows from this that the periods (3.79) are

1

2πi

∮
A

xdz = a,
1

2

∮
B

xdz =
∂F(ϵ1)

∂a
, (3.81)

where we have used F̂(ϵ1)|â→a = F(ϵ1). These are the expected monodromy conditions satisfied

by the conformal block with the degenerate field (3.70).

We have only considered the lower order correction in ϵ1 above. However, we expect that

this relation holds for higher orders. In summary, if we assume the proposal [15] in section 2

about the deformed prepotential, we recover the expected monodromies of the conformal block.

Conversely, the monodromy condition (3.70) leads to that the deformed prepotential is indeed

obtained by the method in section 2.

4 2d-4d Instantons and Surface Operators

In this section, we interpret conformal blocks with degenerate field insertion in the context of

the ramified instanton counting [25]. We will focus on the irregular conformal block associated

with the pure super Yang-Mills theory for simplicity.

4.1 Degenerate field insertion and 2d-4d instanton counting

As we have studied in the previous section, the following irregular conformal block would

capture the dynamics of the SU(2) super Yang-Mills theory with the surface operator via the

extended AGT conjecture:

Ψ(z) = ⟨∆′,Λ2|Φ2,1(z)|∆,Λ2⟩. (4.1)

Here we take ∆′ = ∆(α+ b/4) and ∆ = ∆(α− b/4) in accordance with the fusion rule. In order

to give an insight into the instanton counting in the presence of these extended operators, we
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will study the irregular conformal block as the Nekrasov partition function. As we learned from

the AGT relation for the pure Yang-Mills theory [22], the expression in terms of the Shapovalov

form is important for our purpose. Now let us expand the irregular conformal block by using

the formula (3.36)

Ψ(z) =
∑
Y⃗

Λ2|Y⃗ |Q−1
∆ ([1|Y1|];Y1)Q

−1
∆′ ([1

|Y2|];Y2) ⟨∆′, Y2|Φ2,1(z)|∆, Y1⟩. (4.2)

In this section, we derive the information of 2d- and 4d-instantons, or ramified instantons, from

this expression.

Since we have to expand the irregular conformal block not only in Λ but also in z to compare

with instanton expansion, let us expand Φ2,1(z)|∆, Y ⟩ in the Verma module V∆′ as

Φ2,1(z)|∆, Y ⟩ =
∑
Y ′

z|Y
′|−|Y |+δβY

Y ′ |∆′, Y ′⟩, (4.3)

where we define δ = ∆′ −∆21 −∆. See appendix C for details about this formula. Using this

expansion, we can rewrite Ψ(z) as

Ψ(z) =
∑
Y⃗ ,Y ′

Λ2|Y⃗ | z|Y
′|−|Y1|+δ βY1

Y ′Q
−1
∆ ([1|Y1|];Y1)Q

−1
∆′ ([1

|Y2|];Y2)Q∆′(Y2, Y
′)

= zδ
∞∑
n=0

∑
Y

Λ2|Y |+2n zn−|Y |βY
1nQ

−1
∆ ([1|Y |];Y ). (4.4)

The point is that we can separate the contributions of 4d- and 2d-instantons as Λ2|Y |+2n zn−|Y | =

Λ4|Y | λn−|Y |, where λ = Λ2z is the 2d-instanton factor. Then the 2d-instanton number is counted

by l = n− |Y |. This 2d-instanton number can be negative in the presence of the 4d-instanton

k = |Y | ≠ 0, and this configuration represents a 2d-antiinstanton bounded to a 4d-instanton.

See [61] for related discussion.

4.2 Explicit computations

To study the instanton partition function for the surface operator, we compute the instanton

expansion of the normalized partition function z−δΨ(z). Throughout this section, we use the

formulae for the coefficients β which are given in appendix C.

|Y|=n=0 : constant term

Let us start with the lowest term. In our normalization, this term is one as follows:

Λ0z0β•
• Q

−1
∆ (• ; •) = 1. (4.5)
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|Y|=0, n=1 : one 2d-instanton

Next we compute the term for Y = • and n = 1. By using the explicit form of β •
1 given in

appendix C, we find

Λ2z1β •
1 Q

−1
∆ (• ; •) = λ

∆′ +∆2,1 −∆

2∆′ = λ
b

2
(
a−

(
b
4
+ 1

2b

)) . (4.6)

Since this term is proportional to λ = Λ2z, it is purely one 2d-instanton effect.

|Y|=1, n=0: one 4d-instanton and one 2d-antiinstanton

The term for Y = [1] and n = 0 is given by

Λ2z−1β1
• Q

−1
∆ (1; 1) = −Λ4λ−1 δ

2∆
= Λ4λ−1 b

2
(
a+

(
b
4
+ 1

2b

)) . (4.7)

Since the instanton numbers are (k, l) = (1,−1), the term describes a bound state of a 2d-anti-

instanton and a 4d-instanton.

|Y|=1, n=1 : one 4d-instanton

The term for Y = [1] and n = 1 describes the purely 4d-instanton contribution:

Λ4z0β1
1 Q

−1
∆ (1; 1) = Λ4

(
1− (1 + δ)(∆′ +∆2,1 −∆)

2∆′

)
1

2∆

= Λ4 −b2 − 2

4
(
a−

(
b
4
+ 1

2b

)) (
a+

(
b
4
+ 1

2b

)) . (4.8)

|Y|=2, n=0 : two 4d-instantons and two 2d-antiinstantons

Let us move on to a little more higher orders. The following two labels contribute to the

instanton for |Y | = 2 and n = 0:

Λ4z−2
[
β12

• Q−1
∆ (12; 12) + β2

• Q
−1
∆ (12; 2)

]
= Λ8λ−2

[
δ(δ − 1)Q−1

∆ (12; 12) + (∆2,1 − δ)Q−1
∆ (12; 2)

]
= Λ8λ−2 b2

8
(
a+

(
b
4
+ 1

2b

)) (
a+

(
b
4
+ 1

b

)) . (4.9)

This term corresponds to the 4d-instanton number k = 2 and the 2d-instanton number l = −2.

|Y|=0, n=2 : two 2d-instantons

Finally we compute the term for Y = • and n = 2. The coefficient β 12 which is given in

appendix C gives the following instanton factor:

Λ4z2β•
12 Q

−1
∆ (•; •) = λ2β•

12 = λ2
b2

8
(
a−

(
b
4
+ 1

2b

)) (
a−

(
b
4
+ 1

b

)) . (4.10)
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This is the purely two 2d-instanton effect l = 2.

By combining these results, we come to the instanton expansion of the partition function

corresponding to pure SU(2) Yang-Mills theory in the presence of a surface operator:

z−δΨ(z) = 1 + λ
1

2 ϵ1
(
a−

(
ϵ2
4
+ ϵ1

2

)) + Λ4λ−1 1

2 ϵ1
(
a+

(
ϵ2
4
+ ϵ1

2

))
− Λ4 2ϵ1 + ϵ2

4 ϵ21ϵ2
(
a−

(
ϵ2
4
+ ϵ1

2

)) (
a+

(
ϵ2
4
+ ϵ1

2

)) + Λ8λ−2 1

8 ϵ21
(
a+

(
ϵ2
4
+ ϵ1

2

)) (
a+

(
ϵ2
4
+ ϵ1

))
+ λ2

1

8 ϵ21
(
a−

(
ϵ2
4
+ ϵ1

2

)) (
a−

(
ϵ2
4
+ ϵ1

)) + · · · . (4.11)

Here we recover ϵ1,2 by rescaling the parameters. In this way we find that the degenerate

field inserted in the irregular conformal block describes the Nekrasov-like partition function

for ramified instantons. It supports our expectation that we can construct such instanton

partition functions by inserting the degenerate field into conformal block, without involving

mathematics for ramified instantons. Notice that the result of our approach agrees with the

ramified instanton counting [32]. In fact, the formula (4.11) is coincident with the partition

function (B.6) in Appendix.B of [32] through the redefinition a→ a− ϵ2/4 and the decoupling

limit of the adjoint hypermultiplet:

m→ ∞, m2x→ λ, m2y → Λ4λ−1. (4.12)

The agreement implies a direct relationship between these two different approaches. This is an

important area for further research.

4.3 Adding fundamental flavors

It is also straightforward to add matters to the previous results. For instance, the degener-

ate field inserted in the irregular conformal blocks for Nf = 1, 2 flavors gives the following

expressions for the corresponding partition functions

Ψ(z)Nf=1 = ⟨∆′,Λ,m|Φ2,1(z)|∆,Λ2/2⟩

= zδ
∑
n,p,q

∑
Y

mn−2p2−2qΛn+2qzn−qβY
2p·1n−2qQ−1

∆ (1q, Y ). (4.13)

Ψ(z)Nf=2 = ⟨∆′,Λ,m2|Φ2,1(z)|∆,Λ,m1⟩

= zδ
∑

n1,2 ,p1,2

∑
Y

mn1−2p1
1 mn2−2p2

2 Λn1+n2zn1−n2βY
2p1·1n1−2p2Q

−1
∆ (2p2 · 1n2−2p2 , Y ). (4.14)

It would be interesting to study the structure of these correlators and rewrite it as Nekrasov-like

partition functions.
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5 Conclusion and Discussion

In this paper, we have considered the relation between N = 2 supersymmetric gauge theories

and quantum integrable systems. We have seen that the deformed prepotential can be obtained

from the monodromies of the wave-function which is calculated from the Schrödinger equation

of the integrable system. We have then derived this equation from the conformal block with

the degenerate field insertion. By using the AGT relation, we have successfully related the

deformed prepotential emerging from the wave-function with monodromy operation of the

conformal block with the degenerate field. We have also studied the instanton counting of

the instanton partition function with the surface operator which corresponds to the irregular

conformal blocks with a degenerate field.

In this paper, we concentrated on the case with the SU(2) gauge group which corresponds to

the Liouville theory. It would be important to consider higher rank generalization. In [16, 17],

the proposal [15] in section 2 has been checked for the SU(N) pure super Yang-Mills theory

by analyzing the corresponding Baxter equation. It would be interesting to consider such the

differential equation in the point of view of the Toda field theory. The loop operators in the

Toda theory [62, 63] might be related with the analysis in [16].

The correspondence between the Hitchin systems and Nekrasov-Shatashvili’s integrable sys-

tems also merits intensive investigation. Our result suggests that Hitchin systems of degenerated

type are associated with asymptotically free gauge theories. It is therefore important to study

the degenerated Hitchin systems from the perspective of the AGT relation [64, 65, 66]. The

analysis of the Hitchin system from M-theory perspective [67] would be useful.

In section 4, we recast the degenerate irregular conformal block into the Nekrasov-like

partition function. The further study of these conformal blocks would give us a fresh insight

into the instanton counting in the presence of surface operators. For higher rank theories, this

formulation in terms of the Virasoro algebra should be extended for the W-algebra [23, 24, 68].

In [28], the matrix model description for surface operators was given for the case of ϵ1+ϵ2 =

0. It would be interesting to study the monodromic characteristic of the wave-function by using

the matrix models. The matrix model for higher rank theories [47, 69, 48] would help us to

study surface operators of SU(N) gauge theories.

Extended observables such as the Wilson loops are important to probe the phase structure

of gauge theories. The richness of phases of N = 1 gauge theories is well-known [70], and

there are many phases which we cannot distinguish by the Wilson-’t Hooft operators. N = 1

analogues of surface operators would play an important role to classify these phases, and we

expect that it will work for the N = 1 version of Gaiotto quivers [71, 72].
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Appendix

A Nekrasov’s Instanton Partition Function

The Nekrasov partition function is a generating function of the Seiberg-Witten prepotential.

Formally, the partition function is defined by the regularized volume of the instanton moduli

space

Zinst(⃗a,Λ, ϵ1, ϵ2) =
∞∑
k=0

qk
∫
MNc,k

dVol a⃗,ϵ1,ϵ2 , (A.1)

where dVol a⃗,ϵ1,ϵ2 is an instanton measure factor with an equivariant torus action. We can obtain

the precise form of it by applying the equivariant localization method to the path integral over

the instanton moduli space. For instance the partition function for SU(N) supersymmetric

gauge theory with hypermultiplets takes the form [11, 73, 74]

Zinst(⃗a,Λ, ϵ1, ϵ2) =
∑
Y⃗

q|Y⃗ |∏Nc

α,β=1 n
Y⃗
α,β (⃗a, ϵ1, ϵ2)

zmatters(⃗a, Y⃗ , m⃗, ϵ1, ϵ2), (A.2)

where Y⃗ = (Y1, · · · , YNc) is a vector consists of Nc Young diagrams, and its norm |Y⃗ | is defined
by
∑

n |Yn|. Here a⃗ and ϵ1,2 are the weights of the maximal torus action U(1)Nc−1 × U(1) ×
U(1), which is the Cartan of the isometry of the instanton moduli space SU(Nc) × SU(2)2 ≃
SU(Nc) × SO(4)L. The expansion factor q is the dynamical scale Λ2Nc−Nf for gauge theory

with Nf < 2Nc flavors, but, on the other hand, it is the UV gauge coupling constant q = e2πiτ

for the superconformal theory Nf = 2Nc.

The partition function (A.2) consists of the contributions of the vector multiplet and the

hypermultiplets. The denominator
∏
nY⃗
α,β comes of the vector multiplet integral. The precise
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form is given by the eigenvalues of the torus action on the tangent space of the moduli space

nY⃗
α,β (⃗a, ϵ1, ϵ2) =

∏
(i,j)∈Yα

(aα − aβ − lYβ
(i, j)ϵ1 + (aYα(i, j) + 1)ϵ2)

×
∏

(i,j)∈Yβ

(aα − aβ + (lYα(i, j) + 1)ϵ1 − aYβ
(i, j)ϵ2). (A.3)

a⃗ = (a1, · · · , aN) is the eigenvalues of the adjoint scalar field. An arm length and leg length of

a Young diagram are defined by aY (i, j) = Yi − j and lY (i, j) = Y t
j − i.

The contributions of matter fields come of the matter bundle over the instanton moduli

space, which is the bundle of the Dirac zero modes in the representation of the matter field

we are interested in. Since these zero modes are fermionic, this contribution appears, when we

apply the localization method to the path integral, in the numerator of the instanton measure.

For (anti)fundamental hypermultiplet, the instanton measure factor is

zfund.(⃗a, Y⃗ ,m ; ϵ1, ϵ2) =
Nc∏
α=1

∏
(i,j)∈Yα

(aα + ϵ1(i− 1) + ϵ2(j − 1)−m+ ϵ), (A.4)

zantifund.(⃗a, Y⃗ ,m ; ϵ1, ϵ2) = zfund.(⃗a, Y⃗ , ϵ−m; ϵ1, ϵ2). (A.5)

The adjoint matter bundle is the tangent bundle of the instanton moduli space. It contributes

to the instanton measure as

zadj.(⃗a, Y⃗ ,m; ϵ1, ϵ2) =
Nc∏

α,β=1

∏
(i,j)∈Yα

(aα − aβ − lYβ
(i, j)ϵ1 + (aYα(i, j) + 1)ϵ2 −m)

×
∏

(i,j)∈Yβ

(aα − aβ + (lYα(i, j) + 1)ϵ1 − aYβ
(i, j)ϵ2 −m). (A.6)

Notice that zvec.(Y⃗ )−1 =
∏
nY⃗
α,β = zadj.(Y⃗ ,m = 0) since the vector multiplet also transforms in

the adjoint representation and this multiplet gives a bosonic contribution.

Let Zk be the k-instanton part of the partition function:

Zinst(⃗a,Λ, ϵ1, ϵ2) =
∞∑
k=0

qk Z k (⃗a, ϵ1, ϵ2). (A.7)

We compute 1 and 2-instanton partition functions theories in what follows.

1-instanton

Terms with |Y⃗ | = 1 contribute to 1-instanton part of the Nekrasov partition function (A.2).

Such Young diagrams take the form of Y⃗ = ( , •, •, · · · ), (•, , •, · · · ), · · · . For adjoint hyper-
multiplets, the contribution of the fixed point Y⃗ = ( , •, •, · · · ) to the instanton measure is
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given by

zadj.(⃗a, ( , •, •, · · · ),m; ϵ1, ϵ2)

= (ϵ1 −m)(ϵ2 −m)
Nc∏
β ̸=1

(a1 − aβ + ϵ−m)(−a1 + aβ −m). (A.8)

The vector multiplet factor is zvec.(Y⃗ ) = 1/zadj.(Y⃗ ,m = 0). For fundamental hypermultiplets,

their contribution is

zfund.(⃗a, ( , •, •, · · · ),m; ϵ1, ϵ2) = (a1 −m+ ϵ), (A.9)

zantifund.(⃗a, ( , •, •, · · · ),m; ϵ1, ϵ2) = zfund.(⃗a, ( , •, •, · · · ), ϵ−m; ϵ1, ϵ2)

= (a1 +m). (A.10)

Thus 1-instanton Nekrasov partition functions for SU(Nc) gauge theory with Nf fundamentals

or an adjoint:

ZNf , k=1(⃗a,m, ϵ1, ϵ2) =
Nc∑
α=1

∏Nf

f=1(aα −mf + ϵ)

ϵ1ϵ2
∏Nc

β(̸=α) aβ,α(aα,β + ϵ)
, (A.11)

ZN=2∗, k=1(⃗a,m, ϵ1, ϵ2) =
Nc∑
α=1

(ϵ1 −m)(ϵ2 −m)

ϵ1ϵ2

Nc∏
β( ̸=α)

(aα,β + ϵ−m)(aα,β +m)

aα,β(aα,β + ϵ)
. (A.12)

For SU(2) gauge theory with an adjoint, the 1-instanton partition function take the form:

ZN=2∗, k=1(⃗a,m, ϵ1, ϵ2) = −2
(−ϵ1 +m) (ϵ2 −m) (4 a2 − ϵ1

2 − 2 ϵ1ϵ2 + ϵ1m− ϵ2
2 + ϵ2m−m2)

ϵ1ϵ2 (2 a+ ϵ1 + ϵ2) (2 a− ϵ1 − ϵ2)
.

(A.13)

2-instanton

Let us consider Nc = 2 gauge theories for simplicity. The Young diagrams which contribute to

the 2-instanton partition function must satisfy |Y⃗ | = 2. There are three types of such Young

diagrams: Y⃗ = ( , ), ( , • ), ( , • ) · · · . Let us compute the contribution of Y⃗ = ( , ).

The adjoint factor becomes

zadj.(⃗a, ( , ),m; ϵ1, ϵ2) = (ϵ1 −m)2(ϵ2 −m)2

× (a12 + ϵ1 −m)(a12 − ϵ1 +m)(a12 + ϵ2 −m)(a12 − ϵ2 +m). (A.14)

The contribution of the fixed point Y⃗ = ( , • ) is also given by the following polynomial:

zadj.(⃗a, ( , • ),m; ϵ1, ϵ2) = (ϵ1 −m)(ϵ2 −m)(ϵ1 − ϵ2 −m)(2ϵ2 −m)

× (a12 +m)(a12 + ϵ1 + ϵ2 −m)(a12 + ϵ2 +m)(a12 + ϵ1 + 2ϵ2 −m). (A.15)
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Finally, the Young diagram Y⃗ = ( , • ) gives

zadj.(⃗a, ( , • ),m; ϵ1, ϵ2) = (ϵ1 −m)(ϵ2 −m)(−ϵ1 + ϵ2 −m)(2ϵ1 −m)

× (a12 +m)(a12 + ϵ1 + ϵ2 −m)(a12 + ϵ1 +m)(a12 + 2ϵ1 + ϵ2 −m). (A.16)

Notice that zadj.( a1, a2, (Y1, Y2 )) = zadj.( a2, a1, (Y2, Y1 )). For instance, the 2-instanton parti-

tion function for SU(2) gauge theory with an adjoint is

ZN=2∗, k=2(⃗a, ϵ1, ϵ2) =
zadj.(⃗a, ( , ),m; ϵ1, ϵ2)

zadj.(⃗a, ( , ), 0; ϵ1, ϵ2)
+
zadj.(⃗a, ( , • ),m; ϵ1, ϵ2)

zadj.(⃗a, ( , • ), 0; ϵ1, ϵ2)

+
zadj.(−a⃗, ( , • ),m; ϵ1, ϵ2)

zadj.(−a⃗, ( , • ), 0; ϵ1, ϵ2)
+
zadj.(⃗a, ( , • ),m; ϵ1, ϵ2)

zadj.(⃗a, ( , • ), 0; ϵ1, ϵ2)
+
zadj.(−a⃗, ( , • ),m; ϵ1, ϵ2)

zadj.(−a⃗, ( , • ), 0; ϵ1, ϵ2)

= − (8m6ϵ1
2 + 8m6ϵ2

2 − 128 a6m2 − 8m6a2 + · · ·+ 20 ϵ1
7ϵ2 + 20 ϵ1ϵ2

7)

ϵ12ϵ22 (2 a− ϵ1 − 2 ϵ2) (2 a+ ϵ1 + 2 ϵ2) (2 a− ϵ2 − 2 ϵ1) (2 a+ ϵ2 + 2 ϵ1)

× (ϵ1 −m) (ϵ2 −m)

(2 a− ϵ1 − ϵ2) (2 a+ ϵ1 + ϵ2)
. (A.17)

We can compute the deformed prepotential by using the above results as

− 1

ϵ1ϵ2
Finst = log

(
1 + qZk=1 + q2Zk=2 + · · ·

)
= qZk=1 + q2

(
Zk=2 −

1

2
Z2

k=1

)
+ · · · . (A.18)

classical and perturbative part

The classical part of the partition function is given by

Zclass = exp

(
− 2πi

ϵ1ϵ2
τa2
)
. (A.19)

This part corresponds to the gauge coupling term of the action ∂2Fclass ∝ τ .

The perturbative parts are given by Barne’s double-Gamma function

Γ2(x|ϵ1, ϵ2) = exp γϵ1,ϵ2(x− ϵ) = exp
d

ds

[
1

Γ(s)

∫ ∞

0

ts−1 e−tx dt

(1− e−ϵ1t)(1− e−ϵ2t)

]
s=0

∼
∞∏

m,n=0

1

x+mϵ1 + nϵ2
. (A.20)
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See [46] for details of the function. The perturbative instanton measures are then given by

zpertvect =
∏
i<j

Γ2(aij + ϵ1|ϵ1, ϵ2)−1Γ2(aij + ϵ2|ϵ1, ϵ2)−1, (A.21)

zpertfund =
∏
i

Γ2(ai + ϵ−m|ϵ1, ϵ2), (A.22)

zpertadj =
∏
i,j

Γ2(aij + ϵ−m|ϵ1, ϵ2), (A.23)

where we follows the convention of [20].

B Calculation of E

In this appendix, we calculate the energy at zero-th order in ϵ1 which was used in the analysis in

section 2. In the gauge theory point of view, this corresponds to the evaluation of the Coulomb

moduli u. We consider the models corresponding to the N = 2∗ gauge theory and the SU(2)

gauge theory with four flavors in turn.

N = 2∗ SU(2) gauge theory

First of all, we fix our notation. The Weierstrass elliptic function P is double periodic with

periods π and πτ and is expressed as

P(z)=−ζ ′(z), ζ(z) =
ϑ′
1(z|τ)
ϑ1(z|τ)

+ 2η1z,

η1=−2πi

3

∂
∂τ
ϑ′
1(z|τ)|z=0

ϑ′
1(z|τ)|z=0

= −1

6

ϑ′′′
1 (z|τ)|z=0

ϑ′
1(z|τ)|z=0

, (B.1)

where ϑ1(z|τ) is elliptic theta function. The Weierstrass function satisfies

P(z)′ = 4P(z)3 − g2P(z)− g3, (B.2)

where

g2=
4

3

(
1 + 240

∞∑
n=1

n3qn

1− qn

)
,

g3=
8

27

(
1− 504

∞∑
n=1

n5qn

1− qn

)
, (B.3)

We also define g1 = −2η1 whose expansion is

g1 = −1

3

(
1− 24

∞∑
n=1

nqn

1− qn

)
. (B.4)
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We consider A cycle integral of P0 (2.18)

π =

∮
A

√
E − M

4
P(z), (B.5)

where E are expanded as E = 1+ME1(q)+M2E2(q)+ . . .. (The coefficients Fk(q) are functions

only of q.) These coefficients can be written in terms of fn defined by

fn =
1

π

∮
A

P(z)ndz, (B.6)

as

E1(q)=
f1
4
, E2(q) =

E1(q)2

4
− E1(q)f1

8
+
f2
64
,

E3(q)=
E2E1
2

− E2f1
8

− E3
1

8
+

3E2
1f1
32

− 3E1f2
128

+
f3
512

. (B.7)

Since fn are written in terms of gi as

f1 = g1, f2 =
g2
12
, f3 =

g3
10

+
3g1g2
20

, (B.8)

the coefficients are expressed as

E1(q)=
g1
4

= − 1

12
+ 2q + 6q2 + 8q3 + . . . ,

E2(q)=
g2
768

− g21
64

=
1

2
q + 3q2 + 6q3 + . . . ,

E3(q)=
g3 − g1g2
5120

+
g31
256

= −3

2
q2 − 12q3 + . . . , (B.9)

Therefore, the energy E(a) ≡ 4a2E can be written as

E(a)= 4

(
a2 − m2

12
+
m2(4a2 +m2)

2a2
q +

m2(192a6 + 96m2a4 − 48m4a2 + 5m6)

32a6
q2 + . . .

)
(B.10)

SU(2) gauge theory with four flavors

The zero-th order one-form P0dz (2.24) can be written as

P0 =

√
P4(z)

z(z − 1)(z − q)
, (B.11)

where P4 is the following polynomial of degree 4:

P4= m̃2
0z

4 +
(
−(1 + 2q)m̃2

0 − m̃2
1 +m2

0 + (2q − 1)m2
1 + (q − 1)E

)
z3

+
(
q(q + 2)m̃2

0 + (1 + 2q)m̃2
1 − 2qm2

0 − (q2 + 2q − 1)m2
1 + (1− q2)E

)
z2

+
(
−q2m̃2

0 − q(q + 2)m̃2
1 + q2(m2

0 +m2
1) + q(q − 1)E

)
z + m̃2

1q
2. (B.12)
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Also, the derivative with respect to E defines the holomorphic one-form:

ω0 =
∂(P0dz)

∂E
=

(q − 1)dz√
P4(z)

. (B.13)

For simplicity, we consider the equal hypermultiplet mass case. This implies that m̃0 =

m̃1 = 0 and m0 = m1 = m. Note that these parameters are related with the hypermultiplets

masses µi as

m0=
1

2
(µ1 + µ2), m1 =

1

2
(µ3 + µ4),

m̃0=
1

2
(µ1 − µ2), m̃1 =

1

2
(µ3 − µ4). (B.14)

In this choice of the masses, by redefining E = Ẽ− 2qm2

(q−1)
, the polynomial reduces to the degree

3 polynomial:

P3(z) = (q − 1)Ẽz(z − z+)(z − z−), (B.15)

with

z± =
1

2

(
1 + q + (1− q)

m2

Ẽ
± (1− q)

√
1 +

2(1 + q)

1− q

m2

Ẽ
+
m4

Ẽ2

)
. (B.16)

In this case, the holomorphic one-form becomes

ω0 =
(q − 1)dz√

P3(z)
=

1

2

√
q − 1

z+Ẽ

dz√
z(1− z)(1− k2z)

, (B.17)

where in the last equality we have rescaled z as z → zz− and k2 = z−/z+.

In order to obtain the expression for the energy in terms of a, we take a derivative of

a = 1
2πi

∮
A
P0dz with respect to Ẽ

∂a

∂Ẽ
=

1

2πi

∮
A

ω0 =
1

2

√
1− q

z+Ẽ
F (

1

2
,
1

2
, 1; k2), (B.18)

where F (a, b, c; k2) is the hypergeometric function. We expand the right hand side in the large

E region as
√

1−q

z+Ẽ
F (1

2
, 1
2
, 1; k2) = (E)−1/2(h0(q) + h1(q)

m2

Ẽ
+ h2(q)

m4

Ẽ2 + . . .) where hi(q) are

functions of only q. After integrating by Ẽ, we obtain

a =
√
Ẽ

(
h0(q)− h1(q)

m2

Ẽ
− h2(q)

3

m4

Ẽ2
+ . . .

)
. (B.19)

We then solve this in terms of Ẽ:

Ẽ =
a2

h20

(
1 + 2h0h1

m2

a2
+
h20(2h0h2 − 3h21)

3

m4

a4
+ . . .

)
(B.20)
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Finally, by returning to the original E = Ẽ − 2qm2

(q−1)
, we obtain

E= a2 −m2 +
a4 + 2m2a2 +m4

2a2
q +

13a8 + 36m2a6 + 22m4a4 − 12m6a2 + 5m8

32a6
q2 +O(q3).

(B.21)

C Action of Degenerate Field on Verma Module

In this appendix, we provide the quantities we use in section 4 to compute the instanton

partition function via the AGT relation.

C.1 Kac determinant

In section 4, we report the instanton partition function in the presence of a surface operator.

The computation for the first few terms employs the Kac determinant at some lower levels. We

provide here the level-2 Kac determinant for reference.

The level-2 Kac determinant is the determinant of the following Shapovalov matrix of level-

2:

Q∆ ||Y |=2 =

(
4∆ + c

2
6∆

6∆ 4∆(2∆ + 1)

)
. (C.1)

Let us substitute the AGT parametrization ∆(α) = (b+1/b)2/4−α2 and c = 1+6(b+1/b)2 into

the Shapovalov matrix. We then find that the Kac determinant can be factorized as follows:

K2(∆(α)) = detQ∆ ||Y |=2

= −32

(
α2 − 1

4

(
b+

1

b

)2
)(

α2 −
(
b+

1

2b

)2
)(

α2 −
(
b

2
+

1

b

)2
)
, (C.2)

where the factors are related to the 2-instanton Nekrasov partition function through the AGT

relation. The determinant for ∆′ = ∆(α + b/4) takes the following form

K2 (∆ (α + b/4)) = − 1

128

(
4α + 3b+ 2 b−1

) (
4α− b− 2 b−1

) (
4α− b− 4 b−1

)
×
(
4α− 3b− 2 b−1

) (
4α+ 5b+ 2 b−1

) (
4α + 3b+ 4 b−1

)
. (C.3)

We need this factorized form in order to obtain the Nekrasov-like expression for the irregular

conformal block with the degenerate field. The following formulae also play an important role
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in section 4.

∆

(
α+

b

4

)
= −

(
α− b

4
− 1

2 b

)(
α +

3b

4
+

1

2 b

)
, (C.4)

∆

(
α− b

4

)
= −

(
α− 3 b

4
− 1

2 b

)(
α +

b

4
+

1

2 b

)
, (C.5)

δ = ∆

(
α +

b

4

)
−∆2,1 −∆

(
α− b

4

)
= −b

(
α− 3 b

4
− 1

2 b

)
. (C.6)

C.2 Expansion coefficients

The degenerate field on the descendant state has the following form of the expansion in the

Verma module

Φ2,1(z)|∆, Y ⟩ =
∑
Y ′

z|Y
′|−|Y |+δβ Y

Y ′ |∆′, Y ′⟩. (C.7)

It is easy to check this z-dependence of the expansion as follows: let us expand Φ2,1(z)|∆, Y ⟩
in accordance with the level decomposition

Φ2,1(z)|∆, Y ⟩ =
∑
n

|∆′, Y, n; z⟩. (C.8)

The commutation relation between a primary field and a Virasoro operator then implies

L0Φ2,1(z)|∆, Y ⟩ =
∑
n

(∆′ + n)|∆′, n; z⟩

=

(
z
∂

∂z
+∆2,1

)
Φ2,1(z)|∆, Y ⟩+ Φ2,1(z)(∆ + |Y |)|∆, Y ⟩. (C.9)

This means that the z-dependence of the state is

z
∂

∂z
|∆′, Y, n; z⟩ = (δ − |Y |+ n)|∆′, Y, n; z⟩ ∝ zδ−|Y |+n, (C.10)

where δ = ∆′ −∆2,1 −∆.

Take Y = • for example. Then the expansion (C.7) becomes

Φ2,1(z)|∆⟩ =
∑
Y ′

z|Y
′|+δβY ′ |∆′, Y ′⟩. (C.11)

Here βY denotes the coefficient for the empty Young diagram βY = β •
Y . These expansion

coefficients are determined by using the identity

LnΦ2,1(z)|∆⟩ = zn
(
z
∂

∂z
+∆2,1(n+ 1)

)
Φ2,1(z)|∆⟩, (C.12)
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where n > 0. For n = 1 this equation gives

2∆′β 1 = δ + 2∆2,1 (C.13)

(4∆′ + 2)β 12 + 3β 2 = (δ + 1 + 2∆2,1)β 1, (C.14)

· · · .

The equation for n = 2 implies

6∆′β 12 + (4∆′ + c/2)β 2 = δ + 3∆2,1, (C.15)

· · · .

Thus, we get the first few coefficient for the degenerate field on the primary state |∆⟩

β 1 =
∆′ +∆2,1 −∆

2∆′ , (C.16)(
β 2

β 12

)
= Q−1

∆′ ||Y |=2 ·

(
∆′ + 2∆2,1 −∆

(∆′ +∆2,1 −∆)(1 + ∆′ +∆2,1 −∆)

)
. (C.17)

Here Q∆ is the Shapovalov matrix of level-2. By using the relation, we obtain the following

simple result which we use in section 4:

β 12 =
1

8 b2
(
a− b− 1

4b

) (
a− b

2
− 1

4b

) . (C.18)

The factors in the denominator relate to the instanton measure via the AGT relation.

For the first descendant state Y = [1], the expansion (C.7) is

Φ2,1(z)|∆, [1]⟩ =
∑
Y ′

z|Y
′|−1+δβ

[1]
Y ′ |∆′, Y ′⟩. (C.19)

By using the commutation relation and (C.11), we have

Φ2,1(z)|∆, [1]⟩ = L−1

(
zδ |∆′⟩+ z1+δβ 1 |∆′, [1]⟩+ · · ·

)
−
(
δ z−1+δ |∆′⟩+ (1 + δ)zδβ 1 |∆′, [1]⟩+ (2 + δ)z1+δβ 12 |∆′, [12]⟩+ · · ·

)
= −z−1+δδ |∆′⟩+ zδ(1− (1 + δ)β 1) |∆′, [1]⟩

+ z1+δ(β 1 − (2 + δ)β 12) |∆′, [12]⟩ − z1+δ(2 + δ)β 2 |∆′, [2]⟩+ · · · . (C.20)

In this way we can determine the expansion coefficients recursively:

β 1
• = −δ, (C.21)

β 1
1 = 1− (1 + δ)β 1, (C.22)

β 1
12 = β 1 − (2 + δ)β 12 , (C.23)

β 1
2 = −(2 + δ)β 2. (C.24)
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There are two Young diagrams with two boxes. We study the diagram Y = [12] first. The

expansion is

Φ2,1(z)|∆, [12]⟩ =
∑
Y ′

z|Y
′|−2+δβ 12

Y ′ |∆′, Y ′⟩. (C.25)

By using the commutation relation and (C.19), we obtain the following expansion in the Verma

module

Φ2,1(z)|∆, [12]⟩ = Φ2,1(z) · L−1 |∆, [1]⟩

= L−1 ·
(
−z−1+δδ |∆′⟩+ zδ(1− (1 + δ)β 1) |∆′, [1]⟩+ · · ·

)
− ∂

∂z

(
−z−1+δδ |∆′⟩+ zδ(1− (1 + δ)β 1) |∆′, [1]⟩+ · · ·

)
= z−1+δδ(−1 + δ) |∆′⟩ − z−1+δδ |∆′, [1]⟩+ · · · . (C.26)

Hence the expansion coefficients are given by

β 12

• = δ(δ − 1), (C.27)

β 12

1 = −δ, (C.28)

β 12

12 = 1− 2(1 + δ)β 1 + (2 + δ)β 12 , (C.29)

β 12

2 = (1 + δ)(2 + δ)β 2. (C.30)

We compute the expansion for Y = [2] next:

Φ2,1(z)|∆, [2]⟩ =
∑
Y ′

z|Y
′|−2+δβ 2

Y ′ |∆′, Y ′⟩. (C.31)

By using the commutation relation and (C.11) again, we have

Φ2,1(z)|∆, [2]⟩ = L−2

(
zδ |∆′⟩+ z1+δβ 1 |∆′, [1]⟩+ · · ·

)
− z−2

(
z
∂

∂z
−∆2,1

)(
zδ |∆′⟩+ z1+δβ 1 |∆′, [1]⟩+ · · ·

)
= zδ|∆′, [2]⟩+ z1+δβ 1 |∆′, [2 · 1]⟩+ · · ·

− z−2
(
(δ −∆2,1)z

δ |∆′⟩+ (1 + δ −∆2,1)z
1+δβ 1 |∆′, [1]⟩+ · · ·

)
.

(C.32)

The expansion coefficients are given by

β 2
• = ∆2,1 − δ, (C.33)

β 2
1 = −β 1(1 + δ −∆2,1), (C.34)

β 2
12 = −β 12(2 + δ −∆2,1), (C.35)

β 2
2 = 1− β 2(2 + δ −∆2,1). (C.36)
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In section 4, we use these formulae for β’s to rewrite the irregular conformal block as the

ramified instanton partition function.
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