FILTERED MODULES CORRESPONDING TO POTENTIALLY SEMI-STABLE REPRESENTATIONS

NAOKI IMAI

Abstract

We classify the filtered modules with coefficients corresponding to two-dimensional potentially semi-stable p-adic representations of the absolute Galois groups of p-adic fields under the assumptions that p is odd and the coefficients are large enough.

Introduction

Let p be an odd prime number, and let K be a p-adic field. The absolute Galois group of K is denoted by G_{K}. By the fundamental theorem of Colmez and Fontaine $[\mathrm{CF}]$, there exists a correspondence between potentially semi-stable p-adic representations and admissible filtered (ϕ, N)-modules with Galois action. The aim of this paper is the classification of the admissible filtered (ϕ, N)-modules with Galois action corresponding to two-dimensional potentially semi-stable p-adic representations of G_{K} with coefficients in a p-adic field E.

If $K=\mathbb{Q}_{p}$ and $E=\mathbb{Q}_{p}$, the classification is given in [FM, Appendix A] under the assumption that $p \geq 5$. If $K=\mathbb{Q}_{p}$ and E is general, these filtered (ϕ, N)-modules are studied in $[\mathrm{BM}]$ and $[\mathrm{Sav}]$, and the classification is given by Ghate and Mézard in [GM] under the assumptions that p is odd and E is large enough. In this paper, we generalize the results of $[\mathrm{GM}]$ to the case where K is a general p-adic field.

In the case where K is a general p-adic field, filtrations are determined by many weights and many elements of $\mathbb{P}^{1}(E)$. In fact we need $\left[K: \mathbb{Q}_{p}\right]$ elemens of $\mathbb{P}^{1}(E)$ to parametrize two-dimensional potentially semi-stable p-adic representations. These elements of $\mathbb{P}^{1}(E)$ play a role similar to Fontaine-Mazur's \mathfrak{L}-invariants.

After writing of this paper, the author has known that there is preceding research [Do] on this subject by Dousmanis. The author does not claim priority, but there are some differences. In [Do], a classification is given by Frobenius action, and in this paper, we give a classification by Galois action. Let F be a finite extension of K. A potentially semi-stable representation ρ is said to be F-semi-stable, if the restriction of ρ to the absolute Galois group of F is semi-stable. In [Do], a classification of F-semi-stable representations is given for a general finite Galois extension F of K. In this paper, we give a class of finite Galois extensions of K such that any potentially semi-stable representation is F-semi-stable for a field F in this class, and give a classification of F-semi-stable representations and a more explicit description of Galois action of $\operatorname{Gal}(F / K)$ for F in this class, assuming $p \neq 2$. This difference is conspicuous in the supercuspidal case. Let F_{0} be the maximal unramified extension of \mathbb{Q}_{p} contained in F. In [Do, 5.3], it is proved that $\operatorname{Gal}(F / K)$-action on a filtered $(\phi \cdot N)-\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-module comes from a $\operatorname{Gal}(F / K)$ action on the two-dimensional E-vector space in the supercuspidal case. In this paper, we study the $\operatorname{Gal}(F / K)$-action explicitly by using a structure of $\operatorname{Gal}(F / K)$,
of coure, assumeing F is in some class. Then, in this paper, we first fix a large enough coefficient field, and do not extend it in the classification.

This paper is clearly influenced by the paper [GM], and we owe a lot of arguments to [GM]. We mention it here, and do not repeat it each times in the sequel.

Acknowledgment. The author is supported by the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. He would like to thank Gerasimos Dousmanis for permitting this paper. He is grateful to a referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let p be an odd prime number, and \mathbb{C}_{p} be the p-adic completion of the algebraic closure of \mathbb{Q}_{p}. Let K be a p-adic field. We consider K as a subfield of \mathbb{C}_{p}. The residue field of K is denoted by k, whose cardinality is q. Let K_{0} be the maximal unramified extension of \mathbb{Q}_{p} contained in K. For any p-adic field L, the absolute Galois group of L is denoted by G_{L}, the inertia subgroup of G_{L} is denoted by I_{L}, the Weil group of L is denoted by W_{L}, the ring of integers of L is denoted by \mathcal{O}_{L} and the unique maximal ideal of \mathcal{O}_{L} is denoted by \mathfrak{p}_{L}. For a Galois extension L of K, the inertia subgroup of $\operatorname{Gal}(L / K)$ is denoted by $I(L / K)$. Let v_{p} be the valuations of p-adic fields normalized by $v_{p}(p)=1$.

1. Filtered (ϕ, N)-modules

Let E be a p-adic field. We consider a two-dimensional p-adic representation V of G_{K} over E, which is denoted by $\rho: G_{K} \rightarrow G L(V)$. As in [Fon], we can construct K_{0}-algebra $B_{\text {st }}$ with a Frobenius endomorphism, a monodromy operator and Galois action. Further, we can define a decreasing filtration on $K \otimes_{K_{0}} B_{\text {st }}$. Let F be a finite Galois extension of K, and F_{0} be the maximal unramified extension of \mathbb{Q}_{p} contained in F. Then we have $B_{\mathrm{st}}^{G_{F}}=F_{0}$. The p-adic representation ρ is called F-semi-stable if and only if the dimension of $D_{\mathrm{st}, F}(V)=\left(B_{\mathrm{st}} \otimes_{\mathbb{Q}_{p}} V\right)^{G_{F}}$ over F_{0} is equal to the dimension of V over \mathbb{Q}_{p}. If ρ is F-semi-stable for some finite Galois extension F of K, we say that ρ is potentially semi-stable representation.

Potentially semi-stable representations are Hodge-Tate. To fix a convention, we recall the definition of the Hodge-Tate weights. For $i \in \mathbb{Z}$, we put

$$
D_{\mathrm{HT}}^{i}(V)=\left(\mathbb{C}_{p}(i) \otimes_{\mathbb{Q}_{p}} V\right)^{G_{K}} .
$$

Here and in the following, (i) means i times twists by the p-adic cyclotomic character of G_{K}. Then there is a G_{K}-equivariant isomorphism

$$
\bigoplus_{i \in \mathbb{Z}} \mathbb{C}_{p}(-i) \otimes_{K} D_{\mathrm{HT}}^{i}(V) \xrightarrow{\sim} \mathbb{C}_{p} \otimes_{\mathbb{Q}_{p}} V
$$

of $\left(\mathbb{C}_{p} \otimes_{\mathbb{Q}_{p}} E\right)$-modules. The Hodge-Tate weights of the representation V are the integers i such that $D_{\mathrm{HT}}^{-i}(V) \neq 0$, with multiplicities $\operatorname{dim}_{E}\left(D_{\mathrm{HT}}^{-i}(V)\right)$.

Next, we recall the definition of the filtered $(\phi, N, \operatorname{Gal}(F / K), E)$-modules. A filtered $(\phi, N, \operatorname{Gal}(F / K), E)$-module is a finite free $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-module D endowed with

- the Frobenius endomorphism: an F_{0}-semi-linear, E-linear, bijective map $\phi: D \rightarrow D$,
- the monodromy operator: an $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-linear, nilpotent endomorphism $N: D \rightarrow D$ that satisfies $N \phi=p \phi N$,
- the Galois action: an F_{0}-semi-linear, E-linear action of $\operatorname{Gal}(F / K)$ that commutes with the action of ϕ and N,
- the filtration: a decreasing filtration $\left(\mathrm{Fil}^{i} D_{F}\right)_{i \in \mathbb{Z}}$ of $\left(F \otimes_{\mathbb{Q}_{p}} E\right)$-submodules of $D_{F}=F \otimes_{F_{0}} D$ that are stable under the action of $\operatorname{Gal}(F / K)$ and satisfy

$$
\mathrm{Fil}^{i} D_{F}=D_{F} \text { for } i \ll 0 \text { and } \mathrm{Fil}^{i} D_{F}=0 \text { for } i \gg 0
$$

Let D be a filtered $(\phi, N, \operatorname{Gal}(F / K), E)$-module. Then, by forgetting the E module structure, D is also a filtered $\left(\phi, N, \operatorname{Gal}(F / K), \mathbb{Q}_{p}\right)$-module. We put $d=$ $\operatorname{dim}_{F_{0}} D$. Then $\bigwedge_{F_{0}}^{d} D$ is a filtered $\left(\phi, N, \operatorname{Gal}(F / K), \mathbb{Q}_{p}\right)$-module of dimension 1 over F_{0}. We put

$$
t_{\mathrm{H}}(D)=\max \left\{i \in \mathbb{Z} \mid \operatorname{Fil}^{i}\left(F \otimes_{F_{0}} \bigwedge_{F_{0}}^{d} D\right) \neq 0\right\}, t_{\mathrm{N}}(D)=v_{p}(\lambda)
$$

where λ is an element of F_{0}^{\times}that satisfies $\phi(x)=\lambda x$ for a non-zero element x of $\bigwedge_{F_{0}}^{d} D$. We say that D is admissible if it satisfies the following two conditions:

- $t_{\mathrm{H}}(D)=t_{\mathrm{N}}(D)$.
- For any F_{0}-submodule D^{\prime} of D that is stable by ϕ and N, we have $t_{\mathrm{H}}\left(D^{\prime}\right) \leq$ $t_{\mathrm{N}}\left(D^{\prime}\right)$, where $D_{F}^{\prime} \subset D_{F}$ is equipped with the induced filtration.
By [BM, Proposition 3.1.1.5], we may replace the above second condition by the following condition:
- For any $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodule D^{\prime} of D that is stable by ϕ and N, we have $t_{\mathrm{H}}\left(D^{\prime}\right) \leq t_{\mathrm{N}}\left(D^{\prime}\right)$, where $D_{F}^{\prime} \subset D_{F}$ is equipped with the induced filtration.
Let k_{0} be a non-negative integer. By the results of [CF], there is an equivalence of categories between the category of two-dimensional F-semi-stable representations of G_{K} over E with Hodge-Tate weights in $\left\{0, \ldots, k_{0}\right\}$ and the category of admissible filtered $(\phi, N, \operatorname{Gal}(F / K), E)$-modules of rank 2 over $F_{0} \otimes_{\mathbb{Q}_{p}} E$ such that $\operatorname{Fil}^{-k_{0}}\left(D_{F}\right)=D_{F}$ and $\operatorname{Fil}^{1}\left(D_{F}\right)=0$. This equivalence of categories is given by the functor $D_{\mathrm{st}, F}$ defined above. The aim of this paper is the classification of the objects of later categories under the assumption that E is large enough.

2. Preliminaries

Let $\rho: G_{K} \rightarrow G L(V)$ be a two-dimensional potentially-semi-stable representation over E. We assume that ρ is F-semi-stable, and put $D=D_{\text {st }, F}(V)$. We recall the definition of Weil-Deligne representation associated to ρ. Now we have $W_{K} / W_{F}=\operatorname{Gal}(F / K)$. Let m_{0} be the degree of the field extension K_{0} over \mathbb{Q}_{p}. We define an F_{0}-linear action of $g \in W_{K}$ on D by $\left(g \bmod W_{F}\right) \circ \phi^{-m_{0} \alpha(g)}$, where the image of g in $\operatorname{Gal}(\bar{k} / k)$ is the $\alpha(g)$-th power of the q-th power Frobenius map.

We assume that $F_{0} \subset E$. According to an isomorphism

$$
F_{0} \otimes_{\mathbb{Q}_{p}} E \xrightarrow{\sim} \prod_{\sigma_{i}: F_{0} \hookrightarrow E} E ; a \otimes b \mapsto \sigma_{i}(a) b,
$$

we have a decomposition

$$
D \xrightarrow{\sim} \prod_{\sigma_{i}: F_{0} \hookrightarrow E} D_{i} .
$$

Here and in the sequel, σ_{i} is an embedding determined by the $(-i)$-th power of the p-th power Frobenius map for $1 \leq i \leq\left[F_{0}: \mathbb{Q}_{p}\right]$. Then D_{i}, with an induced action of W_{K} and an induced monodromy operator, defines a Weil-Deligne representation.

The isomorphism class of this Weil-Deligne representation is independent of choice of F and σ_{i} (cf. [BM, Lemme 2.2.1.2]), and is, by definition, the Weil-Deligne representation $\mathrm{WD}(\rho)$ attached to ρ.

We note that, in the above decomposition of D, the Frobenius endomorphism ϕ induce E-linear isomorphism $\phi: D_{i} \xrightarrow{\sim} D_{i+1}$. Naturally, we consider a suffix i modulo $\left[F_{0}: \mathbb{Q}_{p}\right]$, and we often use such conventions in the sequel.

A Galois type τ of degree 2 is an equivalence class of representations $\tau: I_{K} \rightarrow$ $G L_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ with open kernel that extend to representations of W_{K}. We say that an two-dimensional potentially semi-stable representation ρ has Galois type τ if $\left.\mathrm{WD}(\rho)\right|_{I_{K}} \simeq \tau$. The potentially semi-stable representation ρ is F-semi-stable if and only if $\left.\tau\right|_{I_{F}}$ is trivial.

For a group G, an element $g \in G$, a normal subgroup H of G and a character $\chi: H \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$, we define a character $\chi^{g}: H \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$by $\chi^{g}(h)=\chi\left(g h g^{-1}\right)$ for $h \in H$.

Lemma 2.1. Let τ be a Galois type of degree 2. Then τ has one of the following forms:
(1) $\left.\left.\tau \simeq \chi_{1}\right|_{I_{K}} \oplus \chi_{2}\right|_{I_{K}}$, where χ_{1}, χ_{2} are characters of W_{K} finite on I_{K},
(2) $\left.\tau \simeq \operatorname{Ind}_{W_{K^{\prime}}}^{W_{K}}(\chi)\right|_{I_{K}}=\left.\left.\chi\right|_{I_{K}} \oplus \chi^{\sigma}\right|_{I_{K}}$, where K^{\prime} is the unramified quadratic extension of K, χ is a character of $W_{K^{\prime}}$ that is finite on $I_{K^{\prime}}$ and does not extend to W_{K}, and $\sigma \in W_{K}$ is a lift of the generator of $\operatorname{Gal}\left(K^{\prime} / K\right)$,
(3) $\left.\tau \simeq \operatorname{Ind}_{W_{K^{\prime}}}^{W_{K}}(\chi)\right|_{I_{K}}$, where K^{\prime} is a ramified quadratic extension of K, and χ is a character of $W_{K^{\prime}}$ such that χ is finite on $I_{K^{\prime}}$ and $\left.\chi\right|_{I_{K^{\prime}}}$ does not extend to I_{K}.

Proof. This is a classical lemma, but we briefly recall a proof.
We extend τ to a representation of W_{K}, which is denoted by $\tilde{\tau}$. If $\tilde{\tau}$ is reducible, we are in the case (1), so we may assume that $\tilde{\tau}$ is irreducible.

First, we treat the case where τ is reducible. In this case, $\tau \simeq \chi \oplus \chi^{\prime}$ for some characters χ, χ^{\prime} of I_{K}. By irreducibility of $\tilde{\tau}$, we have $\chi^{\prime}=\chi^{\sigma}$. Then $\left.\tilde{\tau}\right|_{W_{K^{\prime}}}$ is already reducible for the unramified quadratic extension K^{\prime} of K. So we are in the case (2).

Next, we treat the case where τ is irreducible. Let I_{K}^{w} be the wild inertia subgroup of I_{K}. Then $\left.\tau\right|_{I_{K}^{\mathrm{w}}}$ is reducible, because a dimension of an irreducible representation of a p-group is a power of p and $p \neq 2$. Then $\left.\tilde{\tau}\right|_{W_{K^{\prime}}}$ is already reducible for a ramified quadratic extension K^{\prime} of K. So we are in the case (3).

To avoid the problem of the rationality, we assume that E is a Galois extension over $\mathbb{Q}_{p}, F \subset E$ and the following:

For all p-adic fields K^{\prime} such that $K \subset K^{\prime} \subset F$ and $\left[K^{\prime}: K\right] \leq 2$, and for all characters χ of $W_{K^{\prime}}$ that are trivial on I_{F}, the restrictions $\left.\chi\right|_{I_{K^{\prime}}}$ factor through E^{\times}.
For example, if E contains the $|I(F / K)|$-th roots of unity, then this condition is satisfied.

In the sequel, let $\rho: G_{K} \rightarrow G L(V)$ be a two-dimensional potentially semi-stable representation over E with Hodge-Tate weight in $\left\{0, \ldots, k_{0}\right\}$, and τ be its Galois type.

Lemma 2.2. (cf. [GM, Lemma 2.3]) If ρ is not potentially crystalline, then τ is a scalar.

Therefore, there are following three possibilities:

- Special or Steinberg case: $N \neq 0$ and τ is a scalar.
- Principal series case: $N=0$ and τ is as in (1) of Lemma 2.1.
- Supercuspidal case: $N=0$ and τ is as in (2) or (3) of Lemma 2.1.

Next, we study the structure of the filtrations. We assume ρ is F-semi-stable, and take the corresponding filtered $(\phi, N, \operatorname{Gal}(F / K), E)$-module D. We have a decomposition

$$
F \otimes_{\mathbb{Q}_{p}} E \xrightarrow{\sim} \prod_{j_{F}: F \hookrightarrow E} E=\prod_{j: K \hookrightarrow E}\left(\prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{K}=j} E\right)=\prod_{j: K \hookrightarrow E} E_{j},
$$

where j_{F} and j are \mathbb{Q}_{p}-embeddings and we put

$$
E_{j}=\prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{K}=j} E .
$$

According to the above decomposition, we have decompositions

$$
D_{F} \cong \prod_{j: K \hookrightarrow E} D_{F, j} \text { and } \mathrm{Fil}^{i} D_{F} \cong \prod_{j: K \hookrightarrow E} \mathrm{Fil}_{j}^{i} D_{F}
$$

Because $\operatorname{Fil}^{i} D_{F}$ is $\operatorname{Gal}(F / K)$-stable, $\operatorname{Fil}_{j}^{i} D_{F}$ is free over E_{j}. We take integers $0 \leq k_{j, 1} \leq k_{j, 2} \leq k_{0}$ such that

$$
D_{F, j}=\operatorname{Fil}_{j}^{-k_{j, 2}} D_{F} \supsetneq \mathrm{Fil}_{j}^{1-k_{j, 2}} D_{F}=\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F} \supsetneq \mathrm{Fil}_{j}^{1-k_{j, 1}} D_{F}=0
$$

Then the Hodge-Tate weights of ρ are $\bigcup_{j: K \hookrightarrow E}\left\{k_{j, 1}, k_{j, 2}\right\}$.
We are going to prepare some lemmas.
Lemma 2.3. There is a $\operatorname{Gal}(F / K)$-equivariant isomorphism

$$
F \otimes_{K} E \xrightarrow{\sim} E_{j}
$$

of E-algebra.
Proof. Let j_{0} be a natural inclusion $K \subset E$. Take an extension $j_{E}: E \xrightarrow{\sim} E$ of $j: K \hookrightarrow E$. Then a $\operatorname{Gal}(F / K)$-equivariant isomorphism

$$
\prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{K}=j_{0}} E \xrightarrow{\sim} \prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{K}=j} E
$$

of E-algebra is given by sending j_{F}-components to $\left(j_{E} \circ j_{F}\right)$-components.
Lemma 2.4. If $k_{j, 1}<k_{j, 2}$, then $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F} \subset D_{F, j}$ is spanned by a Galois invariant element over E_{j}.
Proof. A generator of $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F}$ over E_{j} generates an E_{j}^{\times}-torsor with $\operatorname{Gal}(F / K)$ action. An E_{j}^{\times}-torsor with $\operatorname{Gal}(F / K)$-action is tirivial, if $H^{1}\left(\operatorname{Gal}(F / K), E_{j}^{\times}\right)=$ 0 . So it suffices to show that $H^{1}\left(\operatorname{Gal}(F / K), E_{j}^{\times}\right)=0$. By Lemma 2.3, E_{j}^{\times}is isomorphic to $\left(F \otimes_{K} E\right)^{\times}$, and it is further isomorphic to $\operatorname{Ind}_{\left\{\operatorname{id}_{F}\right\}}^{\operatorname{Gal}(F / K)} E^{\times}$. By Shapiro's lemma, $H^{1}\left(\operatorname{Gal}(F / K), \operatorname{Ind}_{\left\{\operatorname{id}_{F}\right\}}^{\operatorname{Gal}(F / K)} E^{\times}\right)=H^{1}\left(\left\{\operatorname{id}_{F}\right\}, E^{\times}\right)=0$.

Lemma 2.5. Let K^{\prime}, M be p-adic fields such that $K \subset K^{\prime} \subset M \subset F$ and M is a Galois extension of K^{\prime}. Let $\chi: \operatorname{Gal}\left(M / K^{\prime}\right) \rightarrow E^{\times}$be a character. We put $m=\left[K^{\prime}: K\right]$. Then there exist $x_{1}, \ldots, x_{m} \in M \otimes_{K} E$ that satisfy the followings:

- For $x \in M \otimes_{K} E$, we have $g x=\left(1 \otimes \chi(g)^{-1}\right) x$ for all $g \in \operatorname{Gal}\left(M / K^{\prime}\right)$ if and only if $x=\sum_{i=1}^{m}\left(1 \otimes a_{i}\right) x_{i}$ for $a_{i} \in E$.
- For $a_{i} \in E$, we have $\sum_{i=1}^{m}\left(1 \otimes a_{i}\right) x_{i} \in\left(M \otimes_{K} E\right)^{\times}$if and only if $a_{i} \neq 0$ for all i.

Proof. We have a decomposition

$$
M \otimes_{K} E \xrightarrow{\sim} \prod_{j_{M}: M \hookrightarrow E} E=\prod_{j^{\prime}: K^{\prime} \hookrightarrow E}\left(\prod_{j_{M}: M \hookrightarrow E,\left.j_{M}\right|_{K^{\prime}}=j^{\prime}} E\right)=\prod_{j^{\prime}: K^{\prime} \hookrightarrow E} E_{j^{\prime}}
$$

where j_{M} and j^{\prime} are K-embeddings and we put

$$
E_{j^{\prime}}=\prod_{j_{M}: M \hookrightarrow E,\left.j_{M}\right|_{K^{\prime}}=j^{\prime}} E .
$$

Let $\left(x_{j^{\prime}}\right)_{j^{\prime}} \in \prod_{j^{\prime}: K^{\prime} \hookrightarrow E} E_{j^{\prime}}$ be the image of x under the above isomorphism. Then, $g x=\left(1 \otimes \chi(g)^{-1}\right) x$ for all $g \in \operatorname{Gal}\left(M / K^{\prime}\right)$ if and only if $g x_{j^{\prime}}=\chi(g)^{-1} x_{j^{\prime}}$ for all $g \in \operatorname{Gal}\left(M / K^{\prime}\right)$ and all $j^{\prime}: K^{\prime} \hookrightarrow E$. Further, $x \in\left(M \otimes_{K} E\right)^{\times}$if and only if $x_{j^{\prime}} \in E_{j^{\prime}}^{\times}$for all j^{\prime}. As in the proof of Lemma 2.3, we can show there is a $\operatorname{Gal}\left(M / K^{\prime}\right)$-equivariant isomorphism $M \otimes_{K^{\prime}} E \xrightarrow{\sim} E_{j^{\prime}}$ of E-algebra. So, to prove this Lemma, it suffices to treat the case where $m=1$.

We assume that $m=1$. Take $\alpha \in M$ such that $g(\alpha)$ for $g \in \operatorname{Gal}(M / K)$ form a basis of M over K. Then $x \in M \otimes_{K} E$ can be written uniquely as

$$
\sum_{g \in \operatorname{Gal}(M / K)} g(\alpha) \otimes a_{g}
$$

for $a_{g} \in E$. If $h x=\left(1 \otimes \chi(h)^{-1}\right) x$ for all $h \in \operatorname{Gal}(M / K)$, we have $a_{i, h^{-1} g}=$ $\chi^{-1}(h) a_{g}$ for all $g, h \in \operatorname{Gal}(M / K)$. By putting $a_{1}=a_{\mathrm{id}_{M}}$, we have

$$
x=\left(1 \otimes a_{1}\right) \sum_{g \in \operatorname{Gal}(M / K)} g(\alpha) \otimes \chi(g) .
$$

It suffices to put $x_{1}=\sum_{g \in \operatorname{Gal}(M / K)} g(\alpha) \otimes \chi(g)$.

3. Classification

3.1. Special or Steinberg case. In this case, $\left.\left.\tau \simeq \chi\right|_{I_{K}} \oplus \chi\right|_{I_{K}}$ for some character χ of W_{K} that is finite on I_{K}, and there exists a totally ramified cyclic extension F of K such that $\left.\chi\right|_{I_{F}}$ is trivial. So we may assume that ρ is F-semi-stable, and χ determine the action of $\operatorname{Gal}(F / K)$ on D, which is again denoted by χ.

Since $N \phi=p \phi N$, we have that $\operatorname{Ker} N$ is ϕ-stable and free of rank 1 over $F_{0} \otimes_{\mathbb{Q}_{p}} E$. So we can take a basis e_{1}, e_{2} of D over $F_{0} \otimes_{\mathbb{Q}_{p}} E$ such that $N\left(e_{1}\right)=e_{2}$ and $N\left(e_{2}\right)=0$. Again by $N \phi=p \phi N$, we must have $\phi\left(e_{1}\right)=\frac{p}{\alpha} e_{1}+\gamma e_{2}$ and $\phi\left(e_{2}\right)=\frac{1}{\alpha} e_{2}$ with $\alpha \in\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)^{\times}$and $\gamma \in F_{0} \otimes_{\mathbb{Q}_{p}} E$. Modifying e_{1} by a scalar multiple of e_{2}, we may assume $\gamma=0$. Let $\left(\alpha_{i}\right)_{i} \in \prod_{\sigma_{i}: F_{0} \hookrightarrow E} E$ be the image of α under the isomorphism

$$
F_{0} \otimes_{\mathbb{Q}_{p}} E \xrightarrow{\sim} \prod_{\sigma_{i}: F_{0} \hookrightarrow E} E .
$$

Then, by calculations, we have

$$
\begin{aligned}
& t_{\mathrm{H}}(D)=-[E: K] \sum_{j: K \hookrightarrow E}\left(k_{j, 1}+k_{j, 2}\right), \\
& t_{\mathrm{N}}(D)=\left[E: F_{0}\right]\left(m_{0}-2 \sum_{i} v_{p}\left(\alpha_{i}\right)\right) .
\end{aligned}
$$

So the condition $t_{\mathrm{H}}(D)=t_{\mathrm{N}}(D)$ is equivalent to that

$$
2\left[K: K_{0}\right] \sum_{i} v_{p}\left(\alpha_{i}\right)=\sum_{j}\left(k_{j, 1}+k_{j, 2}+1\right) .
$$

For $j: K \hookrightarrow E$ satisfying $k_{j, 1}<k_{j, 2}$, by Lemma 2.4, we take $a_{j}, b_{j} \in E_{j}$ such that $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)$, and $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant. We note that $a_{j}=0$ or $a_{j} \in E_{j}^{\times}$and that $b_{j}=0$ or $b_{j} \in E_{j}^{\times}$.

The only non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodule of D is $D_{2}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}}\right.$ $E) e_{2}$. By calculations, we have

$$
\begin{aligned}
t_{\mathrm{H}}\left(D_{2}^{\prime}\right) & =-[E: K]\left\{\sum_{a_{j}=0} k_{j, 1}+\sum_{a_{j} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2}\right\} \\
t_{\mathrm{N}}\left(D_{2}^{\prime}\right) & =-\left[E: F_{0}\right] \sum_{i} v_{p}\left(\alpha_{i}\right) .
\end{aligned}
$$

So the condition $t_{\mathrm{H}}\left(D_{2}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{2}^{\prime}\right)$ is equivalent to that

$$
\left[K: K_{0}\right] \sum_{i} v_{p}\left(\alpha_{i}\right) \leq \sum_{a_{j}=0} k_{j, 1}+\sum_{a_{j} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} .
$$

Since $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant, $g \in \operatorname{Gal}(F / K)$ acts on a_{j} and b_{j} by $\chi(g)^{-1}$. By Lemma 2.3 and Lemma 2.5, there is $x_{1} \in E_{j}$ such that $a_{j}=a_{j}^{\prime} x_{1}$ and $b_{j}=b_{j}^{\prime} x_{1}$ for $a_{j}^{\prime}, b_{j}^{\prime} \in E$. Then, for j such that $a_{j} \neq 0$,

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j}^{\prime} x_{1} e_{1}+b_{j}^{\prime} x_{1} e_{2}\right)=E_{j}\left(e_{1}-\mathfrak{L}_{j} e_{2}\right)
$$

for $\mathfrak{L}_{j} \in E$.
Proposition 3.1. We assume that $N \neq 0$. Then $\left.\left.\tau \simeq \chi\right|_{I_{K}} \oplus \chi\right|_{I_{K}}$ for some character χ of W_{K} that is finite on I_{K}. If we take a totally ramified cyclic extension F of K such that χ is trivial on I_{F}, then $D=\left(F_{0} \otimes \mathbb{Q}_{p} E\right) e_{1} \oplus\left(F_{0} \otimes \mathbb{Q}_{p} E\right) e_{2}$ with

$$
N\left(e_{1}\right)=e_{2}, \quad N\left(e_{2}\right)=0, \phi\left(e_{1}\right)=\frac{p}{\alpha} e_{1}, \phi\left(e_{2}\right)=\frac{1}{\alpha} e_{2}
$$

for $\alpha \in\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)^{\times}$,

$$
g e_{1}=\chi(g) e_{1}, g e_{2}=\chi(g) e_{2}
$$

for $g \in \operatorname{Gal}(F / K)$ and

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}= \begin{cases}E_{j} e_{2} & \text { if } j \in I_{1} \\ E_{j}\left(e_{1}-\mathfrak{L}_{j} e_{2}\right) \text { for } \mathfrak{L}_{j} \in E & \text { if } j \in I_{2}\end{cases}
$$

for j such that $k_{j, 1}<k_{j, 2}$, where

$$
2\left[K: K_{0}\right] \sum_{i} v_{p}\left(\alpha_{i}\right)=\sum_{j}\left(k_{j, 1}+k_{j, 2}+1\right),
$$

and I_{1}, I_{2} are any disjoint sets such that $I_{1} \cup I_{2}=\left\{j \mid k_{j, 1}<k_{j, 2}\right\}$ and

$$
\left[K: K_{0}\right] \sum_{i} v_{p}\left(\alpha_{i}\right) \leq \sum_{j \in I_{1}} k_{j, 1}+\sum_{j \in I_{2}} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2}
$$

3.2. Principal series case. In this case, $\left.\left.\tau \simeq \chi_{1}\right|_{I_{K}} \oplus \chi_{2}\right|_{I_{K}}$ and $N=0$. We can take a totally ramified abelian extension F of K such that $\left.\chi_{1}\right|_{I_{F}}$ and $\left.\chi_{2}\right|_{I_{F}}$ are trivial. Then χ_{1} and χ_{2} determine the action of $\operatorname{Gal}(F / K)$ on D, which is again denoted by the same symbols.
3.2.1. Irreducible case. First, we assume that $\left.\chi_{1}\right|_{I_{K}}=\left.\chi_{2}\right|_{I_{K}}$ and D has no nontrivial ϕ-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodule. In this case, we say that ϕ is irreducible. If not, we say that ϕ is reducible. We put $\chi=\chi_{1}$.

Take bases $e_{i, 1}, e_{i, 2}$ of D_{i} over E for $1 \leq i \leq m_{0}$ so that

$$
\phi\left(e_{1,1}\right)=a e_{2,1}+c e_{2,2}, \phi\left(e_{1,2}\right)=b e_{2,1}+d e_{2,2}
$$

for $a, b, c, d \in E$, and

$$
\phi\left(e_{i, 1}\right)=e_{i+1,1}, \phi\left(e_{i, 2}\right)=e_{i+1,2}
$$

for $2 \leq i \leq m_{0}$. Let e_{1}, e_{2} be a basis of D over $F_{0} \otimes_{\mathbb{Q}_{p}} E$ determined by $\left(e_{i, 1}\right)_{i}$, $\left(e_{i, 2}\right)_{i}$ under the isomorphism $D \xrightarrow{\sim} \prod_{i} D_{i}$. We will use the same notation in the classification of other cases.

Since ϕ is irreducible, $b \neq 0$ and $c \neq 0$. Modifying $e_{i, 1}$ by a scalar multiple of $e_{i, 2}$, we may assume $d=0$. If $X^{2}-a X-b c$ is reducible in $E[X]$, by replacing the bases, we can see that ϕ is reducible. This is a contradiction. So $X^{2}-a X-b c$ is irreducible in $E[X]$.

Conversely, we suppose that $a, b, c \in E$ are given, $d=0$, and $X^{2}-a X-b c$ is irreducible in $E[X]$. Then the above description determines an endomorphism ϕ. We prove that this endomorphism ϕ is irreducible. If ϕ is reducible, there are $A_{i} \in G L_{2}(E)$ such that

$$
A_{2}^{-1}\left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right) A_{1}, A_{3}^{-1} A_{2}, A_{4}^{-1} A_{3}, \ldots, A_{1}^{-1} A_{m_{0}}
$$

are all upper triangular matrices. Then, multiplying these matrices together, we have that $A_{1}^{-1}\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) A_{1}$ is an upper triangular matrix. This contradicts that $X^{2}-a X-b c$ is irreducible in $E[X]$.

As above, the endomorphism ϕ is given by $a, b, c \in E$ such that $X^{2}-a X-b c$ is reducible in $E[X]$. Now, by calculation, we have

$$
\begin{aligned}
& t_{\mathrm{H}}(D)=-[E: K] \sum_{j: K \hookrightarrow E}\left(k_{j, 1}+k_{j, 2}\right), \\
& t_{\mathrm{N}}(D)=\left[E: F_{0}\right] v_{p}(b c) .
\end{aligned}
$$

So the condition $t_{\mathrm{H}}(D)=t_{\mathrm{N}}(D)$ is equivalent to that

$$
-\left[K: K_{0}\right] v_{p}(b c)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right) .
$$

Since ϕ is irreducible, D has no non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodule. So there is no condition on the filtrations. For j such that $k_{j, 1}<k_{j, 2}$, by Lemma 2.3, Lemma 2.4 and Lemma 2.5, we have

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)
$$

for $\left(a_{j}, b_{j}\right) \in \mathbb{P}^{1}(E)$.
By studies of the other cases, ϕ is irreducible only if $N=0$ and $\left.\left.\tau \simeq \chi\right|_{I_{K}} \oplus \chi\right|_{I_{K}}$ for some character χ of W_{K} that is finite on I_{K}.
Proposition 3.2. We assume that ϕ is irreducible. Then $N=0$ and $\left.\tau \simeq \chi\right|_{I_{K}} \oplus$ $\left.\chi\right|_{I_{K}}$ for some character χ of W_{K} that is finite on I_{K}. If we take a totally ramified cyclic extension F of K such that χ is trivial on I_{F}, then $D=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1} \oplus$ $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ with

$$
\phi\left(e_{1,1}\right)=a e_{2,1}+c e_{2,2}, \phi\left(e_{1,2}\right)=b e_{2,1}
$$

for $a, b \in E^{\times}$such that $X^{2}-a X-b c$ is irreducible in $E[X]$,

$$
\phi\left(e_{i, 1}\right)=e_{i+1,1}, \phi\left(e_{i, 2}\right)=e_{i+1,2}
$$

for $2 \leq i \leq m_{0}$,

$$
g e_{1}=\chi(g) e_{1}, g e_{2}=\chi(g) e_{2}
$$

for $g \in \operatorname{Gal}(F / K)$ and, for j such that $k_{j, 1}<k_{j, 2}$,

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)
$$

for $\left(a_{j}, b_{j}\right) \in \mathbb{P}^{1}(E)$, where

$$
-\left[K: K_{0}\right] v_{p}(b c)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right) .
$$

3.2.2. Non-split reducible case. If D has two or more non-trivial ϕ-stable ($\left.F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$ submodules, we say that ϕ is split. If not, we say that ϕ is non-split. We assume that $\left.\chi_{1}\right|_{I_{K}}=\left.\chi_{2}\right|_{I_{K}}$ and that ϕ is non-split and reducible. We put $\chi=\chi_{1}$.

Since ϕ is reducible, we can take bases $e_{i, 1}, e_{i, 2}$ of D_{i} over E and $a_{i}, b_{i}, d_{i} \in E$ for all i so that

$$
\phi\left(e_{i, 1}\right)=a_{i} e_{i+1,1}, \phi\left(e_{i, 2}\right)=b_{i} e_{i+1,1}+d_{i} e_{i+1,2}
$$

for all i. Replacing the bases, we may assume that $a_{i}=d_{i}=1$ and $b_{i}=0$ for $2 \leq i \leq n$. Since ϕ is non-split, $a_{1}=d_{1} \neq 0$ and $b_{1} \neq 0$. We put $a=a_{1}$ and $b=b_{1}$.

Conversely, we suppose that $a, b \in E^{\times}$are given. Then the above description determines an endomorphism ϕ. We prove that this endomorphism ϕ is non-split. If ϕ is split, there are $A_{i} \in G L_{2}(E)$ such that

$$
A_{2}^{-1}\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) A_{1}, A_{3}^{-1} A_{2}, A_{4}^{-1} A_{3}, \ldots, A_{1}^{-1} A_{m_{0}}
$$

are all diagonal matrices. Then, multiplying these matrices together, we have that $A_{1}^{-1}\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) A_{1}$ is a diagonal matrix. This contradicts that $b \neq 0$.

As above, the endomorphism ϕ is given by $a, b \in E^{\times}$. The condition $t_{\mathrm{H}}(D)=$ $t_{\mathrm{N}}(D)$ is equivalent to that

$$
-2\left[K: K_{0}\right] v_{p}(a)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right)
$$

Now we have bases $e_{i, 1}, e_{i, 2}$ of D_{i} over E such that

$$
\phi\left(e_{1,1}\right)=a e_{2,1}, \quad \phi\left(e_{1,2}\right)=b e_{2,1}+a e_{2,2}
$$

for $a, b \in E^{\times}$, and

$$
\phi\left(e_{i, 1}\right)=e_{i+1,1}, \phi\left(e_{i, 2}\right)=e_{i+1,2}
$$

for $2 \leq i \leq m_{0}$.
For $j: K \hookrightarrow E$ satisfying $k_{j, 1}<k_{j, 2}$, by Lemma 2.4, we take $a_{j}, b_{j} \in E_{j}$ such that $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)$, and $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant.

The only non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodule of D is $D_{1}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}}\right.$ $E) e_{1}$. The condition $t_{\mathrm{H}}\left(D_{1}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{1}^{\prime}\right)$ is equivalent to that

$$
-\left[K: K_{0}\right] v_{p}(a) \leq \sum_{b_{j}=0} k_{j, 1}+\sum_{b_{j} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} .
$$

As in the special or Steinberg case, for j such that $b_{j} \neq 0$,

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(-\mathfrak{L}_{j} e_{1}+e_{2}\right)
$$

for $\mathfrak{L}_{j} \in E$.
By studies of the other cases, ϕ is non-split reducible only if $N=0$ and $\tau \simeq$ $\left.\left.\chi\right|_{I_{K}} \oplus \chi\right|_{I_{K}}$ for some character χ of W_{K} that is finite on I_{K}.

Proposition 3.3. We assume that ϕ is non-split reducible. Then $N=0$ and $\left.\left.\tau \simeq \chi\right|_{I_{K}} \oplus \chi\right|_{I_{K}}$ for some character χ of W_{K} that is finite on I_{K}. If we take a totally ramified cyclic extension F of K such that χ is trivial on I_{F}, then $D=$ $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1} \oplus\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ with

$$
\phi\left(e_{1,1}\right)=a e_{2,1}, \quad \phi\left(e_{1,2}\right)=b e_{2,1}+a e_{2,2}
$$

for $a, b \in E^{\times}$,

$$
\phi\left(e_{i, 1}\right)=e_{i+1,1}, \phi\left(e_{i, 2}\right)=e_{i+1,2}
$$

for $2 \leq i \leq m_{0}$,

$$
g e_{1}=\chi(g) e_{1}, g e_{2}=\chi(g) e_{2}
$$

for $g \in \operatorname{Gal}(F / K)$ and

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}= \begin{cases}E_{j} e_{1} & \text { if } j \in I_{1} \\ E_{j}\left(-\mathfrak{L}_{j} e_{1}+e_{2}\right) \text { for } \mathfrak{L}_{j} \in E & \text { if } j \in I_{2}\end{cases}
$$

for j such that $k_{j, 1}<k_{j, 2}$, where

$$
-2\left[K: K_{0}\right] v_{p}(a)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right)
$$

and I_{1}, I_{2} are any disjoint sets such that $I_{1} \cup I_{2}=\left\{j \mid k_{j, 1}<k_{j, 2}\right\}$ and

$$
-\left[K: K_{0}\right] v_{p}(a) \leq \sum_{j \in I_{1}} k_{j, 1}+\sum_{j \in I_{2}} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2}
$$

3.2.3. Split case. The remaining cases are the following two cases:

- $\left.\chi_{1}\right|_{I_{K}}=\left.\chi_{2}\right|_{I_{K}}$ and ϕ is split.
- $\left.\chi_{1}\right|_{I_{K}} \neq\left.\chi_{2}\right|_{I_{K}}$.

First, we assume that $\left.\chi_{1}\right|_{I_{K}} \neq\left.\chi_{2}\right|_{I_{K}}$. Let e_{1}, e_{2} be a basis of D over $F_{0} \otimes_{\mathbb{Q}_{p}} E$ such that $\operatorname{Gal}(F / K)$ acts on e_{1} by χ_{1} and e_{2} by χ_{2}. We put

$$
\phi\left(e_{1}\right)=\alpha e_{1}+\gamma e_{2}, \phi\left(e_{2}\right)=\beta e_{1}+\delta e_{2}
$$

where $\alpha, \beta, \gamma, \delta \in F_{0} \otimes_{\mathbb{Q}_{p}} E$. Since ϕ commutes with the action of $\operatorname{Gal}(F / K)$ and $\left.\chi_{1}\right|_{I_{K}} \neq\left.\chi_{2}\right|_{I_{K}}$, we have $\beta=\gamma=0$. So, in the both cases, we may assume that ϕ is split.

We take bases $e_{i, 1}, e_{i, 2}$ of D_{i} over E so that

$$
\phi\left(e_{1,1}\right)=a e_{2,1}, \phi\left(e_{1,2}\right)=b e_{2,2}
$$

for some $a, b \in E^{\times}$and

$$
\phi\left(e_{i, 1}\right)=e_{i+1,1}, \phi\left(e_{i, 2}\right)=e_{i+1,2}
$$

for $2 \leq i \leq m_{0}$. Let e_{1}, e_{2} be a basis of D over $F_{0} \otimes_{\mathbb{Q}_{p}} E$ determined by $\left(e_{i, 1}\right)_{i}$, $\left(e_{i, 2}\right)_{i}$ under the isomorphism $D \xrightarrow{\sim} \prod_{i} D_{i}$.

Then the condition $t_{\mathrm{H}}(D)=t_{\mathrm{N}}(D)$ is equivalent to that

$$
\begin{equation*}
\left[K: K_{0}\right] v_{p}(a b)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right) \tag{S}
\end{equation*}
$$

For $j: K \hookrightarrow E$ satisfying $k_{j, 1}<k_{j, 2}$, by Lemma 2.4, we take $a_{j}, b_{j} \in E_{j}$ such that $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)$, and $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant.

Since $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant, $g \in \operatorname{Gal}(F / K)$ acts on a_{j} and b_{j} by $\chi_{1}(g)^{-1}$ and $\chi_{2}(g)^{-1}$ respectively. By Lemma 2.3 and Lemma 2.5, there are $x_{1}, x_{2} \in E_{j}$ such that $a_{j}=a_{j}^{\prime} x_{1}$ and $b_{j}=b_{j}^{\prime} x_{2}$ for $a_{j}^{\prime}, b_{j}^{\prime} \in E$. Then, for j such that $a_{j} \neq 0$ and $b_{j} \neq 0$, we have

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j}^{\prime} x_{1} e_{1}+b_{j}^{\prime} x_{2} e_{2}\right)=E_{j}\left(e_{1}-\mathfrak{L}_{j} x_{0} e_{2}\right)
$$

for $\mathfrak{L}_{j} \in E^{\times}$, where we put $x_{0}=x_{1}^{-1} x_{2}$.
If $a \neq b$, the non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodules of D are $D_{1}^{\prime}=$ $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1}$ and $D_{2}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$. The condition $t_{\mathrm{H}}\left(D_{1}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{1}^{\prime}\right)$ is equivalent to that

$$
\left[K: K_{0}\right] v_{p}(a) \leq \sum_{b_{j}=0} k_{j, 1}+\sum_{b_{j} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} .
$$

The condition $t_{\mathrm{H}}\left(D_{2}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{2}^{\prime}\right)$ is equivalent to that

$$
\left[K: K_{0}\right] v_{p}(b) \leq \sum_{a_{j}=0} k_{j, 1}+\sum_{a_{j} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} .
$$

If $a=b$, the non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodules of D are D_{1}^{\prime}, D_{2}^{\prime} and $D_{\mathfrak{L}}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)\left(e_{1}-\mathfrak{L} e_{2}\right)$ for $\mathfrak{L} \in E^{\times}$. For $\mathfrak{L} \in E^{\times}$, the condition $t_{\mathrm{H}}\left(D_{\mathfrak{L}}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{\mathfrak{L}}^{\prime}\right)$ is equivalent to that

$$
\begin{align*}
{\left[K: K_{0}\right] v_{p}(a) \leq } & \sum_{a_{j} b_{j}=0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} \tag{L}\\
& +\sum_{a_{j} b_{j} \neq 0}\left\{t_{j}\left(\mathfrak{L}, \mathfrak{L}_{j}\right) k_{j, 1}+\left(1-t_{j}\left(\mathfrak{L}, \mathfrak{L}_{j}\right)\right) k_{j, 2}\right\},
\end{align*}
$$

where

$$
t_{j}\left(\mathfrak{L}, \mathfrak{L}_{j}\right)=\frac{\mid\left\{j_{F}: F \hookrightarrow E \mid j_{F} \text {-component of } \mathfrak{L}_{j} x_{0} \in E_{j} \text { is } \mathfrak{L}\right\} \mid}{[F: K]} .
$$

If $t_{j}\left(\mathfrak{L}, \mathfrak{L}_{j}\right) \leq 1 / 2$, the condition $\left(S_{\mathfrak{L}}\right)$ is automatically satisfied by the condition (S).

We assume that $t_{j}\left(\mathfrak{L}, \mathfrak{L}_{j}\right)>1 / 2$. Then we have

$$
\frac{\left|\operatorname{Ker}\left(\chi_{1} \chi_{2}^{-1}: \operatorname{Gal}(F / K) \rightarrow \overline{\mathbb{Q}}_{p}^{\times}\right)\right|}{[F: K]}>\frac{1}{2},
$$

because $\operatorname{Gal}(F / K)$ act on x_{0} by $\chi_{1} \chi_{2}^{-1}$. This implies that $\left.\chi_{1}\right|_{I_{K}}=\left.\chi_{2}\right|_{I_{K}}$ and

$$
x_{0}=\left(x_{E}\right)_{j_{F}} \in \prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{K}=j} E
$$

for some $x_{E} \in E^{\times}$. Then $\mathfrak{L}_{j} x_{E}=\mathfrak{L}$ and $t_{j}\left(\mathfrak{L}, \mathfrak{L}_{j}\right)=1$.
Proposition 3.4. We assume that $N=0$ and ϕ is split reducible and $\left.\tau \simeq \chi_{1}\right|_{I_{K}} \oplus$ $\left.\chi_{2}\right|_{I_{K}}$ for some character χ_{1}, χ_{2} of W_{K} that are finite on I_{K}. If we take a totally ramified cyclic extension F of K such that χ_{1}, χ_{2} is trivial on I_{F}, then $D=\left(F_{0} \otimes_{\mathbb{Q}_{p}}\right.$ $E) e_{1} \oplus\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ with

$$
\phi\left(e_{1,1}\right)=a e_{2,1}, \quad \phi\left(e_{1,2}\right)=b e_{2,2}
$$

for $a, b \in E^{\times}$and

$$
\phi\left(e_{i, 1}\right)=e_{i+1,1}, \phi\left(e_{i, 2}\right)=e_{i+1,2}
$$

for $2 \leq i \leq m_{0}$ and

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}= \begin{cases}E_{j} e_{1} & \text { if } j \in I_{1} \\ E_{j} e_{2} & \text { if } j \in I_{2} \\ E_{j}\left(e_{1}-\mathfrak{L}_{j} x_{0} e_{2}\right) \text { for } \mathfrak{L}_{j} \in E^{\times} & \text {if } j \in I_{3}\end{cases}
$$

for j such that $k_{j, 1}<k_{j, 2}$, where

$$
\left[K: K_{0}\right] v_{p}(a b)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right)
$$

and I_{1}, I_{2}, I_{3} are any disjoint sets such that $I_{1} \cup I_{2} \cup I_{3}=\left\{j \mid k_{j, 1}<k_{j, 2}\right\}$ and

$$
\begin{aligned}
& {\left[K: K_{0}\right] v_{p}(a) \leq \sum_{j \in I_{1}} k_{j, 1}+\sum_{j \in I_{2} \cup I_{3}} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2},} \\
& {\left[K: K_{0}\right] v_{p}(b) \leq \sum_{j \in I_{2}} k_{j, 1}+\sum_{j \in I_{1} \cup I_{3}} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2},}
\end{aligned}
$$

and, if $a=b$ and $\left.\chi_{1}\right|_{I_{K}}=\left.\chi_{2}\right|_{I_{K}}$, further

$$
\left[K: K_{0}\right] v_{p}(a) \leq \sum_{j \in I_{3}, \mathfrak{L}_{j} x_{E}=\mathfrak{L}} k_{j, 1}+\sum_{j \in I_{3}, \mathfrak{L}_{j} x_{E} \neq \mathfrak{L}} k_{j, 2}+\sum_{j \in I_{1} \cup I_{2}} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2}
$$

for all $\mathfrak{L} \in E^{\times}$.
3.3. Supercuspidal case. In this case, $N=0$ and $\left.\tau \simeq \operatorname{Ind}_{W_{K^{\prime}}}^{W_{K}}(\chi)\right|_{I_{K}}$ for a quadratic extension K^{\prime} of K and a character χ of $W_{K^{\prime}}$ that is finite on $I_{K^{\prime}}$. Let k^{\prime} be the residue field of K^{\prime}. We take a totally ramified abelian extension L of K^{\prime} such that $\left.\chi\right|_{I_{L}}$ is trivial.

For a uniformizer π^{\prime} of K^{\prime} and a positive integer n, let $K_{\pi^{\prime}, n}^{\prime}$ be the Lubin-Tate extension of K^{\prime} generated by the $\pi^{\prime n}$-torsion points. For any p-adic field M and a positive integer n, we put $U_{M}^{(n)}=1+\mathfrak{p}_{M}^{n}$. Then we have

$$
\operatorname{Gal}\left(K_{\pi^{\prime}, n}^{\prime} / K^{\prime}\right) \cong\left(\mathcal{O}_{K^{\prime}} / \mathfrak{p}_{K^{\prime}}^{n}\right)^{\times} \cong k^{\prime \times} \times\left(U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{(n)}\right)
$$

For any p-adic field M and a positive integer m, let M_{m} be the unramified extension of M of degree m.
3.3.1. Unramified case. We first treat the case in (2) of Lemma 2.1, where K^{\prime} is unramified over K and χ does not extend to W_{K}. We take a uniformizer π of K. This is also a uniformizer of K^{\prime}. We take positive integers m_{1} and n_{1} so that L is contained in $K_{m_{1}}^{\prime} K_{\pi, n_{1}}^{\prime}$, and put $F=K_{m_{1}}^{\prime} K_{\pi, n_{1}}^{\prime}$. Then ρ is crystalline over F, and F is a Galois extension of K.

We put $f(X)=\pi X+X^{q^{2}}$. For a positive integer n, let $f^{(n)}(X)$ be the n th iterate of $f(X)$. We take a root θ of $f^{\left(n_{1}\right)}(X)$ in $K_{\pi, n_{1}}^{\prime}$ that is not a root of $f^{\left(n_{1}-1\right)}(X)$. Then $K_{\pi, n_{1}}^{\prime}=K^{\prime}(\theta)$. We can see that $K(\theta)$ is a totally ramified extension of K and that F is an unramified extension of $K(\theta)$ of degree $2 m_{1}$. Now the restriction $\operatorname{Gal}(F / K(\theta)) \rightarrow \operatorname{Gal}\left(K_{m_{1}}^{\prime} / K\right)$ is an isomorphism, and $\operatorname{Gal}(F / K)$ is a semi-direct product of $\operatorname{Gal}(F / K(\theta))$ by $\operatorname{Gal}\left(F / K_{m_{1}}^{\prime}\right)$. We take a generator σ of $\operatorname{Gal}(F / K(\theta))$. Then the restriction $\left.\sigma\right|_{K^{\prime}}$ is the non-trivial element of $\operatorname{Gal}\left(K^{\prime} / K\right)$.

We consider a decomposition

$$
U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(n_{1}\right)}=U_{n_{1},+} \times U_{n_{1},-}
$$

of abelian groups such that $\sigma\left(\gamma_{1}\right)=\gamma_{1}$ for $\gamma_{1} \in U_{n_{1},+}$ and $\sigma\left(\gamma_{2}\right)=\gamma_{2}^{-1}$ for $\gamma_{2} \in$ $U_{n_{1},-}$. There is an exact sequence

$$
1 \rightarrow U_{K}^{(1)} / U_{K}^{\left(n_{1}\right)} \rightarrow U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(n_{1}\right)} \rightarrow U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(n_{1}\right)}
$$

where the first map is induced from a natural inclusion and the second map is induced from a map

$$
U_{K^{\prime}}^{(1)} \rightarrow U_{K^{\prime}}^{(1)} ; g \mapsto \sigma(g) g^{-1}
$$

Then, by the above exact sequence, we see that

$$
U_{n_{1},+} \cong U_{K}^{(1)} / U_{K}^{\left(n_{1}\right)}, U_{n_{1},-} \cong U_{K^{\prime}}^{(1)} /\left(U_{K}^{(1)} U_{K^{\prime}}^{\left(n_{1}\right)}\right)
$$

and $\left|U_{n_{1},+}\right|=\left|U_{n_{1},-}\right|=q^{n_{1}-1}$.
Now, the restriction $\operatorname{Gal}\left(F / K_{m_{1}}^{\prime}\right) \rightarrow \operatorname{Gal}\left(K_{\pi, n_{1}}^{\prime} / K^{\prime}\right)$ is an isomorphism. Then we can prove that, under an identification

$$
\operatorname{Gal}\left(F / K_{m_{1}}^{\prime}\right) \cong \operatorname{Gal}\left(K_{\pi, n_{1}}^{\prime} / K^{\prime}\right) \cong k^{\prime \times} \times U_{n_{1},+} \times U_{n_{1},-},
$$

we have

$$
\begin{equation*}
\sigma^{-1} \delta \sigma=\delta^{q}, \sigma^{-1} \gamma_{1} \sigma=\gamma_{1} \text { and } \sigma^{-1} \gamma_{2} \sigma=\gamma_{2}^{-1} \tag{*}
\end{equation*}
$$

for $\delta \in k^{\prime \times}, \gamma_{1} \in U_{n_{1},+}$ and $\gamma_{2} \in U_{n_{1},-}$.
Considering $\left.\chi\right|_{I_{K}}$ as a character of

$$
I(F / K) \cong k^{\prime \times} \times U_{n_{1},+} \times U_{n_{1},-}
$$

we write $\chi=\omega^{s} \cdot \chi_{1} \cdot \chi_{2}$, where ω is the Teichmüller character, s is an integer, and χ_{1} and χ_{2} are characters of $U_{n_{1},+}$ and $U_{n_{1},-}$ respectively. The condition that χ does not extend to W_{K} is equivalent to that $\chi \neq \chi^{\sigma}$ on $W_{K^{\prime}}$, and it is further equivalent to that $\chi \neq \chi^{\sigma}$ on $I_{K^{\prime}}$. This last condition is equivalent to that $s \not \equiv 0$ $\bmod q+1$ or $\chi_{2}^{2} \neq 1$.

Now we have $\left[F_{0}: \mathbb{Q}_{p}\right]=2 m_{0} m_{1}$. We take bases $e_{i, 1}, e_{i, 2}$ of D_{i} over E for $1 \leq i \leq 2 m_{0} m_{1}$ so that

$$
\begin{array}{lll}
\delta e_{i, 1}=\omega^{s}(\delta) e_{i, 1}, & \gamma_{1} e_{i, 1}=\chi_{1}\left(\gamma_{1}\right) e_{i, 1}, & \gamma_{2} e_{i, 1}=\chi_{2}\left(\gamma_{2}\right) e_{i, 1}, \\
\delta e_{i, 2}=\omega^{q s}(\delta) e_{i, 2}, & \gamma_{1} e_{i, 2}=\chi_{1}\left(\gamma_{1}\right) e_{i, 2}, & \gamma_{2} e_{i, 2}=\chi_{2}\left(\gamma_{2}\right)^{-1} e_{i, 2}
\end{array}
$$

for $\delta \in k^{\prime \times}, \gamma_{1} \in U_{n_{1},+}$ and $\gamma_{2} \in U_{n_{1},-}$.

Remark 3.5. A normalization of bases here is different from that in [GM, 3.3.2]. We prefer that the action of δ on $e_{i, 1}, e_{i, 2}$ is the same form for all i. In stead of this, the action of σ does not preserve lines generated by e_{1} and e_{2} as we see in the below.

Since σ takes D_{i} to $D_{i+m_{0}}$, we have that

$$
\sigma e_{i, 1}=a_{i+m_{0}} e_{i+m_{0}, 2}, \sigma e_{i, 2}=b_{i+m_{0}} e_{i+m_{0}, 1}
$$

for some $a_{i+m_{0}}, b_{i+m_{0}} \in E^{\times}$by $(*)$. Because $\sigma^{2 m_{1}}=1$, we see that

$$
\prod_{l=1}^{m_{1}}\left(a_{i+2 l m_{0}-m_{0}} b_{i+2 l m_{0}}\right)=1
$$

for all i. Replacing $e_{i, 1}$ and $e_{i, 2}$ by their scalar multiples, we may assume that

$$
\sigma e_{i, 1}=e_{i+m_{0}, 2}, \sigma e_{i, 2}=e_{i+m_{0}, 1}
$$

Since ϕ takes D_{i} to D_{i+1} and commutes with the action of $I(F / K)$, we have that

$$
\phi\left(e_{i, 1}\right)=\frac{1}{\alpha_{i+1}} e_{i+1,1}, \phi\left(e_{i, 2}\right)=\frac{1}{\beta_{i+1}} e_{i+1,2}
$$

for some $\alpha_{i+1}, \beta_{i+1} \in E^{\times}$for all i. Since ϕ commutes with the action of σ, we have $\alpha_{i}=\beta_{i+m_{0}}$ and $\beta_{i}=\alpha_{i+m_{0}}$ for all i. Replacing $e_{i, 1}$ and $e_{i, 2}$ by their scalar multiples, we may further assume that $\alpha_{i}=\beta_{i}=1$ for $2 \leq i \leq m_{0}$.

Let e_{1}, e_{2} be a basis of D over $F_{0} \otimes_{\mathbb{Q}_{p}} E$ determined by $\left(e_{i, 1}\right)_{i},\left(e_{i, 2}\right)_{i}$ under the isomorphism $D \xrightarrow{\sim} \prod_{i} D_{i}$. Then $\sigma e_{1}=e_{2}$ and $\sigma e_{2}=e_{1}$.

The condition $t_{\mathrm{H}}(D)=t_{\mathrm{N}}(D)$ is equivalent to that

$$
\begin{equation*}
\left[K: K_{0}\right] v_{p}\left(\alpha_{1} \beta_{1}\right)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right) \tag{U}
\end{equation*}
$$

For $j: K \hookrightarrow E$ satisfying $k_{j, 1}<k_{j, 2}$, by Lemma 2.4, we take $a_{j}, b_{j} \in E_{j}$ such that $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)$, and $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant. By $\sigma\left(a_{j} e_{1}+b_{j} e_{2}\right)=\left(a_{j} e_{1}+b_{j} e_{2}\right)$, we get $\sigma\left(a_{j}\right)=b_{j}$ and $\sigma\left(b_{j}\right)=a_{j}$. So $a_{j} \in E_{j}^{\times}$if and only if $b_{j} \in E_{j}^{\times}$.

Since $\left(a_{j} e_{1}+\sigma\left(a_{j}\right) e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant, $\sigma^{2}\left(a_{j}\right)=a_{j}$ and $g \in I(F / K)$ acts on a_{j} by $\chi(g)^{-1}$. We prove that there are $x_{j, 1}, x_{j, 2} \in E_{j}$ such that

- a_{j} satisfies the above condition if and only if $a_{j}=a_{j, 1} x_{j, 1}+a_{j, 2} x_{j, 2}$ for some $a_{j, 1}, a_{j, 2} \in E$,
- for $a_{j, 1}, a_{j, 2} \in E$, we have $a_{j, 1} x_{j, 1}+a_{j, 2} x_{j, 2} \in E_{j}^{\times}$if and only if $a_{j, 1} \neq 0$ and $a_{j, 2} \neq 0$.
By Lemma 2.3, we may replace E_{j} by $F \otimes_{K} E$. Then $\sigma^{2}\left(a_{j}\right)=a_{j}$ if and only if $a_{j} \in K_{\pi, n_{1}}^{\prime} \otimes_{K} E$. By Lemma 2.5, we get the claim. We put $x_{j}\left(a_{j, 1}, a_{j, 2}\right)=$ $a_{j, 1} x_{j, 1}+a_{j, 2} x_{j, 2}$ and $x_{j}^{\sigma}\left(a_{j, 1}, a_{j, 2}\right)=\sigma\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right)\right)$. Then we have

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right) e_{1}+x_{j}^{\sigma}\left(a_{j, 1}, a_{j, 2}\right) e_{2}\right)
$$

for $\left(a_{j, 1}, a_{j, 2}\right) \in \mathbb{P}^{1}(E)$.
The non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodules of D are $D_{1}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1}$, $D_{2}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ and $D_{\mathfrak{L}}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)\left(e_{1}-\mathfrak{L} e_{2}\right)$ for $\mathfrak{L} \in\left(F_{0} \otimes_{\mathbb{Q}_{1}} E\right)^{\times}$satisfying the following:

If \mathfrak{L} corresponds to $\left(\mathfrak{L}_{i}\right)_{i}$ under the isomorphism

$$
F_{0} \otimes_{\mathbb{Q}_{p}} E \xrightarrow{\sim} \prod_{\sigma_{i}: F_{0} \hookrightarrow E} E
$$

then $\mathfrak{L}_{i+1}=\frac{\alpha_{i+1}}{\beta_{i+1}} \mathfrak{L}_{i}$ for all i.
The condition $t_{\mathrm{H}}\left(D_{1}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{1}^{\prime}\right)$ is equivalent to that

$$
\left[K: K_{0}\right] v_{p}\left(\alpha_{1}\right) \leq \sum_{a_{j, 1} a_{j, 2}=0} \frac{k_{j, 1}+k_{j, 2}}{2}+\sum_{a_{j, 1} a_{j, 2} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2},
$$

the condition $t_{\mathrm{H}}\left(D_{2}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{2}^{\prime}\right)$ is equivalent to that

$$
\left[K: K_{0}\right] v_{p}\left(\beta_{1}\right) \leq \sum_{a_{j, 1} a_{j, 2}=0} \frac{k_{j, 1}+k_{j, 2}}{2}+\sum_{a_{j, 1} a_{j, 2} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2},
$$

and the condition $t_{\mathrm{H}}\left(D_{\mathfrak{L}}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{\mathfrak{L}}^{\prime}\right)$ is equivalent to that

$$
\begin{aligned}
\left(U_{\mathfrak{L}}\right) \quad\left[K: K_{0}\right] & \frac{v_{p}\left(\alpha_{1} \beta_{1}\right)}{2} \leq \sum_{a_{j, 1} a_{j, 2}=0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} \\
& +\sum_{a_{j, 1} a_{j, 2} \neq 0}\left\{t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right) k_{j, 1}+\left(1-t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right)\right) k_{j, 2}\right\},
\end{aligned}
$$

where

$$
t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right)=\frac{\left.\left\lvert\,\left\{j_{F}: F \hookrightarrow E \mid j_{F} \text {-component of } \frac{x_{j}^{\sigma}\left(a_{j, 1}, a_{j, 2}\right)}{x_{j}\left(a_{j, 1}, a_{j, 2}\right)} \in E_{j} \text { is }-\mathfrak{L}_{j_{F}}\right\}\right. \right\rvert\,}{[F: K]}
$$

Here and in the sequel, $\mathfrak{L}_{j_{F}}$ is the j_{F}-component of $\mathfrak{L} \in F_{0} \otimes_{\mathbb{Q}_{p}} E \subset F \otimes_{\mathbb{Q}_{p}} E$. If $t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right) \leq 1 / 2$, the condition $\left(U_{\mathfrak{L}}\right)$ is automatically satisfied by the condition (U).

To prove that $t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right) \leq 1 / 2$, we assume that $t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right)>1 / 2$. We consider a decomposition

$$
E_{j}=\prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{K}=j} E=\prod_{j_{F_{0}}: F_{0} \hookrightarrow E,\left.j_{F_{0}}\right|_{K}=j}\left(\prod_{j_{F}: F \hookrightarrow E,\left.j_{F}\right|_{F_{0}}=j_{F_{0}}} E\right)
$$

Then there is $j_{F_{0}}: F_{0} \hookrightarrow E$ such that $\left.j_{F_{0}}\right|_{K}=j$ and

$$
\underline{\left.\left\lvert\,\left\{j_{F}: F \hookrightarrow E\left|j_{F}\right|_{F_{0}}=j_{F_{0}} \text { and } j_{F} \text {-component of } \frac{x_{j}^{\sigma}\left(a_{j, 1}, a_{j, 2}\right)}{x_{j}\left(a_{j, 1}, a_{j, 2}\right)} \in E_{j} \text { is }-\mathfrak{L}_{j_{F}}\right\}\right. \right\rvert\,}
$$

$$
\left[F: F_{0}\right]
$$

is greater than $1 / 2$. Here $\mathfrak{L}_{j_{F}}$ is independent of j_{F} such that $\left.j_{F}\right|_{F_{0}}=j_{F_{0}}$, because $\mathfrak{L} \in F_{0} \otimes_{\mathbb{Q}_{p}} E$. Then we have

$$
\frac{\left|\operatorname{Ker}\left(\chi\left(\chi^{\sigma}\right)^{-1}: I(F / K) \rightarrow \overline{\mathbb{Q}}_{p}^{\times}\right)\right|}{\left[F: F_{0}\right]}>\frac{1}{2}
$$

because $I\left(F / K^{\prime}\right)$ act on $x_{j}^{\sigma}\left(a_{j, 1}, a_{j, 2}\right) /\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right)\right)$ by $\chi\left(\chi^{\sigma}\right)^{-1}$. This implies that $\left.\chi\right|_{I_{K^{\prime}}}=\left.\chi^{\sigma}\right|_{I_{K^{\prime}}}$, and contradicts the condition that χ does not extend to W_{K}. Thus we have proved that $t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right) \leq 1 / 2$.

Proposition 3.6. We assume $\left.\tau \simeq \operatorname{Ind}_{W_{K^{\prime}}}^{W_{K}}(\chi)\right|_{I_{K}}$ for the unramified quadratic extension K^{\prime} of K and a character χ of $W_{K^{\prime}}$ that is finite on $I_{K^{\prime}}$ and does not extend to W_{K}. We take a uniformizer π of K and a totally ramified abelian extension L of K^{\prime} such that χ is trivial on I_{L}, and take positive integers m_{1} and n_{1} so that L is contained in $K_{m_{1}}^{\prime} K_{\pi, n_{1}}^{\prime}$. We put $F=K_{m_{1}}^{\prime} K_{\pi, n_{1}}^{\prime}$. Then $N=0$ and $D=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1} \oplus\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ with

$$
\begin{array}{lll}
\phi\left(e_{i, 1}\right)=\frac{1}{\alpha_{1}} e_{i+1,1}, & \phi\left(e_{i, 2}\right)=\frac{1}{\beta_{1}} e_{i+1,2}, & \text { if } i \equiv 0 \quad\left(\bmod 2 m_{0}\right), \\
\phi\left(e_{i, 1}\right)=\frac{1}{\beta_{1}} e_{i+1,1}, & \phi\left(e_{i, 2}\right)=\frac{1}{\alpha_{1}} e_{i+1,2}, & \text { if } i \equiv m_{0}\left(\bmod 2 m_{0}\right), \\
\phi\left(e_{i, 1}\right)=e_{i+1,1}, & \phi\left(e_{i, 2}\right)=e_{i+1,2}, & \text { if } i \not \equiv 0 \quad\left(\bmod m_{0}\right)
\end{array}
$$

for $\alpha_{1}, \beta_{1} \in E^{\times}$,

$$
\sigma e_{1}=e_{2}, \sigma e_{2}=e_{1}, g e_{1}=(1 \otimes \chi(g)) e_{1}, g e_{2}=\left(1 \otimes \chi^{\sigma}(g)\right) e_{2}
$$

for $g \in I(F / K)$ and, for j such that $k_{j, 1}<k_{j, 2}$,

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right) e_{1}+x_{j}^{\sigma}\left(a_{j, 1}, a_{j, 2}\right) e_{2}\right)
$$

for $\left(a_{j, 1}, a_{j, 2}\right) \in \mathbb{P}^{1}(E)$ where

$$
\left[K: K_{0}\right] v_{p}\left(\alpha_{1} \beta_{1}\right)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right)
$$

and

$$
\sum_{j} k_{j, 1}+\sum_{a_{j, 1} a_{j, 2}=0} \frac{k_{j, 2}-k_{j, 1}}{2} \leq\left[K: K_{0}\right] v_{p}\left(\alpha_{1}\right) \leq \sum_{j} k_{j, 2}-\sum_{a_{j, 1} a_{j, 2}=0} \frac{k_{j, 2}-k_{j, 1}}{2}
$$

The definition of σ is in the above discussion.
3.3.2. Ramified case. Next, we treat the case in (3) of Lemma 2.1, where K^{\prime} is ramified over K and $\left.\chi\right|_{I_{K^{\prime}}}$ does not extend to I_{K}.

Let ι_{0} be the non-trivial element of $\operatorname{Gal}\left(K^{\prime} / K\right)$. We take a uniformizer π^{\prime} of K^{\prime} such that $\iota_{0}\left(\pi^{\prime}\right)=-\pi^{\prime}$. Then we have $\left(K_{\pi^{\prime}, n}^{\prime}\right)^{\iota}=K_{-\pi^{\prime}, n}^{\prime}$ for a positive integer n and any lift $\iota \in G_{K}$ of ι_{0}. So $K_{\pi^{\prime}, n}^{\prime} K_{-\pi^{\prime}, n}^{\prime}$ is a Galois extension of K. By the class field theory, the abelian extensions $K_{\pi^{\prime}, n}^{\prime}$ and $K_{-\pi^{\prime}, n}^{\prime}$ of K^{\prime} correspond to $\left\langle\pi^{\prime}\right\rangle \times\left(1+\mathfrak{p}_{K^{\prime}}^{n}\right)$ and $\left\langle-\pi^{\prime}\right\rangle \times\left(1+\mathfrak{p}_{K^{\prime}}^{n}\right)$ respectively. Then the abelian extension $K_{\pi^{\prime}, n}^{\prime} K_{-\pi^{\prime}, n}^{\prime}$ of K^{\prime} corresponds to $\left\langle{\pi^{\prime}}^{2}\right\rangle \times\left(1+\mathfrak{p}_{K^{\prime}}^{n}\right)$. So we see that $K_{\pi^{\prime}, n}^{\prime} K_{-\pi^{\prime}, n}^{\prime}=K_{2}^{\prime} K_{\pi^{\prime}, n}^{\prime}$.

We take positive integers m_{1} and n_{1} so that L is contained in $K_{2 m_{1}}^{\prime} K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}$, and put $F=K_{2 m_{1}}^{\prime} K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}$. Then F is a Galois extension of K, and ρ is crystalline over F because $\left.\tau\right|_{I_{F}}$ is trivial.

We consider an exact sequence

$$
1 \rightarrow \operatorname{Gal}\left(F / K^{\prime}\right) \rightarrow \operatorname{Gal}(F / K) \rightarrow \operatorname{Gal}\left(K^{\prime} / K\right) \rightarrow 1
$$

Since the restriction $\operatorname{Gal}\left(F / K_{2 m_{1}}^{\prime}\right) \rightarrow \operatorname{Gal}\left(K_{\pi^{\prime}, 2 n_{1}+1}^{\prime} / K^{\prime}\right)$ is an isomorphism,

$$
\begin{aligned}
\operatorname{Gal}\left(F / K^{\prime}\right) & =\operatorname{Gal}\left(F / K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}\right) \times \operatorname{Gal}\left(F / K_{2 m_{1}}^{\prime}\right) \\
& \cong \operatorname{Gal}\left(F / K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}\right) \times k^{\prime \times} \times\left(U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(2 n_{1}+1\right)}\right)
\end{aligned}
$$

Let σ be a generator of $\operatorname{Gal}\left(F / K_{\pi^{\prime}, 2 n_{1}+1}\right)$, and δ_{0} be a generator of $k^{\prime \times}$.
We prove that the exact sequence (\diamond) does not split. We assume there is a lift $\iota \in \operatorname{Gal}(F / K)$ of ι_{0} such that $\iota^{2}=1$. By multiplying ι by an element of
$\operatorname{Gal}\left(F / K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}\right) \subset \operatorname{Gal}\left(F / K^{\prime}\right)$, we may assume that $\iota \in I(F / K)$. Let $P(F / K)$ be the wild ramification subgroup of $I(F / K)$, and $I^{\mathrm{t}}(F / K)$ be the tame quotient group of $I(F / K)$. Let $\bar{\iota}$ be the image of ι in $I^{\mathrm{t}}(F / K)$. If $\bar{\iota} \neq 1$, we multiply ι by the element $\delta_{0}^{(q-1) / 2}$ of $k^{\prime \times} \subset \operatorname{Gal}\left(F / K_{2 m_{1}}^{\prime}\right)$. Then we have $\iota \in P(F / K)$, but this contradicts that $p \neq 2$. Thus we have proved the claim.

For any lift $\iota \in \operatorname{Gal}(F / K)$, we have $\iota^{2} \in \operatorname{Gal}\left(F / K^{\prime}\right)$. Since the exact sequence (\diamond) does not split and $p \neq 2$, multiplying ι by an element of $\operatorname{Gal}\left(F / K^{\prime}\right)$, we may assume that $\iota^{2}=\delta_{0}$ and $\iota \in I(F / K)$. We fix this lift ι in the sequel.

We consider a decomposition

$$
U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(2 n_{1}+1\right)}=U_{2 n_{1}+1,+} \times U_{2 n_{1}+1,-}
$$

of abelian groups such that $\iota_{0}\left(\gamma_{1}\right)=\gamma_{1}$ for $\gamma_{1} \in U_{2 n_{1}+1,+}$ and $\iota_{0}\left(\gamma_{2}\right)=\gamma_{2}^{-1}$ for $\gamma_{2} \in U_{2 n_{1}+1,-}$. There is an exact sequence

$$
1 \rightarrow U_{K}^{(1)} / U_{K}^{\left(n_{1}+1\right)} \rightarrow U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(2 n_{1}+1\right)} \rightarrow U_{K^{\prime}}^{(1)} / U_{K^{\prime}}^{\left(2 n_{1}+1\right)},
$$

where the first map is induced from a natural inclusion and the second map is induced from a map

$$
U_{K^{\prime}}^{(1)} \rightarrow U_{K^{\prime}}^{(1)} ; g \mapsto \iota_{0}(g) g^{-1}
$$

Then, by the above exact sequence, we see that

$$
U_{2 n_{1}+1,+} \cong U_{K}^{(1)} / U_{K}^{\left(n_{1}+1\right)}, U_{2 n_{1}+1,-} \cong U_{K^{\prime}}^{(1)} /\left(U_{K}^{(1)} U_{K^{\prime}}^{\left(2 n_{1}+1\right)}\right)
$$

and $\left|U_{2 n_{1}+1,+}\right|=\left|U_{2 n_{1}+1,-}\right|=q^{n_{1}}$.
We can prove that, under an identification

$$
\operatorname{Gal}\left(F / K_{2 m_{1}}^{\prime}\right) \cong \operatorname{Gal}\left(K_{\pi^{\prime}, 2 n_{1}+1}^{\prime} / K^{\prime}\right) \cong k^{\prime \times} \times U_{2 n_{1}+1,+} \times U_{2 n_{1}+1,-},
$$

we have

$$
\iota^{-1} \delta \iota=\delta, \iota^{-1} \gamma_{1} \iota=\gamma_{1} \text { and } \iota^{-1} \gamma_{2} \iota=\gamma_{2}^{-1}
$$

for $\delta \in k^{\prime \times}, \gamma_{1} \in U_{2 n_{1}+1,+}$ and $\gamma_{2} \in U_{2 n_{1}+1,-}$.
Since $K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}$ is not a normal extension of K, we have $\iota^{-1} \sigma \iota \neq \sigma$. We put $K^{\prime \prime}=K_{\pi^{\prime}, 2 n_{1}+1}^{\prime} K_{-\pi^{\prime}, 2 n_{1}+1}^{\prime}$. Then σ^{2} is a generator of $\operatorname{Gal}\left(F / K^{\prime \prime}\right)$, and ι determines an automorphism of $K^{\prime \prime}$. So we have $\iota^{-1} \sigma^{2} \iota=\sigma^{2}$. Since $\sigma^{-1} \iota^{-1} \sigma \iota$ is an element of $\operatorname{Gal}\left(F / K^{\prime}\right)$ of order 2 and fixes $K_{2 m_{1}}$, it is $\delta_{0}^{(q-1) / 2}$. Hence we have

$$
\iota^{-1} \sigma \iota=\sigma \delta_{0}^{(q-1) / 2}
$$

Considering $\left.\chi\right|_{I_{K^{\prime}}}$ as a character of

$$
I\left(F / K^{\prime}\right) \cong k^{\prime \times} \times U_{2 n_{1}+1,+} \times U_{2 n_{1}+1,-}
$$

we write $\chi=\omega^{s} \cdot \chi_{1} \cdot \chi_{2}$, where ω is the Teichmüller character, s is an integer, and χ_{1} and χ_{2} are characters of $U_{2 n_{1}+1,+}$ and $U_{2 n_{1}+1,-}$ respectively. The condition χ does not extend to I_{K} is equivalent to that $\chi \neq \chi^{\iota}$ on $I_{K^{\prime}}$, and it is further equivalent to that $\chi_{2}^{2} \neq 1$.

Now we have $\left[F_{0}: \mathbb{Q}_{p}\right]=2 m_{0} m_{1}$. We take bases $e_{i, 1}, e_{i, 2}$ of D_{i} over E for $1 \leq i \leq 2 m_{0} m_{1}$ so that

$$
\begin{array}{llll}
\iota e_{i, 1}=e_{i, 2}, & \delta e_{i, 1}=\omega^{s}(\delta) e_{i, 1}, & \gamma_{1} e_{i, 1}=\chi_{1}\left(\gamma_{1}\right) e_{i, 1}, & \gamma_{2} e_{i, 1}=\chi_{2}\left(\gamma_{2}\right) e_{i, 1} \\
\iota e_{i, 2}=\omega^{s}\left(\delta_{0}\right) e_{i, 1}, & \delta e_{i, 2}=\omega^{s}(\delta) e_{i, 2}, & \gamma_{1} e_{i, 2}=\chi_{1}\left(\gamma_{1}\right) e_{i, 2}, & \gamma_{2} e_{i, 2}=\chi_{2}\left(\gamma_{2}\right)^{-1} e_{i, 2}
\end{array}
$$

for $\delta \in k^{\prime \times}, \gamma_{1} \in U_{n_{1},+}$ and $\gamma_{2} \in U_{n_{1},-}$.

Since σ takes D_{i} to $D_{i+m_{0}}$, as in the unramified case, we may assume that $\sigma e_{i, 1}=e_{i+m_{0}, 1}$. Then we have that $\sigma e_{i, 2}=(-1)^{s} e_{i+m_{0}, 2}$ by (\star).

Since ϕ takes D_{i} to D_{i+1} and commutes with the action of $I(F / K)$, we have that

$$
\phi\left(e_{i, 1}\right)=\frac{1}{\alpha_{i+1}} e_{i+1,1}, \phi\left(e_{i, 2}\right)=\frac{1}{\alpha_{i+1}} e_{i+1,2}
$$

for some $\alpha_{i+1} \in E^{\times}$for all i. Further, since ϕ commutes with the action of σ, we have $\alpha_{i}=\alpha_{i+m_{0}}$ for all i. Replacing $e_{i, 1}$ and $e_{i, 2}$ by their scalar multiples, we may further assume that $\alpha_{i}=1$ for $2 \leq i \leq m_{0}$.

Let e_{1}, e_{2} be a basis of D over $F_{0} \otimes \mathbb{Q}_{p} E$ determined by $\left(e_{i, 1}\right)_{i},\left(e_{i, 2}\right)_{i}$ under the isomorphism $D \xrightarrow{\sim} \prod_{i} D_{i}$. Then $\sigma e_{1}=e_{1}$ and $\sigma e_{2}=(-1)^{s} e_{2}$.

The condition $t_{\mathrm{H}}(D)=t_{\mathrm{N}}(D)$ is equivalent to that

$$
\begin{equation*}
2\left[K: K_{0}\right] v_{p}\left(\alpha_{1}\right)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right) . \tag{R}
\end{equation*}
$$

For $j: K \hookrightarrow E$ satisfying $k_{j, 1}<k_{j, 2}$, by Lemma 2.4 , we take $a_{j}, b_{j} \in E_{j}$ such that $\mathrm{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(a_{j} e_{1}+b_{j} e_{2}\right)$, and $\left(a_{j} e_{1}+b_{j} e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant. By $\iota\left(a_{j} e_{1}+b_{j} e_{2}\right)=\left(a_{j} e_{1}+b_{j} e_{2}\right)$, we get $\iota\left(a_{j}\right)=b_{j}$ and $\iota\left(b_{j}\right) \omega^{s}\left(\delta_{0}\right)=a_{j}$. So $a_{j} \in E_{j}^{\times}$ if and only if $b_{j} \in E_{j}^{\times}$.

Since $\left(a_{j} e_{1}+\iota\left(a_{j}\right) e_{2}\right)$ is $\operatorname{Gal}(F / K)$-invariant, $\sigma\left(a_{j}\right)=a_{j}$ and $g \in I\left(F / K^{\prime}\right)$ acts on a_{j} by $\chi(g)^{-1}$. We prove that there are $x_{j, 1}, x_{j, 2} \in E_{j}$ such that

- a_{j} satisfies the above condition if and only if $a_{j}=a_{j, 1} x_{j, 1}+a_{j, 2} x_{j, 2}$ for some $a_{j, 1}, a_{j, 2} \in E$,
- for $a_{j, 1}, a_{j, 2} \in E$, we have $a_{j, 1} x_{j, 1}+a_{j, 2} x_{j, 2} \in E_{j}^{\times}$if and only if $a_{j, 1} \neq 0$ and $a_{j, 2} \neq 0$.
By Lemma 2.3, we may replace E_{j} by $F \otimes_{K} E$. Then $\sigma\left(a_{j}\right)=a_{j}$ if and only if $a_{j} \in K_{\pi^{\prime}, 2 n_{1}+1}^{\prime} \otimes_{K} E$. By Lemma 2.5, we get the claim. We put $x_{j}\left(a_{j, 1}, a_{j, 2}\right)=$ $a_{j, 1} x_{j, 1}+a_{j, 2} x_{j, 2}$ and $x_{j}^{\iota}\left(a_{j, 1}, a_{j, 2}\right)=\iota\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right)\right)$. Then we have

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right) e_{1}+x_{j}^{\iota}\left(a_{j, 1}, a_{j, 2}\right) e_{2}\right)
$$

for $\left(a_{j, 1}, a_{j, 2}\right) \in \mathbb{P}^{1}(E)$.
The non-trivial (ϕ, N)-stable $\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)$-submodules of D are $D_{1}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1}$, $D_{2}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ and $D_{\mathfrak{L}}^{\prime}=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right)\left(e_{1}-\mathfrak{L} e_{2}\right)$ for $\mathfrak{L} \in E^{\times}$. The condition $t_{\mathrm{H}}\left(D_{1}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{1}^{\prime}\right)$ is equivalent to that

$$
\left[K: K_{0}\right] v_{p}\left(\alpha_{1}\right) \leq \sum_{a_{j, 1} a_{j, 2}=0} \frac{k_{j, 1}+k_{j, 2}}{2}+\sum_{a_{j, 1} a_{j, 2} \neq 0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2},
$$

and this condition is automatically satisfied by the condition (R). The condition $t_{\mathrm{H}}\left(D_{2}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{2}^{\prime}\right)$ is also equivalent to the same condition. For $\mathfrak{L} \in E^{\times}$, the condition $t_{\mathrm{H}}\left(D_{\mathfrak{L}}^{\prime}\right) \leq t_{\mathrm{N}}\left(D_{\mathfrak{L}}^{\prime}\right)$ is equivalent to that

$$
\begin{aligned}
\left(R_{\mathfrak{L}}\right) \quad\left[K: K_{0}\right] & v_{p}\left(\alpha_{1}\right) \leq \sum_{a_{j, 1} a_{j, 2}=0} k_{j, 2}+\sum_{k_{j, 1}=k_{j, 2}} k_{j, 2} \\
& +\sum_{a_{j, 1} a_{j, 2} \neq 0}\left\{t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right) k_{j, 1}+\left(1-t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right)\right) k_{j, 2}\right\},
\end{aligned}
$$

where

$$
t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right)=\frac{\left.\left\lvert\,\left\{j_{F}: F \hookrightarrow E \mid j_{F} \text {-component of } \frac{x_{j}^{\iota}\left(a_{j, 1}, a_{j, 2}\right)}{x_{j}\left(a_{j, 1}, a_{j, 2}\right)} \in E_{j} \text { is }-\mathfrak{L}\right\}\right. \right\rvert\,}{[F: K]} .
$$

As in the unramified case, we can prove that $t_{j}\left(\mathfrak{L},\left(a_{j, 1}, a_{j, 2}\right)\right) \leq 1 / 2$, using the condition that $\chi \neq \chi^{\iota}$ on $I_{K^{\prime}}$. So the condition $\left(R_{\mathfrak{L}}\right)$ is automatically satisfied by the condition (R).
Proposition 3.7. We assume $\left.\tau \simeq \operatorname{Ind}_{W_{K^{\prime}}}^{W_{K}}(\chi)\right|_{I_{K}}$ for a ramified quadratic extension K^{\prime} of K and a character χ of $W_{K^{\prime}}$ such that $\left.\chi\right|_{I_{K^{\prime}}}$ is finite and does not extend to I_{K}. We take a uniformizer π^{\prime} of K^{\prime} and a totally ramified abelian extension L of K^{\prime} such that χ is trivial on I_{L}, and take positive integers m_{1} and n_{1} so that L is contained in $K_{2 m_{1}}^{\prime} K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}$. We put $F=K_{2 m_{1}}^{\prime} K_{\pi^{\prime}, 2 n_{1}+1}^{\prime}$. Then $N=0$ and $D=\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{1} \oplus\left(F_{0} \otimes_{\mathbb{Q}_{p}} E\right) e_{2}$ with

$$
\begin{array}{lll}
\phi\left(e_{i, 1}\right)=\frac{1}{\alpha_{1}} e_{i+1,1}, & \phi\left(e_{i, 2}\right)=\frac{1}{\alpha_{1}} e_{i+1,2}, & \text { if } i \equiv 0\left(\bmod m_{0}\right), \\
\phi\left(e_{i, 1}\right)=e_{i+1,1}, & \phi\left(e_{i, 2}\right)=e_{i+1,2}, & \text { if } i \not \equiv 0\left(\bmod m_{0}\right)
\end{array}
$$

for $\alpha_{1} \in E^{\times}$,

$$
\begin{array}{lll}
\sigma e_{1}=e_{1}, & \iota e_{1}=e_{2}, & g e_{1}=(1 \otimes \chi(g)) e_{1} \\
\sigma e_{2}=(-1)^{s} e_{2}, & \iota e_{2}=\left(1 \otimes \omega^{s}\left(\delta_{0}\right)\right) e_{1}, & g e_{2}=\left(1 \otimes \chi^{\sigma}(g)\right) e_{2}
\end{array}
$$

for $s \in \mathbb{Z}$ and $g \in I\left(F / K^{\prime}\right)$ and, for j such that $k_{j, 1}<k_{j, 2}$,

$$
\operatorname{Fil}_{j}^{-k_{j, 1}} D_{F}=E_{j}\left(x_{j}\left(a_{j, 1}, a_{j, 2}\right) e_{1}+x_{j}^{\iota}\left(a_{j, 1}, a_{j, 2}\right) e_{2}\right)
$$

for $\left(a_{j, 1}, a_{j, 2}\right) \in \mathbb{P}^{1}(E)$ where

$$
2\left[K: K_{0}\right] v_{p}\left(\alpha_{1}\right)=\sum_{j}\left(k_{j, 1}+k_{j, 2}\right) .
$$

Here $\omega: k^{\prime} \rightarrow \mathcal{O}_{K^{\prime}}^{\times}$is the Teichmüller character, and the definitions of $\sigma, \iota, \delta_{0}$ are in the above discussion.

References

[BM] C. Breuil, A. Mézard, Multiplicités modulaires et représentations de $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ et de $\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / \mathbf{Q}_{p}\right)$ en $\ell=p$, Duke Math. J. 115 (2002), no. 2, 205-310.
[CF] P. Colmez, J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), no. 1, 1-43.
[Do] G. Dousmanis, Rank two filtered (φ, N)-modules with Galois descent data and coefficients, Trans. Amer. Math. Soc. 362 (2010), no. 7, 3883-3910.
[FM] J.-M. Fontaine, B. Mazur, Geometric Galois representations, Elliptic curves, modular forms, \& Fermat's last theorem (Hong Kong, 1993), 41-78, Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995.
[Fon] J.-M. Fontaine, Le corps des périodes p-adiques, Astérisque 223 (1994), 59-111.
[GM] E. Ghate, A. Mézard, Filtered modules with coefficients, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2243-2261.
[Sav] D. Savitt, On a Conjecture of Conrad, Diamond, and Taylor, Duke Math. J. 128 (2005), no. 1, 141-197.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

E-mail address: naoki@kurims.kyoto-u.ac.jp

