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Abstract

Using a variation of the coupling from the past technique, this paper develops
algorithms which generate independent observations from the stationary dis-
tributions of various dynamic economic models. These variates can be used
for calibration, calculation of steady state phenomena, and simulation-based
estimation. As an application, we demonstrate how to generate exact samples
from the stationary distribution of an incomplete markets model routinely cal-
ibrated by macroeconomists. Our implementation generates 100,000 indepen-
dent draws from the stationary distribution in less than 3 seconds.
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1. Introduction

In economic modeling, dynamic outcomes are often computed using approx-
imation techniques such as linearization. Approximation helps to represent
dynamics in a tractable form, but the size of the errors introduced by the ap-
proximation are difficult to assess.1 As a result, efforts have been made to
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1Tight error bounds require significant smoothness in the laws of motion, which is often un-

available or difficult to prove. In addition, Fernández-Villaverde, Rubio-Ramı́rez and Santos (2006)
show that second order approximation effects in the law of motion have first order effects on like-
lihood functions, and hence on estimates of parameters.
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compute and estimate stochastic dynamic equilibrium models with greater ac-
curacy by employing simulation. Simulation is well suited to uncovering the
predictions of nonlinear models and comparing them with data. Simulation-
based calibration and estimation are becoming increasingly commonplace.2

For stationary models, such simulation typically addresses properties of the
stationary distribution and stationary time series. Provided that the model in
question is both stationary and ergodic, approximate draws from the station-
ary distribution can be generated, since the distribution of the time t state con-
verges to the stationary distribution for any choice of initial condition (cf., e.g.,
Santos and Peralta-Alva, 2005). Simulating until the distribution of the state is
approximately stationary is referred to as “burn-in.”

However, when the state space of the model is not finite, little guidance is
available on the rate of convergence to the stationary solution, in which case
the length of burn-in required is the subject of guesswork and heuristics. This
is particularly problematic when searching over a large parameter space for a
good fit to data.3 A second and related issue is that, regardless of how much
burn-in is performed, the resulting sample is never exactly stationary.4

In this paper we address these two problems in the context of dynamic stochas-
tic economic models, studying algorithms which permit exact sampling from
the stationary distribution of the model. The second problem is then solved:
one need not consider errors because the sample from the stationary distribu-
tion is exact. The first problem is also solved, because the algorithm terminates
automatically when the stationary distribution is attained.

The algorithms in question are variations of Propp and Wilson’s (1996) cou-
pling from the past (CFTP) technique. In essence, one can think of CFTP as
permitting observation at time zero of time series that start in the infinite past,
in which case the burn-in is infinite and the stationary distribution is attained.
Despite the fact that the sequence is infinite, when certain assumptions are sat-
isfied the limit of the process can be observed in finite time with probability
one.

From a single observation of the stationary distribution, a stationary time series
can be generated by simulating the model in the usual way, taking the obser-
vation as the initial condition. More importantly, the algorithm can be used to
generate independent draws from the stationary distribution. Standard IID laws
of large numbers and central limit theorems can then be used in Monte Carlo
estimation.

2For discussion of estimation via simulation, see, for example, Lee and Ingram (1991), Duffie
and Singleton (1993) or Gouriéroux and Monfort (1996).

3For example, burn-in time tends to vary over the parameters, causing biased estimates.
4As the size of the error depends on the initial condition, this deviation between computed and

stationary distributions is sometimes called “initialization bias.”
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Propp and Wilson’s technique was originally proposed for problems in statis-
tical mechanics involving finite Markov chains. In economic dynamics, most
problems of interest have uncountable state spaces. Outside of economics, the
CFTP method has recently been extended to some general state settings (see,
e.g. Foss and Tweedie, 1998, Murdoch and Green, 1998, Corcoran and Tweedie,
2001, or Athreya and Stenflo, 2003). We use the iterated function and reversed
process notation of Athreya and Stenflo (2003). Our theoretical results in sec-
tion 3 are based on similar ideas, with some additional structure that avoids
the need for computing residual kernels and provides a simple exposition.

As an application of the algorithm, we generate exact random draws from a
stationary distribution corresponding to cross-sectional household assets in
Aiyagari’s (1994) well-known model. Our implementation generated 100,000
IID draws in 2.4 seconds. From this sample, we estimated aggregate capital
using Monte Carlo. The estimate had a 99% confidence interval with width of
less than 0.0006.

The structure of the paper is as follows. Section 2 formulates the problem and
describes our assumptions. Theoretical perfect sampling results are presented
in section 3. Section 4 gives the numerical application, and section 5 concludes.

2. Formulation of the Problem

We consider a class of dynamic models which evolve on state space X. The
time t state is denoted by Xt ∈ X. Typically X is a subset of Rn, so that Xt
is an n-dimensional vector consisting of all (endogenous and exogenous) state
variables. In terms of our theory, we require only that X is a separable and
completely metrizable topological space. The Borel subsets of X are denoted
by B.

All random variables are assumed to be defined on a fixed probability space
(Ω, F , P). For any random variable Y defined on this space, we use the sym-
bol LY to denote the distribution (or law) of Y.5 As usual, a sequence of
probability measures µn on B is said to converge to probability measure µ
if
∫

h(y)µn(dy)→
∫

h(y)µ(dy) for all continuous bounded h : X→ R, and we
write µn → µ.

We consider a generic economic model, the dynamics of which are summarized
by a stochastic (transition) kernel Q. Formally, Q is a family of probability
measures {Q(x, dy)}x∈X on B such that x 7→ Q(x, B) is measurable for each
B ∈ B. The term Q(x, B) represents the probability that the next period state
is in B, given that the current state is x.

5In other words, LY is the probability measure B 7→ P{Y ∈ B} on B.
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Example 2.1. Santos and Peralta-Alva (2005) consider a class of dynamic mod-
els which obey the law of motion

zt+1 = Ψ(zt, εt+1), kt+1 = g(kt, zt, ε′t+1)

The process (zt)t≥0 is a vector of correlated exogenous variables in Rj, while
(kt)t≥0 is a vector of endogenous variables in Rk, updating according to the
equilibrium decision rule g. The processes (εt)t≥1 and (ε′t)t≥1 are IID with dis-
tributions ν and ν′ respectively. For this model, the state space is X := Rj×Rk,
and the corresponding stochastic kernel is defined by

Q((z, k), B) =
∫ ∫

1B[Ψ(z, u), g(k, z, u′)]ν(du)ν′(du′)

for (z, k) ∈ X and B ∈ B, where 1B is the indicator function of B.

Returning to the general case, we consider processes which obey the dynamics
encapsulated in a given kernel Q. A stochastic process (Xt)t≥0 on X is defined
to be Q-Markov if

P{Xt+1 ∈ B |Xt = x} = Q(x, B) (x ∈ X, B ∈ B) (1)

The k-step kernel Qk associated with Q is defined by

Q1 = Q and Qk(x, B) =
∫

Q(x, dz)Qk−1(z, B)

If (Xt)t≥0 is Q-Markov, then, for all k ∈ N, x ∈ X and B ∈ B, we have
P{Xt+k ∈ B |Xt = x} = Qk(x, B). In particular, Qk(x, dy) is the marginal
distribution LXk of Xk when X0 = x.

We focus exclusively on stationary processes. A probability measure ψ∗ on
(X, B) is called stationary for Q if

ψ∗(B) =
∫

Q(x, B)ψ∗(dx) ∀ B ∈ B

Q is said to be globally stable if there exists a unique stationary distribution ψ∗

in the set of probability measures on B, and, moreover,

Qt(x, dy)→ ψ∗ as t→ ∞ for all x ∈ X (2)

By a stochastic recursive sequence (SRS) on X we mean a model of the form

Xt+1 = F(Xt, Ut+1) :=: FUt+1(Xt) t = 0, 1, . . . (3)

where (Xt)t≥0 takes values in X and (Ut)t≥1 takes values in a measurable space
(U, U ).6 The shock sequence is IID, with LUt = ν.7 The time t realization of

6The function X×Y 3 (x, u) 7→ Fu(x) ∈ X is assumed to be jointly measurable.
7Note that correlated exogenous shocks can be incorporated in this framework. Example 2.1 is

a case in point, with Xt = (kt, zt) and Ut = (εt, ε′t).
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this process can be expressed as

Xt = FUt ◦ FUt−1 ◦ · · · ◦ FU1(x) (x ∈ X) (4)

where x = X0 is the initial condition for the process. We say that the process
(3) represents the kernel Q if

Q(x, B) = ν{u ∈ U | Fu(x) ∈ B} = P{FU1(x) ∈ B} (5)

for x ∈ X and B ∈ B. In other words, FU1(x) is a draw from the distribution
Q(x, dy). Should this be the case, then (Xt)t≥0 in (3) is Q-Markov, and

Qk(x, B) = P{FUk ◦ · · · ◦ FU1(x) ∈ B} (x ∈ X, B ∈ B, k ∈N)

Under our assumptions on X, for each kernel Q there exists at least one SRS
which represents it (see, e.g., Kifer, 1986).

We require some stability assumptions on the stochastic kernel Q. In the as-
sumptions, we suppose that (3) is an SRS which represents Q.

Assumption 2.1. There exists a set C ∈ B and a measurable function H : U→
X such that F(x, u) = H(u) for all x ∈ C.

Assumption 2.2. There exists an m ∈ N and an E ∈ U such that ν(E) =
P{U1 ∈ E} > 0, and

ui ∈ E for i = 1, . . . , m =⇒ Fum ◦ · · · ◦ Fu1(x) ∈ C ∀ x ∈ X

In other words, there exists a set C such that whenever the current state Xt
is in C, the next period state is given by H(Ut+1), independent of the precise
value of Xt. Second, there exists a finite sequence of shock values with positive
probability such that this sequence sends the process into C, regardless of the
starting point x. Under these conditions we have the following result:

Proposition 2.1. If assumptions 2.1 and 2.2 hold, then Q is globally stable.

PROOF. Recall that Doeblin’s condition is said to hold when there exists an
t ∈N, a probability measure µ on (X, B) and a constant ρ ∈ (0, 1) such that

Qt(x, B) ≥ ρµ(B) ∀x ∈ X, ∀ B ∈ B (6)

Under this assumption, it is well-known that Q is globally stable in the sense
defined in (2).8 We claim that Doeblin’s condition holds. To see this, let m and

8See, e.g., Meyn and Tweedie (1993, thm. 16.2.4.).

5



E be as in assumption 2.2. Fix x ∈ X and B ∈ B. Observe that

Qm+1(x, B) = P{FU1 ◦ FU2 ◦ . . . ◦ FUm+1(x) ∈ B}
≥ P [∩m+1

i=2 {Ui ∈ E} ∩ {FU1 ◦ FU2 ◦ . . . ◦ FUm+1(x) ∈ B} ]

= P [∩m+1
i=2 {Ui ∈ E} ∩ {H(U1) ∈ B} ]

= P ∩m+1
i=2 {Ui ∈ E}P{H(U1) ∈ B}

= ε ν(H−1(B))

where ε := ν(E)1/m. We have now verified Doeblin’s condition, with t =
m + 1, ρ = ε and µ defined as the image measure ν ◦ H−1.

Example 2.2. Recall the optimal stopping problem considered by Rust (1987)
in his seminal analysis of structural estimation for Markov decision processes.
The problem is one of optimal timing for engine replacement. The state vari-
able Xt ∈ X := R+ represents accumulated mileage on the engine, and it
follows the transition law

Q(x, B) =
∫

B
ν[y− x(1− g(x))]dy (7)

where ν is the exponential density ν(u) = λe−λu for some λ > 0, and g is a
replacement policy.9 The range of g is {0, 1}, with g(x) = 0 indicating that the
current engine is kept when the state is x, and g(x) = 1 indicating replacement.
The kernel Q defined in (7) is represented by (and best understood in terms of)
the SRS

Xt+1 = Xt(1− g(Xt)) + Ut+1 (8)

where (Ut)t≥1 is IID on U := R+ with density ν. The optimal policy g is chosen
as the solution to

min
g∈Σ

E ∑
t≥0

βtc(Xt, g(Xt))

where Σ is the measurable binary functions on X (i.e., the indicator functions
on B) and c is a given cost function which need not be presented here. Rust
(1987) shows that the optimal policy is given by g(x) = 1{x > γ} for some
constant γ > 0. Rewriting (8) with g defined in this way gives

Xt+1 = FUt+1(Xt) := Xt1{Xt ≤ γ}+ Ut+1 (9)

Assumption 2.1 is satisfied with C := {0} ∪ (γ, ∞) and H(u) := u. Assump-
tion 2.2 is satisfied with m = 1 and E := (γ, ∞).

Example 2.3. The commodity pricing model of Deaton and Laroque (1992)
treats a competitive market for a single commodity. At the start of time t, cur-
rent “harvest” Ut is made available to the market. The sequence (Ut)t≥1 is IID,

9For u < 0 we set ν(u) = 0.
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and supported on an interval [0, b] for some b > 0. That is, ν([0, b]) = 1, and
ν(G) > 0 for any nonempty open set G ⊂ [0, b].

Demand for the commodity is from “consumers” and “speculators.” Specu-
lators purchase the commodity in the current period and sell it in the next.
Storage costs are positive: Quantity It carried over from time t yields αIt at
t + 1, where α ∈ (0, 1). Aggregate supply at time t is the sum of the har-
vest Ut and the depreciated investment αIt−1. Thus, if Xt denotes supply, then
Xt = αIt−1 + Ut. Let x̄ := (1− α)−1b and X := [0, x̄]. Using It ≤ Xt, one can
show that Xt ∈ X implies Xt+1 ∈ X.

Based on rational expectations and arbitrage conditions, Deaton and Laroque
develop a concept of recursive equilibrium, and, applying a contraction map-
ping argument, solve for an equilibrium pricing function and carry-over func-
tion I : X → X. The carry-over function I is shown to be nondecreasing and
satisfies I(x) ≤ x. Moreover, there exists an xb > 0 such that x ≤ xb implies
I(x) = 0. The equilibrium process for the state is given by

Xt+1 = FUt+1(Xt) := αI(Xt) + Ut+1

Assumptions 2.1 and 2.2 both hold for this process. To see this, let C := [0, xb]
and H(u) = u. For x ∈ C we have Fu(x) = αI(x) + u = u = H(u), so
assumption 2.1 is satisfied. To verify assumption 2.2, let m ∈ N and u0 > 0 be
chosen such that

αm x̄ + u0
1− αm

1− α
≤ xb

Define E := [0, u0]. Since u0 > 0, we have ν(E) > 0. Define (xt) recursively by
xt+1 = αI(xt) + ut+1. If ui ∈ E for i = 1, . . . , m, then Then for any fixed i with
i ≤ m we have

xi = αI(xi−1) + ui ≤ αxi−1 + u0

Combining these m inequalities gives

xm ≤ αmx0 + u0
1− αm

1− α
≤ αm x̄ + u0

1− αm

1− α
≤ xb

In other words, xm ∈ C whenever ui ∈ E for i = 1, . . . , m, and hence assump-
tion 2.2 is satisfied.

3. Perfect Sampling

Let Q be a stochastic kernel satisfying assumptions 2.1 and 2.2, and let ψ∗ be
the (unique) stationary distribution. The kernel is represented by SRS (3). In
this setting, there is an obvious way to generate random variables which are
approximately distributed according to ψ∗: Pick any initial condition x ∈ X,
generate independent observations of the shock, and compute Xt via (4). Since
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the SRS represents Q, we have LXt = Qt(x, dy), and the latter converges to ψ∗

by (2).

As discussed in the introduction, however, equality cannot be attained in finite
time, and the size of the error caused by stopping at finite t is difficult to assess.
As an alternative, then, consider the reversed process (Yt) defined by

Yt := FU1 ◦ FU2 ◦ · · · ◦ FUt(x) (x ∈ X) (10)

Since (U1, . . . Ut) and (Ut, . . . , U1) have the same joint distribution, it is clear
that Xt and Yt have the same distribution. That is,

LFU1 ◦ · · · ◦ FUt(x) = LFUt ◦ · · · ◦ FU1(x) ∀ x ∈ X, t ∈N (11)

Hence LYt = Qt(x, dy), and one can also use Yt as an approximate draw from
ψ∗ when t is large.

The advantage of using the reversed process is as follows: On one hand, the
sample paths of (Xt) usually fail to converge, in the sense that limt Xt does not
exist. On the other hand, as we shall see, (Yt) may well converge to a limiting
random variable Y∞ almost surely as t → ∞. Assuming global stability, it is
easily shown (see lemma 3.1 below) that LY∞ = ψ∗. Moreover, under our as-
sumptions, the convergence to Y∞ occurs in finite time. Once this convergence
has occurred, there is no need to simulate any further.

To formalize these arguments, we begin with the following lemma: Pick any
x ∈ X, and let Yt be defined by (10). Then

Lemma 3.1. If Y∞ := limt→∞ Yt exists P-a.s., then LY∞ = ψ∗.

PROOF. It suffices to show that Eh(Y∞) =
∫

hdψ∗ for any bounded continuous
h : X→ R. This is the case because, given any such h, we have

Eh(Y∞) = Eh(lim
t

Yt) = E lim
t

h(Yt) = lim
t

Eh(Yt)

= lim
t

Eh(Xt) = lim
t→∞

∫
h(y)Qt(x, dy) =

∫
hdψ∗

where the third equality is by dominated convergence, the fourth is due to the
fact that LYt = LXt, and the last is by global stability.

Let’s say that an arbitrary sequence (xt) in X coalesces if it is eventually constant
(i.e., ∃n ∈ N such that xt = xn for all t ≥ n). Suppose that Yt coalesces almost
surely. That is, there exists a measurable set Ω∞ ⊂ Ω with P(Ω∞) = 1, and
such that, for all ω ∈ Ω∞, there exists an n ∈ N with Yt(ω) = Yn(ω) for all
t ≥ n. In this case, (Yt) converges almost surely, and we let Y∞ denote the limit.
By lemma 3.1, we have LY∞ = ψ∗. Informally, since (Yt) converges to Y∞ in
finite time, we can draw from ψ∗ in finite time. Let us now formalize this idea.
As above, x ∈ X is arbitrary, and Yt is defined by (10).
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Proposition 3.1. The reversed sequence Yt coalesces almost surely.

The proof is given immediately, since its logic drives our first algorithm for per-
fect sampling. To interpret the proof in terms of computer simulation, imagine
that at the start of the simulation a particular ω ∈ Ω is randomly selected, and
this value ω determines the entire path of shocks (ut)t≥1 := (Ut(ω))t≥1 that
will be observed in that simulation run. The random number generator simply
returns successive elements of this sequence.

PROOF (PROOF OF PROPOSITION 3.1). Pick any initial condition x ∈ X. Let E
and m be as in assumption 2.2, let

Ωk := {ω ∈ Ω : Uk+i(ω) ∈ E for i = 1, . . . , m}

and let Ω∞ = ∪k≥1Ωk. Since ν(E) > 0, we have P(Ω∞) = 1. Now fix ω ∈ Ω∞,
so that, in particular, ω ∈ Ωk for some k ∈ N. For ease of notation, let uj =
Uj(ω) for j ∈N. For any t ≥ k + m,

Yt(ω) := Fu1 ◦ · · · ◦ Fuk ◦ Fuk+1 ◦ · · · ◦ Fuk+m ◦ · · · ◦ Fut(x)

In view of assumption 2.2, we have

Fuk+1 ◦ · · · ◦ Fuk+m ◦ · · · ◦ Fut(x) ∈ C ∀ t ≥ k + m

It now follows from assumption 2.1 that

Yt(ω) = Fu1 ◦ · · · ◦ Fuk−1 ◦ H(uk) ∀ t ≥ k + m

The right-hand side is constant in t, so Yt(ω) has coalesced.

To produce a perfect sample, it suffices to generate and append successive
shocks ut to a running list L = {u1, . . . , ut−1}, continuing until m consecutive
elements of this list are in E. The value Yt(ω) computed using the shocks in L
is a perfect sample. This is the justification for algorithm 1. In the algorithm,
Lm denotes the last m elements of the list L.

From the proof of proposition 3.1, algorithm 1 terminates in finite time with
probability one, and the variate returned is a draw from ψ∗. It should be noted,
however, that the stopping condition is sufficient but not necessary for coales-
cence of Yt(ω), and might be a low probability event. In specific applications,
more efficient test for coalescence may be available. An example is given be-
low.
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set t← m + 1 ;
draw u1, . . . , ut independently from ν and set L← {u1, . . . ut} ;
repeat

if Lm ∈ Em then /* last m elements all in E */
break ;

end
set t← t + 1 ;
draw ut from ν and append it to the end of list L ;

end
return Yt := Fu1 ◦ Fu2 ◦ · · · ◦ Fut−m−1 ◦ H(ut−m)

Algorithm 1: Perfect sampling

4. Applications

In our numerical application, we consider an equilibrium model of saving and
asset accumulation under borrowing-constraints studied by Aiyagari (1994).
Households maximize the objective function

max
g∈Σ

E ∑
t≥0

βtu(Zt − g(Zt))

where Σ is the set of measurable (policy) functions g : R+ → R+ satisfying 0 ≤
g(z) ≤ z, and the state variable (Zt)t≥0 obeys Zt+1 = wUt+1 + (1 + r)g(Zt)−
rφ. Here φ represents the borrowing constraint, w is wages, r in the interest
rate, Ut is an idiosyncratic labor supply shock, and the control variable g(Zt)
represents assets plus φ (Aiyagari, 1994, p. 666). The utility function is specified
as u(c) := c1−σ/(1− σ). To simplify the exposition, (Ut)t≥1 is taken to be IID,
with common distribution ν. This corresponds to section III of Aiyagari (1994).
The optimal policy satisfies

g(z; w, r) =

argmax0≤a≤z

{
u(z− a) + β

∫
V(wx + (1 + r)a− rφ)ν(dx)

}
(12)

where V is the value function. A stationary equilibrium is a set of values, K, r
and w such that

r = f1(K, 1)− δ, w = f2(K, 1), and K =
∫

g(z; w, r)ψ∗(dz) (13)

where f is the production function and ψ∗ is the stationary distribution of the
state variable Zt under the optimal law of motion

Zt+1 = wUt+1 + (1 + r)g(Zt; w, r)− rφ (14)

10



Numerical solution involves guessing the value of K, determining r and w via
the first two equations in (13), solving the household problem for g(·; w, r),
obtaining ψ∗ from (14), and adjusting K to match the right-hand side of the final
equality in (13). Most studies treat this problem by discretizing the state space,
but we will use a continuous state space and fitted value iteration. The integral∫

g(z; w, r)ψ∗(dz) is then computed using Monte Carlo and perfect sampling.
To focus attention on perfect sampling, we consider only computation of this
integral for given w and r.

As in Aiyagari (1994), we take β = 0.96, σ = 2 and φ = 0. The shock Ut
is assumed to be discrete, with distribution ν chosen to match the stationary
distribution of the shock process in Aiyagari. In particular, Ut ∈ {1− d, 1, 1 +
d}, where d = 0.49 is selected so that the standard deviation of Ut is 0.4. We
set w = 1.3712 and r = 0.0129, which are chosen to approximate equilibrium
values.

Given these parameters, an approximation to the value function is calculated
using fitted value iteration. Piecewise linear interpolation is used to approxi-
mate the value functions at each step. The resulting approximate optimal pol-
icy (12) converges in value to the true optimal policy as the number of iterations
and the distance between grid points converge to infinity and zero respectively
(Stachurski, 2008). Here, interpolants are computed on an evenly spaced grid
of 150 elements.

The approximate optimal policy ĝ is also represented by a piecewise linear
interpolant, where the interpolation values are obtained by solving (12) on the
grid points. The resulting dynamics for (Zt)t≥0 are then given by

Zt+1 = FUt+1(Zt) := wUt+1 + (1 + r)ĝ(Zt) (15)

Given our solution for ĝ, the SRS has the following features. First, ĝ and hence
z 7→ Fu(z) are monotone nondecreasing. Second, for any realization u of U, we
have Fu(z̄) < z̄ when z̄ := 14, and hence X := [0, z̄] can serve as a state space
for (15). Third, ĝ satisfies ĝ(z) = 0 for z < zb := 0.95274.

Consider now the problem of generating random deviates with distribution ψ∗.
Assumptions 2.1 and 2.2 are both satisfied,10 and theorem 3.1 applies. How-
ever, we will construct an application-specific method of detecting when the
reversed process has coalesced.

To begin, let Yt := FU1 ◦ · · · ◦ FUt(z̄) be the reversed process starting from z̄, and
define the intermediate values of this process by

Yi
t := FUi ◦ FUi+1 ◦ · · · ◦ FUt(z̄) (t ≥ i)

10Assumption 2.1 is satisfied with C = [0, zb) and H(u) = wu. Regarding assumption 2.2, it
turns out that F(z, 1− d) < z for all z ∈ [0, z̄], so a sufficiently long sequence of bad shocks drives
the state below zb (i.e., into C), independent of the current state.
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so that Yt := FU1 ◦ · · · ◦ FUi−1(Yi
t ) for each i ≤ t. We will consider values of

this process with respect to a fixed realization of the shocks (ut)t≥1. Lower
case symbols such as yt and yi

t to represent realizations of the reversed process
corresponding to this fixed shock path.

Lemma 4.1. Given any i ≤ n ≤ t, we have yi
t ≤ yi

n.

PROOF. We can and do assume that n < t. Recall that z 7→ Fu(z) is nonde-
creasing for any u, and that z̄ is an upper bound for the state space, implying
yn+1

t ≤ z̄. It follows that

yi
t := Fui ◦ · · · ◦ Fut(z̄) = Fui ◦ · · · ◦ Fun(yn+1

t ) ≤ Fui ◦ · · · ◦ Fun(z̄) =: yi
n

as was to be shown.

Lemma 4.2. If 1 < i < t and yi
t < zb, then yt = Fu1 ◦ · · · ◦ Fui−2(wui−1).

PROOF. Since ĝ(z) = 0 whenever z < zb, the assumption yi
t < zb implies that

Fui−1(yi
t) := wui−1 + (1 + r)ĝ(yi

t) = wui−1. But then

yt = Fu1 ◦ · · · ◦ Fui−1(yi
t) = Fu1 ◦ · · · ◦ Fui−2(wui−1)

as was to be shown.

Lemmas 4.1 and 4.2 suggest the following technique for perfect sampling. Sup-
pose that the reversed process computed from u1, . . . , un falls below zb at some
i > 1. More precisely, there exists a i with 1 < i ≤ n and yi

n < zb. In that
case the sequence (yt) has coalesced: yt = yn for all t ≥ n. To see this, pick any
t > n, and suppose that we generate additional observations un+1, . . . , ut of the
shock and append them to the existing sequence u1, . . . , un to obtain u1, . . . , ut.
Since yi

t ≤ yi
n (Lemma 4.1) and yi

n < zb, we have yi
t < zb. From lemma 4.2 it

then follows that yt = Fu1 ◦ · · · ◦ Fui−2(wui−1), which is independent of t.

We have now justified algorithm 2 as a means of sampling from ψ∗. In the
algorithm, L is a list used to store the shocks draws generated within the loop.
The variable C ∈ {0, 1} switches to one when yi

t < zb at some i > 1, indicating
that (yt) has coalesced.

Note that repeated draws from the algorithm are independent. Hence repetition
allows one to generate IID draws from ψ∗. We can then calculate the desired
integral (i.e., aggregate capital given the stationary distribution) using Monte
Carlo: ∫

ĝ(z)ψ∗(dz) ∼=
1
n

n

∑
i=1

ĝ(Zi)

12



set t← 1, C ← 0, y← z̄, L← {} ;
repeat

draw ut ∼ ν and append to the end of list L ;
for i in t, . . . , 1 do /* compute yt recursively */

y← Fui (y) ;
if y < zb and i > 1 then set C ← 1 ;

end
if C = 1 then break ; /* process has coalesced */
else

t← t + 1 ;
y← z̄ ;

end
end
return y

Algorithm 2: Perfect sampling, Aiyagari model

where the sequence (Zi)n
i=1 is the draws from ψ∗. Moreover, since the draws

are IID, and since the second moment satisfies∫
ĝ(z)2ψ∗(dz) ≤ ĝ(z̄)2 < ∞

we have
√

n

[
1
n

n

∑
i=1

ĝ(Zi)−
∫

ĝ(z)ψ∗(dz)

]
→ N(0, σ2) (16)

in distribution, for

σ2 :=
∫ (

ĝ(z)−
∫

ĝ(z′)ψ∗(dz′)
)2

ψ∗(dz)

The latter quantity can be estimated from the sample to provide an asymptotic
confidence interval for the integral.

To test the algorithm we drew 100,000 independent perfect samples from ψ∗.
The algorithm was implemented in C, and compiled using the gcc compiler.11

Some modifications were made to the algorithm in order to reduce runtime,
such as incrementing time in steps of 100, rather than 1. On a system run-
ning Ubuntu Linux with 2GB memory and a dual core 2.13GHz CPU, the total
runtime for the program was 2.4 seconds.12 The length of the 99% confidence

11See http://johnstachurski.net/lectures/aiyagari.html for the code and instructions on
compilation.

12Naturally, this does not include the time required to compute the approximate optimal policy
ĝ, which is not related to algorithm 2. As discussed above, ĝ was implemented using linear in-
terpolation. The interpolation values were computed separately via a program written in Python,
and passed into the C program via file I/O in order to implement the SRS (15).
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interval implied by (16) was 0.00054, indicating a very high degree of precision.

5. Conclusion

In this paper we discussed perfect sampling for a class of dynamic models.
Under certain assumptions on the process, it was shown that perfect samples
could be obtained in finite time with probability one. We also presented a mod-
ified algorithm for generating perfect samples in the case of Aiyagari’s (1994)
model. The algorithm permits rapid generation of IID variates from the sta-
tionary distribution.

Not all dynamic models of interest to economists satisfy our assumptions. For
example, the standard neoclassical growth model does not generally satisfy
assumptions 2.1 and 2.2. However, simple models from this class have been
shown to be ergodic and Harris recurrent (cf., e.g., Nishimura and Stachurski,
2005), and algorithms for perfect sampling from ergodic Harris recurrent Markov
processes were obtained by Corcoran and Tweedie (2001). Generalization of
the theoretical results and implementation of the algorithms is left for future
research.
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