ON NEWFORMS FOR KOHNEN PLUS SPACES
MASARU UEDA AND SHUNSUKE YAMANA

ABSTRACT. In this article, we investigate the plus space of level NV,
where 471N is a square-free (not necessarily odd) integer. This is
a generalization of Kohnen’s work. We define a Hecke isomorphism

or of M 1/2(4M) onto M:+1/2(8M) for any odd positive integer

M. The methods of the proof of the newform theory are this
isomorphism, Waldspurger’s theorem, and the dimension identity.

Introduction

The purpose of this paper is to establish the theory of newforms for
the Kohnen plus space with respect to ['o(N), where 471N is a square-
free integer. This is a continuation of Kohnen’s work (cf. [1]) in the
case when 47'N is odd square-free.

Let us describe our results. The space of cusp forms of weight £+1/2
with respect to I'g(N) is denoted by Sji1/2(N) and the Kohnen plus

space Sy, ,(N) is defined by

Slj+1/2(N) = {9 € Skt1/2(N) ‘ g(r) = Z an(g)qn}a

neN, (—1)kn=0,1 (mod 4)

where ¢ = ¢2™V~17. The C-linear map @y, on formal power series defined

by
Z anq"|pr = Z anq".

neNU{0} neNU{0}, (=1)*n=0,1 (mod 4)
gives a Hecke equivalent isomorphism of Sjiq/2(/N) onto S:+1/2(2N)

(see Proposition 3.3) if IV is exactly divisible by 4. We define an oper-

ator U(d) by
Z Cann|U(d) = Z adnqn

n n

for each positive integer d, and put Uy (d) = U(d)gpy.

S. Yamana thanks Prof. Tkeda for useful discussion, and he is supported by JSPS
Research Fellowships for Young Scientists.
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We define the space of newforms SZiVI/J;(N) for Slj+1/2
orthogonal complement of

> (S,j+1/2(p‘1N) + SI:—+1/2(p_1N)|Uk(p2)>a

pl4=IN

(N) to be the

where p extends over all prime divisors of 47'N, in ST\, ,(N) with

respect to the Petersson inner product. Let T(p?) (resp. T(p)) be the
usual Hecke operator on the space of modular forms of half-integral
(resp. integral) weight. The space of newforms for Sy (To(47'N)) is
denoted by Sie¥(471N).

We shall show the following:

Theorem. Suppose that k is positive and 4 ' N is square-free.

(1) S:+1/2(N) = ®g,d21,ad|4*1NSircliV;’/;(4a)|Uk(d2)-

(2) The operators T (p?) and Uy, (¢*), where (p,4'N) =1 and q|4 ' N,
fix S,?fﬁ;;(N) Moreover, S,?fﬁ;;(N) has an orthogonal C-basis
which consists of common Hecke eigenforms of these operators.

(3) There is a bijective correspondence, up to scalar multiple, be-
tween Hecke eigenforms in S5 (47'N) and those in SZiVI/J;(N)
in the following way. If ¢ € SE¥(47'N) is a primitive form,
i.e.,

o|T(p) = wpo, PlU(q) = wyo

for every prime number pt 47'N and prime divisor ¢ of 4™'N,
then there is a non-zero Hecke eigenform g € S,rcliv;/;(N) such
that

9T (p*) = wpy, 9lUk(a%) = weg
for every prime number pt 4='N and prime divisor ¢ of 4™'N.

Remark. We can also establish the newform theory for a quadratic
non-trivial character x. See Remark 5.1 in §5.

Let us explain the contents of each section. In §1 we introduce
the notion of modular forms of half-integral weight. Section 2 is an
introduction to the theory of the Kohnen plus space . In §3 we describe
the link between the full space of modular forms of half-integral weight
and the Kohnen plus space . In §4 we describe Waldspurger’s result,
which we use in the proof of main results in §5.



1. Preliminaries

If z € Cand ¢ € Z, then let '/ be the square root of z such that

—7/2 < arg 21?2 < /2, and put 2*/2 = (2'/2){. Fix an integer k. The

set & consists of all pairs (7, ¢(7)), where v = (24) is an element of

the connected component GLj (R) of GLy(R) and ¢ is a holomorphic
function on the upper half-plane § satisfying

B(r)] = (detn) H/2 VA jer 4 d]F+1/2
We define the group law of & by

(71, ¢1(7) - (72, 92(7)) = (M172, 1 (727) B2(7)).-

For a function h on $ and o = (v,¢(7)) € &, we put hla(r) =
¢(7) " h(77).

There exists an injective homomorphism T'y(4) — & given by
* . . C _
1oy = (0D ) = (S er + )

for v = (25) € To(4). Here (%) is the Kronecker symbol (see [2]) and

V-1 ifd=3 (mod 4).

Fix an integer N and an even Dirichlet character y mod N such that
x? = 1. Put x(7) = x(d) for vy = (2%) € To(N). We write N = 2°M,
where M is an odd integer. The 2-primary component of x is denoted
by x2. Throughout this paper (except for §4) we suppose the following
conditions:

{1 ifd=1 (mod 4).
€4 —

(I) e equals either 2 or 3;
(IT) the conductor of x5 equals either 1 or 4.

Remark 1.1. We can define the Kohnen plus space M,

ri1/2(N, x) with-
out the condition (IT). However, M,:FH/Q(N, X) = {0} unless the con-
ductor of y, equals either 1 or 4.

We call a holomorphic function 4 on $ a modular (resp. cusp) form
of weight & + 1/2 with respect to I'o(NV) and x if h|y* = x(y)h for
every 7 € I'g(N) and it is holomorphic (resp. vanishes) at all cusps.
The space of modular (resp. cusp) forms of weight k+1/2 with respect
to I'o(INV) and x is denoted by Mjy1/2(N, x) (resp. Spi1/2(N, X)).

We denote the n-th Fourier coefficient of h by a,(h). Put

Diy = {m e NU{0} | xo(=1)(=1)*m =0,1 (mod 4)}.
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Definition 1.2. The space M,jJrl/Q(N, X) consists of all functions g €
Mi41/2(N, x) such that a,(g) = 0 for all n ¢ Dy, ,. Put S,jH/Z(N, X) =
M:+1/2(Na X) N Skr1/2(N, x)-

When yx is the trivial character, we write

Migy1/2(N) = Mig41/2(N, X), Sk+1/2(N) = Sk112(N, X),
M;+1/2(N) = M/jﬂ/z(Na X)s SI:rl/Z(N) - S;+1/2(Na X)-

For an element o = (¢ %) € GL] (R) and a function h on §), we put
hllks1/20(r) = (det @)**T4 (er + d) * 7121 (ar).

We define 44 € ® and an operator U(d) on formal power series by

5, = < <d 1) ,d_k/2_1/4>,
Z a,q"|U(d) = Z aing"

neNU{0} neNU{0}

for a positive integer d. For each positive divisor ) of M such that @
and M /(@) are coprime, we choose an element vy € SLy(Z) such that

Yo = {((1) _01> (mod Q7).

1, (mod (Q1N)?).
We define operators W(Q) and Y (Q) on Mj1/2(N) by
W(Q) =150,
Y(Q) = MHIU@QW(Q)

Put

7(N) = <](\)7 —01> ,(N1/4(—\/—_17')1/2)2k+1) € ®,
Y (2¢) = 27 K23/ Derr (98I (M) 7(N).
Note that 7(N)? = 1 and

(1.1) W(Q)” = €5 'xo(—1)xn/0(Q)

on Myy1/2(N), where xo and xn/q are the @ and N/Q-primary com-
ponents of x respectively (cf. [5, Proposition 1.18]).
The Petersson inner product (g, h) is defined by

(g, h) = [SLa(Z) : Ty(N)] ! / g SRy,

where g € Sii1/2(N, X), h € Myy1/2(N, x) and 7 = 2 4+ /—1y.
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Proposition 1.3. Let m be a positive divisor of N. Suppose that a
complex valued function h on $) satisfies the following conditions:

(i) h(z‘ + 1) = h(r) for 7 € H;
(ii) hlém € Mk+1/2(Na X)-
Then the following assertions hold.
(1) If one of the conditions mf(x') 1 N and 4m t N is satisfied, then
h =0.
(2) If N is divisible by mf(x') and 4m, then h € Myi1/2(m™"N, x").

Here ' = X(m) and §(x') is the conductor of X'.
Proof. See [3, Lemma 7]. O

Proposition 1.4. Let p be a prime divisor of M with ord, M = 1.
Suppose that x, = 1. Then the operator 2'p=1/2Y (p) is an involution

on Myy1/2(N,x). Let h € Myy1/2(N, x) and € either 1 or —1. Then
the following conditions are equivalent:

(i) & 'p 2h|Y (p) = eh;
N 0 (=1)FnY\ .
(ii) an(h) =0 f( p )— .

Proof. Our assertion is the same as [5, Proposition 1.29] if e = 2 and
h € Sit1/2(N, x). We can treat the general case on the same line. [

2. The space M,;FJFI/Z(N, X)
Throughout this paper, we write
pex = Xo (1) (=D)L = e((2k + 1)(1 - xo(—1))/8).

We abbreviate ;1 = i, and v = vy, if there is no fear of confusion.
For each integer j, we put

1 0
A= (4Mj 1)
and write A = A} € &. For a function h on ), we define functions
h|P, and h|Ps on $ by

3
h|Py = hlgAs, h|Py = hl€ + Rl
j=0

where

= (1) el@+nE-x(-1)/9) <o,
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Note that on formal power series
1) Y adP=2u( Y ag" = Y e’
neNU{0} nEDg, ng¢Dy 5
(cf. [1, (2)]. There are misprints in [1]. We should replace by y2(—1)).

Definition 2.1. We define the C-linear map g, on formal power

series by
> gk = Y ang™

TLENU{U} ne@k,x

Put pp = @, if x is the trivial character.

Proposition 2.2. (1) P maps the space Myi1/2(N, x) into itself.
(2) If e = 2, then we have Py = Py + Ps A on Myiq1/2(N, x).
(3) If e = 3, then Py = 221 on Mk+1/2(N, X), and
P2 =2, ory =273 uPs 427"
on the space Myy1/2(N, x).

Proof. We follow the same line of arguments in [1, pp.36-37]. Put

o = Ao(N, ) = { (3 x(@j (3, 7)) [ = (¢ ))) e To(W) }.

For o € & and h € Mj1/2(N, x), we put

hl[Ao(N, x)ado(N, )] = Y _ kB
6€Ba

if there exists a finite set B, C & such that
Ao(N,x)adg(N, x) = | | Ao(V. x)B.

BEBa
Notice that E7'AG(N, x)€ N Ag(N, x) = Ag(16M, x) and
1—-2M (M —1)/2\" 1 0\ _ -
(2:2) ( 8M  1-2M ) 6(—SM 1) =&

Therefore we have
B = {{5, EAT, AL, €AY} ife=2.
{&, €43 }—{5 ¢y ife=3.
It follows that
Pae = [Ap(N, X)EAG(N, X)]

on My.1/2(N, x). Thus our assertions are immediate (see (2.1)). [
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Proposition 2.3. Suppose that e = 3. The operator Y (8) then maps
Mi41/2(N, x) into M}j+1/2(Nv X), and (4pv)~tY (8) is an involution on
M;+1/2(N,X)- Moreover, for e € {£1} and g € M, ,(N,x) the

k+1/2
following conditions are equivalent:
(i) (4pr)~'g|Y(8) = eg; )
—1)(—1
(i) an(g) = 0 if (XZ( )(=1) ">: —c.

Here, we put

1  ifa=1 (mod 8).
(%): -1 ifa=5 (mod8).
0 ifa=0,4 (modS38).

Proof. Recall that we choose vy = (254) in §1. Let h € Myyq2(N, x).
Let n=—1if c < 0 and d < 0, and let n = 1 otherwise. We have

Sy c 2% + 1\ 8(b+ jd) —a— jc
BV (8) = nsen(d) 5 ) e =5 ) 3 Al (PCpb 7Y TL)-
j=0

Since b + jd and 8d are coprime if j is an odd integer, we can choose
integers p, q, r, s and ¢ such that

(8(b+jd) —a—jc) _ (p Q) (8 t)
64d —8¢ rs 08/"
Note that r = 8d is divisible by N. Observing that
p=s=—-t=j (mod8), s=—-c=-1 (mod M),

we have x(s) = x(—s) = x2(—j) and

(5)= (=)= 3) )

Let us set
hi(1) = Z an(h)q"
x2(—1)(—=1)*n=i (mod 8)
for i =0,...,7. Then, using the assumption (II) in §1, we have
e 2k + 1 . _ _ 2 8 o
hlY (8) = h + e< < ) > xel=h)e ™ 1<;> Mt/ (0 83)

j€{1,3,5,7}
=N + 4/U/(h1 — h5),

where we abbreviate the sum over even j € {0,2,4,6} by A'.
Observe that h'(7 4+ 1/2) = h'(7). Applying Proposition 1.3 to

h|f/(8) - h|f/(8)pk € Mk+1/2(Na X)5
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we have h/(7+1/4) = B'(7). Thus Y'(8) maps Mj,,1/2(N, x) to Mk+1/2(N, X)-

Replacing h with ¢ and repeating the same process, we have

glY (8)" = " + (4pw)* (91 + g5), g"(r+3)=4"
The second assertion is an application of Proposition 1.3 to the function
g|Y (8)?— (4uv)%g. We easily see that (ii) holds if (i) h01ds~. If (ii) holds,
then (i) is an application of Proposition 1.3 to (4uv) tg|Y(8) —eg. O
Lemma 2.4. If e = 3, then we have
PgAPg = 21/2/LAP8A

on the space My 1/2(N, ).
Proof. Following the same line of computation as in [1, §2], we have

HEATE = e(2h-+ D=1 - /s (G000 2O )

for h € My41/2(N, x), and

4(1 +tM) 2+tM _(1—tM—M2 (14 tM) /4)( )
16tM  4(1+tM) ] — —4M? 1+tM+ M2/ \0 4

for t € {1}. Put r, = 1+ ¢tM + M?. It follows from (2.2) that

e<(2k+1)( = X2 (=1 ))>h|P8AP8 = ¥ xre 1( 1>h|A§A*A§s

s, te{£1}
= ah|APA
where
_ ¢ 21 -1\ _ IREYAREY 1/2
o= ¥ it ()= etel-nE0ss2e
We have thus completed the proof of Lemma 2.4. O

3. A certain isomorphism
Proposition 3.1 (Kohnen). We have
Py =1v"'Y(4)
on the space My1/2(4M, x). Moreover,

My 1AM, x) = {h € My o (4M, x) | (2% ) 'hIY (4) = b}

and the following direct sum decomposition holds.
Mk+1/2(4M, X) M;+1/2(4Ma X) @ Mk+1/2(4M, X),

My (M) = {h € Miapp(4M, x) | (212p) " BV (4) = ).



Proof. As is well-known,
U(4) = 45273 A (4M, )67 Ao (4M, X))
(see the proof of Proposition 2.2 for notation). We have
Y (4) = [Agdy 'Ag]W (M) 7(4M)

= 20 (§ 1) 452) 20| W (M) (400)

= [ao((§ ) 42 W () r () A

_ [no{(41) etk )] =1

as in the proof of Proposition 2.3. We know that the similar state-
ment holds for the space Syy1/2(4M, x), taking [1, Proposition 1] into
account. We can treat Myq/2(4M, x) by the same way. O

Remark 3.2. In a similar method, we can show that
v Y (8) = [A0(8M, x)n2Ao(8M, X)),
where

n=((§4) el@+1)2-xa(-1)/89).

The following proposition is important since at the moment, our
knowledge of the space Si41/2(8M, x) is incomplete, although there are
a number of results available in the space Sj1/2(4M, x). For example,
fairly good information on Sy1/2(4M, x) was obtained in [6].

Proposition 3.3. The map @i, induces a C-linear isomorphism of

Mi11/2(4M, x) onto M;+1/2(8M, X), which maps Siy1/2(4M,x) onto
S;+1/2(8M’ X)-

Proof. Put

oky =271 (1+ A)(3—2712uPy).
The map g, which sends M,jJrl/Q(SM, X) into Mj1/2(4M, x), turns

out to be the inverse of gy . Indeed, Propositions 2.2 (2) and 3.1 show
that

P Ohx = (27 Py +27 Y opy = 271272 pP +1)(3 - 272 upy) = 1
on Myi1/2(4M, x). Tt follows that
(3—2"2uP)pry = (3 =2 V2u(Py + Py A)) (2 %2 uPs +271)
=14272yPy — 2732, Py A — 272 Py AP,
By virtue of Lemma 2.4, we have
Ok Pk = (14+272uPs — (27'2uPs — 1) A(1 + 272 uPy)) /2.
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Since Py = 22 0n M, ,.,(8M, x), we conclude that Ok Pk = 1. O

k+1/2
Corollary 3.4. Let g € Siy1/2(4M, x) and h € My 14/5(4M, x). Write
g =g+ 9o, h = hy + hs,
g1s hi € Myl 5 (40, x), 92, ha € My, y(4M, x)
(see Proposition 3.1 for the definition of M, , ,(4, x)). Then we have
g2, h
(019t lona) = (on ) + 202

Proof. Observing Propositions 2.2, 3.3 and their proofs, we have
(9l 0k Plory) = (9, hlok) = (g, hlory)
= (g9, bl (1 4+ A))/2 = (g, h|(2 **uPy + 1)) /2.
Corollary 3.4 is an easy consequence of Proposition 3.1. O

We shall use Corollaries 3.4 and 5.2 in a forthcoming paper.

4. Results of Waldspurger

We use the notation in [6] in this section. Let ¢ € Sor(I'o(d)) be
a primitive form. Put )\, = p~#™1/2a,(¢) for each prime number p.
Choose a complex number o), such that a, + a;l = )\, when p and
d are coprime. We denote by p, the local component at a place v of
the automorphic representation determined by ¢. Let S be the set of
places such that p, is not a irreducible principal series.

We assume the following conditions:

(Hy) Ifp ¢ S, then p, ~ m(py, pr") with p,(—1) = 1;

(Hs) po is not supercuspidal or d is divisible by 16.

Let V(N) be the orthogonal complement of the space spanned by
theta functions in S3/2(IN). The space Siy1/2(N, ¢) consists of all func-
tions g € Sky1/2(N) (resp. V(N)) such that ¢|T(p?) = a,(¢)g for every
rational prime p{ N if k > 1 (resp. k = 1).

For each rational prime p and non-negative integer e, Waldspurger [6]
associated to ¢ a non-negative integer 7, and a set U, (e, ¢) of functions
on Q invariant under Z;Q, the supports of which lie within Z, N Q.

Remark 4.1. If p and 2d are coprime, then U,(0,$) = {c)[\,]}, where
we define ¢J[),] in the following way. We put
Xe+1 _ Xfefl
1 >
L(X) = ¥ x— ife>0
0 ife<0
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for each integer e. For each rational prime p and a € Q}, we put

Apa = ) = ¥, ((=1) a)p™" 1y, 0

and
ord,a +1

-0
o) = | S0y (1t
where §;; be the Kronecker delta, and gp(a) =1, —1, 0 accordingly as

Q,(v/a) is Qp, an unramified quadratic extension of @, or a ramified
quadratic extension of @,. Then we put c)[\,](a) = Apa(ay) for every

a€@Q.

Let N* be the set of positive square-free integers. For each positive
integer n, the unique element of the set N°¢ N1 nQ*? is denoted by n*.
Let A be a function on N* and E a positive integer which is divisible
by N(¢). Put e, = ord, E' and define a function g(cE, ) on § by

CE, ZA sc k/2 1/4H

neN

for ce = (¢p) € [, Uplep,d). We write U(E, ¢, A) for the space
spanned by functlons 9(cg, A) for cg € [[, Uy(ep, ¢).

Waldspurger showed the following results in slightly more general
situations.

Theorem 4.2 (cf. [6, Theorem 1]). Suppose that ¢ satisfies the hy-
potheses (Hy) and (Hy). There exists a function A? : N°° — C which
satisfies the following conditions:

(i) for every t € N°

A?(t)* = L(¢Y_1yre, 1/2)2( e, 1/2),
where L(¢ 1y, 1/2) is the central critical value of the L-
function of ¢ twisted with the quadratic character corresponding

to Q(v/(=1)t);

(ii) for every positive integer N

Skr172(N, ) = @54 mn U (E, ¢, A?),
where E extends over all positive divisors of N divisible by

N(9).

Proposition 4.3. Assume that d is square-free. Put t, =loga,/logp
or log \,/logp accordingly as p ¢ S or p € S. Then the following
assertions hold.

(1) S consists of the infinite place and all prime divisors of d.
(2) Ifp ¢ S, p, is the principal series 7(| |, ", | ;7).
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TABLE 1
L@(Oa¢) L@(17¢) L@(27¢)
2#p¢ S {al} [ {clan]}
2#pe S 0 {e5 ]}
2=p¢ S, ap# £l 0 0| {chfaal, chlay '}
2=p¢ S, ape{£1}| 0 0 {chlon], c5lan]}
2=pesS 0 0 {c5[ o]}

(3) If p is a rational prime in S, then ), is either p~*/2 or —p~'/2,
and p, is the special representation o (| |;t”, | |§,”).

(4) 53/2(4d) = V(4d).

(5) n, = ord,d or 2 accordingly as p is odd or p = 2.

(6) Assume that N is divisible by d and 4. Then all functions g €
Skt1/2(N, @) satisfies the following conditions for each prime
number p € S:

(a) Ifgp((—l)kn) = p'/2),, then a,(g) = 0;
(b) g|U(p?) = p*=Y2\,g if (2p)"'N and p are coprime.

Remark 4.4. From Proposition 4.3 (2) and (3), the hypotheses (H;)
and (Hs) are automatically satisfied if d is square-free.

Proof. Our assertions (1), (2) and (3) are well-known. See [4, §3 Corol-
lary] for (4). Our assertion (5) directly follows from the definition of
np. Our assertion (a) is a special case of [6, Proposition 19].

The set Up(e, ¢) specifies as in Table 1. For each ¢ € C and odd
rational prime p, the definitions of functions c,[d], ¢5[d], c3[0], c5[d] and
c5[0] can be found in [6] (for ¢)[d] see remark 4.1). Let us note that
e[ Mpl(ap®) = Npes[Mp)(a) for every a € Z, N Qy. We thus obtain the
assertion (b) in view of Theorem 4.2 and Table 1. O

If d is square-free, then we define a function ¢? on $ by
g*(r) =Y A P T el (0) [T Apn(ap)d”
neN pES p¢sS

(see Remark 4.1 and the proof of Proposition 4.3 for ¢;[A,] and A,,).

Proposition 4.5. If 2M is square-free and d is a positive divisor of
2M, then

Sk1/2(4M, ) = By24-11Cq?|U (b7,

where b extends over all positive divisors of 2d='M.
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Proof. 1f d is odd, then we can easily check that

adloal(e) =05 Glog @) ey
)\Z,a(a2) = Qg — Qy
ascylas](a) if ap € {1}

for every a E~Q2X. Remarks 4.1, 4.4 and Theorem 4.2 thus show that
9% € Si11/2(N(9), ¢). It follows from an easy computation that

’ _ Oé_l ifp 73 2
Cp[ap](a) = ()‘p,zﬂa(ap) — lAp,a(ap)) X {1p if p=2

for every p ¢ S and a € Q. Theorem 4.2, Proposition 4.3 (5) and
Table 1 show that Sy1/2(4M, ¢) is spanned by functions g?|U(b?) with
positive divisors b of 2d'M.

We have only to show that these functions are linearly independent.
For a positive integer N, the symbol (V) stands for the number of
prime divisors of N. We see that

(4.1) dimg Syy1/2(4M, @) < 21241,
In view of Proposition 4.3 (4), we know that

(4.2) Skr1/2(4M) = Dajanr, gePrmay (d)Sk+1/2(4M, @),

where Prmyy,(d) denotes the set of primitive forms in Sor(T'g(d)). Since

Sor(Lo(2M)) = @b, a1, baj2m, pePrmyy (d) CP|2k (b 1) ,
it follows that
(4.3) dimg S (To(2M)) = ) 2/ M) gPrmy (d).

d2M
Since [4, §3 Corollary] shows that
dimg Sor,(T'g(2M)) = dimg Sg1/2(4M),
(4.2) and (4.3) show that the equality holds in (4.1). The proof of
Proposition 4.5 is now complete. 0
5. Proof of Main Theorem

We now prove Theorem (see Introduction for notation and the state-

ment). If e = 3, then Propositions 3.3, 4.5 and (4.2) show that
Sti1a(N) = Skr1/2(27"N) o = Baja-1n, seprmgg (@) Sk+1/2(27 N, 9)|

(5.1) = b, d>1, bdja—1 N, ¢6Prm2k(d)C9¢|pkUk(bZ)-
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Note that (5.1) also holds when e = 2. It follows that
(5.2) Sit7e(N) = Bgeprmy, (113 Cg% |9k

Proposition 4.3 (b) shows that ¢?|prUk(¢?) = w,g?|pk for every
prime divisor ¢ of 4 'N. We thus observe that functions ¢?|gp; sat-
isfy the conditions of (3). We are led to our assertion (1) and (2) by
virtue of (5.1) and (5.2).

Remark 5.1. We can establish the newform theory for an even qua-
dratic character x. Letting f be the conductor of x and observing that
M,:“+1/2(N)|U(f’) = MJH/Q(N, X), where {' is either { or f/4 according
as f is odd or even, we can define the space of newforms for S;+1/2(N, X)
by

ez (N, x) = Sp, (N[U(F),
and can generalize our result as in [1].

Corollary 5.2. Under the notation as in Theorem , the following asser-
tions holds.

(1) On the space S;f:/;(]\f), we have

—ef,k“p_l/Q}N/(p) if 2 # p|l4~'N.

P UG = {_(4,”)1;7(8) if 2 = p[4~'N.

(2) Let p be a prime divisor of 47'N. If g € S, ,(p™'N) is an
eigenfunction of the operator Y (p°™» ), then g = 0.

Proof. Combining Propositions 1.4, 2.3, 4.3 (6) with (5.2), we can es-
tablish our assertion (1).

If p is odd, then (1.1) and the definition of Y (p) show that g|U(p)
and ¢|W (p) = g|5~p are linearly dependent. This contradicts Theorem
(1) for g|ng(p) = pF/2+1/4g If p = 2, then taking Proposition 3.1 into
account, we can show that g|U(4)d, and g|U(8) are linearly dependent,
which contradicts Theorem (1). O
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