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Summary 

Gene expression profiling at the single-cell level has been used to identify genes 

expressed in specific cell populations, in attempts to address various fundamental 

questions in multicellular organisms.  In this article, we review the advance of 

single-cell cDNA amplification techniques in the last decade, and introduce a 

recently developed, reliable, quantitative method that is applicable to genome-wide 

transcriptional analyses with high-density oligonucleotide microarray and 

massively parallel sequencing.  This method has been applied to a variety of 

biological studies, including developments of blastocyst inner cell mass, neurons, 

and primordial germ cells, to profile the molecular properties, dynamics during 

differentiation, and impacts of gene alterations in the individual cells in depth.  

These studies uncovered complex behaviors of the cells during differentiation in 

vivo, and identified previously unknown, transient populations that emerged in 

specific stages of development.  These achievements clearly demonstrated that it 

is now more feasible to analyze gene expression in any cell type of interest in a 

quantitative, genome-wide manner at the single-cell resolution. 

 

Introduction 

Multicellular organisms are complex arrays of numerous functionally and 

phenotypically distinct cell types, with essentially the same genomic information.  

Such variation is achieved by differential gene expression, and therefore, the 

quantitative measurement of expression in a small number of cells, ideally single cells, 

is essential for the understanding of properties or states of cells in any biological context.  

This review therefore first describes recent advances in the methods for single-cell 

expression analysis. 

 

Modern microarray platforms [1] and massively parallel sequencing techniques [2] 

provide major opportunities for quantitative, genome-wide transcriptional analyses, and 

open the possibility of a systems level understanding of life.  These technologies, 

however, usually require large amounts of starting materials obtained from typically 

more than ten thousand cells.  Due to this limitation, there is a risk that the methods 

will fail to detect differences among individual cells in a population, even if they are 

marked with particular genes or surface antigens.  To overcome this problem, methods 

for single-cell cDNA analyses have been developed and used in many biological 

studies. 

 

Recently, a fully validated, quantitative cDNA amplification method applicable to 

commercially available oligonucleotide microarrays (e.g., Affymetrix GeneChip) and 

massively parallel sequencing has been developed [3, 4].  This method has been 

applied to early mouse embryogenesis [4-6], stem cell biology [7-11], neurogenesis [12] 
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and primordial germ cell (PGC) development [13-17], and some of these efforts are a 

focus of the latter part of this review.  These studies quantitatively revealed the 

expression dynamics of individual cells in differentiation and the impact of specific 

gene alterations, and clearly demonstrated the feasibility of transcriptome analysis at the 

single-cell resolution. 

 

Methods for single-cell cDNA analysis 

In order to profile gene expression in single cells, there are two major strategies; one is 

global amplification to make cDNAs applicable to various analytical methods [e.g., 

quantitative PCR (Q-PCR), microarray, massively parallel sequencing, serial analysis of 

gene expression (SAGE)]; the other is highly sensitive measurement with an 

unamplified single-use cDNA library.   

 

Recent studies using sophisticated Q-PCR methods have achieved highly quantitative 

performance with the latter strategy [18-21].  Moreover, high-throughput analyses 

employing this strategy in conjunction with microfluidics devices (e.g., Fluidigm 

Digital Array chips) (for review, see [22]) have been reported [23-26].  More recently, 

this strategy was applied to five hundred single cells from mouse early embryos at 

developmental time points from the one-cell zygote to the sixty-four-cell blastocyst 

stages, and revealed expression dynamics of selected forty eight genes [27].  However, 

the single-cell cDNA library without global amplification is less suitable for repetitive 

use, and less applicable to gene screening or genome-wide analyses.  Therefore, these 

methods would be useful for quantifying a limited number of known genes for a large 

number of cells. 

 

cDNA amplification methods, on the other hand, have been used in a wide variety of 

biological studies, with at least two major strategies currently available; one is 

exponential amplification by Brady et al., based on polymerase chain reaction (PCR) 

[28, 29], and the other is multiple rounds of isothermal linear amplification by Van 

Gelder et al., based on in vitro transcription (IVT) with T7 RNA polymerase [30, 31]. 

 

Linear amplification has been widely used in the standard protocol for probe preparation 

with biotin-labeled substrates in modern oligonucleotide microarray systems, including 

commercially available Affymetrix GeneChip and CodeLink microarrays.  It has also 

been applied to small amounts of material consisting of less than one hundred cells 

[32-34], including single-cell analyses[30, 31, 35-37].  Despite the potential advantage 

of the linear amplification that, in principle, it avoids the risk of rapid increase of 

random fluctuation or gene bias, such as often occurs in exponential amplification, it 

bears several practical disadvantages, including the need for complicated procedures 

with repeated buffer exchange with DNA/RNA purifications, the production of 

single-stranded RNA as the final product, and the limited amplification efficiency (up to 
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one-thousand fold per round) [38, 39]. 

 

Development and advances of exponential amplification 

Brady at al. developed a global single-cell cDNA amplification method with relatively 

simple procedures relying on PCR [28, 29].  In this method, single cells were isolated 

directly in tubes that contained cell lysis buffer, with no need for purification throughout 

the procedure (Fig. 1A).  After the cell lysis, the first-strand cDNA was synthesized in 

a relatively short amount of time using low concentrations of dNTP and primers, so as 

to be restricted to a few hundred base pairs (five hundred in average) from the 3’-end of 

mRNA.  The first-strand cDNA was tailed with poly dA with terminal 

deoxynucleotidyl transferase (TdT), to which the same oligo dT-tailed primer annealed.  

The cDNA was then subjected to a large number of PCR cycles, typically fifty [28, 29] 

(Fig. 1A).  This method amplifies cDNA fairly robustly, especially those highly 

expressed, and has been widely used in various biological studies.  Among the 

discoveries made using this method, for example, was the identification of the 

pheromone receptors from sensory neurons in rat vomeronesal organs [40]. 

 

More recently, a number of genes specifically expressed in the primordial germ cells 

(PGCs) have been identified with this method [41].  In mice, PGCs originate from the 

posterior epiblast and are specified in the extraembryonic mesoderm at around 

embryonic (E) day 7.5 as a small number of cells (typically around forty) [42, 43].  A 

differential cDNA screening between putative single PGCs and their closest somatic 

neighbors has identified a number of PGC-specific genes [41], among which 

Blimp1/Prdm1 turned out to be a critical determinant of the germ cell lineage [44].  As 

described below, the molecular program and the role of Blimp in this developmental 

process has been fully elucidated with improved methods [4, 14, 16, 17]. 

 

This method and its modified versions have also been applied to gene profiling on 

microarrays [38, 45-49].  At the same time, however, it has been reported that the 

original method exhibited significant variation among individual amplifications 

[squared correlation coefficient (R
2
) 0.69] and distortion from the original expression 

profile (R
2
=0.41) [4, 45].  A modified method by Iscove et al. was shown to produce a 

presumable byproduct without the poly A signal of mRNA at a relatively high frequency 

(~28% of amplicon) [38].  Therefore, improvement of these methods would lead to a 

better outcome.  Moreover, since these methods compromised sense-antisense 

orientation by tagging cDNAs with the same primer sequence, the amplified cDNAs are 

no longer suitable for the standard labeling protocols employed by the commercially 

available oligonucleotide microarrays, which use isothermal linear amplification as 

described above.  Therefore, there has been a demand for an amplification strategy that 

preserves the orientation of cDNA for quantitative single-cell microarray analysis. 
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The quantitative performance of the single-cell cDNA amplifications has been greatly 

improved, at least in part due to advances in the enzymes, the reduction of the PCR 

cycle numbers (~25 cycles), the optimization of primer sequences, the use of the PCR 

buffer throughout the procedure [50], and the employment of spike RNAs as an external 

control (artificially synthesized poly A tailed RNA of known copy numbers), which 

together have resulted in proportional amplification from several tens copies of 

mRNA[15, 48, 51].  These methods have been used to characterize melanocyte stem 

cells [51] and to explore the dynamics of multiple genes expressed during 36 hours in 

the PGC specification stage [15]. 

 

Development of a quantitative single-cell microarray method 

To preserve the sense-antisense orientation of the mRNA, the first-strand cDNA must be 

tagged with different primer sequences.  To do so, several approaches have been 

developed [3, 4, 52, 53], among which the method by Kurimoto et al. [3, 4] has been 

employed in various biological studies as mentioned below.  In principle, this method 

eliminated the residual first primer [V1 (dT)24] with Exonuclease I after the first-strand 

synthesis (Fig. 1B).  The second primer [V3 (dT)24] was added to the reaction mixture 

after the cDNA tailing, so that the second-strand cDNA was tagged with two different 

sequences (Fig. 1B).  To minimize the risk of random fluctuation and gene bias in 

amplification efficiency, the cycle number was kept small (20 cycles), and the 

amplification was performed in four split tubes that were combined again after PCR 

(Fig. 1B). 

 

This method turned out to be robust, with a DNA amplification success rate more than 

90% for purified diluted total RNA (10 pg) and 75% for real single cells [3].  The 

sequence analysis demonstrated that all of the amplified cDNA preserved the 

sense-antisense orientation with bona fide transcript ends (about seven hundred base 

pairs from the 3’-end in average), demonstrating faithful amplification [4].  The 

efficiency of amplification was high, with the amount of cDNA being nearly doubled in 

each cycle (Fig. 1B).  The proportional amplification was ensured for genes expressed 

at twenty copies per cell or more, as demonstrated with the spike RNAs and more than 

twenty genes in the diluted total RNA [4].  Microarray analysis showed that the false 

negative and positive rates were sufficiently low for genes expressed at more than 

twenty copies per cell (6% and 3%, respectively).  Two independently amplified 

cDNAs from the single-cell-level diluted total RNA showed high reproducibility of this 

method (R
2
 = 0.89, 83% of genes detected within 3.5-fold difference).  The 

comparison between the amplified and nonamplified cDNAs showed faithful 

preservation of the transcript abundance (R
2
 = 0.7, 84% genes within 3.5-fold 

difference).  These systematic evaluations clearly demonstrated the reliability and 

quantitative performance of the new amplification method, and stringently defined its 

dynamic range [4]. 
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This method has been used for expression profiling in various biological studies [4-8, 

10-13, 16, 17]: the next three sections will focus on some of the applications to 

developmental biology in particular.  In addition, this method has recently been 

applied to an mRNA-sequencing whole-transcriptome analysis with a slight 

modification, and shown to be able to identify various previously unidentified transcript 

variants, including splice variants [5].  This approach was used to analyze the impacts 

of Dicer1 and Ago2 mutantion in oocytes [5] and the process of embryonic stem (ES) 

cell deviation from the inner cell mass (ICM) of blastocyct [10, 11].  This expands the 

application range of this cDNA amplification method, enabling an analysis of post 

transcriptional regulation in single cells.   

 

Inner cell mass differentiation of mouse blastocysts 

To assess the performance of the new single-cell cDNA amplification method combined 

with oligonucleotide microarrays, it was first applied to the ICM of early mouse 

blastocysts at E3.5 [4].  The ICM cells form a morphologically homogeneous 

population at E3.5, and one day later (E4.5), some of them are differentiated into 

primitive endoderm (PE) while the others are differentiated into pluripotent primitive 

ectoderm (PEct).  E3.5 and E4.5 mouse ICMs were dissociated into single cells, 

randomly isolated, and subjected to cDNA amplification with the new method.  

Extensive Q-PCR and genome-wide analysis with a oligonucleotide microarray, 

Affymetrix GeneChip Mouse Genome 430 2.0, demonstrated that the morphologically 

homogeneous ICM cells at E3.5 had already started a molecular segregation to PE and 

PEct.  Notably, this early segregation has been also demonstrated with different 

approaches [54, 55], underscoring the reliability of this amplification method. 

 

Neurogenesis in mouse cerebral cortex development 

The mammalian cerebral cortex develops from the epithelial cells of telencephalon, the 

most anterior part of the neural tube.  The neural progenitors are composed of at least 

two subtypes based on mitotic positions; the apical progenitor in the ventricular zone 

(VZ) and the basal progenitor in the subventricular zone (SVZ), which produce distinct 

sets of neurons and progenitors through symmetric or asymmetric cell divisions.  The 

variation of molecular properties of the neural progenitors, which may underlie the 

cellular diversity of the cortical neurons, has long been elusive.  A single-cell 

microarray analysis with the new method, combined with extensive in situ hybridization 

analyses, revealed that a large part of the mouse E14 cerebral cells (~20% of the cells 

examined) formed a previously unidentified population with no known combination of 

marker gene expressions [12].  With the genome-wide transcriptional profiles, however, 

these cells turned out to be very similar to the apical progenitors, indicating the diversity 

of this undifferentiated progenitor population [12].  
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Specification and development of mouse primordial germ cells 

As mentioned above, the molecular properties of the nascent PGCs, the dynamics of 

their transcriptome in the specification period, and the impact of the deficiency of a key 

gene, Blimp1, have been fully elucidated at the single-cell resolution [13, 15].  

Single-cell cDNAs were generated from randomly isolated PGCs during the first 

forty-eight hours of the specification stage at six- to twelve-hour intervals 

(E6.25~E8.25) (Fig. 2).  A comparative genome-wide analysis identified more than 

eight hundred genes differentially expressed between PGCs and surrounding somatic 

mesoderm cells, among which Prdm14 and Ap2/Tcfap2c have since been identified as 

essential factors for PGC development [15, 17, 56].  A time-course analysis of 

transcriptome further revealed that the nascent PGCs started to show a profile quite 

similar to neighboring somatic cells under a strong influence of the mesoderm 

formation signal[13, 15].  However, the germline cells with high Blimp1 expression 

then drastically repressed the proceeding somatic developmental programs (e.g., Hox 

cluster activation, DNA methyltransferase machinery), reactivated the genes associated 

to pluripotency (e.g., Sox2, Nanog), and up-regulated PGC-associated genes (Prdm14, 

stella/Pgc7/Dppa3, Nanos3, Kit, Ap2).  These genome-wide transition events 

occurred simultaneously in a short time span at around E7.0, causing the formation of at 

least two populations of PGCs with distinct molecular properties, which were 

identifiable only through the single-cell analysis. 

 

Furthermore, single-cell microarray analyses of the Blimp1 mutant PGC-like cells 

demonstrated that the mutant cells no longer resist the mesoderm formation signal, with 

almost all of the somatic programs activated at a level indistinguishable from the 

neighboring somatic cells (Fig. 2).  Interestingly, even in these cells, about half of the 

genes acquired in the wild-type PGCs were more or less up-regulated, whereas genes 

highly specific to PGCs were shown to tend to depend on Blimp1.  The degree of the 

impact of Blimp1 deficiency on the PGC-specific genes was predictable from the 

expression patterns in the wild-type PGCs; if the expression of a gene is highly 

correlated with the level of Blimp1 in the wild type, it tends to be highly impaired in 

Blimp1 mutants, and vice versa [13].  This may imply a direct role of Blimp1 in the 

activation of these genes.  The PGC-specific genes were apparently stochastically 

expressed in the Blimp1 mutants, and they were not expressed within individual cells 

simultaneously [13].  These lines of evidence identified Blimp1 as the dominant 

repressor of the somatic developmental program, and an activator and the coordinator of 

the PGC-specific genetic program [13]. 

 

The genes up-regulated under the Blimp1 mutation indicated the existence of 

Blimp1-independent genetic pathways in the germline specification [13], which are the 

consequence of the PGC induction signal by Bmp4 from the extraembryonic ectoderm 

[44, 57, 58].  These pathways include Prdm14, another PR domain-containing protein 
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essential for the PGC specification [17].  With single-cell cDNA analyses, Prdm14 

mutant PGC-like cells were shown to normally repress somatic mesoderm genes and 

up-regulate multiple PGC-associated genes, with the exception of Sox2 and a few other 

genes[17].  Consistent with the failure of Sox2 reacquisition, the Prdm14 mutant cells 

failed to derive embryonic germ (EG) cells[59], indicating that Prdm14 was an essential 

factor for reacquisition of the potential pluripotency of PGCs [17]. 

 

After the specification stage, PGCs start to migrate, and enter developing gonads at 

around E10.  Nanog, which functions as a gateway and safeguard for pluripotency [60, 

61], has been shown to be essential for maintenance of PGCs [60].  In a study using 

highly controlled gene knockdown (KD) systems, Nanog was shown to be required for 

the survival of migrating PGCs until E10.5, but dispensable once they had arrived at the 

gonads.  A single-cell microarray analysis revealed that, although there were many 

genes influenced by Nanog KD, the vast majority of them were not classified as genes 

involved in the development of known cell types, suggesting that the Nanog KD was 

unlikely to lead PGCs to transdifferentiation [16].  Moreover, many genes associated 

with PGC development and pluripotency were normally expressed in the Nanog KD 

PGC-like cells, except for an RNA-binding protein required for germline development, 

Tiar/Tial1[62].  Although it has not yet been evident that the decreased PGC number in 

the Tiar mutants is due to apoptotic cell death[62], down-regulation of this gene may in 

part cause the phenotype of Nanog KD in PGC development. 

 

Collectively, these studies have clearly demonstrated that the single-cell microarray 

analysis is a powerful tool for identification of genes specifically expressed in particular 

cell populations, clarification of molecular properties of individual cells, discovery of 

previously unidentified, transient cell populations, and elucidation of the impact of gene 

alterations in depth. 

 

Perspective 

Along with the improvement of cDNA amplification methods, it has become feasible to 

solve biologically important questions through quantitative measurement of 

genome-wide expression profiles at the single-cell level.  To date, this method has 

been applied mainly to embryonic development.  A future challenge will be to apply 

the method to more complex, dynamic systems, including homeostasis, growth, 

regeneration, and diseases of adult tissues.  Recent studies have revealed balanced, 

dynamic behaviors and interactions of mammalian tissue stem cells and their niches in 

physiological and pathological processes (for review, see [63]).  Quantitative 

single-cell analyses would contribute to the characterization and better understanding of 

such complex systems, with a profiling of transitions among multiple stem cell states, 

quantification of responses to environmental signals, and detection of onsets of 

aberration. 
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Further improvements with respect to the quality and simplicity of the present 

amplification method will be possible by optimizing the procedure.  Automation with 

appropriate devices will improve the throughput of this method, which is currently 

based on manual labor.  Such improvements may enable more precise and/or 

high-throughput analyses of various biological questions and may open a possibility of 

addressing even more sophisticated issues that deal with the behavior of individual cells 

in a cell population. 
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Figure legends 

Figure 1 

Single-cell cDNA amplification methods by Brady et al. [28, 29] (A) and by Kurimoto 

at al. [3, 4] (B).  (i) Schematic representation of the methods.  (ii) Performance of 

cDNA amplification.  The log2 relative transcript amounts of the indicated genes in ES 

total RNA (10 pg) are plotted against the cycle numbers of cDNA amplification.  If 

cDNAs are amplified exponentially, these two values exhibit a linear relationship.  The 

efficiency of amplification is measured by the slopes of the regression lines of 

exponential amplification (0.49 in (A) and 0.91 in (B), in average, between 16 and 28 

cycles); when the PCR doubles cDNA at each cycle, the slope is expected to be 1.0.  

The data indicate that the amplification in (B) reaches more than 90% efficiency of the 

ideal value, and is 1.86 times efficient as that in (A). 

 

Figure 2 

Single-cell microarray analysis of mouse PGC specification.  (A-C) Schematic 

representation of single-cell isolation.  (A) Mouse embryos from which single cells are 

isolated.  PGCs and their progenitors are represented with red circles.  (B) An 

embryonic fragment at E7.25 that contains a PGC cluster.  (C) Dissociated single cells 

from the embryonic fragment depicted in (B).  (D) Screening of amplified cDNA 

libraries generated from the cells isolated in (C), using gene-specific PCR of Blimp1 

and stella.  The Blimp1-positive, stella-positive cells are PGCs at E7.25.  (E) Heat 

map representation of genes differentially expressed between PGC and somatic 

neighbors at E7.25[13].  The gene expression levels are color coded from blue 

(estimated copy number 20) to red (estimated copy number 500).   

 

 

 

 

 






