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ABSTRACT  A two-dimensional (2D) fast multipole boundary element analysis of 

magneto-electro-elastic media has been developed in this paper. Fourier analysis is employed to 

derive the fundamental solution for the plane-strain magneto-electro-elasticity. The final 

formulations are very similar to those for the 2D potential problems, and hence it is quite easy to 

implement the fast multipole boundary element method. The results are verified by comparison 

with the analytical solutions to illustrate the accuracy and efficiency of the approach. The 

numerical examples of multi-inclusion magneto-electro-elastic composites are considered to show 

the versatility of the proposed approach in smart structure applications.  
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1. Introduction 

Magneto-electro-elastic (MEE) solids have wide technical applications, due to the mixed 

properties of the piezoelectric, piezomagnetic and magnetoelectric effects. This coupling behavior 

makes magneto-electro-elastic composite materials especially suitable for application in smart 

structures and micro-electromechanical systems (MEMS) or nano-electromechanical systems 

(NEMS).  

Several approaches including numerical methods, analytical methods and experiments have 

been applied to the investigation of the coupling behavior of the MEE materials. Pan and 

coworkers [1,2] have pioneered analytical investigation of three-dimensional (3D) linear 

anisotropic, simply supported and multilayered MEE plates. Pan [3] further derived the 3D 

Green’s functions in anisotropic MEE bimaterials. Wang and Shen [4] presented a general solution 

of the 3D equations of a transversely isotropic MEE medium, and derived the 3D Green’s 

functions for a half-space and the exact solution for a generalized dislocation. Chen et al. [5,6] 

developed a new state-space formalism to study the static and dynamic behavior of multilayered 

or functionally graded MEE plates. Chen et al. [7] obtained a concise general solution for 

transversely isotropic MEE media involving thermal effect and derived an exact solution of a 

penny-shaped crack in an infinite body. Milazzo et al. [8] studied the forced vibration of a MEE 
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bimorph beam based on the Timoshenko’s beam theory.  

A finite element method (FEM) analysis has been developed by Buchanan [9] to study the 

multilayer and multiphase MEE materials response. Petterman and Suresh [10] used a 

representative volume element to investigate the characteristics of 1-3 type piezo-composites 

along with the finite element technique. Lee et al. [11] obtained the effective properties of a 

three-phase MEE composite by employing the finite element method and found the non-zero 

magneto-electric coefficient. Besides finite element method, the boundary element method (BEM) 

can be regarded as an alternative feasible numerical method, due to its features of dimensionality 

reduction for linear problems and high accuracy. Ding and Jiang [12] derived the fundamental 

solution for the plane problem of MEE media in terms of harmonic functions and developed the 

boundary integral equations based on their fundamental solutions. Ding et al. [13] also presented 

3D Green’s functions for transversely isotropic MEE materials and performed 3D BEM analysis 

of an annular plate. By using a boundary element approach, Davi et al. [14] investigated the 

influence of the configuration of the magnetic layer on the behavior of MEE bimorph beams.  

Fast multipole method (FMM) is an algorithm developed originally for numerical solution of 

integral equations (the reader is referred to the review article by Nishimura [15] for historical 

accounts, various applications and basic features of this method). It has been proved that the 

system of equations formed by BEM can be solved via FMM with higher efficiency and lower 

storage than with the traditional solvers. This method has been widely used in many areas of 

researches including electromechanical applications. For example, Sabariego et al. [16] recently 

applied a fast multipole method to the two-dimensional (2D) finite element-boundary element 

modeling of electromechanical devices, where a linear actuator is studied as an example 

application. 

To develop a fast multipole method for BEM, one needs simple and appropriate expressions of 

fundamental solutions for 2D MEE problems. As mentioned above, researchers have already 

obtained various fundamental solutions for 2D MEE materials. However, their forms of solutions 

are somewhat complicated and in particular inappropriate to be implemented in the fast multipole 

method. Therefore, in this paper, we will first derive the fundamental solution by means of the 

Fourier transform. The expressions so obtained bear a similar structure as that of a 2D potential 

problem. Thus, it becomes very easy to program the 2D MEE counterpart based on available fast 

multipole BEM codes for 2D potential problems. Several numerical results are presented and 

verified by comparison with the analytical solutions to further illustrate the accuracy and 

efficiency of the approach. Furthermore, multiple inclusion problems are considered here to 

investigate the mixed properties of the piezoelectric, piezomagnetic and magnetoelectric effects. 

The effective properties of a piezoelectric-piezomagnetic composite are determined based on the 

numerical simulations. It is concluded that the method is not only easy in the meshing of 

complicated geometries, accurate for solving singular fields, but also practical in solving 

large-scale problems.  

 

2. Boundary integral equations for 2D MEE 

2.1 Basic equations 

First, assume that the response of a magneto-electro-elastic body does not vary along the y 

direction. This corresponds to a generalized plane-strain problem. With body force (X1, X2), free 

electric charge (X3) and free magnetic charge (X4, which usually vanishes), the plane-strain 
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governing field equations of MEE materials in the xoz coordinates can be expressed by 
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where ij ( ij ) is the stress tensor, iD  is the electric displacement vector, and iB  is the magnetic 

induction vector. The 2D constitutive equations for a transversely isotropic MEE material are given 

by 
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(2) 

in which, u , w  are the displacement,   is the electric potential, and   is the magnetic 

potential. ijc , ije , ijd , ij , ijg  and ij  are the elastic, piezoelectric, piezomagnetic, dielectric, 

electromagnetic and magnetic constants, respectively.  

The boundary conditions are given by 

           on t ;         on u  

          on  ;        on   

         on  ;      on   

(3) 

where it  is the surface traction,   is the surface charge, and   is the surface magnetic 

induction. The tilde indicates the prescribed value, and in  denotes the unit outward normal vector. 

Note that t u              , where   is the whole boundary of the domain. 

 

2.2  Boundary integral formulations 

The boundary integral formulations for the 2D MEE media can be derived based on the 
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Somigliana equation, and take the following form (See Appendix for derivation) 
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where C  is the coefficient matrix, 
*U  and 

*T  are the generalized displacement and stress 

fundamental solutions of the 2D MEE problem, which will be discussed in the next section. The 

generalized displacement vector u , the surface traction vector t , and 
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T  (5) 

where 
*

iju  and 
*

ijt  (i, j=1,2) denote the displacement and traction components in the j-th direction 

at a point   due to a unit force acting in the i-th direction at the point X; 
*

3 ju  and 
*

3 jt  ( j=1,2) 

represent the j-th displacement and traction at   due to a unit electric charge at X; 
*

4 ju  and 
*

4 jt  

( j=1,2) represent the j-th displacement and traction at   due to a unit magnetic charge at X; 
*

i , 

*

i , 
*

i , 
*

i  ( i=1,2) stand for the electric potential, magnetic potential, the surface charge and 

surface magnetic induction at   due to a unit force acting in the i-th direction at X; 
*

3 , 
*

3 , 
*

3 , 

*

3  stand for the electric potential, magnetic potential, the surface charge and surface magnetic 

induction at   due to a unit electric charge at X; 
*

4 , 
*

4 , 
*

4 , 
*

4  stand for the electric 

potential, magnetic potential, the surface charge and surface magnetic induction at   due to a unit 

magnetic charge at X. 

 

3. 2D fast multipole formulations for MEE media 

First, substituting Eq. (2) into Eq. (1), we can obtain the basic equations of the 2D 

magneto-electro-elasticity as 
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where D is the following differential operator matrix 
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in which, 
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. To obtain a proper form of the fundamental 

solution of the above equations, we here use Fourier transform defined by 
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where 1i   . Thus, Eq. (6) can be written in the transform domain as follows, 
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where 1X̂  and 2X̂  are body forces in transform domain, 3X̂  and 4X̂  are free electric 

charge and free magnetic charge in transform domain respectively. Also,
 1 2,

ˆ
kl

kl

P
A

D

 
  , klP  

is the cofactors of D̂ , D̂  is the Fourier transform of D , and D̂  is the determinant of the 

matrix D̂ , which can be evaluated as 

8 6 2 4 4 6 2 8

1 2 2 2 1 3 1 2 4 1 2 5 1D̂ a a a a a             (10) 

where the coefficients ( 1,2,...,5)na n   are the same as those given by Hou et al. [17]. Eq. (10) 

can be decomposed into four factors as  

    2 2 2 2 2 2 2 2 2 2 2 2

5 1 2 1 1 2 2 1 2 3 1 2 4
ˆ / / / /D a s s s s             (11) 

where sj (j=1, 2, 3, 4) are the four roots of the following algebraic equation which satisfy 

Re( ) 0js  : 

8 6 4 2

1 2 3 4 5 0a s a s a s a s a      (12) 

These roots sj are related to the material constants only. Here we confine ourselves to the simple but 
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frequently encountered case that all these roots are distinct.  

Now, the Fourier inverse transform of Eq. (9) shall give us the fundamental solution in the 

physical space. Before performing the inversion, however, we rewrite the fundamental solution in 

the following form to conform to the boundary integral formulation in Eq. (5). For example, 
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where  
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for a positive z, where  
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Since 
s

klP  is a polynomial of sixth order about 1 , we can get the following equation from 

Eq.(15) as  

   1 1 1 14
*

1 1

1 1 10 0

1, 1,1

4

m m
s si x s z i x s z

kl m kl m

kl

m m m m m

P s i P s ie e
u d d

s b s b

   

 
  

   



 
  

 
    (17) 

where the two integrals are computed in the sense of finite parts. Therefore, we can obtain 
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to within a non-essential additive constant. This result can be further rewritten as 
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in which the overbar means the complex conjugate of the variable. The cofactors  1 2,klP    of 

D̂  can be easily calculated; for example, we have 
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(20) 

where kn (k=1, 2, 3) and kln (k=4, 5, 6, 7; l=1, 2, 3) can be found in Ref. [12]. Other cofactors of 

 1 2,klP    can be obtained similarly. We note that the result in Eq.(19) remains valid for a 

negative z. 
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Hence, we have obtained the 2D fundamental solution of magnetic-electric-elastic media. These 

solutions are at least as simple as the existing ones. However, it is much easier to develop 

FMM-BEM algorithms based on the present fundamental solutions, as shown below.  

From the above fundamental solutions, we find the following basic function when the loading is 

acted at any point, 

 0 0, ln( )j j j j jG z z z z   (j=1, 2, 3, 4) (22) 

For convenience, we introduce the complex notation, 0

j jz x izs  , 
j jz i s   , with the point (x, 
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z) being the observation point, and the point ( , ) being the field point or integration point. Thus, 

the basic equation is almost the same as the fundamental solution of a 2D potential problem, except 

for the existence of js , which may be a complex number according to the material properties. 

Nevertheless, the general idea of the multipole expansions of this function is totally the same as the 

2D potential problem. For example, the basic function can be expanded as follows, 
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The mid point c

jz  is close to 
0

j (i.e. 0c c

j j j jz z z z   , for 
0

j jz  ), and can be expressed by 

c

j c c jz i s   .  

It should be mentioned that 
0

j  is no longer the original boundary of the whole body. Indeed, we 

have four different boundaries according to the assumption of sj. A simple way to deal with this 

situation is to introduce four tree structures, which depend on the different boundaries 
0

j  of the 

body. Then, it will become very convenient to implement Eqs. (19), (21) and (23) in the FMM 

algorithm based on these four tree structures. It is also understandable that a shift of multipole 

expansion (M2M), a shift of multipole to local expansion (M2L) and a shift of local expansion (L2L) 

remain almost the same as in the potential problem. Detailed analysis and formulations of the 

subsequent multipole translations and implementations of FMM can be found in Ref. [18].  

We note that the formulation given above leads to an O(N) numerical method in problems with N 

unknowns because it basically invokes the FMM for Laplace’s equation (an well-established O(N) 

method) 4 times for each evaluation of the integrals in Eq.(4) on the whole boundary. 

 

4. Numerical Examples 

Several examples are considered here to verify the proposed numerical procedures of the fast 

multipole BEM for 2D magneto-electro-elastic problems. In the following examples, constant 

elements are employed to discretize the boundary of the domain, the numbers of terms for multipole 

and local expansions are set to 20, the number of elements allowed in a leaf is 20, and the tolerance 

for convergence in the iterative solver is 10
-6

. 

 

4.1 A plate under prescribed tension 
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Consider a magneto-electro-elastic rectangle of size a×b under the following boundary 

conditions, see Fig.1,  

  / 2z b  : 0xt  , 100zt  , 0  , 0   

/ 2z b  : 0xt  , 0w  , 0  , 0   

/ 2x a  : 0xt  , 0zt  , 0  , 0   

/ 2x a  : 0u  , 0zt  , 0  , 0   

(25) 

The plane-strain state is assumed. Table 1 presents the material constants used in the calculation. 

 

Table 1. Material constants 

11c  13c  33c  44c  31e  33e  15e  11  

1.66E11 7.8E10 1.62E11 4.3E10 -4.4 18.6 11.6 11.2E-9 

33  31d  33d  15d  11g  33g  11  33  

12.6E-9 580.3 699.7 550 5E-12 3E-12 5E-6 10E-6 

Unit: C-N/m
2
, e- C/m

2
, d-N/Am , ε- C/Vm , μ- Ns

2
/C

2
,  g- Ns/VC. 

 

 
 

Fig. 1 Simple tension of a magneto-electro-elastic media 

 

For numerical calculation, we consider the rectangle of a=2.0m and b=2.0m for which the total 

number of elements on the boundary ranges from 16 to 5120. Table 2 shows the results of the 

displacement, electric potential and magnetic potential at the point (a/2, b/2). With only 80 elements 

on the boundary, the results are already very accurate and stable by the fast multipole boundary 

element method. Compared with the analytical solutions, the maximum error is less than 3%.  

 

Table 2. Comparison of FMBEM results with the exact solution 

N DOFs u (×1.E10) w (×1.E10)     

16 64 -0.567616E+01 1.156720E+01 1.880028E+00 0.408640E-01 

80 320 -0.619428E+01 1.138348E+01 1.904264E+00 0.425132E-01 

x 

z 

a 

b 
(0, 0) 



10 

 

160 640 -0.626124E+01 1.136984E+01 1.905884E+00 0.426592E-01 

320 1,280 -0.629592E+01 1.136572E+01 1.906428E+00 0.427220E-01 

640 2,560 -0.631400E+01 1.136512E+01 1.906592E+00 0.427488E-01 

1,280 5,120 -0.632352E+01 1.136564E+01 1.906628E+00 0.427604E-01 

2,560 10,240 -0.632848E+01 1.136636E+01 1.906632E+00 0.427652E-01 

5,120 20,480 -0.633152E+01 1.136628E+01 1.906692E+00 0.427744E-01 

Analytical solution -0.633316E+01 1.136676E+01 1.899100E+00 0.427812E-01 

 

The CPU time for the FMBEM to solve the models with 5120 DOFs, for example, was 692s, 

while that for the conventional BEM with direct solver was about 7810s, thus showing the 

advantage of the proposed method over the conventional one. We note, however, that these timing 

results are just rough indications of the relative efficiencies, because they are obtained on a laptop 

computer (Intel Core2 CPU) with limited resources. 

 

 

4.2 A single-inclusion problem 

Composite materials consisting of both piezoelectric phase and piezomagnetic phase have broad 

applications in the fabrication of smart and adaptive material systems, due to the mixed properties 

of the piezoelectric, piezomagnetic and magnetoelectric effects. Here, we will study the coupling 

behavior of heterogeneous magneto-electro-elastic materials with an embedded inclusion to verify 

the efficiency of the new fast multipole BEM for 2D multi-domain MEE problems.  

We consider a square sheet with one inclusion, see Fig. 2. The inclusion has the same material 

constants as the matrix, as shown in Table 1. To obtain the effective material properties of the 

magneto-electro-elastic sheet, one should impose a series of special loads with different boundary 

conditions. For example, all the field variables except the strain in the x-direction will vanish 

identically when the sheet is subjected to a uniform unit displacement along the x-axis direction at 

the edge AB, while the normal displacements and tangential tractions are zero along the edges AD, 

CD and BC and the electric potentials and the magnetic potentials are set zero at all the four edges. 

Then, it is easy to get the effective material constants c11 and c13 according to this special kind of 

boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 A single-inclusion model 

 

r=a x 

z 

A D 

B C 
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Since the matrix and the inclusion have the same material properties, we will get the same 

effective material constants as those listed in the Table 1 after performing the fast multipole BEM 

calculation. Table 3 presents the results predicted by FMBEM with 200×n elements on the outer 

boundary and 200×n elements on the interface. This example clearly demonstrates the accuracy 

and efficiency of the fast multipole BEM for solving multi-domain 2D MEE problems. 

 

Table 3. Computed effective material constants (the units are the same as in Table 1). 

n 11c  13c  31e  33e  33d  31d  

1 1.667E+11 7.83E+10 -4.21 18.75 706.6 583.2 

2 1.663E+11 7.82E+10 -4.34 18.67 702.1 582.3 

3 1.661E+11 7.81E+10 -4.37 18.66 700.8 581.8 

4 1.661E+11 7.80E+10 -4.38 18.63 700.3 580.9 

5 1.660E+11 7.80E+10 -4.39 18.61 700.0 580.5 

exact 1.66E+11 7.8E+10 -4.4 18.6 699.7 580.3 

 

4.3 Multi-inclusion composite 

We now consider a piezoelectric-piezomagnetic composite, in which the circular inclusions of 

piezoelectric phase (BaTiO3) are embedded in the matrix of piezomagnetic phase (CoFe2O4), see 

Fig. 3. The interface between each inclusion and the matrix is perfect, and the material constants of 

BaTiO3 and CoFe2O4 can be found in Ref.[19]. In our models, the number of inclusions is kept to 

be 100, and the radius of inclusions is changed with the volume fraction of the inclusion Vf. 400 

elements are used on the outer boundary of the square sheet, and 80 elements are used for each 

inclusion.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 A piezoelectric-piezomagnetic composite model 

 

The results obtained from the FMBEM simulation and analytical solution (based on the simple 

rule of mixture [20]) are plotted in Figs.4-6. Three values of the volume fraction Vf (i.e. 0.1, 0.3 

and 0.5) are considered here for the pizeoelectric inclusions. Although the fast multipole BEM 

predictions are a little lower than the analytical solution, they are basically in good agreement for 

all material constants presented in these figures, which show the effects of Vf on the effective 

elastic moduli, effective piezoelectric constants and effective piezomagnetic constants, respectively. 
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It is seen for a magneto-electro-elastic composite reinforced by the piezoelectric phase (BaTiO3), 

that the effective elastic modulus and the effective piezomagnetic constants will decrease with Vf.  
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Fig. 4  The effects of volume fraction on the effective elastic constants 
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Fig. 5  The effects of volume fraction on the effective piezoelectric constants 
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Fig. 6  The effects of volume fraction on the effective piezomagnetic constants 

 

 

5. Conclusions 

A fast multipole BEM analysis for solving 2D problems of magneto-electro-elastic composites 

has been presented in this paper. A particular form of the fundamental solution, which is very 

appropriate for the development of FMM algorithm, is derived with the help of the Fourier 

transform. It is seen that the present fundamental solution is very similar to that for the 2D 

potential problem, so that it is quite easy to implement the 2D fast multipole BEM for 

heterogeneous MEE media. Several numerical examples are given to demonstrate the accuracy, 

efficiency, and versatility of the developed FMBEM. Numerical examples, including rectangular 

magneto-electro-elastic sheets with a single inclusion or randomly distributed multi-inclusions are 

investigated. The advantages of FMBEM, i.e., its higher speed of computation and lower memory 

requirements than conventional approaches, make it appropriate as a tool to deal with many 

potential application problems, such as those in smart structures and MEMS or NEMS technology. 

The extension of the present fast multipole BEM formulations to 3D MEE problems will be an 

interesting topic. Besides, consideration of interfacial cracking process of multi-inclusion 

magneto-electro-elastic composites under external loadings will be another challenge, which is 

very important for the exploration of failure mechanism of this kind of composites. Research 

results along these lines will be reported in future works. 
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Appendix (A note on the integral representations of the solution) 

The integral representation of the solution in Eq.(4) has been derived from the following identity: 
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 (A.1) 

where ijklc , ikle , ikld , il , ilg  and il  are the elastic, piezoelectric, piezomagnetic, 

dielectric, electromagnetic and magnetic constants, respectively. Functions with superposed * are 

arbitrary functions. Substituting fundamental solutions (solutions of Eq.(6) obtained by replacing 

Xi (i=1,…,4) by Dirac’s delta) into starred functions in Eq.(A.1), one obtains the expression in 

Eq.(4).  

Note that the general theory which uses the fundamental solution of the adjoint system leads to 

the same result, but the detail is omitted. 
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