1	(Section: Microbial and Enzyme Technology)
2	
3	Efficient synthesis of 6-O-palmitoyl-1,2-O-isopropylidene-
4	α -D-glucofuranose in an organic solvent system by
5	lipase-catalyzed esterification
6	
7	Takashi Kobayashi, Taro Ehara, Takanori Mizuoka, Shuji Adachi
8	
9	
10	
11	Corresponding author: Takashi Kobayashi (E-mail: tkoba@kais.kyoto-u.ac.jp, phone:
12	+81-75-753-6288, Fax: +81-75-753-6285)
13	
14	T. Kobayashi, S. Adachi
15	Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
16	Sakyo-ku, Kyoto 606-8502 Japan.
17	
18	T. Ehara, T. Mizuoka
19	The Nisshin OilliO Group, Ltd.
20	1, Shinmori-cho, Isogo-ku, Yokohama 235-8558 JAPAN

Abstract

4	In order to synthesize a sugar ester at high concentration, 1,2- O -isopropylidene- α -D-glucofuranose
5	(IpGlc), which is one of the sugar acetals and is more hydrophobic than unmodified glucose, was
6	esterified with palmitic acid at 40°C using immobilized lipase from Candida antarctica in some
7	organic solvents or their mixtures. A mixture of acetone and t-butyl alcohol as a reaction medium
8	greatly improved both the initial reaction rate and yield at 80 h. The product concentration reached
9	the maximum value (240 mmol/kg-solvent; ca. 110 g/kg-solvent) when 400 mmol/kg-solvent IpGlc
10	and 1200 mmol/kg-solvent palmitic acid were used in acetone/t-butyl alcohol at 75/25 (v/v).
11	

Keywords Esterification, lipase, solvent mixture, sugar acetal, sugar ester

1 Introduction

3	Sugar esters have been used as emulsifiers. They have been produced so far by chemical
4	synthetic methods, in which many kinds of products (regioisomers with different acylation degree)
5	are formed. Lipase-catalyzed esterification (dehydrative condensation) of sugar with fatty acid is one
6	of the most favorable ways to synthesize sugar esters acylated at a specific position. Although there
7	are many studies dealing with lipase-catalyzed syntheses of various kinds of sugar esters in organic
8	solvents (Cramer et al. 2007; Ferrer et al. 2005; Šabeder et al. 2006; Walsh et al. 2009), their
9	industrialization has not been realized yet. One of the reasons is low productivity or product
10	concentration due to the low solubility of sugars in an organic solvent (Flores et al. 2005). This
11	drawback may be overcome by using a less polar sugar derivative as a hydroxyl donor instead of an
12	unmodified sugar.
13	There are many sugar derivatives such as alkyl glycosides, boronic acid esters, and sugar
14	acetals. Although alkyl glycosides are one of the popular sugar derivatives, selective dealkylation is
15	relatively difficult after esterification. On the other hand, sugar acetals or boronic acid esters are
16	easily deprotected. There are some studies dealing with esterification of these derivatives (Fregapane
17	et al. 1991; Sarney et al. 1994; Skagerlind et al. 1997). Because an isopropylidene derivative, one of
18	the sugar acetals, is more popular than others, its use is appropriate for esterification. However,
19	optimization of reaction conditions, such as substrate concentrations and selection of a reaction
20	medium, has been insufficient. Therefore, in this study, we performed esterification of

1	1,2- O -isopropylidene- α -D-glucofuranose (IpGlc) with palmitic acid to form
2	$6-O$ -palmitoyl-1,2- O -isopropylidene- α -D-glucofuranose (C16-IpGlc), and high product
3	concentration could be achieved in a mixture of acetone and t-butyl alcohol (TBA) with
4	improvements in the reaction rate and maximum yield.
5	
6	Materials and Methods
7	
8	Materials
9	
10	Immobilized lipase from Candida antarctica (fraction B, CHIRAZYME® L-2, cfC2) was
11	obtained from Roche Diagnostics, Mannheim, Germany. IpGlc was purchased from Sigma-Aldrich,
12	MO, USA, and palmitic acid and other reagents were from Wako Pure Chemical Industries, Osaka,
13	Japan.
14	
15	Synthesis of 6- <i>O</i> -palmitoyl-1,2- <i>O</i> -isopropylidene- α -D-glucofuranose
16	
17	Reaction media were acetone, acetonitrile, TBA, hexane, toluene, diisopropyl ether (DIPE),
18	N,N-dimethyl formamide (DMF), and dimethyl sulfoxide (DMSO). Prior to esterification, these
19	organic solvents were dehydrated over 4A molecular sieve for at least 3 days. Given amounts of
20	IpGlc (0.25 mmol is typical) and palmitic acid (0.75 mmol is typical) were weighed into a glass vial,

1	and an organic solvent (5 mL) was added. The vial was tightly screw-capped and pre-incubated at
2	40°C for 10 min to solubilize the substrates. Immobilized lipase (50 mg) was then added. The vial
3	was vigorously shaken at 40°C and 130 rpm. At appropriate intervals, the reaction mixture was
4	analyzed with an HPLC.
5	Synthesis of C16-IpGlc without any organic solvent was also performed. A mixture of IpGlc
6	(0.25 mmol) and palmitic acid (0.25 mmol) was heated at 70°C to melt palmitic acid and was then
7	cooled down to 40°C prior to addition of 50 mg immobilized lipase. The reaction conditions were the
8	same as those in an organic solvent system.
9	
10	Analysis of the product
11	
12	The concentration of C16-IpGlc was determined by an HPLC equipped with a pump
13	(LC-10ADVP, Shimadzu, Kyoto, Japan) and a UV detector (SPD-10AVVP, Shimadzu) at 220 nm.
14	The reaction mixture (5 $\mu L)$ was injected and eluted through an ODS column (J'sphere ODS-M80, 3
15	\times 150 mm, YMC, Kyoto, Japan) with methanol/water at 90/10 (v/v) at 0.4 mL/min.
16	
17	Product purification
18	
19	The reaction mixture containing C16-IpGlc, unreacted substrates (IpGlc, palmitic acid), and a
20	small amount of by-product was concentrated by evaporation after removing immobilized lipase by

1	filtration. The evaporation residue was dissolved in ethyl acetate, and palmitic acid and IpGlc were
2	removed by extraction with 0.1 mol/L sodium hydroxide aqueous solution. After separation of the
3	organic and aqueous phases, the organic phase was dehydrated over anhydrous sodium sulfate
4	followed by solvent evaporation. The residue was recrystallized twice in hexane to obtain C16-IpGlc.
5	The product was identified by ¹ H-NMR (ECP-500, JEOL, Tokyo, Japan).
6	The by-product was recovered from the supernatant obtained during recrystallization. The
7	supernatant was condensed by evaporation, and the residue was applied on a column (20×300 mm)
8	packed with silica gel (Wakogel C-200, Wako). Elution was performed by hexane/ethyl acetate at
9	40/60 (v/v). The crude by-product was further purified by a semi-preparative HPLC equipped with a
10	pump (LC-10ADVP) and a UV detector (SPD-10AVVP) at 220 nm. The column was J'sphere
11	ODS-M80 (10 \times 250 mm, YMC), and the eluent was methanol/water=85/15 (v/v) at 2 mL/min.
12	
13	Results and Discussion
14	
15	Screening of the reaction medium
16	
17	Esterification yields at 20 h using substrates at equimolar concentrations (66 mmol/kg-solvent
18	(ca. 50 mmol/L)) were 62%±2.1% (mean \pm SD, n=3) in acetonitrile, 46%±1.5% in acetone, and
19	35%±1.4% in TBA, where yields were defined based on a molar basis of IpGlc, a limiting reactant.
20	Because standard deviations were not large, following experiments were performed in $n=1$. Although

1	esterification proceeded the most in acetonitrile, the reaction mixture was opaque due to low IpGlc
2	solubility. Therefore, it is difficult to increase the product concentration in acetonitrile. Low or trace
3	yields could be achieved in toluene, hexane, DIPE, DMSO, and DMF. This may be due to the very
4	low IpGlc solubility in toluene, hexane, and DIPE, while in DMF and DMSO, lipase may be
5	inactivated by removing water which is essential to maintain its activity (Krishna et al. 2001).
6	In the reaction without any solvent, esterification proceeded only slightly at 40°C. The main
7	reason would be low immiscibility between IpGlc and palmitic acid. Fregapane et al. (1991) reported
8	that the reaction proceeded using immobilized lipase from Rhizomucor miehei without any solvent at
9	high temperature (75°C). Addition of an organic solvent would therefore contribute to lower the
10	reaction temperature to moderate level. Based on these results, following studies were performed
11	only in acetone, TBA, or their mixtures.
12	
13	Esterification in acetone or TBA
14	
15	The main product was identified to be
16	6- <i>O</i> -palmitoyl-1,2- <i>O</i> -isopropylidene- α -D-glucofuranose (1) by NMR (¹ H and ¹ H- ¹ H COSY, Scheme \leftarrow Scheme 1
17	1); ¹ H NMR: δ(ppm, CDCl ₃ , TMS, 500 MHz, 298K) 0.88 (3H, t, <i>J</i> =7.1 Hz, 1'-CH ₃), 1.25 (27H, m,
18	acetal-CH ₃ , 2'~13'-CH ₂), 1.49 (3H, s, acetal-CH ₃), 1.63 (2H, m, 14'-CH ₂), 2.37 (2H, t, J=7.8 Hz,
19	15'-CH ₂), 4.08 (1H, m, 4-CH), 4.23 (2H, m, 6-CH ₂), 4.36 (1H, d, J=2.5 Hz, 3-CH), 4.43 (1H, m,
20	5-CH), 4.54 (1H, d, J=3.7 Hz, 2-CH), 5.96 (1H, d, J=3.7 Hz, 1-CH). The results indicate that the

1	6-O-position of IpGlc is esterified and that this structure is identical to the product obtained by	
2	esterification using lipase from Rhizomucor miehei (Fregapane et al. 1991). In this study, however, a	
3	small amount of by-product (<8% of product (1)) was detected (Fig. 1). The by-product, the	←Fig. 1
4	formation of which has not been reported, was a regioisomer that was esterified at the 5-O-position	
5	of IpGlc. The structure of the regioisomer (5- O -palmitoyl-1,2- O -isopropylidene- α -D-glucofuranose	
6	(2)) was identified; ¹ H NMR: δ(ppm, CDCl ₃ , TMS, 500 MHz, 298K) 0.87 (3H, t, <i>J</i> =7.1 Hz, 1'-CH ₃),	
7	1.24 (27H, m, acetal-CH ₃ , 2'~13'-CH ₂), 1.49 (3H, s, acetal-CH ₃), 1.62 (2H, m, 14'-CH ₂), 2.39 (2H,	
8	m, 15'-CH ₂), 3.95 (2H, m, 6-CH ₂), 3.99 (1H, d, <i>J</i> =1.9 Hz, 3-CH), 4.11 (1H, dd, <i>J</i> ₁ = 1.9 Hz, <i>J</i> ₂ =9.3	
9	Hz, 4-CH), 4.56 (1H, d, J=3.6 Hz, 2-CH), 4.95 (1H, m, 5-CH), 5.91 (1H, d, J=3.6 Hz, 1-CH).	
10	Figure 2 shows the time courses for the syntheses of C16-IpGlc at different molar ratios of	←Fig. 2
11	palmitic acid and IpGlc in acetone and TBA. In TBA, esterification proceeded faster and reached	
12	almost the maximum yield within 8 h. However, slight decreases in the yield were observed after	
13	long-term reaction. This would be due to the formations of diester (Zhang et al. 2003) and/or	
14	regioisomer (2) by transesterification from the 6-O- to the 5-O-position. Meanwhile, it took 1-2 days	
15	to reach the maximum yield in acetone. However, the maximum yield in acetone was higher than	
16	that in TBA at any molar ratio. The low yield in TBA would be attributed to the strong interaction	
17	between palmitic acid and TBA, which shifts the reaction equilibrium toward hydrolysis (Kobayashi	
18	et al. 2003). Conversely, it indicates that the interaction of palmitic acid with acetone is relatively	
19	weaker than that with TBA. Because the maximum yield leveled off when a 3 times or greater	
20	amount of palmitic acid was used both in acetone and TBA, the molar ratio of palmitic acid to IpGlc	

1 was adjusted to be 3:1.

2

3 Reaction in the mixed solvent

4

5	The maximum yield was higher in acetone, although esterification was faster in TBA.
6	Therefore, the use of a mixture of these two solvents may improve both the reaction rate and
7	maximum yield. Figure 3 shows the dependence of the initial reaction rate and yield at 80 h on the \leftarrow Fig. 3
8	volumetric fraction of TBA, f_{TBA} , in the mixed solvent. When a small amount of TBA ($f_{\text{TBA}} \leq 0.25$)
9	was added to acetone, the initial reaction rate steeply increased, and it increased gradually at f_{TBA}
10	greater than 0.25. The initial rate was 8.4 μ mol/min/(g-immobilized lipase) at $f_{TBA}\approx$ 0.25 and was 5.9
11	times higher than that in acetone (1.4 μ mol/min/(g-immobilized lipase)). These results suggest the
12	activation of lipase in TBA.
13	Meanwhile, the yield at 80 h became lower with an increase in the volumetric fraction of TBA.
14	When the reaction was performed in TBA, the yield was ca. 42%, although it was ca. 70% in
15	acetone. Mixed solvents gave 50-70% yields. These results may indicate that interaction between
16	TBA and palmitic acid is gradually weakened by the addition of acetone as a diluent. The mixture of
17	TBA and acetone at 25/75 (v/v) is a promising solvent to improve both the reaction rate and yield at
18	80 h.
19	

20 Optimization of the product concentration

2	To improve the product concentration, esterification was performed at different initial
3	concentrations of IpGlc (66-400 mmol/kg-solvent) at a constant molar ratio of palmitic acid to IpGlc
4	(3:1) in acetone/TBA (75/25, v/v). The initial rate steeply decreased with an increase in initial IpGlc
5	concentrations lower than 200 mmol/kg-solvent (Fig. 4a). Although this reason is not clear, a \leftarrow Fig. 4
6	possible one may be a change in the nature of the reaction mixture as a solvent because substrates
7	themselves can act as solvents at high substrate concentration. Meanwhile, the initial rate was almost
8	constant at the initial IpGlc concentrations higher than 200 mmol/kg-solvent because the IpGlc
9	concentration reached saturation.
10	Although the yield at 24 h, which may be an indication of lipase activity (Fig. 4b), showed the
11	same tendency as the result in Fig. 4a, the maximum yield during the 20-day reaction was 61-72%.
12	The maximum product concentration was calculated to be 240 mmol/kg-solvent (ca. 110
13	g/kg-solvent) when 400 mmol/kg-solvent IpGlc and 1200 mmol/kg-solvent palmitic acid were used,
14	and the maximum yield gradually decreased with the increase in initial IpGlc concentration.
15	Previously, a change in the equilibrium yield was observed in a reaction system without any organic
16	solvent for the synthesis of L-menthyl oleate (Kobayashi et al. 2007). The phenomenon observed in
17	this study resembles the previous one and suggests that the reaction shifted slightly toward
18	hydrolysis.
19	In conclusion, lipase-catalyzed synthesis of C16-IpGlc in a mixture of acetone and TBA was
20	successfully performed with good yield at moderate temperature. Use of the solvent mixture

1	improved both the reaction rate and maximum yield. Although the reaction rate was slower at higher
2	substrate concentration, high product concentration could be achieved at high IpGlc concentration.
3	
4	References
5	
6	Cramer JF, Dueholm MS, Nielsen SB, Pedersen DS, Wimmer R, Pedersen LH (2007) Controlling
7	the degree of esterification in lipase catalysed synthesis of xylitol fatty acid esters.
8	Enzym Microb Technol 41:346-352
9	Ferrer M, Soliveri J, Plou FJ, López-Cortés N, Reyes-Duarte D, Christensen M, Copa-Patiño JL,
10	Ballesteros A (2005) Synthesis of sugar esters in solvent mixtures by lipases from
11	Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties.
12	Enzym Microb Technol 36:391-398
13	Flores MV, Engasser J-M, Halling PJ (2005) Dissolution kinetics of crystalline α -glucose in
14	2-methyl 2-butanol. Biochem Eng J 22:245-252
15	Fregapane G, Sarney DB, Vulfson EN (1991) Enzymatic solvent-free synthesis of sugar acetal fatty
16	acid esters. Enzyme Microb Technol 13:796-800
17	Kobayashi T, Furutani W, Adachi S, Matsuno R (2003) Equilibrium constant for the lipase-catalyzed
18	synthesis of fatty acid butyl ester in various organic solvents. J Mol Catal B Enzym
19	24:61-66
20	Kobayashi T, Nagao T, Watanabe Y, Shimada Y (2007) Analysis of equilibrium state for synthesis of

1	oleic acid L-menthyl ester in an oil-aqueous biphasic system with Candida rugosa lipase.
2	Enzym Microb Technol 40:1300-1304
3	Krishna SH, Divakar S, Prapulla SG, Karanth NG (2001) Enzymatic synthesis of isoamyl acetate
4	using immobilized lipase from Rhizomucor miehei. J Biotechnol 87:193-201
5	Šabeder S, Habulin M, Knez Ž (2006) Lipase-catalyzed synthesis of fatty acid fructose esters. J Food
6	Eng 77:880-886
7	Sarney DB, Kapeller H, Fregapane G, Vulfson EN (1994) Chemo-enzymatic synthesis of
8	disaccharide fatty acid esters. J Am Oil Chem Soc 71: 711-714
9	Skagerlind P, Larsson K, Barfoed M, Hult K (1997) Glucoside ester synthesis in microemulsions
10	catalyzed by Candida antarctica component B lipase. J Am Oil Chem Soc 74:39-42
11	Walsh MK, Bombyk RA, Wagh A, Bingham A, Berreau LM (2009) Synthesis of lactose monolaurate
12	as influenced by various lipases and solvents. J Mol Catal B Enzym 60:171-177
13	Zhang X, Adachi S, Watanabe Y, Kobayashi T, Matsuno R (2003) Prediction of the equilibrium
14	conversion for the synthesis of acyl hexose through lipase-catalyzed condensation in
15	water-miscible solvent in the presence of molecular sieve. Biotechnol Progr 19:293-297
16	

1 Figure captions

2	
3	Scheme 1 Structures of the main product 1 and by-product 2
4	
5	Fig. 1 HPLC chromatogram for the formations of C16-IpGlc and by-product in TBA at 80 h
6	(absorbance at 220 nm). Peak 1, by-product; 2, C16-IpGlc; 3, palmitic acid
7	
8	Fig. 2 Time courses for the formation of C16-IpGlc in acetone or TBA at different molar ratios of
9	palmitic acid and IpGlc. Palmitic acid:IpGlc=1:1 (O, \bullet), 3:1 (Δ , \blacktriangle), 5:1 (\Box , \blacksquare). Open
10	and closed symbols represent the results in acetone and TBA, respectively
11	
12	Fig. 3 Effects of volumetric fraction of TBA on the initial reaction rate and yield at 80 h for
13	esterification in the mixture of acetone and TBA
14	
15	Fig. 4 Effect of the initial IpGlc concentration on (a) the initial reaction rate and (b) yield: yield at 24
16	h (\blacklozenge), maximum yield during 20-day reaction (\triangle)
17	

6-O-Palmitoyl-1,2-O-isopropylidene- α -D-glucofuranose **1**

 α -D-glucofuranose 2

Scheme 1 T. Kobayashi et al.

Fig. 1 T. Kobayashi et al.

Fig. 2 T. Kobayashi et al.

Fig. 3 T. Kobayashi et al.

Fig. 4 T. Kobayashi et al.