UNKNOTTING SINGULAR CHARTS WITH NO BLACK VERTICES BY REDUCING NODE-PAIRS

Dedicated to Professor Akio Kawauchi's 60th birthday

Inasa Nakamura *
Research Institute for Mathematical Sciences, Kyoto University e-mail address: inasa@kurims.kyoto-u.ac.jp

Abstract

We determine whether singular charts without black vertices can be deformed to the trivial chart by reducing node-pairs only. It is not true if the degree of the singular chart is at least four, while it is true if the degree is at most three.

Key words: singular chart; 2-dimensional braid; crossing change
2000 Mathrmatics Subject Classification : Primary 57Q45; Secondary 57Q35

1 Introduction

Kamada in [7] showed that any singular chart without black vertices can be deformed to the trivial chart by introducing and reducing some node-pairs, which corresponds to the statement that any singular 2-dimensional braid without branch points can be deformed to be trivial by some crossing changes and inverses of crossing change. Here a crossing change is in the sense of [2].

We will determine whether the above theorem holds by inverses of crossing change only. It does not hold when the degree is at least four, however it holds when the degree is at most three.

A singular 2-dimentional braid of degree m is a smoothly immersed, compact and oriented surface F in a bidisk $D_{1}^{2} \times D_{2}^{2}$ whose singularities are transverse double points such that
(i) for an immersion $f: F_{0} \rightarrow D_{1}^{2} \times D_{2}^{2}$ associated with F, the composition $\mathrm{pr}_{2} \circ f$ is a simple branched covering map,
(ii) $\operatorname{pr}_{1}(\partial F)=Q_{m}$,

[^0]

Figure 1.1: Vertices in a singular chart.
(iii) for each $p \in D_{2}^{2}, \operatorname{pr}_{2}^{-1}(p)$ contains at most one singular point of F (that is a double point of F or the image by f of a singular point of the simple branched covering map $\mathrm{pr}_{2} \circ f$),
where $\operatorname{pr}_{i}: D_{1}^{2} \times D_{2}^{2} \rightarrow D_{i}^{2}(i=1,2)$ is the i-th projection and Q_{m} is a fixed set of m distinct interior points of D_{1}^{2}.

In the case F has no branch points, F_{0} is m 2-disks and $\mathrm{pr}_{2} \circ f$ is just a covering map.

Two singular 2-dimentional braids are equivalent if there is a fiber-preserving ambient isotopy of $D_{1}^{2} \times D_{2}^{2}$ rel $D_{1}^{2} \times \partial D_{2}^{2}$ which carries one to the other.

There is a singular chart which corresponds to a singular 2-dimentional braid.
Let m be a positive integer, and Γ a graph in a 2 -disk D_{2}^{2}. Then Γ is called a singular chart of degree m if it satisfies the following conditions:
(i) $\Gamma \cap \partial D_{2}^{2}=\emptyset$.
(ii) Every edge is oriented and labeled, and the label is in $\{1, \ldots, m-1\}$.
(iii) Every vertex has degree 1, 2, 4, or 6 .
(iv) At each vertex of degree 6, there are six edges adhering to which, three consecutive arcs oriented inward and the other three outward, and those six edges are labeled i and $i+1$ alternately for some i.
(v) At each vertex of degree 4, the diagonal edges have the same label and are oriented coherently, and the labels i and j of the diagonals satisfy $|i-j|>1$.
(vi) At each vertex of degree 2, the edges attached to it have the same label and their orientations are not coherent at the vertex (Fig. 1.1).

A vertex of degree 1,2 or 6 is called a black vertex, node or white vertex respectively. Around a white vertex, the middle edge of the three inwardly (or outwardly)-oriented consecutive edges is called a middle edge.

A black vertex (resp. node or white vertex) of a singular chart corresponds to a branch point (resp. singular point or triple point) of the singular 2-dimentional braid associated with the singular chart.

Figure 1.2: CI-moves of type (1), (2) and (3).

Figure 1.3: CV-moves.

The trivial singular chart with no black vertices is a chart represented by an empty graph (cf. [9]).

Two singular charts of the same degree are equivalent if we can deform one to the other by a finite sequence of ambient isotopies of D_{2}^{2} and chart moves ($[6,8,10]$). In this paper we use only CI-moves (in particular of type (1), (2) and (3)), and $C V$-moves (See Figs. 1.2 and 1.3).

More precisely, let Γ and Γ^{\prime} be two charts in D_{2}^{2} of the same degree. Then Γ^{\prime} is said to be obtained from Γ (or Γ is said to be obtained from Γ^{\prime}) by a chart move of type I (resp. V), or by a $C I$-move (resp. CV-move) if there exists a 2-disk E in D_{2}^{2} such that the loop ∂E is in general position with respect to Γ and Γ^{\prime} and $\Gamma \cap\left(D_{2}^{2}-E\right)=\Gamma^{\prime} \cap\left(D_{2}^{2}-E\right)$ and the following condition holds:
(CI) There are neither black vertices nor nodes in $\Gamma \cap E$ nor $\Gamma^{\prime} \cap E$.

A CI-move as in Fig. 1.2 is called a CI-move of type (1), (2) and (3) respectively. (CV) $\Gamma \cap E$ and $\Gamma^{\prime} \cap E$ are as in Fig. 1.3, where $|i-j|=1$.

A node-pair is a pair of nodes connected by an edge. Introducing (resp. reducing) a node-pair to (resp. from) a singular chart corresponds to a crossing change (resp. its inverse) for the associated singular 2-dimensional braid.

In this paper, we show:
Theorem 3.1. There is a singular chart without black vertices of degree 4 which cannot be deformed to be trivial by reducing node-pairs only.
and
Theorem 3.2. Any singular chart without black vertices whose degree is at
most three can be deformed to be trivial by reducing node-pairs only.
This is similar to Kamada's theorem that a surface-link chart is ribbon (which is, it can be written without white vertices) if its degree is at most three, while it is not always ribbon if its degree is at least four [5].

2 Preliminaries

As preliminaries, we review a braid system of a singular chart and slide equivalence, and (classical) pure braids and a presentation of the pure braid group.

Let Γ be a singular chart of degree m in a 2 -disk D_{2}^{2}. Let q_{0} be a fixed point on the boundary of D_{2}^{2}, and $\Sigma(\Gamma)$ the set of black vertices and nodes in Γ. Let $\mathfrak{A}=\left(a_{1}, \ldots, a_{n}\right)$ be a Hurwitz arc system with the starting point set $\Sigma(\Gamma)$ and the terminal point q_{0}, which is, for any i and $j, a_{i} \cap a_{j}=\left\{q_{0}\right\}$ and the normal vector of a_{i} points to a_{i+1}. Let $\eta_{1}, \ldots, \eta_{n}$ be the Hurwitz generators of $\pi_{1}\left(D_{2}^{2} \backslash \Sigma(\Gamma), q_{0}\right)$ associated with \mathfrak{A} such that each η_{i} encircles each starting point anti-clockwise. A braid system $\vec{b}=\left(b_{1}, \ldots, b_{n}\right)$ of a singular chart is an ordered n-tuple of elements of $\pi_{1}\left(D_{2}^{2} \backslash Q_{m}, q_{0}\right)=B_{m}$ such that $b_{i}=\rho_{\Gamma}\left(\eta_{i}\right)$, where $\rho_{\Gamma}\left(\eta_{i}\right)$ means an m-braid corresponding to η_{i}.

Two braid systems are slide equivalent if we can transform one to the other by applying a finite sequence of the following equivalence relations:

$$
\left(b_{1}, \ldots, b_{i}, b_{i+1}, \ldots, b_{n}\right) \sim\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, b_{i+1}^{-1} b_{i} b_{i+1}, b_{i+2}, \ldots, b_{n}\right)
$$

Two singular charts of the same degree are equivalent if and only if their braid systems are slide equivalent.

A classical braid whose start point and end point of each string are the same is called a pure braid. We can consider the pure braid group, which is a subgroup of the braid group. There is a presentation of the pure braid group as follows.

Lemma 2.1. [3, Lemma 4.2]. The pure braid group of degree $m P_{m}$ is generated by generators $A_{i j}$ and relations as follows:

$$
A_{i j}=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}
$$

for $1 \leq i<j \leq m$, and the relations are

$$
A_{r s}^{-1} A_{i j} A_{r s}= \begin{cases}A_{i j} & \text { if } i<r<s<j \text { or } r<s<i<j \\ A_{r j} A_{i j} A_{r j}^{-1} & \text { if } r<i=s<j \\ A_{r j} A_{s j} A_{i j} A_{s j}^{-1} A_{r j}^{-1} & \text { if } i=r<s<j \\ A_{r j} A_{s j} A_{r j}^{-1} A_{s j}^{-1} A_{i j} A_{s j} A_{r j} A_{s j}^{-1} A_{r j}^{-1} & \text { if } r<i<s<j .\end{cases}
$$

3 Singular charts with no black vertices

Theorem 3.1. The singular chart of degree 4 with no black vertices as in Fig. 3.1 cannot be deformed to the trivial chart by reducing node-pairs only.

Remark. The singular chart of Theorem 3.1 represents an immersion of 4 spheres.

Figure 3.1: Singular chart of Theorem 3.1.

Proof. Take a braid system $\vec{b}=\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}\right)$ of the singular chart, where

$$
\begin{aligned}
& b_{1}=\sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1} \\
& b_{2}=\sigma_{2} \sigma_{3}^{-2} \sigma_{2}^{-1} \\
& b_{3}=\sigma_{3} \sigma_{2}^{2} \sigma_{3}^{-1} \\
& b_{4}=\sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{3} \sigma_{2}^{-2} \sigma_{3}^{-1} \sigma_{1} \sigma_{2} \sigma_{3}^{-1} \\
& b_{5}=\sigma_{3} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-2} \sigma_{2} \sigma_{1}^{-1} \sigma_{3}^{-1} \\
& b_{6}=\sigma_{3} \sigma_{1} \sigma_{2}^{-1} \sigma_{3}^{2} \sigma_{2} \sigma_{1}^{-1} \sigma_{3}^{-1} \\
& b_{7}=\sigma_{1} \sigma_{2}^{-2} \sigma_{1}^{-1} \\
& b_{8}=\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3}^{-1} \sigma_{2}^{2} \sigma_{3} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1}
\end{aligned}
$$

It suffices to show that \vec{b} cannot be transformed by slide equivalence to

$$
\begin{equation*}
\left(b_{1}^{\prime}, b_{1}^{\prime-1}, b_{2}^{\prime}, b_{2}^{\prime-1}, b_{3}^{\prime}, b_{3}^{\prime-1}, b_{4}^{\prime}, b_{4}^{\prime-1}\right) \tag{3.1}
\end{equation*}
$$

First, we present b_{k} by $A_{i j}(i, j \in\{1,2,3,4\})$, the generators of the pure braid group, which are

$$
\begin{aligned}
A_{12} & =\sigma_{1}^{2} \\
A_{13} & =\sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1} \\
A_{14} & =\sigma_{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1} \sigma_{3}^{-1} \\
A_{23} & =\sigma_{2}^{2} \\
A_{24} & =\sigma_{3} \sigma_{2}^{2} \sigma_{3}^{-1} \\
A_{34} & =\sigma_{3}^{2} .
\end{aligned}
$$

Let us compute:

$$
\begin{aligned}
& b_{1}=A_{13} \\
& b_{2}=\left(\sigma_{3}^{-2}\right)\left(\sigma_{3} \sigma_{2}^{-2} \sigma_{3}^{-1}\right)\left(\sigma_{3}^{2}\right)=A_{34}^{-1} A_{24}^{-1} A_{34} \\
& b_{3}=A_{24} \\
& b_{4}=\left(\sigma_{3}^{2}\right)\left(\sigma_{2} \sigma_{1}^{-2} \sigma_{2}^{-1}\right)\left(\sigma_{3}^{-2}\right)=A_{34} A_{13}^{-1} A_{34}^{-1} \\
& b_{5}=\left(\sigma_{1}^{2}\right)\left(\sigma_{3} \sigma_{2}^{-2} \sigma_{3}^{-1}\right)\left(\sigma_{1}^{-2}\right)=A_{12} A_{24}^{-1} A_{12}^{-1} \\
& b_{6}=\left(\sigma_{3}^{2}\right)\left(\sigma_{2}^{-2}\right)\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-1}\right)\left(\sigma_{2}^{2}\right)\left(\sigma_{3}^{-2}\right)=A_{34} A_{23}^{-1} A_{13} A_{23} A_{34}^{-1} \\
& b_{7}=\left(\sigma_{2}^{-2}\right)\left(\sigma_{2} \sigma_{1}^{-2} \sigma_{2}^{-1}\right)\left(\sigma_{2}^{2}\right)=A_{23}^{-1} A_{13}^{-1} A_{23} \\
& b_{8}=\left(\sigma_{1}^{2}\right)\left(\sigma_{3}^{-2}\right)\left(\sigma_{3} \sigma_{2}^{2} \sigma_{3}^{-1}\right)\left(\sigma_{3}^{2}\right)\left(\sigma_{1}^{-2}\right)=A_{12} A_{34}^{-1} A_{24} A_{34} A_{12}^{-1} .
\end{aligned}
$$

Hence, if \vec{b} can be transformed to the form as (3.1), by slide equivalence and the relations of the pure braid group, b_{1} must be transformed to b_{4}^{-1} or b_{7}^{-1} by some conjugation. In the case of b_{4},

$$
A_{13}=w A_{34} A_{13} A_{34}^{-1} w^{-1}
$$

where w is a word consisting of some b_{k} 's for $k \in\{1, \ldots, 8\}$ by slide equivalence. Let $\phi: P_{4} \rightarrow S_{2}$ be a homomorphism from the pure braid group of degree 4 to the symmetric group of degree 2 such that $\phi\left(A_{13}\right)=\phi\left(A_{24}\right)=e$ and $\phi\left(A_{i j}\right)=$
(12) for otherwise. This homomorphism is well-defined. By the relations of the pure braid group, a conjugate of A_{13} has essentially only one relation:

$$
\begin{aligned}
A_{12}^{-1} A_{13} A_{12} & =A_{13} A_{23} A_{13} A_{23}^{-1} A_{13}^{-1} \\
A_{13} & =A_{12} A_{13} A_{23} A_{13} A_{23}^{-1} A_{13}^{-1} A_{12}^{-1}
\end{aligned}
$$

Since $\phi\left(A_{12} A_{13} A_{23}\right)=e, \phi\left(w A_{34}\right)$ must be e, the unit element. However, since $\phi\left(b_{k}\right)=e$ for $k \in\{1,2, \ldots, 8\}, \phi(w)=e$, hence $\phi\left(w A_{34}\right)=(12) \neq e$.

It is similar in the case of b_{7}.
Theorem 3.2. Any singular chart without black vertices whose degree is at most three can be deformed to the trivial chart by reducing node-pairs only.

Proof. Let Γ be a singular chart in a 2-disk D_{2}^{2} without black vertices whose degree is at most three. We assume that the two edges connected by a node is an edge with a node on it, and use the phrase that some nodes are on an edge. Because the label of any edge of Γ is either one or two, every vertex of Γ is a white vertex of degree six. Let us call an area with no edges inside it and surrounded by connected edges a polygon, and call a polygon with two edges (resp. four edges) a bigon (resp. square). Moreover, let us call an edge without vertices a loop, and the area with no edges inside it and surrounded by connected edges and ∂D_{2}^{2} will be called the boundary polygon.
Step 1. Every polygon of Γ consists of even edges.
Every polygon consists of even edges, for its edges have labels one and two alternately.
Step 2. Every edge of Γ has two white vertices at its ends.
Let W be a white vertex and e an edge which goes out from and enters W. Then there is another edge e_{1} connected with W, such that around W are e, e_{1}, e consecutively. This edge e_{1} connects W and some imperfect singular chart which has one vertex of degree five and n white vertices of degree six for some n. However, if such an imperfect singular chart exists, its number of edges is $(5+6 n) / 2$, which is not an integer value. This is a contradiction.
Step 3. We can always assume that each edge of Γ has at most one node on it.

Reduce node-pairs.
Step 4. We can assume that Γ does not have two adjacent bigons.
If there are two adjacent bigons, each bigon has two white vertices W_{1} and W_{2} at its end points by Step 2. Let e_{1}, e_{2}, and e_{3} be the three consecutive edges which construct the two adjacent bigons between W_{1} and W_{2}.
(Case 4.1) If e_{1}, e_{2}, and e_{3} have no nodes on it, by a CI-move of type (3), we can eliminate their commom vertices W_{1} and W_{2}.
(Case 4.2) If an edge has nodes on it, from Step 3 we can assume that it has only one node or none. If two of e_{1}, e_{2}, and e_{3} have a node on each, one of the two edges, say e_{i}, is not a middle edge of W_{1}. Hence we can deform the edge e_{i} to have no nodes on it by applying a CV-move around W_{1}. Now we can assume that only one of e_{1}, e_{2}, and e_{3} has a node on it, and moreover it is a middle edge of W_{1}. Let the orientation of an edge with respect to $W_{j}(j=1,2)$ be positive (resp. negative) if the edge goes out of (resp. enters) W_{j}. It suffices to consider when e_{1} has a node on it and when e_{2} has a node on it. In both cases we can assume that the orientation of e_{1} with respect to W_{1} is positive. Then when e_{1} has a node on it, the orientations of e_{1}, e_{2}, and e_{3} with respect to W_{1}

Figure 3.2: White vertices W_{1}, W_{2} and the edges $e_{1} e_{2}$, and e_{3}.
(resp. W_{2}) are $(+,+,-)$ (resp. $(+,-,+)$). The orientations with respect to $W_{2}(+,-,+)$ contradict the definition of a white vertex that a white vertex has three consecutive edges entering it and the other three consecutive edges going out of it. When e_{2} has a node on it, the orientations of e_{1}, e_{2}, and e_{3} with respect to $W_{1}\left(\right.$ resp. $\left.W_{2}\right)$ are $(+,+,+)($ resp. $(-,+,-))$, which is also a contradiction (Fig. 3.2).
Step 5. Let Γ_{0} be an innermost connected component of Γ. Then Γ_{0} is a loop with some nodes on it.

If Γ_{0} has white vertices, we obtain a new graph Γ_{0}^{\prime} from Γ_{0} by ignoring orientations of the edges and regarding a bigon as an edge, or identifying adjacent edges which have two common white vertices. Since Γ_{0} is connected, the new graph Γ_{0}^{\prime} is connected. Moreover, the new graph Γ_{0}^{\prime} has no edge which has only one vertex at its ends by Step 2 .

We show that the degree of each vertex of the new graph Γ_{0}^{\prime} is at least four. Let W^{\prime} be a vertex of Γ_{0}^{\prime} with degree 1,2 or 3 , and W a white vertex of Γ_{0} corresponding to W^{\prime}.
(Case 5.1) If W^{\prime} has degree one or two, there are two adjacent bigons in the singular chart Γ_{0}, which contradicts Step 4.

Let W^{\prime} have degree one. Let W_{1}^{\prime} be the other vertex of the edge connected to W^{\prime} in Γ_{0}^{\prime}. The existence of W_{1}^{\prime} is by Step 2 . Then the two corresponding vertices W and W_{1} in the singular chart Γ_{0} are connected by six edges, for W has degree six. Then there are more than two adjacent bigons between W and W_{1}. The case W^{\prime} has degree two can be shown likewise. Remark that there are two vertices connected with W^{\prime} by Step 2 .
(Case 5.2) Let W^{\prime} have degree three. Then denote the three white vertices in Γ_{0} connected with W by W_{1}, W_{2} and W_{3} anti-clockwise. The existence of these three vertices is also by Step 2. By Step 4, there are exactly two adjacent edges connecting W and $W_{j}(j=1,2,3)$. Let us denote them by e_{j}, e_{j}^{\prime} anticlockwise, and denote the edges by $f_{j}, f_{j}^{\prime}(j=1,2,3)$ such that around W_{1} are consecutive edges $f_{2}, e_{1}^{\prime}, e_{1}, f_{3}^{\prime}$, around W_{2} are $f_{3}, e_{2}^{\prime}, e_{2}, f_{1}^{\prime}$, and around W_{3} are $f_{1}, e_{3}^{\prime}, e_{3}, f_{2}^{\prime}$ anti-clockwise (Fig. 3.3). Then let the orientation of each edge be positive (resp. negative) if the edge goes out of (resp. enters) W_{j}. We can assume that each e_{j} (resp. e_{j}^{\prime}) has the opposite orientation with f_{j} (resp. f_{j}^{\prime}), for if some e_{j} (resp. e_{j}^{\prime}) has the same orientation with f_{j} (resp. f_{j}^{\prime}), we can apply a CI-move of type (2) between them and have two adjacent bigons between W and W_{j-1} (resp. W_{j+1}), where $W_{0}=W_{3}$ and $W_{4}=W_{1}$. We can assume that $\left(e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, e_{3}, e_{3}^{\prime}\right)=(+,+,+,-,-,-)$ by the definition of a white vertex that a white vertex has three consecutive edges entering it and the other three consecutive edges going out of it. Then $\left(f_{1}, f_{1}^{\prime}, f_{2}, f_{2}^{\prime}, f_{3}, f_{3}^{\prime}\right)=$ $(-,-,-,+,+,+)$, and hence the consecutive edges around W_{j} have the ori-

Figure 3.3: White vertices W, W_{1}, W_{2}, W_{3} and the edges.
entations $\left(f_{2}, e_{1}^{\prime}, e_{1}, f_{3}^{\prime}\right)=(-,+,+,+),\left(f_{3}, e_{2}^{\prime}, e_{2}, f_{1}^{\prime}\right)=(+,-,+,-)$ and $\left(f_{1}, e_{3}^{\prime}, e_{3}, f_{2}^{\prime}\right)=(-,-,-,+)$. The second set of orientations $\left(f_{3}, e_{2}^{\prime}, e_{2}, f_{1}^{\prime}\right)=$ $(+,-,+,-)$ contradicts the definition of a white vertex. This can be applied regardless of whether each edge has a node or not.

It remains to show that if each vertex of Γ_{0}^{\prime} has at least degree four, there is a contradiction. The connected graph Γ_{0}^{\prime} consists of polygons. By Step 1 and Step 2, the number of the edges of each polygon is even and at least four. Let G_{0}^{\prime} be another new graph obtained from Γ_{0}^{\prime} by adding some edges, which divide each polygon of Γ_{0}^{\prime} into squares. Then the new connected graph G_{0}^{\prime} consits of squares, and each vertex of G_{0}^{\prime} has degree at least four. Let n be the number of the squares including the boundary square and x be the number of the vertices of G_{0}^{\prime}. Consider G_{0}^{\prime} to be a polyhedron in the three space. Since its faces are square, we can get the following equation by computing its Euler characteristic:

$$
n-2 n+x=2
$$

Hence, $x=2+n$. However, since the degree of each vertex is at least four,

$$
4(2+n) \leq 4 n
$$

which is a contradiction.
Step 6. We can eliminate Γ_{0}, an innermost connected component of the singular chart Γ.

By Step $5, \Gamma_{0}$ is a loop with some nodes on it. By Step 3, it has no nodes, for the number of nodes on a loop must be even. Then applying a CI-move of type (1), we can eliminate Γ_{0}.

Therefore we can deform Γ to the trivial chart by repeating these steps.

References

[1] J. S. Birman, Braids, links, and mapping class groups, Ann. Math. Studies 82, Princeton Univ. Press, Princeton, N.J., 1974.
[2] C. A. Giller, Towards a classical knot theory for surfaces in R^{4}, Illinois J. Math. 26 (1982), 591-631.
[3] V. L. Hansen, Braids and Coverings: selected topics, London Math. Soc. Student Texts 18, Cambridge Univ. Press, 1989.
[4] M. Iwakiri, Unknotting singular surface braids by crossing changes, Osaka Journal of Mathematics 45 (2008), no.1, 61-84.
[5] S. Kamada, Surfaces in R^{4} of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992), no.2, 137-160.
[6] S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications 4 (1996), 517-529.
[7] S. Kamada, Crossing changes for singular 2-dimensional braids without branch points, Kobe. J. Math. 13 (1996), 177-182.
[8] S. Kamada, Surfaces in 4-space: A view of normal forms and braidings, Lectures at Knots 96 (ed. S. Suzuki) (1997), World Scientific Publishing Co. 39-71.
[9] S. Kamada, Unknotting immersed surface-links and singular 2-dimensional braids by 1-handle surgeries, Osaka. J. Math. 36 (1999), 33-49.
[10] S. Kamada, Braid and Knot Theory in Dimension Four, Math. Surveys and Monographs 95, Amer. Math. Soc., 2002.
[11] T. Nagase and A. Shima, On surface braids of index four with at most two crossings, Fundamenta Mathematicae 188 (2005), 167-193.
[12] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1-37.

[^0]: *Supported by GCOE, Kyoto University

