Ti-bridged silsesquioxanes as precursors of silica-supported titanium oxide catalysts for the epoxidation of cyclooctene

AUTHOR(S):
Sakugawa, Shuko; Wada, Kenji; Inoue, Masashi

CITATION:

ISSUE DATE:
2010-09-22

URL:
http://hdl.handle.net/2433/131821

RIGHT:
© 2010 Elsevier Inc.; This is not the published version. Please cite only the published version.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
Ti-bridged Silsesquioxanes as Precursors of Silica-supported Titanium Oxide

Catalysts for the Epoxidation of Cyclooctene

Shuko Sakugawa, Kenji Wada,* and Masashi Inoue

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering,
Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, JAPAN
Phone +81-75-383-2482, Fax +81-75-383-2479, e-mail wadaken@scl.kyoto-u.ac.jp

ABSTRACT:

Silica-supported titanium oxide catalysts were prepared by the controlled calcination of Ti-bridged polyhedral oligomeric silsesquioxanes (POSS) bearing four Si-O-Ti bonds, Ti[(c-C₅H₅)₇Si₇O₁₁(OSiMe₂R)]₂ (1a; R = vinyl, 1b; R = methyl) and Ti[(c-C₅H₅)₈Si₈O₁₃]₂ (2), supported on various silicas, and these catalysts showed excellent activities for the epoxidation of cyclooctene by iBuOOH as an oxidant to selectively give cyclooctene oxide in high yields. On the other hand, catalysts prepared using a corner-capped-type Ti-containing POSS, CpTi[(c-C₅H₅)₇Si₇O₁₂] (3, Cp = cyclopentadienyl), or tetraisopropoxytitanium (4) showed lower activities. The
catalysts prepared from Ti-bridged POSS can be easily separated from the reaction mixture and reused without a significant loss of activity. These catalysts were also applicable for the epoxidation of limonene. A spectroscopic study revealed that calcination of Ti-bridged POSS supported on silica gave isolated tetrahedral Ti(IV) species, which would be responsible for the high activity, while calcination of silica-supported 3 or 4 gave aggregated surface titanium oxide species.

KEY WORDS:

Titanium; Silsesquioxane; Silica-supported catalyst; Epoxidation; Cyclooctene; Limonene
1. Introduction

Siliceous group 4 transition metal catalysts, such as Ti-containing zeolites, are widely used in current chemical industries [1–3]. In particular, titanosilicates such as TS-1 generally show activity that is superior to that of amorphous TiO$_2$-SiO$_2$ in the epoxidation of small alkenes [3–5]. However, titanium-containing zeolites generally have steric limitations regarding applicable substrates because of their microporous nature. Therefore, the development of novel titanium catalysts with suitable meso- and/or macropores, which contain well-dispersed titanium species, is of great significance.

On the other hand, metal-containing POSS (polyhedral oligomeric silsesquioxanes) have attracted attention as well-defined, homogeneous models of solid siliceous catalysts [6-15]. In particular, the catalytic activities of Ti-containing POSS for the epoxidation of alkenes have been examined [16-23]. In addition to their activities as homogeneous catalysts, their application to heterogeneous catalysis using metal-containing POSS as precursors has been examined [10,13,15,24-31]. The preparation of microporous silicas containing well-dispersed metal oxide species by the controlled calcination of metal-containing POSS has been reported [32-42]. Furthermore, the authors have prepared catalysts possessing both mesopores and
micropores by the impregnation of metallic salts and POSS ligands onto suitable supports followed by calcination, and these catalysts showed excellent activities for both the aerobic oxidation of benzylic alcohols in water [43] and the hydroformylation of alkenes [44]. In this context, we could expect that it would be easier to prepare silica-supported monomeric Ti(IV) catalysts using Ti-bridged POSS in place of usual Ti-containing precursors such as Ti(OiPr)₄ [45].

We report here the preparation of silica-supported titanium oxide catalysts using Ti-containing POSS as precursors. These oxide catalysts showed excellent activities for the epoxidation of cyclooctene by iBuOOH. The effects of various titanium sources on the activities and physical properties of the thus-prepared oxide catalysts by calcination were examined to identify suitable structures for the required titanium precursors. Changes in the state of Ti-containing POSS during calcination were also investigated.
2. Experimental

Materials and methods. Ti-containing POSS were prepared and subsequent manipulations were performed under an argon atmosphere using standard Schlenk techniques. Dehydrated toluene (Wako) was used as received. Cyclooctene (Nacalai Tesque), limonene (Wako), tBuOOH in a decane solution (5.5 M, Fluka), tetrakis(dimethylamido)titanium (Gelest), tetraisopropoxytitanium (4; Nacalai Tesque), (c-C₅H₉)₇Si₇Oₙ(OH)₃ (Aldrich), and (c-C₅H₉)₈Si₈O₁₁(OH)₂ (Aldrich) were obtained commercially and used without further purification. A platinum catalyst (Karsted’s catalyst, (divinyltetramethyldisiloxane)platinum(0) (2.1-2.4 wt%) in xylene) was obtained from Gelest. (c-C₅H₉)₇Si₇Oₙ(OSiMe₂R) (R = vinyl [26], methyl [46]), Ti[(c-C₅H₉)₇Si₇O₁₁(OSiMe₂R)]₂ (Ia; R = vinyl [26], Ib; R = methyl [18,26]), and CpTi[(c-C₅H₉)₇Si₇O₁₂] (3) [33] were synthesized based on methods described in previous reports. Dimethylsiloxyl-functionalized silica (SiMe₂(H)-silica, Aldrich) and Cabosil (HS-5, Cabot) were used as received. Mesoporous MCM-41 was prepared based on the method in the literature [47]. JRC silicas were obtained from the Catalysis Society of Japan. The BET surface areas of JRC-SIO-1, -5, -6, -7, and -8 were 104, 174, 103, 88, and 316 m² g⁻¹, respectively.
Synthesis of Ti[(c-C₅H₉)₈Si₈O₁₄]₂ (2). To a solution of (c-C₅H₉)₈Si₈O₁₁(OH)₂ (1481 mg, 1.5 mmol) in anhydrous toluene (25 cm³), tetrakis(dimethylamido)titanium (168 mg, 0.85 mmol) in anhydrous toluene (20 cm³) was dropwise added and the mixture was stirred at room temperature overnight. After the solvent was evaporated, the resulting off-white solid was extracted with hexane (35 cm³). Filtration using a 0.45 µm PTFE filter gave a clear solution. After the evaporation of hexane, 2 was obtained by recrystallization by slow diffusion of acetonitrile into a toluene solution. Yield 89%.

M.p. 260 °C (decomp.). ¹H NMR (400 MHz, C₆D₆, 25 °C) δ 1.94–1.55 (128 H, br m), 1.22-1.14 (16 H, br m); ¹³C{¹H} NMR (75 MHz, C₆D₆, 25 °C) δ 27.81, 27.76, 27.73, 27.59, 27.36, 27.35, 27.31 (CH₂ of Cy), 23.39, 23.02, 22.49 (1 : 2 : 1, CH of Cy);

²⁹Si{¹H} NMR (76 MHz, C₆D₆, 0.02 M Cr(acac)₃, 25 °C) δ -64.83, -67.65, -68.22 (1 : 2 : 1). Anal. Calcd for C₈₀H₁₄₄O₂₆Si₁₆Ti (2019.22): C, 47.59; H, 7.19. Found C, 47.32; H, 6.93.

Physical and analytical measurements. Solution-phase NMR spectra were recorded on JEOL JNM-EX-400 instruments. ¹H and ¹³C spectra were referenced to internal solvent resonances and reported relative to SiMe₄. Chemical shifts for the ²⁹Si nuclei were referenced to an external SiMe₄ resonance. Elemental analyses were performed
at the Microanalytical Center of Kyoto University. The TG-TDA study was performed using a RIGAKU TG8120 system. The sample (ca. 5 mg) was heated at a rate of 10 °C min\(^{-1}\) under a stream of air (50 cm\(^3\) min\(^{-1}\)). Diffuse reflectance infrared Fourier transform (DRIFT) spectra were recorded using a Nicolet Magna-IR 560 FT-IR spectrometer. An uncalcined sample (ca. 10 wt%, diluted with KBr powder) was heated in air at an approximate rate of 10 °C min\(^{-1}\), and the spectrum was recorded after the sample was held at the prescribed temperature for 10 min. X-ray fluorescence (XRF) analysis was performed using a Spectro XEPOS-MS II (25 W).

The oxide catalysts were analyzed by nitrogen gas adsorption, XRD, XPS, and UV-Vis spectroscopy. Nitrogen adsorption/desorption isotherms were obtained with a computer-controlled automatic gas sorption system (Quantachrome NOVA 4200e). Samples were degassed at 573 K for 30 min just before the measurements. The mean pore diameter was calculated from the pore volume and the specific surface area assuming that the pore was cylindrical. X-ray powder diffraction patterns were recorded using Cu \(K\alpha\) radiation (30 kV, 30 mA) and a carbon monochromator (XRD: XD-D1, Shimadzu). X-ray photoelectron spectra (XPS) of the catalysts were acquired using an ULVAC-PHI 5500MT system equipped with a hemispherical energy analyzer. Samples were mounted on indium foil and then transferred to an XPS analyzer chamber.
The residual gas pressure in the chamber during data acquisition was less than 1×10^{-8} Torr (1 Torr; 133.3 N m$^{-2}$). The spectra were measured at room temperature using Mg $K\alpha$ radiation (15 kV, 400 W). The electron take-off angle was set at 45 deg. Binding energies were referenced to the C 1s level of residual graphitic carbon [48]. UV-visible diffuse reflectance spectra were measured with a JASCO V-650 spectrophotometer, in which reflected beams were gathered by an integrating sphere (50 mm inner diameter). A UV cell (10 mm x 40 mm, inner thickness 1.0 mm) equipped with a branched chamber and a stop valve was used to avoid any contact with moisture. The catalyst submitted for measurement was heated in the branched chamber at 473 K under atmospheric pressure for 30 min, and evacuated at 673 K followed by treatment under 100 Torr of oxygen at 673 K for 1 h. The catalyst was then transferred to the UV cell, and spectra were taken in vacuo. Barium sulfate (Nacalai Tesque) was used as a background. All of the spectra were modified in terms of the Kubelka-Munk function. Leaching of titanium species from the catalysts during the reaction was investigated by an ICP atomic emission spectroscopic analysis using a Shimadzu ICPS-1000III analyzer.

Preparation of an oxide catalyst from silica-tethered Ti-POSS. SiMe$_2$(H)-functionalized silica gel (SiMe$_2$(H)-silica, 1.0 g) was treated with a toluene solution (30
cm3) of a Ti-bridged POSS (1a) (103 mg, 0.052 mmol) in the presence of Karsted’s catalyst (0.0022 mmol, 0.040 cm3) under an Ar atmosphere: The mixture was stirred at 45 °C for 24 h. Elemental analysis of the support (C 3.83%, H 1.37%) indicated the presence of ca. 3.2 SiMe$_2$(H) groups in a unit surface area of 1 nm2. After filtration, washing of the resulting solid three times with toluene in air and subsequent vacuum-drying gave a tethered catalyst that was designated as 1a-SiMe$_2$(H)-silica. There was no sign of 1a in the filtrate and washing solutions after hydrosilylative condensation, indicating that all of 1a was successfully tethered onto silica. The calcination of 1a-SiMe$_2$(H)-silica in air at 550 °C for 2 h afforded an oxide catalyst, 1a-SiMe$_2$(H)-silica-cal.

Preparation of oxide catalysts from silica-supported Ti-POSS. A typical preparation procedure of the silica-supported titanium oxide catalyst using Ti-POSS is as follows: SiMe$_2$(H)-silica (1.0 g) was impregnated with a toluene solution (3.0 cm3) of 1a (98 mg, 0.050 mmol) at 60 °C in air (however, the impregnation of 4 was performed in an Ar atmosphere to avoid the hydrolysis of 4 caused by adventitious contact with moisture). Calcination of the resulting powder (powder derived from 4, as well) in air at 550 °C for 2 h afforded an oxide catalyst (Si/Ti molar ratio; 350) that was designated
as 1a@SiMe₂(H)-silica-cal.

Catalytic epoxidation of cyclooctene. All of the reactions were performed with the use of hot stirrers equipped with cooling blocks for refluxing the solvent. Prescribed amounts of the catalyst (0.50 mol% as Ti atom) and cyclooctene (1.0 mmol) in a toluene solution (1.5 cm³) were taken into a 20 cm³ glass Schlenk tube under an Ar atmosphere. This mixture was heated and allowed to equilibrate at 60 °C for 10 min. iBuOOH (1.0 mmol) in decane (1.2 cm³) was then added by the use of a plastic pipette. The mixture was stirred for 4 h, and the Schlenk tube was cooled rapidly in an ice bath. The products were identified by the use of GC-MS (Shimadzu GC-MS Parvum 2, Zebron ZB-1 capillary column, i.d. 0.25 mm, length 30 m, 50—250 °C) and quantified by gas-liquid chromatography (GL Sciences GC353, Inertcap 17 capillary column, i.d. 0.25 mm, length 30 m, 50—250 °C) using biphenyl as an internal standard.

3. **Results and discussion**

3.1. **Catalytic activity for the epoxidation of cyclooctene**

Silica-supported titanium oxide catalysts were prepared by the calcination (550 °C, 2 h) of Ti-containing POSS tethered or supported on various silicas. A silica-tethered catalyst,
designated as 1a-SiMe₂(H)-silica (see Scheme 1), was prepared by the Pt-catalyzed hydrosilylative condensation of commercially available dimethylsilyl-functionalized silica with vinylsilyl groups of 1a. An oxide catalyst, 1a-SiMe₂(H)-silica-cal, was prepared by the calcination of 1a-SiMe₂(H)-silica in air at 550 °C for 2 h. On the other hand, an oxide catalyst designated as 1a@SiMe₂(H)-silica-cal was prepared by the usual impregnation method from a toluene solution of 1a, followed by calcination.

(Scheme 1)

The activities of these catalysts for the epoxidation of cyclooctene were examined by the use of 1BuOOH as an oxidant (eq. 1). The results are summarized in Table 1. In all of the cases examined, cyclooctene oxide was produced selectively, and the formation of byproducts was negligible. For comparison, the activity of 1a as a homogeneous catalyst was examined, and this produced cyclooctene oxide in yields of 31% and 41% when the reaction was conducted for 1.5 h and 4 h, respectively (entries 1 and 2). Other Ti-containing POSS, 1b and 2 (see Scheme 2), showed similar activities (entries 3 and 4). The activities of Ti-containing POSS as homogeneous catalysts for the epoxidation by organic peroxides have been previously reported [16–23]. Silica-
tethered 1a showed a catalytic activity similar to that of 1a, indicating that 1a was tethered without a loss of activity (entry 5). An oxide catalyst, 1a-SiMe₂(H)-silica-cal, showed a significant activity (70%; entry 6) than either the homogeneous or tethered Ti-containing POSS catalysts. Furthermore, an oxide catalyst prepared by the usual impregnation method (1a@SiMe₂(H)-silica-cal) showed slightly higher activity (yield of epoxide; 75%) than 1a-SiMe₂(H)-silica-cal (entry 7), and a high TOF of 71 h⁻¹ was recorded in the reaction for 1.5 h (entry 8). Note that re-examination of the catalytic run shown in entry 7 using the same batch of the catalyst resulted in 78% yield, and the reaction using another batch of 1a@SiMe₂(H)-silica-cal afforded the epoxide in 79% yield. These results indicate good reproducibility of the results in the present system.

(Eq. 1)

(Table 1)

(Scheme 2)

The above results indicate that the tethering of 1a through covalent bonding did not improve the activity of the resulting catalyst. Therefore, we examined the effects of titanium sources on the activity of the catalysts prepared by the impregnation method.
As shown in entries 9 and 10, oxide catalysts prepared using 1b and 2 showed higher activities (90% and 86% yields, respectively) than that prepared using 1a, while the catalyst prepared using a corner-capped-Ti-containing POSS (3) (see Scheme 2) showed a moderate activity (entry 11), which indicates that Ti-bridged POSSs are excellent titanium precursors. The activity of 4@SiMe₂(H)-silica-cal was poor, even though impregnation was performed under an Ar atmosphere to avoid the hydrolysis of 4 caused by contact with moisture (entry 12). The catalyst prepared by the impregnation of 4 in an air atmosphere gave the epoxide in the lower yield (26%). On the other hand, Ti-containing POSS can be safely handled in air, which reflects high stability.

Except for 1a-SiMe₂(H)-silica, these catalysts did not exhibit activity for epoxidation using an aqueous solution of hydrogen peroxide. Severe non-productive decomposition of hydrogen peroxide was observed in the presence of oxide catalysts such as 1a-SiMe₂(H)-silica-cal and 1a@SiMe₂(H)-silica-cal. As reported previously, Ti-POSS do not show activity as homogeneous catalysts when hydrogen peroxide is employed as an oxidizing reagent [23,27]. In aqueous solutions, Ti-POSS molecules severely aggregate, which would be one reason for the lack of the catalytic activity.

On the other hand, Ti-POSS catalysts tethered or immobilized onto polydimethylsiloxane [27], mesoporous silica-polymer composites [28], silyl-
functionalized silicas [29], and gels composed of POSS molecules [31] were reported to show excellent activities for the epoxidation of alkenes by an aqueous hydrogen peroxide solution. Note that all of these catalysts are heterogeneous and strongly hydrophobic because of the presence of organic groups on their surface. In the present study using oxide catalysts, the active Ti species are present on the hydrophilic surface of the supported oxide catalysts, which would prevent the access of alkenes to the Ti species, and facilitate non-productive decomposition of hydrogen peroxide.

Table 2 shows the effect of the silica support on the catalytic activity for the epoxidation of cyclooctene. 1a was impregnated onto 7 silica supports [MCM-41, Cabosil, and JRC-SIO-1, -5, -6, -7, and -8], and this was followed by calcination at 550 °C. Among the catalysts examined, Cabosil-supported catalysts prepared using Ti-bridged POSS showed the highest activities (83—88% yields for 4 h, entries 1, 9, and 10). A high TOF of 91 h\(^{-1}\) was achieved in the reaction for 1.5 h (entry 2). The ICP-AES analysis revealed that no titanium species leached into the solution after the reaction using 1a@Cabosil-cal (entry 1). 1a@MCM-41-cal also showed excellent activity to afford the desired epoxide in 81% yield (TOF of 41 h\(^{-1}\) for 4 h, entry 3). This activity is comparable to those of MCM-41-based titanium catalysts reported in previous studies [10, 25, 30, 45]. For example, a Ti-MCM-41 catalyst (Si/Ti molar
ratio; 100) showed a TON of ca. 39 h\(^{-1}\) for the epoxidation of cyclooctene by \('\text{BuOOH}\)
for 5 h at 60 °C (TON; ca. 196 for 5 h) [45]. The activities of the catalysts prepared
using JRC silicas were moderate. A Cabosil-supported catalyst derived from 3 showed
a slightly lower TOF in the reaction for 1.5 h, 77 h\(^{-1}\) (entry 12), compared to that of the
catalyst prepared using 1a (entry 2). Both the Cabosil- and MCM-41-supported
catalysts prepared using 4 as a titanium source showed lower activities than the catalysts
prepared using 1a, 1b, or 2 (entries 13—15).

(Table 2)

It is important to determine whether the reaction actually occurs on the solid
surface. Hot filtration of the solid catalyst after the reaction in the presence of
1a@Cabosil-cal was allowed to proceed at 60 °C for 0.5 h completely suppressed
further progress of the reaction (Fig. 1). This result strongly suggests that the catalyst
worked heterogeneously.

(Figure 1)
The epoxidation of a larger alkene, limonene, was performed (eq. 2). The epoxidation selectively occurred at the tri-substituted C-C double bond [30]. As shown in Table 3, the Cabosil-supported catalysts prepared using 1a or 1b showed slightly higher activity than that of 1a as a homogeneous catalyst, whereas the catalyst derived from 4 showed the lowest activity. These results suggest the applicability of the supported catalysts for the epoxidation of sterically demanding alkenes.

(Eq. 2)

(Table 3)

One of the major advantages of solid catalysts is the reusability. After the reaction shown in entry 1 of Table 2, the solid catalyst was separated from the reaction mixture by centrifugation and washed three times with toluene (2.0 cm³). The vacuum-dried catalyst showed slightly lower activity than the fresh catalyst to give the epoxide in 78% yield. Subsequent calcination at 550 ºC for 2 h increased the activity of the recovered catalyst and the epoxide was produced in a yield of 81%, indicating that the catalyst was reusable.
3.2. Characterization of the oxide catalysts prepared using Ti-POSS

To examine the effects of Ti-POSS on the properties of the oxide catalysts, characterization was performed by XRD, nitrogen gas adsorption, UV-Vis spectroscopy, and XPS. The powder XRD patterns of all of the catalysts did not show any peaks due to crystalline titanium oxides, indicating that titanium oxide species were highly dispersed on the surface of the catalysts. The UV-vis spectra reported in Figure 3 (see below) will be more informative on the local environment of Ti species. Table 4 lists the results of nitrogen adsorption measurements of selected catalysts and supports, and Figure 2 shows the nitrogen adsorption/desorption isotherms of 1a-SiMe₂(H)-silica, 1a-SiMe₂(H)-silica-cal, 1a@SiMe₂(H)-silica-cal, Cabosil, and 1a@Cabosil-cal. All of the catalysts supported on SiMe₂(H)-silica showed typical type-IV isotherms [49], indicating the presence of mesopores. The isotherms of Cabosil and 1a@Cabosil-cal were of type-II [49], which indicates the presence of both meso- and macro-pores. In particular, Cabosil possesses a large macropore volume, which would be one reason for the superior activity of Cabosil-supported catalysts, since macropores are advantageous in terms of diffusion of the substrates and the products.

While the formation of micropores by the calcination of POSS molecules has been previously reported [32–44], an increase in the BET surface area by the calcination of
silica-supported POSS was not recognized from the results shown in Table 4, probably because of a low loading level of POSS.

(Table 4)

(Figure 2)

UV-Vis spectroscopy is a very powerful tool for investigating the local structure around titanium species in TiO$_2$-SiO$_2$ mixed oxides [50–52]. The LMCT (ligand-metal charge transfer) transition from O to Ti in isolated tetrahedral titanium species is usually observed at a shorter wavelength compared to that of octahedral titanium species. For example, the LMCT transitions of TS-1 and other tianosilicates are observed at 200—220 nm and are assigned to isolated tetrahedral titanium species [53]. Figure 3 shows the UV-Vis diffuse reflectance spectra of selected catalysts under dehydrated conditions. The oxide catalyst, 1a@SiMe$_2$(H)-silica-cal, showed a sharp band at 220 nm. 1a-SiMe$_2$(H)-silica-cal showed a peak that was very similar to that of 1a@SiMe$_2$(H)-silica-cal. These spectra closely resemble those reported for tianosilicates [50,52], and this result clearly indicates that both 1a-SiMe$_2$(H)-silica-cal and 1a@SiMe$_2$(H)-silica-cal contain isolated tetrahedral titanium species on their
surface. The Cabosil- and MCM-41-supported catalysts prepared using 1a also
showed absorption at around 220 nm. On the other hand, 3@SiMe$_2$(H)-silica-cal and
4@SiMe$_2$(H)-silica-cal both showed a major band at around 260 nm, which has been
assigned to octahedral titanium species [51], together with shoulders at 225 nm and 310
nm. The former shoulder is considered to be due to isolated tetrahedral titanium
species, and the latter is due to [TiO$_2$]$_n$ clusters [54]. These results suggest the formation
of octahedral titanium ions in oxide clusters on the surface of 3@SiMe$_2$(H)-silica-cal
and 4@SiMe$_2$(H)-silica-cal. The spectrum of 4@Cabosil-cal showed very similar to
those of 3@SiMe$_2$(H)-silica-cal and 4@SiMe$_2$(H)-silica-cal.

(Figure 3)

The XPS study revealed the presence of Ti(IV) species on the surface of all of
the catalysts examined. Figure 4 shows selected results. Remarkably, 1a@SiMe$_2$(H)-
silica-cal showed a Ti 2p$_{3/2}$ band at 460.0 eV, which is significantly higher than those of
3@SiMe$_2$(H)-silica-cal and 4@SiMe$_2$(H)-silica-cal (458.5 eV). Since Ti 2p$_{3/2}$ peaks
centered at ca. 460 eV and 458–459 eV have been assigned to a framework tetrahedral
titanium and an extraframework octahedral titanium phase for titanosilicates,
respectively [53,55,56], the present result is consistent with the formation of tetrahedral titanium species on the surface of 1a@SiMe₂(H)-silica-cal.

(Figure 4)

Changes in the structures of Ti-POSS during calcination were investigated by TG-DTA, DRIFT, and NMR measurements. Since several POSS have been reported to be volatile in spite of their relatively large molecular weights [6,7,9], the loss of Ti and Si species during the calcination of Ti-POSS was examined by treating 1a, 1b, 2, and 3 in air at 550 °C for 2 h in the box furnace. The ceramic yields of SiO₂-TiO₂ from 1a (49.6%) and 1b (49.4%) were slightly lower than the theoretical values (53.0% and 53.8% for 1a and 1b, respectively). The XRF analyses showed that Si/Ti atomic ratios of the resulting oxides from 1a and 1b were 14.8(±0.2) and 14.9(±0.1), respectively. These results indicate that by the calcination of both Ti-POSS, 7(±1)% of Si was lost, while 100(±2)% and 99(±1)% of Ti was remaining in the resulting oxides from 1a and 1b, respectively. During the calcination of 1a and 1b, trimethylsilyl or dimethylvinylsilyl groups in 1a or 1b would be cleft at relatively low temperature and then sublime, as revealed by the TG study (see below). On the other hand, the ceramic
yields of oxides from 2 (52.5%) and 3 (51.0%) were very close to the theoretical values (51.6% and 50.8%, respectively). These results indicate the absence of loss of Ti species during the calcination of POSS at 550 °C for 2 h.

As shown in Figure 5, the TG-DTA study demonstrated the stepwise decomposition of 1a and 3 in an air stream. Note that TG-DTA measurements of supported Ti-POSS did not give any distinct TG and DTA responses, probably because of the low loading levels. For 1a, decreases in weight by 7% and 42% were observed at 300–350 °C and 400–600 °C, respectively. A slightly exothermic decrease at 300–350 °C would be due to the oxidative cleavage of dimethylvinylsilyl groups, and a significant loss of weight above 400 °C is due to the combustion of cyclopentyl groups. The decomposition of 3 also proceeded in a stepwise manner: an initial endothermic loss of weight by 6% at ca. 315 °C and a significantly exothermic loss above 320 °C.

(Figure 5)

The DRIFT spectra of 1a and 3 treated in air at various temperatures are shown in Figure 6. While the spectrum of uncalcined 1a showed strong C-H stretching vibrations due to cyclopentyl groups at 2950 cm⁻¹ and 2870 cm⁻¹, these bands almost
disappeared above 350 °C. This result is consistent with that of the TG-DTA study, which indicates the combustion of organic substituents in this temperature range. In the spectrum of 3, a C-H out-of-plane bending vibration band characteristic of a Cp group is observed at about 806 cm\(^{-1}\). This peak disappeared when the sample was heated to 300 °C. This result supports the argument on the TG study, which indicated the decomposition of the Cp group of 3 at this temperature range. Again, C-H stretching vibrations of aliphatic C-H bonds disappeared above 350 °C because of the complete combustion of organic groups. Note that a broad, strong band at about 940 cm\(^{-1}\) is observed for the spectra of both 1a and 3 above 350 °C, which is often reported to be a good fingerprint of the existence of framework titanium species in titanosilicates [51,57,58].

(Figure 6)

Loss of the Cp group from 3 at around 300 °C was also confirmed by \(^1\)H and \(^{13}\)C NMR studies. The treatment of 3 at 300 °C for 10 min (heating rate 10 °C min\(^{-1}\)) in an air stream gave a slightly brownish powder, which was soluble in CDCl\(_3\) except for a trace amount of brown solid. In the \(^1\)H NMR spectrum, the peak of a Cp ring (6.43
ppm) completely disappeared, while resonances attributed to cyclopentyl groups remained. The 13C NMR spectrum did not show the peak assignable to the Cp ring of 3.

As shown in the first part of the present study, the oxide catalysts prepared using 1a, 1b, and 2 as titanium sources showed activities superior to those prepared from 3 and 4. The combined results of characterization clearly indicate the selective formation of isolated tetrahedral titanium(IV) species on the surface of the oxide catalysts from 1a, 1b, and 2, and such titanium species would be responsible for the high catalytic activity. Therefore, Ti-bridged POSS are expected to act as precursors of “titanosilicate-like” species. One common feature of 1a, 1b, and 2 is that the titanium atom is surrounded by bulky POSS cages through four Ti-O-Si bonds. During calcination, these POSS moieties would be transformed into small silica clusters, which might act as an inorganic separator of titanium species [43,44]. This would prevent the aggregation of titanium oxide species and thus promote the formation of isolated titanium(IV) species on the silica surface. Note that the TG-DTA study of 3 revealed that the Cp (cyclopentadienyl) group decomposed at around 315 °C, which is a lower temperature than that for the combustion of cyclopentyl groups (ca. 400 °C). The loss of the Cp group from 3 in the present study might enable the aggregation of Ti
species.

4. Conclusion

Silica-supported titanium oxide catalysts with excellent activities for the epoxidation of cyclooctene by tBuOOH were prepared by the calcination of Ti-bridged POSS supported or tethered on silica at 550 °C. Based on the results of catalytic runs and spectroscopic analyses of the catalysts, highly isolated tetrahedral titanium(IV) species were revealed to be produced on the catalyst surface from 1a, 1b, or 2, while aggregated titanium species were produced from a corner-capped-type Ti-POSS (3) and tetraisopropoxytitanium (4). These catalysts were also applicable for the epoxidation of limonene. The present study clearly indicates the utility of Ti-bridged POSS as promising precursors for titanosilicate-like active titanium species, which can be implanted on a variety of oxide supports. The present results suggest that compounds that include a titanium atom surrounded by bulky inorganic moieties through four Ti-O-Si bonds may be suitable precursors for epoxidation catalysts. Further attempts to improve the catalytic activities of these catalysts and the application to the epoxidation of much bulky alkenes, as well as the development of much more efficient titanium precursors, are underway.
Acknowledgement

This work was supported in part by a Grant-in Aid for Scientific Research (No. 18360388) from the Ministry of Education, Sports, Culture, Science, and Technology, Japan. K. W. acknowledges financial support from the Okura Foundation.

References

Captions for Schemes and Figures

Scheme 1. Preparation of a silica-tethered catalyst and an oxide catalyst.

Scheme 2. Ti-containing POSS used for the preparation of oxide catalysts.

Figure 1. Time course of the epoxidation of cyclooctene in the presence of 1a@Cabosil-cal (a) without and (b) with hot filtration of the catalyst 0.5 h after the reaction started.

Figure 2. Nitrogen adsorption / desorption isotherms of (a) 1a-SiMe₂(H)-silica, (b) 1a-SiMe₂(H)-silica-cal, (c) 1a@SiMe₂(H)-silica-cal, (d) Cabosil, and (e) 1a@Cabosil-cal. Filled and open symbols show adsorption and desorption data, respectively.

Figure 3. UV-Vis diffuse reflectance spectra of (a) 1a@SiMe₂(H)-silica-cal, (b) 3@SiMe₂(H)-silica-cal, (c) 4@SiMe₂(H)-silica-cal, (d) 1a-SiMe₂(H)-silica-cal, (e) 1a@Cabosil-cal, (f) 4@Cabosil-cal, and (g) 1a@MCM-41-cal.
Figure 4. Ti 2p spectra of (a) 1a@SiMe₂(H)-silica, (b) 3@SiMe₂(H)-silica-cal, and (c) 4@SiMe₂(H)-silica-cal.

Figure 5. TG-DTA profiles of (a) 1a and (b) 3 in a stream of air.

Figure 6. DRIFT spectra of (a) 1a and (b) 3 recorded in air at elevated temperatures. Samples were diluted by KBr to be ca. 10 wt%, and spectra in the region exceeding 3 Kubelka-Munk units are omitted.
TEXT FOR GRAPHICAL ABSTRACT

The controlled calcination of Ti-bridged polyhedral oligomeric silsesquioxanes (POSS) supported on silicas afforded the oxide catalysts with isolated tetrahedral Ti(IV) species on the surface, which showed excellent catalytic activities for the epoxidation of cyclooctene by tBuOOH.
Table 1. Catalytic activity of Ti-containing POSS-based catalyst for the epoxidation of cyclooctene by \(^7\)BuOOH

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Reaction Time (h)</th>
<th>Epoxide yield (%)<sup>b</sup></th>
<th>TOF (h<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a (homogeneous)</td>
<td>4</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1a (homogeneous)</td>
<td>1.5</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>1b (homogeneous)</td>
<td>1.5</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>2 (homogeneous)</td>
<td>1.5</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>1a-SiMe<sub>2</sub>(H)-silica</td>
<td>4</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>1a-SiMe<sub>2</sub>(H)-silica-cal</td>
<td>4</td>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>1a@SiMe<sub>2</sub>(H)-silica-cal</td>
<td>4</td>
<td>75</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>1a@SiMe<sub>2</sub>(H)-silica-cal</td>
<td>1.5</td>
<td>53</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>1b@SiMe<sub>2</sub>(H)-silica-cal</td>
<td>4</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>2@SiMe<sub>2</sub>(H)-silica-cal</td>
<td>4</td>
<td>86</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>3@SiMe<sub>2</sub>(H)-silica-cal</td>
<td>4</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>4@SiMe<sub>2</sub>(H)-silica-cal</td>
<td>4</td>
<td>39</td>
<td>20</td>
</tr>
</tbody>
</table>

^a The reaction conditions are shown in eq. 1.

^b Yield based on cyclooctene determined by GLC.
Table 2. Effect of silica support and Ti precursors for the epoxidation of cyclooctene by 7BuOOH^a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Reaction Time (h)</th>
<th>Epoxide yield (%)<sup>b</sup></th>
<th>TOF (h<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a@Cabosil-cal</td>
<td>4</td>
<td>88</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>1a@Cabosil-cal</td>
<td>1.5</td>
<td>68</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>1a@MCM-41-cal</td>
<td>4</td>
<td>81</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>1a@JRC-SIO-1-cal</td>
<td>4</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>1a@JRC-SIO-5-cal</td>
<td>4</td>
<td>77</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>1a@JRC-SIO-6-cal</td>
<td>4</td>
<td>71</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>1a@JRC-SIO-7-cal</td>
<td>4</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>1a@JRC-SIO-8-cal</td>
<td>4</td>
<td>75</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>1b@Cabosil-cal</td>
<td>4</td>
<td>87</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>2@Cabosil-cal</td>
<td>4</td>
<td>83</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>3@Cabosil-cal</td>
<td>4</td>
<td>87</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>3@Cabosil-cal</td>
<td>1.5</td>
<td>58</td>
<td>77</td>
</tr>
<tr>
<td>13</td>
<td>4@Cabosil-cal</td>
<td>4</td>
<td>72</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>4@Cabosil-cal</td>
<td>1.5</td>
<td>46</td>
<td>61</td>
</tr>
<tr>
<td>15</td>
<td>4@MCM-41-cal</td>
<td>4</td>
<td>53</td>
<td>27</td>
</tr>
</tbody>
</table>

^a The reaction conditions are shown in eq.1.
^b Yield based on cyclooctene determined by GLC.
Table 3. Effect of silica-supports on Ti catalysts for the epoxidation of limonene by tBuOOH

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Epoxide yield (%)<sup>b</sup></th>
<th>TOF (h<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a (homogeneous)</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>1a@Cabosil-cal</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1b@Cabosil-cal</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>2@Cabosil-cal</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>4@Cabosil-cal</td>
<td>15</td>
<td>8</td>
</tr>
</tbody>
</table>

^a The reaction conditions are shown in eq. 2. ^b Yield based on cyclooctene determined by GLC.
Table 4. Summary of the results of nitrogen adsorption measurements of the selected catalysts and supports

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>BET S. A. (m² g⁻¹)</th>
<th>Mean pore diameter (nm)ᵃ</th>
<th>Total pore volume (cm³ g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiMe₂(H)-silica</td>
<td>394</td>
<td>6.0</td>
<td>0.55</td>
</tr>
<tr>
<td>SiMe₂(H)-silica-cal</td>
<td>420</td>
<td>5.9</td>
<td>0.62</td>
</tr>
<tr>
<td>1a-SiMe₂(H)-silica</td>
<td>410</td>
<td>5.4</td>
<td>0.55</td>
</tr>
<tr>
<td>1a-SiMe₂(H)-silica-cal</td>
<td>444</td>
<td>5.9</td>
<td>0.66</td>
</tr>
<tr>
<td>1a@SiMe₂(H)-silica-cal</td>
<td>394</td>
<td>5.6</td>
<td>0.55</td>
</tr>
<tr>
<td>1b@SiMe₂(H)-silica-cal</td>
<td>399</td>
<td>5.7</td>
<td>0.57</td>
</tr>
<tr>
<td>2@SiMe₂(H)-silica-cal</td>
<td>396</td>
<td>5.6</td>
<td>0.55</td>
</tr>
<tr>
<td>3@SiMe₂(H)-silica-cal</td>
<td>413</td>
<td>5.8</td>
<td>0.60</td>
</tr>
<tr>
<td>4@SiMe₂(H)-silica-cal</td>
<td>409</td>
<td>5.8</td>
<td>0.59</td>
</tr>
<tr>
<td>Cabosil</td>
<td>320</td>
<td>10.8</td>
<td>0.86</td>
</tr>
<tr>
<td>1a@Cabosil-cal</td>
<td>276</td>
<td>9.4</td>
<td>0.65</td>
</tr>
<tr>
<td>4@Cabosil-cal</td>
<td>303</td>
<td>9.3</td>
<td>0.71</td>
</tr>
<tr>
<td>MCM-41</td>
<td>1396</td>
<td>2.6</td>
<td>0.90</td>
</tr>
<tr>
<td>1a@MCM-41-cal</td>
<td>1405</td>
<td>2.4</td>
<td>0.83</td>
</tr>
</tbody>
</table>

ᵃ The mean pore diameter was calculated from the pore volume and the specific surface area assuming that the pore was cylindrical.
The reaction equation for the formation of an epoxide is shown below.

\[\text{Ti catalyst} \quad 0.50 \text{ mol}\% \]
\[\text{toluene} 1.5 \text{ cm}^3 \]
\[+ \text{decane} 1.2 \text{ cm}^3 \]
\[60 \degree \text{C}, 4 \text{ h} \]

1.0 mmol \[+ \text{'BuOOH}\]

\[\Rightarrow \quad \text{(1)} \]
\[\text{Ti catalyst} \quad 0.50 \text{ mol}\% \]

\[\text{toluene} 1.5 \text{ cm}^3 \]

\[+ \text{decane} 1.2 \text{ cm}^3 \]

\[60 \, ^\circ \text{C}, 4 \text{ h} \]

\[\text{1.0 mmol} \]

\[+ \text{1.0 mmol} \]

\[\text{O} \]

\[(2) \]
Hot filtration of the catalyst

Yield of epoxide (%) vs. Reaction time (min)
Figure 4

Intensity (a.u.)

Binding energy (eV)
Figure 6

(a)

Wavenumber (cm$^{-1}$)

F(R)

r.t., 200 °C, 250 °C, 300 °C, 350 °C

1 KM unit

3100 3000 2900 2800 2700

(b)

Wavenumber (cm$^{-1}$)

F(R)

r.t., 200 °C, 250 °C, 300 °C, 350 °C

1 KM unit

3100 3000 2900 2800 2700

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp
Scheme 1: Preparation of a silica-supported Ti oxide catalyst

1a
(Cy = c-C₅H₉)

SiMe₂(H)-silica

Pt cat. → 45 °C, 24 h

1a-SiMe₂(H)-silica

in air → 550 °C, 2 h

1a-SiMe₂(H)-silica-cal
Scheme 3. Ti-containing POSS for the preparation of particles.

1b (Cy = c-C₅H₉)

2

3 (Cp = cyclopentadienyl)
The controlled calcination of Ti-bridged polyhedral oligomeric silsesquioxanes (POSS) supported on silica afforded the isolated tetrahedral Ti(IV) species on the surface, which showed excellent catalytic epoxidation of cyclooctene by "BuOOH.