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Abstract

We determine whether singular charts without black vertices can be
deformed to the trivial chart by reducing node-pairs only. It is not true
if the degree of the singular chart is at least four, while it is true if the
degree is at most three.
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1 Introduction

Kamada in [7] showed that any singular chart without black vertices can be
deformed to the trivial chart by introducing and reducing some node-pairs,
which corresponds to the statement that any singular 2-dimensional braid with-
out branch points can be deformed to be trivial by some crossing changes and
inverses of crossing change. Here a crossing change is in the sense of [2].

We will determine whether the above theorem holds by inverses of crossing
change only. It does not hold when the degree is at least four, however it holds
when the degree is at most three.

A singular 2-dimentional braid of degree m is a smoothly immersed, compact
and oriented surface F in a bidisk D2

1 × D2
2 whose singularities are transverse

double points such that

(i) for an immersion f : F0 → D2
1 × D2

2 associated with F , the composition
pr2 ◦ f is a simple branched covering map,

(ii) pr1(∂F ) = Qm,
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Figure 1.1: Vertices in a singular chart.

(iii) for each p ∈ D2
2 , pr−1

2 (p) contains at most one singular point of F (that
is a double point of F or the image by f of a singular point of the simple
branched covering map pr2 ◦ f),

where pri : D2
1 × D2

2 → D2
i (i = 1, 2) is the i-th projection and Qm is a fixed

set of m distinct interior points of D2
1 .

In the case F has no branch points, F0 is m 2-disks and pr2 ◦ f is just a
covering map.

Two singular 2-dimentional braids are equivalent if there is a fiber-preserving
ambient isotopy of D2

1 × D2
2 rel D2

1 × ∂D2
2 which carries one to the other.

There is a singular chart which corresponds to a singular 2-dimentional braid.
Let m be a positive integer, and Γ a graph in a 2-disk D2

2. Then Γ is called
a singular chart of degree m if it satisfies the following conditions:

(i) Γ ∩ ∂D2
2 = ∅.

(ii) Every edge is oriented and labeled , and the label is in {1, . . . , m − 1}.
(iii) Every vertex has degree 1, 2, 4, or 6.

(iv) At each vertex of degree 6, there are six edges adhering to which, three
consecutive arcs oriented inward and the other three outward, and those
six edges are labeled i and i + 1 alternately for some i.

(v) At each vertex of degree 4, the diagonal edges have the same label and
are oriented coherently, and the labels i and j of the diagonals satisfy
|i − j| > 1.

(vi) At each vertex of degree 2, the edges attached to it have the same label
and their orientations are not coherent at the vertex (Fig. 1.1).

A vertex of degree 1, 2 or 6 is called a black vertex, node or white vertex
respectively. Around a white vertex, the middle edge of the three inwardly (or
outwardly)-oriented consecutive edges is called a middle edge.

A black vertex (resp. node or white vertex) of a singular chart corresponds to
a branch point (resp. singular point or triple point) of the singular 2-dimentional
braid associated with the singular chart.
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Figure 1.2: CI-moves of type (1), (2) and (3).
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Figure 1.3: CV-moves.

The trivial singular chart with no black vertices is a chart represented by an
empty graph (cf. [9]).

Two singular charts of the same degree are equivalent if we can deform one
to the other by a finite sequence of ambient isotopies of D2

2 and chart moves
([6, 8, 10]). In this paper we use only CI-moves (in particular of type (1), (2)
and (3)), and CV-moves (See Figs. 1.2 and 1.3).

More precisely, let Γ and Γ′ be two charts in D2
2 of the same degree. Then

Γ′ is said to be obtained from Γ (or Γ is said to be obtained from Γ′) by a chart
move of type I (resp. V), or by a CI-move (resp. CV-move) if there exists a
2-disk E in D2

2 such that the loop ∂E is in general position with respect to Γ
and Γ′ and Γ ∩ (D2

2 − E) = Γ′ ∩ (D2
2 − E) and the following condition holds:

(CI) There are neither black vertices nor nodes in Γ ∩ E nor Γ′ ∩ E.
A CI-move as in Fig. 1.2 is called a CI-move of type (1), (2) and (3) respectively.
(CV) Γ ∩ E and Γ′ ∩ E are as in Fig. 1.3, where |i − j| = 1.

A node-pair is a pair of nodes connected by an edge. Introducing (resp.
reducing) a node-pair to (resp. from) a singular chart corresponds to a crossing
change (resp. its inverse) for the associated singular 2-dimensional braid.

In this paper, we show:
Theorem 3.1. There is a singular chart without black vertices of degree 4 which
cannot be deformed to be trivial by reducing node-pairs only.
and
Theorem 3.2. Any singular chart without black vertices whose degree is at
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most three can be deformed to be trivial by reducing node-pairs only.
This is similar to Kamada’s theorem that a surface-link chart is ribbon

(which is, it can be written without white vertices) if its degree is at most
three, while it is not always ribbon if its degree is at least four [5].

2 Preliminaries

As preliminaries, we review a braid system of a singular chart and slide equiv-
alence, and (classical) pure braids and a presentation of the pure braid group.

Let Γ be a singular chart of degree m in a 2-disk D2
2. Let q0 be a fixed

point on the boundary of D2
2, and Σ(Γ) the set of black vertices and nodes in

Γ. Let A = (a1, . . . , an) be a Hurwitz arc system with the starting point set
Σ(Γ) and the terminal point q0, which is, for any i and j, ai∩aj = {q0} and the
normal vector of ai points to ai+1. Let η1 , . . . , ηn be the Hurwitz generators
of π1(D2

2\Σ(Γ), q0) associated with A such that each ηi encircles each starting
point anti-clockwise. A braid system �b = (b1, . . . , bn) of a singular chart is an
ordered n-tuple of elements of π1(D2

2\Qm, q0) = Bm such that bi = ρΓ(ηi),
where ρΓ(ηi) means an m-braid corresponding to ηi.

Two braid systems are slide equivalent if we can transform one to the other
by applying a finite sequence of the following equivalence relations:

(b1 , . . . , bi, bi+1 , . . . , bn) ∼ (b1 , . . . , bi−1, bi+1, b−1
i+1bibi+1, bi+2 , . . . , bn).

Two singular charts of the same degree are equivalent if and only if their
braid systems are slide equivalent.

A classical braid whose start point and end point of each string are the same
is called a pure braid. We can consider the pure braid group, which is a subgroup
of the braid group. There is a presentation of the pure braid group as follows.

Lemma 2.1. [3, Lemma 4.2]. The pure braid group of degree m Pm is generated
by generators Aij and relations as follows:

Aij = σj−1σj−2 · · ·σi+1σ
2
i σ−1

i+1 · · ·σ−1
j−2σ

−1
j−1

for 1 ≤ i < j ≤ m, and the relations are

A−1
rs AijArs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aij if i < r < s < j or r < s < i < j

ArjAijA
−1
rj if r < i = s < j

ArjAsjAijA
−1
sj A−1

rj if i = r < s < j

ArjAsjA
−1
rj A−1

sj AijAsjArjA
−1
sj A−1

rj if r < i < s < j.

3 Singular charts with no black vertices

Theorem 3.1. The singular chart of degree 4 with no black vertices as in Fig.
3.1 cannot be deformed to the trivial chart by reducing node-pairs only.

Remark. The singular chart of Theorem 3.1 represents an immersion of 4
spheres.
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Figure 3.1: Singular chart of Theorem 3.1.
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Proof. Take a braid system �b = (b1, b2, b3, b4, b5, b6, b7, b8) of the singu-
lar chart, where

b1 = σ2σ
2
1σ−1

2

b2 = σ2σ
−2
3 σ−1

2

b3 = σ3σ
2
2σ−1

3

b4 = σ3σ
−1
2 σ−1

1 σ3σ
−2
2 σ−1

3 σ1σ2σ
−1
3

b5 = σ3σ1σ
−1
2 σ−2

1 σ2σ
−1
1 σ−1

3

b6 = σ3σ1σ
−1
2 σ2

3σ2σ
−1
1 σ−1

3

b7 = σ1σ
−2
2 σ−1

1

b8 = σ1σ2σ1σ
−1
3 σ2

2σ3σ
−1
1 σ−1

2 σ−1
1 .

It suffices to show that �b cannot be transformed by slide equivalence to

(b′1, b′1
−1

, b′2, b′2
−1

, b′3, b′3
−1

, b′4, b′4
−1). (3.1)

First, we present bk by Aij (i, j ∈ {1, 2, 3, 4}), the generators of the pure braid
group, which are

A12 = σ2
1

A13 = σ2σ
2
1σ−1

2

A14 = σ3σ2σ
2
1σ−1

2 σ−1
3

A23 = σ2
2

A24 = σ3σ
2
2σ−1

3

A34 = σ2
3 .

Let us compute:

b1 = A13

b2 = (σ−2
3 )(σ3σ

−2
2 σ−1

3 )(σ2
3) = A−1

34 A−1
24 A34

b3 = A24

b4 = (σ2
3)(σ2σ

−2
1 σ−1

2 )(σ−2
3 ) = A34A

−1
13 A−1

34

b5 = (σ2
1)(σ3σ

−2
2 σ−1

3 )(σ−2
1 ) = A12A

−1
24 A−1

12

b6 = (σ2
3)(σ−2

2 )(σ2σ
2
1σ−1

2 )(σ2
2)(σ−2

3 ) = A34A
−1
23 A13A23A

−1
34

b7 = (σ−2
2 )(σ2σ

−2
1 σ−1

2 )(σ2
2) = A−1

23 A−1
13 A23

b8 = (σ2
1)(σ−2

3 )(σ3σ
2
2σ−1

3 )(σ2
3)(σ−2

1 ) = A12A
−1
34 A24A34A

−1
12 .

Hence, if �b can be transformed to the form as (3.1), by slide equivalence and
the relations of the pure braid group, b1 must be transformed to b−1

4 or b−1
7 by

some conjugation. In the case of b4,

A13 = wA34A13A
−1
34 w−1,

where w is a word consisting of some bk’s for k ∈ {1, . . . , 8} by slide equivalence.
Let φ : P4 → S2 be a homomorphism from the pure braid group of degree 4 to
the symmetric group of degree 2 such that φ(A13) = φ(A24) = e and φ(Aij) =
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(12) for otherwise. This homomorphism is well-defined. By the relations of the
pure braid group, a conjugate of A13 has essentially only one relation:

A−1
12 A13A12 = A13A23A13A

−1
23 A−1

13 ,

A13 = A12A13A23A13A
−1
23 A−1

13 A−1
12 .

Since φ(A12A13A23) = e, φ(wA34) must be e, the unit element. However, since
φ(bk) = e for k ∈ {1, 2 , . . . , 8}, φ(w) = e, hence φ(wA34) = (12) 	= e.

It is similar in the case of b7.

Theorem 3.2. Any singular chart without black vertices whose degree is at
most three can be deformed to the trivial chart by reducing node-pairs only.

Proof. Let Γ be a singular chart in a 2-disk D2
2 without black vertices

whose degree is at most three. We assume that the two edges connected by a
node is an edge with a node on it, and use the phrase that some nodes are on
an edge. Because the label of any edge of Γ is either one or two, every vertex
of Γ is a white vertex of degree six. Let us call an area with no edges inside
it and surrounded by connected edges a polygon, and call a polygon with two
edges (resp. four edges) a bigon (resp. square). Moreover, let us call an edge
without vertices a loop, and the area with no edges inside it and surrounded by
connected edges and ∂D2

2 will be called the boundary polygon.
Step 1. Every polygon of Γ consists of even edges.

Every polygon consists of even edges, for its edges have labels one and two
alternately.
Step 2. Every edge of Γ has two white vertices at its ends.

Let W be a white vertex and e an edge which goes out from and enters
W . Then there is another edge e1 connected with W , such that around W are
e, e1, e consecutively. This edge e1 connects W and some imperfect singular
chart which has one vertex of degree five and n white vertices of degree six for
some n. However, if such an imperfect singular chart exists, its number of edges
is (5 + 6n)/2, which is not an integer value. This is a contradiction.
Step 3. We can always assume that each edge of Γ has at most one node on
it.

Reduce node-pairs.
Step 4. We can assume that Γ does not have two adjacent bigons.

If there are two adjacent bigons, each bigon has two white vertices W1 and
W2 at its end points by Step 2. Let e1, e2, and e3 be the three consecutive edges
which construct the two adjacent bigons between W1 and W2.
(Case 4.1) If e1, e2, and e3 have no nodes on it, by a CI-move of type (3), we
can eliminate their commom vertices W1 and W2.
(Case 4.2) If an edge has nodes on it, from Step 3 we can assume that it has
only one node or none. If two of e1, e2, and e3 have a node on each, one of the
two edges, say ei, is not a middle edge of W1. Hence we can deform the edge ei

to have no nodes on it by applying a CV-move around W1. Now we can assume
that only one of e1, e2, and e3 has a node on it, and moreover it is a middle
edge of W1. Let the orientation of an edge with respect to Wj (j = 1, 2) be
positive (resp. negative) if the edge goes out of (resp. enters) Wj . It suffices to
consider when e1 has a node on it and when e2 has a node on it. In both cases
we can assume that the orientation of e1 with respect to W1 is positive. Then
when e1 has a node on it, the orientations of e1, e2, and e3 with respect to W1

7



1e

e
e
2

3

1e

e
e2
3

2WW1 W1 2W

Figure 3.2: White vertices W1, W2 and the edges e1 e2, and e3.

(resp. W2) are (+, +, −) (resp. (+, −, +) ). The orientations with respect to
W2 (+, −, +) contradict the definition of a white vertex that a white vertex
has three consecutive edges entering it and the other three consecutive edges
going out of it. When e2 has a node on it, the orientations of e1, e2, and e3

with respect to W1(resp. W2) are (+, +, +) (resp. (−, +, −) ), which is also a
contradiction (Fig. 3.2).
Step 5. Let Γ0 be an innermost connected component of Γ. Then Γ0 is a loop
with some nodes on it.

If Γ0 has white vertices, we obtain a new graph Γ′
0 from Γ0 by ignoring ori-

entations of the edges and regarding a bigon as an edge, or identifying adjacent
edges which have two common white vertices. Since Γ0 is connected, the new
graph Γ′

0 is connected. Moreover, the new graph Γ′
0 has no edge which has only

one vertex at its ends by Step 2.
We show that the degree of each vertex of the new graph Γ′

0 is at least four.
Let W ′ be a vertex of Γ′

0 with degree 1, 2 or 3, and W a white vertex of Γ0

corresponding to W ′.
(Case 5.1) If W ′ has degree one or two, there are two adjacent bigons in the
singular chart Γ0, which contradicts Step 4.

Let W ′ have degree one. Let W ′
1 be the other vertex of the edge connected

to W ′ in Γ′
0 . The existence of W ′

1 is by Step 2. Then the two corresponding
vertices W and W1 in the singular chart Γ0 are connected by six edges, for W
has degree six. Then there are more than two adjacent bigons between W and
W1. The case W ′ has degree two can be shown likewise. Remark that there are
two vertices connected with W ′ by Step 2.
(Case 5.2) Let W ′ have degree three. Then denote the three white vertices
in Γ0 connected with W by W1, W2 and W3 anti-clockwise. The existence of
these three vertices is also by Step 2. By Step 4, there are exactly two adjacent
edges connecting W and Wj (j = 1, 2, 3). Let us denote them by ej, e′j anti-
clockwise, and denote the edges by fj, f ′

j (j = 1, 2, 3) such that around W1

are consecutive edges f2, e′1, e1, f ′
3, around W2 are f3, e′2, e2, f ′

1, and around
W3 are f1, e′3, e3, f ′

2 anti-clockwise (Fig. 3.3). Then let the orientation of each
edge be positive (resp. negative) if the edge goes out of (resp. enters) Wj . We
can assume that each ej (resp. e′j) has the opposite orientation with fj (resp.
f ′

j), for if some ej (resp. e′j) has the same orientation with fj (resp. f ′
j), we

can apply a CI-move of type (2) between them and have two adjacent bigons
between W and Wj−1 (resp. Wj+1), where W0 = W3 and W4 = W1. We can
assume that (e1, e′1, e2, e′2, e3, e′3) = (+, +, +, −, −, −) by the definition of a
white vertex that a white vertex has three consecutive edges entering it and the
other three consecutive edges going out of it. Then (f1, f ′

1, f2, f ′
2, f3, f ′

3) =
(−, −, −, +, +, +), and hence the consecutive edges around Wj have the ori-
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Figure 3.3: White vertices W , W1, W2, W3 and the edges.

entations (f2, e′1, e1, f ′
3) = (−, +, +, +), (f3, e′2, e2, f ′

1) = (+, −, +, −) and
(f1, e′3, e3, f ′

2) = (−, −, −, +). The second set of orientations (f3, e′2, e2, f ′
1) =

(+, −, +, −) contradicts the definition of a white vertex. This can be applied
regardless of whether each edge has a node or not.

It remains to show that if each vertex of Γ′
0 has at least degree four, there is

a contradiction. The connected graph Γ′
0 consists of polygons. By Step 1 and

Step 2, the number of the edges of each polygon is even and at least four. Let
G′

0 be another new graph obtained from Γ′
0 by adding some edges, which divide

each polygon of Γ′
0 into squares. Then the new connected graph G′

0 consits of
squares, and each vertex of G′

0 has degree at least four. Let n be the number of
the squares including the boundary square and x be the number of the vertices
of G′

0. Consider G′
0 to be a polyhedron in the three space. Since its faces are

square, we can get the following equation by computing its Euler characteristic:

n − 2n + x = 2.

Hence, x = 2 + n. However, since the degree of each vertex is at least four,

4(2 + n) ≤ 4n,

which is a contradiction.
Step 6. We can eliminate Γ0, an innermost connected component of the sin-
gular chart Γ.

By Step 5, Γ0 is a loop with some nodes on it. By Step 3, it has no nodes,
for the number of nodes on a loop must be even. Then applying a CI-move of
type (1), we can eliminate Γ0.

Therefore we can deform Γ to the trivial chart by repeating these steps.
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