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Abstract

This paper proposes a new topology optimization method, which can adjust the
geometrical complexity of optimal configurations, using the level set method and
incorporating a fictitious interface energy derived from the phase field method. First,
a topology optimization problem is formulated based on the level set method, and
the method of regularizing the optimization problem by introducing fictitious in-
terface energy is explained. Next, the reaction-diffusion equation that updates the
level set function is derived and an optimization algorithm is then constructed,
which uses the Finite Element Method to solve the equilibrium equations and the
reaction-diffusion equation when updating the level set function. Finally, several op-
timum design examples are shown to confirm the validity and utility of the proposed
topology optimization method.
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1 Introduction

This paper proposes a new level set-based topology optimization method,
which can control the geometrical complexity of obtained optimal configura-
tions, using a fictitious interface energy based on the concept of the phase
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field model [1–4]. The novel aspect of the proposed method is the incorpo-
ration of level set-based boundary expressions and fictitious interface energy
in the topology optimization problem, and the replacement of the original
topology optimization problem with a procedure to solve a reaction-diffusion
equation.

Structural optimization has been successfully used in many industries such
as automotive industries. Structural optimization can be classified into siz-
ing[5,6], shape[7–11] and topology optimization[12–14], the last offering the
most potential for exploring ideal and optimized structures. Topology opti-
mization has been extensively applied to a variety of structural optimization
problems such as the stiffness maximization problem [12,15], vibration prob-
lems [16–18], optimum design problems for compliant mechanisms [19,20], and
thermal problems [21–23], after Bensdøe and Kikuchi [12] first proposed the
so-called Homogenization Design Method. The basic concepts of topology opti-
mization are (1) the extension of a design domain to a fixed design domain, and
(2) replacement of the optimization problem with material distribution prob-
lem, using the characteristic function [24]. A homogenization method [12,25–
28] is utilized to deal with the extreme discontinuity of material distribution
and to provide the material properties viewed in a global sense as homogenized
properties. The Homogenization Design Method (HDM) has been applied to
a variety of design problems. The density approach [29], also called the SIMP
(Solid Isotropic Material with Penalization) method [30,31], is another cur-
rently used topology optimization method, the basic idea of which is the use
of a fictitious isotropic material whose elasticity tensor is assumed to be a
function of penalized material density, represented by an exponent parame-
ter. Bendsøe and Sigmund [32] asserted the validity of the SIMP method in
view of the mechanics of composite materials. The phase field model based on
the theory of phase transitions [1–4] is also used as another approach toward
regularizing topology optimization problems and penalizing material density
[33–38]. In addition to the above conventional approaches, a different type of
method, called the evolutionary structural optimization (ESO) method [18,39],
has been proposed. In this method, the design domain is discretized using a
finite element mesh and unnecessary elements are removed based on heuristic
criteria so that the optimal configuration is ultimately obtained as an optimal
subset of finite elements.

Unfortunately, the conventional topology optimization methods tend to suffer
from numerical instability problems [40,41], such as mesh dependency, checker-
board patterns and grayscales. Several methods have been proposed to miti-
gate these instability problems, such as the use of high-order finite elements
[40] and filtering schemes [41]. Although various filtering schemes are cur-
rently used, they crucially depend on artificial parameters that lack rational
guidelines for determining appropriate a priori parameter values. Addition-
ally, optimal configurations can include highly complex geometrical structures
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that are inappropriate from an engineering and manufacturing standpoint.
Although a number of geometrical constraint methods for topology optimiza-
tion methods have been proposed, such as the perimeter control method [42]
and member size control method [43,44], the parameters and the complexity
of obtained optimal configurations are not uniquely linked. Furthermore, geo-
metrical constraint methods often make the optimization procedure unstable.
Thus, a geometric constraint method in which the complexity of the optimal
configuration can be set uniquely, and which also maintains stability in the
optimization procedure, has yet to be proposed.

A different approach is used in level set-based structural optimization methods
that have been proposed as a new type of structural optimization method.
Such methods implicitly represent target structural configurations using the
iso-surface of the level set function, which is a scalar function, and the outlines
of target structures are changed by updating the level set function during
the optimization process. The level set method was originally proposed by
Osher and Sethian [45] as a versatile method to implicitly represent evolutional
interfaces in an Eulerian coordinate system. The evolution of the boundaries
with respect to time is tracked by solving the so-called Hamilton-Jacobi partial
differential equation, with an appropriate normal velocity that is the moving
boundary velocity normal to the interface. Level set methods are potentially
useful in a variety of applications, including fluid mechanics [46–48], phase
transitions [49], image processing [50–52] and solid modeling in CAD [53].

In level set-based structural optimization methods, complex shape and topo-
logical changes can be handled and the obtained optimal structures are free
from grayscales, since the structural boundaries are represented as the iso-
surface of the level set function. Although these relatively new structural
optimization methods overcome the problems of checkerboard patterns and
grayscales, mesh dependencies have yet to be eliminated.

Sethian and Wiegmann [54] first proposed a level set-based structural opti-
mization method where the level set function is updated using an ad hoc
method based on the Von Mises stress. Osher and Santosa [55] proposed a
structural optimization method where the shape sensitivity is used as the nor-
mal velocity, and the structural optimization is performed by solving the level
set equation using the upwind scheme. This proposed method was applied
to eigen-frequency problems for an inhomogeneous drum using a two-phase
optimization of the membrane where the mass density assumes two different
values, while the elasticity tensor is constant over the entire domain.

Belytschko et al. [56] proposed a topology optimization using an implicit func-
tion to represent structural boundaries and their method allows topological
changes by introducing the concept of an active zone where the material prop-
erties such as Young’s modulus are smoothly distributed. Wang et al. [57]
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proposed a shape optimization method based on the level set method where
the level set function is updated using the Hamilton-Jacobi equation, also
called the level set equation, based on the shape sensitivities and the pro-
posed method was applied to the minimum mean compliance problem. Wang
and Wang [58] extended this method to a multi-material optimal design prob-
lem using a “color” level set method where m level set functions are used to
represent 2m different material phases. Luo et al. [59] and Chen et al. [60] pro-
posed a level set-based shape optimization method that controls the geometric
width of structural components using a quadratic energy functional based on
image active contour techniques. Allaire et al. [61] independently proposed
a level set-based shape optimization method where the level set function is
updated using smoothed shape sensitivities that are mapped to the design
domain using a smoothing technique. A simple “ersatz material” approach
was employed to compute the displacement field of the structure, and optimal
configurations were obtained for the minimum compliance problem for both
structures composed of linear elastic and non-linear hyperelastic material, and
compliant mechanism structural design problems. Allaire and Jouve [62] also
extended their method to lowest eigen-frequency maximization problems and
minimum compliance problems having multiple loads. Recently, numerous ex-
tensions of the level set-based method have been presented, such as the use
of different expressions [63], the use of a specific numerical method such as
meshless methods [64], the use of mathematical approaches in the optimization
scheme [65], and other applications [66–70].

The above level set-based structural optimization methods can be said to be
a type of shape optimization method, since the shape boundaries of target
structures are evolved from an initial configuration by updating the level set
equation using shape sensitivities. Therefore, topological changes that increase
the number of holes in the material domain are not permitted, although topo-
logical changes that decrease the number of holes are allowed. As a result,
the obtained optimal configurations strongly depend on the given initial con-
figuration. Rong and Liang [71] and Yamada et al. [72] pointed out that in
level set-based structural optimization using the Hamilton-Jacobi equation,
the movement of the structural boundaries stops at the boundaries of the
fixed design domain because the level set function has a non-zero value there,
and as a result, inappropriate optimal configurations are obtained. To pro-
vide for the possibility of topological changes, Allaire et al. [73] introduced
the bubble method [74] to a level set-based shape optimization method using
topological derivatives [75–77]. In Allaire’s method [73], structural boundaries
are updated based on smoothed shape sensitivities using the level set equation
and holes are introduced during the optimization process. Appropriate opti-
mal configurations were obtained using several different initial configurations,
however parameter setting with respect to the introduction of holes during
the optimization process was difficult and potentially affected the obtained
optimal configurations.
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Wang et al. [78] proposed an extended level set method for a topology op-
timization method based on one of their previously proposed methods [57].
In their method [78], an extended velocity which has a non zero value in the
material domain is introduced and the level set function is not reinitialized
to maintain the property of a signed distance function. Topological changes
including the introduction of holes in a material domain are therefore allowed,
however the extended velocity cannot be logically determined, since the level
set equation is derived based the boundary advection concept. As a result,
it is difficult to define appropriate extended velocities and the definition of
the extension velocities in large measure determines the shape of the obtained
optimal structures.

In level set-based shape optimization methods using the Hamilton-Jacobi
equation, the level set function must be re-initialized to maintain the signed
distance characteristic of the function. This re-initialization operation [79–81]
is not an easy task, and a number of level set-based topology optimization
methods that do not depend on boundary advection concepts have been pro-
posed recently. Wei and Wang [65,66] proposed a piecewise constant level set
method used in their topology optimization method. In this method, an ob-
jective functional is formulated as the sum of a primary objective functional
and a structural perimeter, which regularizes the optimization problem. How-
ever, obtained optimal configurations can differ dramatically depending on
the initial configuration, since the setting of certain parameters of the con-
straint functional for the piecewise constant level set function greatly affects
the updating of the level set function.

In this research, we propose a topology optimization method using a level
set model incorporating a fictitious interface energy derived from the phase
field concept, to overcome the numerical problems mentioned above. The pro-
posed method, a type of topology optimization method, also has the advan-
tage of allowing not only shape but also topological changes. In addition, the
proposed method allows the geometrical complexity of the optimal configura-
tion to be qualitatively specified, a feature resembling the perimeter control
method, and does not require re-initialization operations during the optimiza-
tion procedure. In the following sections, a topology optimization problem is
formulated based on the level set method, and the method of regularizing the
optimization problem by introducing a fictitious interface energy is explained.
The reaction-diffusion equation that updates the level set function is then de-
rived. Here, we use the ersatz material approach to compute the equilibrium
equations of the structure on an Eulerian coordinate system. The proposed
topology optimization method is then applied to the minimum mean com-
pliance problem, the optimum design problem of compliant mechanisms and
the lowest eigenfrequency problem. Next, an optimization algorithm for the
proposed method is constructed using the Finite Element Method. Finally, to
confirm the validity and utility of the proposed topology optimization method,
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several numerical examples are provided for both two- and three-dimensional
cases.

2 Formulations

2.1 Topology optimization method

Consider a structural optimization problem that determines the optimal con-
figuration of a domain filled with a solid material, i.e., a material domain Ω
that denotes the design domain, by minimizing an objective functional F un-
der a constraint functional G concerning the volume constraint, described as
follows:

inf
Ω

F (Ω) =
∫
Ω

f(x)dΩ (1)

subject to G(Ω) =
∫
Ω

dΩ − Vmax ≤ 0, (2)

where Vmax is the upper limit of the volume constraint and x represents a
point located in Ω. In conventional topology optimization methods [12], a fixed
design domain D, composed of a material domain Ω such that Ω ⊂ D, and
another complementary domain representing a void exists, i.e., a void domain
D \ Ω is introduced. Using the characteristic function χΩ ∈ L∞ defined as

χΩ(x) =

 1 if x ∈ Ω

0 if x ∈ D \ Ω,
(3)

the above structural optimization problem is replaced by a material distribu-
tion problem, to search for an optimal configuration of the design domain in
the fixed design domain D as follows:

inf
χΩ

F (χΩ(x)) =
∫

D
f(x)χΩ(x)dΩ (4)

subject to G(χΩ(x)) =
∫

D
χΩ(x)dΩ − Vmax ≤ 0. (5)

In the above formulation, topological changes as well as shape change are
allowed during the optimization procedure.

However, it is commonly accepted that topology optimization problems are
ill-posed because the obtained configurations expressed by the characteristic
function can be very discontinuous. That is, since the characteristic function χ
is defined as a subset of a bounded Lebesgue space L∞ which is only assured in-
tegrability, the obtained solutions may be discontinuous anywhere in the fixed
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design domain. To overcome this problem, the design domain is relaxed using
various regularization techniques such as the homogenization method [26–28].
In the homogenization method, microstructures that represent the compos-
ite material status are introduced. In two-scale modeling, microstructures are
continuously distributed almost everywhere in the fixed design domain D. The
regularized and sufficiently continuous physical properties are obtained as the
homogenized properties. Burger and Stainko [38], Wang and Zhou [33,37] and
Zhou and Wang [34,35] proposed an alternative regularization method us-
ing the Tikhonov regularization method [82]. In these methods, by adding a
Cahn-Hilliard-type penalization functional [1] to an objective functional, the
topology optimization problem is regularized and the material density penal-
ized. The phase field model utilized in certain structural optimization methods
employs a regularization technique based on the imposition of some degree of
shape smoothness, but these methods also yield optimal configurations that
include grayscales.

In these regularization techniques, the existence of grayscales is allowed in the
obtained optimal configurations. Although such grayscales can be interpreted
as being micro-porous in the physical sense, they are problematic in the engi-
neering sense since such obtained optimal solutions are difficult to interpret as
practical designs that can be manufactured. Furthermore, the optimal config-
urations obtained by conventional topology optimization methods can include
highly complex structures that are also inappropriate from an engineering
and manufacturing standpoint. To mitigate these problems, a method using
a perimeter constraint [42] and methods using a density gradient constraint
[43,44] have been proposed. In the former, however, the obtained results cru-
cially depend on artificial parameters that require appropriate, but elusive,
values to obtain desired results. And in the latter, use of the density gradient
constraint increases grayscales. Also, methods employing perimeter or density
gradient constraints are poor at adjusting the geometrical complexity of the
obtained optimal configurations, since the relation of the geometrical complex-
ity of the configuration and the optimization parameters cannot be uniquely
determined. Hitherto, a method that allows the geometrical complexity of
obtained optimal structures to be manipulated has not been proposed.

On the other hand, level set-based structural optimization methods have been
proposed [45,57,61]. In these methods, the level set function φ(x) is introduced
to represent a boundary ∂Ω between the material and void domains. That is,
the boundary is expressed using the level set function φ(x) as follows:


φ(x) > 0 for ∀x ∈ Ω \ ∂Ω

φ(x) = 0 for ∀x ∈ ∂Ω

φ(x) < 0 for ∀x ∈ D \ Ω.

(6)

Using the above level set function, an arbitrary topology as well as shape of
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the material domain Ω in domain D can be implicitly represented, and level
set boundary expressions are free of grayscales. In level set-based methods,
the evolution of the boundaries with respect to fictitious times is tracked by
solving the so-called Hamilton-Jacobi partial differential equation (explained
below), with an appropriate normal velocity that is the velocity of the moving
boundary normal to the interface. However, as Allarie et al. [61] discussed,
this problem is basically ill-posed, and in order to regularize the structural
optimization problems, certain smoothness, geometrical, or topological con-
straint, such as a perimeter constraint [85] must be imposed. Furthermore,
topological changes that increase the number of holes in the material domain
may not occur, although topological changes that decrease the number of holes
are allowed. As a result, the obtained optimal configurations strongly depends
on the given initial configuration.

In this research, to overcome the above major problems in the conventional
topology optimization methods and level set-based structural optimization
methods, we propose a new level set-based topology optimization method
using a fictitious interface energy based on the phase field model.

In the proposed approach, first, the definition of the level set function is mod-
ified per the following equation to introduce the fictitious interface energy in
the phase field model to regularize the topology optimization problem:

1 ≥ φ(x) > 0 for ∀x ∈ Ω \ ∂Ω

φ(x) = 0 for ∀x ∈ ∂Ω

0 > φ(x) ≥ −1 for ∀x ∈ D \ Ω.

(7)

We assume that the distribution of the level set function φ must have the same
property of distribution as the phase field variable in the phase field method.
Based on this assumption, the level set function φ has upper and lower limit
constraints imposed in Equation (7). In addition, in sufficiently distant regions
from the structural boundaries, the value of the level set function must be
equivalent to 1 or −1.

Here, by adding a fictitious interface energy term derived from the concept
of the phase field model to the objective functional, the regularized topology
optimization problem is described using the relaxed characteristic function
that is a function of the level set function, defined as follows:

inf
φ

FR(χφ(φ), φ) =
∫

D
f(x)χφ(φ)dΩ +

∫
D

1

2
τ | ∇φ |2 dΩ (8)

subject to G(χφ(φ)) =
∫

D
χφ(φ)dΩ − Vmax ≤ 0, (9)

where FR is a regularized objective functional and χφ(φ) ∈ L2 is a sufficiently
smooth characteristic function, since the level set function φ is assumed to be
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continuous and is formulated as

Φ = {φ(x)|φ(x) ∈ H1(D)}. (10)

As a result, the former optimization problem is replaced with a problem to
minimize the energy functional, which is the sum of the objective functional
and the fictitious interface energy, where τ > 0 is a regularization parame-
ter representing the ratio of the fictitious interface energy and the objective
functional.

Note that the fictitious interface energy term here is equivalent to the so-called
Chan-Hilliard energy, and it plays a very important role in regularizing the
optimization problem. By introducing this term, the optimization problem
is sufficiently relaxed and the obtained optimal configurations have sufficient
smoothness. The optimization problem also becomes numerically stable. It is
well-known that the Chan-Hilliard energy converges exactly to the perime-
ter. As a result, our optimal configurations are obtained under an implicitly
imposed geometrical constraint. This regularization is called the Tikhonov
regularization method, and details concerning its theoretical background are
available in the literature [82,83]. It is possible to control the degree of com-
plexity of obtained optimal structures by adjusting the value of the coefficient
of regularization τ . Strictly speaking, the regularization technique employed
here is a perimeter constraint method, just as regularization techniques ap-
plied to the original topology optimization method implicitly impose geometric
constraints. We note that Leitao and Scherzer [84] proposed a shape optimiza-
tion method incorporating the Tikhonov regularization method and level set
method, however the basic concept of their method differs from ours, which is
a topology optimization method.

Next, the optimization problem represented by (8) and (9) is reformulated
using Lagrange’s method of undetermined multipliers. Let the Lagrangian be
F̄ and the Lagrange multiplier of the volume constraint be λ. The optimization
problem is then formulated as

inf
φ

F̄R(χφ(φ), φ) =
∫

D
f(x)χφ(φ)dΩ

+ λ

(∫
D

χφ(φ)dΩ − Vmax

)
+

∫
D

1

2
τ | ∇φ |2 dΩ (11)

=
∫

D
f̄(x)χφ(φ)dΩ − λVmax +

∫
D

1

2
τ | ∇φ |2 dΩ, (12)

where the density function of the Lagrangian f̄(x) is such that f̄(x) = f(x)+λ.
The optimal configuration will be obtained by solving the above optimization
problem.

Next, the necessary optimality conditions (KKT-conditions) for the above
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optimization problem are derived as follows:

〈
dF̄R(χφ(φ), φ)

dφ
, Φ

〉
= 0, λG(χφ(φ)) = 0, λ ≥ 0, G(χφ(φ)) ≤ 0, (13)

where the notation
〈

dF̄R(χφ(φ),φ)

dφ
, Φ

〉
represents the Fréchet derivative of the

regularized Lagrangian F̄R with respect to φ in the direction of Φ. The level
set function describing the optimal configurations satisfies the above KKT con-
ditions. Conversely, solutions obtained by Equation (13) are optimal solution
candidates, but obtaining this level set function directly is problematic. Here,
the optimization problem is replaced by a problem of solving time evolutional
equations, which will provide optimal solution candidates.

2.2 The time evolutional equations

Let a fictitious time t be introduced, and assume that the level set function φ
is also implicitly a function of t, to represent structural changes in the material
domain Ω over time. In past level set-based structural optimization method
research [57][61], the outline of target structures is updated by solving the
following time evolutional equation:

∂φ(x, t)

∂t
+ VN(x, t) | ∇φ(x, t) |= 0 in D (14)

where VN(x, t) is the normal velocity function, which is given as a smoothed
shape derivative of material domain Ω since the above equation represents
shape changes during fictitious optimization process times. Therefore, level
set-based structural optimization methods using Equation (14) are essentially
shape optimization methods. That is, only the shape boundary of the material
domain evolves during the optimization process, and topological changes that
generate holes in the material domain do not occur. As a result, the initial
configuration settings profoundly affect the obtained optimal configuration.

To provide for the possibility of topological changes, Allaire et al. [73] pro-
posed a method for introducing holes using topological derivatives [75–77], a
concept that is basically the same as the bubble method [74] where the optimal
position at which a hole is to be introduced is analytically derived. However,
in Allaire’s method, the obtained optimal structure depends on the setting of
various parameters and it can be difficult to stably obtain optimal structures.
Especially in problems where heat conduction and structural configuration are
coupled, or static electric field, heat conduction and structural configuration
are coupled, we encountered situations where convergence was poor and stably
obtained optimal structures were elusive [70].
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A new update method is developed in this research to replace the use Equation
(14). Here, we assume that variation of the level set function φ(t) with respect
to fictitious time t is proportional to the gradient of the Lagrangian F̄ , as
shown in the following:

∂φ

∂t
= −K(φ)

dF̄R

dφ
in D, (15)

where K(φ) > 0 is a coefficient of proportionality. Substituting Equation (12)
into Equation (15), we obtain the following:

∂φ

∂t
= −K(φ)

(
dF̄ (χφ)

dφ
− τ∇2φ

)
in D. (16)

Here, we note that the derivatives
dF̄ (χφ)

dφ
equivalent to the topological deriva-

tives [75–77] defined as

dtF̄ = −∂F̄ (χφ)

∂χφ

= lim
ε→0

F̄ (Ωε,x) − F̄ (Ω)

|ξ(ε)|
, (17)

where Ωε,x = Ω − B̄ε is the material domain with a hole, B̄ε is a sphere of
radius ε centered at x and ξ is a function that decreases monotonically so
that ξ(ε) → 0 as ε → 0, because the objective functional F is formulated
using the characteristic function χφ. As a result, in our method, topological
changes that increase the number of holes are allowed, since they are equivalent
to the sensitivities with respect to generating structural boundaries in the
material domain. In future work, we hope to discuss the theoretical connection
between the characteristic function and topological derivatives in detail. On
the other hand, the level set-based structural optimization method proposed
by Wang et al. [57] is essentially a type of shape optimization method, since
the sensitivities have non-zero values only on the structural boundaries.

Furthermore, we assume that the boundary condition of the level set function
is a Dirichlet boundary condition on the non-design boundary, and a Neu-
mann boundary condition on the other boundaries, to represent the level set
function independently of the exterior of the fixed design domain D. Then,
the obtained time evolutionary equation with boundary conditions are sum-
marized as follows:

∂φ

∂t
= −K(φ)

(
−∂F̄ (χφ)

∂χφ

− τ∇2φ
)

in D

∂φ

∂n
= 0 on ∂D \ ∂DN

φ = 1 on ∂DN .

(18)

Note that Equation (18) is a reaction-diffusion equation, and that the proposed
method ensures the smoothness of the level set function.
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Next, the time derivative of the regularized Lagrangian F̄R is obtained using
Equation (12) and (15) as follows:

dF̄R

dt
=

∫
D

dF̄R

dφ

∂φ

∂t
dD

=
∫

D

dF̄R

dφ

(
−K(φ)

dF̄R

dφ

)
dD

(
...(15)

)
= −

∫
D

K(φ)
(

dF̄R

dφ

)2

dD ≤ 0. (19)

The above equation implies that when the level set function is updated based
on Equations (16), the sum of the original Lagrangian F̄ and the fictitious
interface energy decreases monotonically.

2.3 The minimum mean compliance problem

The above proposed method is now applied to a minimum mean compliance
problem. Consider a material domain Ω where the displacement is fixed at
boundary Γu and traction t is imposed at boundary Γt. A body force b may
also be applied throughout the material domain Ω. Let the displacement field
be denoted as u in the static equilibrium state. The minimum compliance
problem is then formulated as follows:

inf
φ

F1(χ) = l(u) (20)

subject to a(u,v) = l(v) (21)

for ∀v ∈ U u ∈ U

G(χ) ≤ 0 (22)

where the notations in the above equation are defined as

a(u,v) =
∫

D
ε(u) : E : ε(v)χφdΩ (23)

l(v) =
∫
Γt

t · vdΓ +
∫

D
b · vχφdΩ (24)

G(χ) =
∫

D
χdΩ − Vmax, (25)

where ε is the linearized strain tensor, E is the elasticity tensor, and

U = {v = viei : vi ∈ H1(D) with v = 0 on Γu}. (26)
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Next, the sensitivity of Lagrangian F̄1 for the minimum compliance problem
is derived. The Lagrangian F̄1 is the following:

F̄1 = l(u) − a(u,v) + l(v) + λG. (27)

The sensitivity can be simply obtained using the adjoint variable method by

〈
∂F̄1

∂χφ

, χ̃φ

〉
=

〈
∂l(u)

∂u
, δu

〉〈
∂u

∂χφ

, χ̃φ

〉
−

〈
∂a(u,v)

∂u
, δu

〉〈
∂u

∂χφ

, χ̃φ

〉
−

〈
∂a(u,v)

∂χφ

, χ̃φ

〉
+λ

〈
∂G

∂χφ

, χ̃φ

〉
(28)

where the adjoint field is defined as follows:

a(v,u) = l(u) for ∀u ∈ U v ∈ U. (29)

Therefore, the time evolutionary equation (18) of the minimum mean compli-
ance problem is as follows:

∂φ

∂t
= −K(φ)

(
ε(u) : Eχφ : ε(v) − λ − τ∇2φ

)
in D (30)

2.4 The optimum design problem of compliant mechanisms

Next, the proposed method is applied to an optimum design problem of com-
pliant mechanisms. Consider a material domain Ω where the displacement is
fixed at boundary Γu and traction tin is imposed at boundary Γin.

Let the displacement field be denoted as u1 in the static equilibrium state.
The optimum design problem of compliant mechanisms is then formulated as
follows [20]:

inf
φ

F2(χ) = −l2(u1) (31)

subject to a(u1,v) = l1(v) (32)

for ∀v ∈ U u1 ∈ U

G(χ) ≤ 0, (33)

where the notations in the above equation are defined as

l1(v) =
∫
Γin

tin · vdΓ (34)

l2(v) =
∫
Γout

tout · vdΓ, (35)
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where tout is a dummy traction vector representing the direction of the speci-
fied deformation at output port Γout. Based on Sigmund’s formulation, a non-
structural distributed spring is located at boundary Γout, and sufficient stiff-
ness at boundary Γout is obtained by maximizing the mutual mean compliance,
since this provides a reaction force from the spring due to the deformation at
boundary Γout, which serves to automatically maximize the stiffness.

Next, the sensitivity of Lagrangian F̄2 for the design of compliant mechanisms
is derived. The Lagrangian F̄2 is the following:

F̄2 = −l2(u1) + a(u1,v) − l1(v) + λG. (36)

The sensitivity can be simply obtained using the adjoint variable method by

〈
∂F̄2

∂χφ

, χ̃φ

〉
= −

〈
∂l2(u1)

∂u1

, δu1

〉〈
∂u1

∂χφ

, χ̃φ

〉
+

〈
∂a(u1,v)

∂u1

, δu1

〉〈
∂u1

∂χφ

, χ̃φ

〉
+

〈
∂a(u1,v)

∂χφ

, χ̃φ

〉
+λ

〈
∂G

∂χφ

, χ̃φ

〉
(37)

where the adjoint field is defined as follows:

a(v,u1) = l2(u1) for ∀u1 ∈ U v ∈ U. (38)

Therefore, the time evolutionary equation (18) of the optimum design problem
of compliant mechanisms is as follows:

∂φ

∂t
= −K(φ)

(
−ε(u1) : Eχφ : ε(v) − λ − τ∇2φ

)
in D (39)

2.5 The lowest eigenfrequency maximization problem

Next, the proposed method is applied to a lowest eigenfrequency maximization
problem. Consider a fixed design domain D with fixed boundary at Γu. The
material domain Ω is filled with a linearly elastic material. The objective func-
tional for the lowest eigenfrequency maximization problem can be formulated
as follows:

inf
φ

F3 = −
( q∑

k=1

1

ω2
k

)−1

= −
( q∑

k=1

1

λk

)−1

, (40)

where ωk is the k-th eigenfrequency, λk is k-th eigenvalue and q is an appro-
priate number of eigenfrequencies from the lowest eigen-mode. Therefore, the
topology optimization problem, including the volume constraint, is formulated

14



as follows:

inf
φ

F3 = −
( q∑

k=1

1

λk

)−1

(41)

subject to G ≤ 0 (42)

a(uk,v) = λkb(uk,v) (43)

for ∀v ∈ U, uk ∈ U, k = 1, ..., q, (44)

where the above notation b(uk,v) is defined in the following equation,

b(uk,v) =
∫
Ω

ρuk · vdΩ, (45)

where uk is the corresponding k-th eigenmode and ρ is the density.

Next, the sensitivity of Lagrangian F̄3 for the design of compliant mechanisms
is derived. The Lagrangian F̄3 is the following:

F̄3 = −
( q∑

k=1

1

λk

)−1

+
q∑

k=1

αk

(
a(uk,vk) − λkb(uk,vk)

)
+λG (46)

for αk ∈ R.

The sensitivity can be simply obtained using the adjoint variable method by

〈
dF̄3

dχφ

, χ̃φ

〉
=

( q∑
k=1

1

λk

)−2
− q∑

k=1

1

λ2
k

(〈
∂a(uk,vk)

∂χφ

, χ̃φ

〉
−λk

〈
∂b(uk,vk)

∂χφ

, χ̃φ

〉)
+ λ

〈
∂G

∂χφ

, χ̃φ

〉
, (47)

where the adjoint field is defined as follows:

a(uk,vk) = λkb(uk,vk) for ∀uk ∈ U vk ∈ U. (48)

Therefore, the time evolutionary equation (16) of the lowest eigenfrequency
maximization problem is as follows:

∂φ

∂t
= −K(φ)

{( q∑
k=1

1

λk

)−2 q∑
k=1

(
ε(uk) : Eχφ : ε(vk) − λkρχφuk · vk

λ2
k

)

−λ − τ∇2φ

}
in D (49)
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3 Numerical implementations

3.1 Optimization algorithms

The flowchart of the optimization procedure is shown in Fig. 1.

[Fig. 1 about here.]

As this figure shows, the initial configuration is first set. In the second step, the
equilibrium equations are solved using the Finite Element Method. In the third
step, the objective functional is computed. Here, the optimization process is
finished if the objective functional has converged, otherwise the sensitivities
with respect to the objective functional are computed. In the fourth step, the
level set function φ is updated based on Eq.(18) using the Finite Element
Method. Here, the Lagrange multiplier λ is estimated to satisfy the following:

G(φ(t + ∆t)) = 0. (50)

In addition, the volume constraint is handled using the augmented Lagrangian
method [86–88].

3.2 Scheme of the system of time evolutionary equations

In this research, we develop a scheme for a system of time-evolutionary equa-
tions (18). First, we introduce a characteristic length L and an extended pa-
rameter C to normalize the sensitivities, and Equations (18) can then be
replaced by dimensionless equations as follows.



∂φ

∂t
= −K(φ)

(
−C ∂F̄

∂χφ
− τL2∇2φ

)
in D

∂φ

∂n
= 0 on ∂D \ ∂DN

φ = 1 on ∂DN ,

(51)

where C is defined as

C =
c

∫
D dΩ∫

D | ∂F̄
∂χφ

| dΩ
. (52)
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Next, Equations (51) are discretized in the time direction using the Finite
Difference Method as follows:

φ(t + ∆t)

∆t
− K(φ(t))τL2∇2φ(t + ∆t)

= K(φ(t))C
∂F̄

∂χφ

+
φ(t)

∆t

φ = 1 on ∂DN

∂φ

∂n
= 0 on ∂D/∂DN ,

(53)

where ∆t is the time increment. Next, the above equations are translated to
a weak form as follows, so they can be discretized using the Finite Element
Method. 

∫
D

φ(t+∆t)
∆t

φ̃dD +
∫
D ∇T φ(t + ∆t)

(
τL2K(φ(t))∇φ̃

)
dD

=
∫
D

(
K(φ(t))C ∂F̄

∂χφ
+ φ(t)

∆t

)
φ̃dD

for ∀φ̃ ∈ Φ̃

φ = 1 on ∂DN ,

(54)

where Φ̃ is the functional space of the level set function defined by

Φ̃ = {φ(x)|φ(x) ∈ H1(D) with φ = 1 on ∂DN}. (55)

Discretizing Equation (54) using the Finite Element Method, the following
equation is derived:  T Φ(t + ∆t) = Y

φ = 1 on ∂DN ,
(56)

where Φ(t) is the nodal value vector of the level set function at time t and T
and Y are described as follows:

T =
e⋃

j=i

∫
Ve

(
1

∆t
NTN + ∇TNK(φ(t))τL2∇N

)
dVe (57)

Y =
e⋃

j=i

∫
Ve

(
K(φ(t))C

∂F̄

∂χφ

+
φ(x, t)

∆t

)
NdVe, (58)

where e is the number of elements and
⋃e

j=i represents the union set of the
elements, j is the number of elements and N is the interpolation function of
the level set function.

The upper and lower limit constraints of the level set function are not satis-
fied when the level set function is updated based on Eq. (56). To satisfy the
constraints, the level set function is replaced based on the following rule after
updating the level set function.

if ‖φ‖ > 1 then φ = sign(φ) (59)
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3.3 Approximated equilibrium equation

In this research the ersatz material approach is used [61]. That is, the equilib-
rium Equation (60) is approximated by Equation (61).∫

D
ε(u) : E : ε(v)χdΩ =

∫
Γt

t · vdΓ +
∫

D
b · vχdΩ (60)∫

D
ε(u) : E : ε(v)Ha(φ)dΩ =

∫
Γt

t · vdΓ +
∫

D
b · vHa(φ)dΩ, (61)

where Ha(φ) is the Heaviside function approximated as

Ha1(φ) =

 d (φ < 0)

1 (0 ≤ φ)
(62)

or

Ha2(φ) =


d (φ < −w)(

1
2

+ φ
w

(
15
16

− φ2

w2

(
5
8
− 3

16
φ2

w2

)))
(1 − d) + d (−w < φ < w)

1 (w < φ),

(63)
where w represents the width of transition and d > 0 represents the ratio of
material constants, namely, the Young’s modulus values between the void and
material domains. Parameter d is introduced to ensure stable analyses of the
fixed design domain when using the Finite Element method. In this research,
the volume constraint function G(Ω) which is defined by Equation (9) is also
approximated, as follows:

G(φ) =
∫

D
Hg(φ)dΩ − Vmax. (64)

As shown in the following equation, Hg(φ) is the smoothed Heaviside function
whose width of transition is 2, since as shown in Equation (7), the level set
function values range from −1 to 1.

Hg(φ) =


0 (φ = −1)

1

2
+

φ

2

(
15

16
− φ2

4

(
5

8
− 3

64
φ2

))
(−1 < φ < 1)

1 (φ = 1)

(65)

We note that intermediate regions between the material and void domains
are not allowed in the approximation with respect to the material distribu-
tion (61), which eliminates grayscales completely. In the approximation with
respect to the volume calculation (64), intermediate regions are allowed for
numerical stability. Elimination of grayscales is important when using the
equilibrium equations but is not important in the volume calculation.
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4 Numerical examples

4.1 Two-dimensional minimum mean compliance problems

In this subsection, several numerical examples are presented to confirm the
utility and validity of proposed optimization method for two and three dimen-
sional minimum compliance problems. In these examples, the isotropic linear
elastic material has Young’s modulus = 210 GPa, Poisson’s ratio = 0.31 and
parameter d in approximated Heaviside function (62) is set to 1×10−3. Figure
2 shows the fixed design domain and the boundary conditions of model A and
Figure 3 shows the same for model B.

[Fig. 2 about here.]

[Fig. 3 about here.]

4.1.1 Effect of the initial configurations

First, using model A, we examine the effect of different initial configurations
upon the resulting optimal configurations. The regularization parameter τ is
set to 1× 10−4, parameter c is set to 0.5 and the characteristic length L is set
to 1m. Parameter K(φ) is set to 1, the upper limit of the volume constraint
Vmax is set to 40% of the volume of the fixed design domain and parameter d
in approximated Heaviside function (62) is set to 1 × 10−3.

The fixed design domain is discretized using a structural mesh and four-node
quadrilateral plane stress elements whose length is 6.25 × 10−3m. Figure 4
shows four cases and their obtained optimal configurations, each using a differ-
ent initial configuration. The initial configuration for Case 1 has the material
domain filled with material; for Case 2, the initial configuration has two holes;
for Case 3, the initial configuration has many holes; and for Case 4, the initial
configuration has material filling the material domain in the upper half of the
fixed design domain.

[Fig. 4 about here.]

In all cases, the optimal configurations are smooth, clear and nearly the same.
That is, an appropriate optimal configuration was obtained for all initial con-
figurations. We confirm that the dependency of the obtained optimal config-
urations upon the initial configurations is extremely low.
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4.1.2 Effect of finite element mesh size

Second, using model A, we examine the effect of the finite element mesh size
upon the resulting optimal configurations. The regularization parameter τ is
set to 8 × 10−5, parameter c is set to 0.2, the characteristic length L is set to
1m, parameter K(φ) is set to 1, the upper limit of the volume constraint Vmax

is set to 40% of the volume of the fixed design domain and parameter d in ap-
proximated Heaviside function (62) is set to 1×10−3. The initial configurations
in all cases have the material domain filled with material in the Fixed design
domain. The fixed design domain is discretized using a structural mesh and
four-node quadrilateral plane stress elements. We examine three cases whose
degree of discretization is subject to the following mesh parameters: 80 × 60,
160 × 120 and 320 × 240. Figure 5 shows the optimal configuration for each
case.

[Fig. 5 about here.]

Again, all obtained optimal configurations are smooth, clear and practically
identical. That is, an appropriate optimal configuration can be obtained re-
gardless of which degree of discretization was used here. We confirm that
dependency with regard to the finite element mesh size is extremely small
provided that the finite element size is sufficiently small.

4.1.3 Effect of the regularization parameter τ

We now examine the effect that different regularization parameter τ values
have upon the resulting optimal configurations. In model A, parameter c is
set to 0.5, the characteristic length L is set to 1m, parameter K(φ) is set to 1,
the upper limit of the volume constraint Vmax is set to 40% of the volume of the
fixed design domain and parameter d in approximated Heaviside function (62)
is set to 1×10−3. The initial configuration in all case has the material domain
filled with material in the fixed design domain. The fixed design domain is
discretized using a structural mesh and four-node quadrilateral plane stress
elements whose length is 6.25 × 10−3m. We examine four cases where the
regularization parameter τ is set to 5× 10−4, 5× 10−5, 3× 10−5 and 2× 10−5,
respectively. Figure 6 shows the optimal configuration for each case.

[Fig. 6 about here.]

Next, using model B, parameter c is set to 0.5, the characteristic length L is
set to 1m, and the upper limit of the volume constraint Vmax is set to 50%
of the volume of the fixed design domain. The initial configurations again
have the material domain filled with material in the fixed design domain.
The fixed design domain is discretized using a structural mesh and four-node
quadrilateral plane stress elements whose length is 6.25× 10−3m. We examine
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four cases where the regularization parameter τ is set to 5 × 10−4, 2 × 10−4,
1× 10−4 and 1× 10−5, respectively. Figure 7 shows the optimal configuration
for each case.

[Fig. 7 about here.]

The obtained optimal configurations are smooth and clear and we can confirm
that the use of the proposed method’s τ parameter allows the complexity of
the optimal structures to be adjusted at will.

4.1.4 Effect of the proportional coefficient K(φ)

Next, we now examine the effect that different definitions of proportionality
coefficient K(φ) have upon the resulting optimal configurations, using four
initial configurations. The fixed design domain and boundary condition are
shown in Figure 8. The isotropic linear elastic material has Young’s modulus
= 210 GPa, Poisson’s ratio = 0.31 and parameter d and w in approximated
Heaviside function (63) is set to 1 × 10−3 and 1, respectively. Parameter c is
set to 0.5, the characteristic length L is set to 1m, regularization parameter
τ is set to 5 × 10−4 and the upper limit of the volume constraint Vmax is set
to 40% of the volume of the fixed design domain. The fixed design domain is
discretized using a structural mesh and four-node quadrilateral plane stress
elements.

[Fig. 8 about here.]

We examine three cases, where the coefficient of proportionality K(φ) is set
as follows:

Kcos(φ) =
1

2
+ cos

(π

2
φ

)
(66)

Ksin(φ) = 1 +
1

2
sin

(π

2
φ

)
(67)

K1(φ) = 1 (68)

Figure 9 shows the different initial and optimal configurations for each case.

[Fig. 9 about here.]

In all cases, the optimal configurations are smooth, clear and nearly the same.
That is, an appropriate optimal configuration was obtained for all three defi-
nitions of K(φ), and we confirm that the dependency of the obtained optimal
configurations upon these definitions is extremely low.
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4.2 Three-dimensional minimum mean compliance problems

4.2.1 Effect of the regularization parameter τ

First, we now examine the effect that different values of the regularization
parameter τ have upon the resulting optimal configurations in a three di-
mensional design problem. The isotropic linearly elastic material has Young’s
modulus = 210 GPa and Poisson’s ratio = 0.31. Figure 10 shows the fixed
design domain and boundary conditions.

[Fig. 10 about here.]

Parameter c is set to 0.5, the characteristic length L is set to 1m, and the
upper limit of the volume constraint Vmax is set to 40% of the volume of
the fixed design domain. The initial configurations have the material domain
filled with material in the fixed design domain. The fixed design domain is
discretized using a structural mesh and eight-node hexahedral elements whose
length is 1×10−2m. We examine two cases where the regularization parameter
τ is set to 2 × 10−4 and 2 × 10−5, respectively. Figure 11 shows the optimal
configuration for each case.

[Fig. 11 about here.]

The obtained optimal configurations are smooth and clear, and we can confirm
that the use of the proposed method’s τ parameter allows the complexity of
the optimal structures to be adjusted at will for the three-dimensional case as
well.

4.2.2 Discretization using a nonstructural mesh

Second, we show a design problem of a mechanical part model where a non-
structural mesh is employed. The isotropic linear elastic material has Young’s
modulus = 210 GPa and Poisson’s ratio = 0.31. The regularization parameter
τ is set to 5 × 10−5, parameter c is set to 0.5, the characteristic length L is
set to 1m, and the upper limit of the volume constraint Vmax is set to 45% of
the volume of the design domain. The initial configurations have the material
domain filled with material in the fixed design domain. Figure 12 shows the
fixed design domain, boundary conditions and obtained optimal configuration.

[Fig. 12 about here.]

As shown, the obtained optimal configuration obtained by the proposed method
is smooth and clear when a unstructublue mesh is used.
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4.2.3 Uniform cross-section surface constraint

Next, we consider the use of a uniform cross-section surface constraint, which
is important from a manufacturing standpoint. A geometrical constraint can
easily be imposed by using an anisotropic variation of the regularization pa-
rameter τ . That is, if a component in the constraint direction of regularization
parameter τ is set to a large value, the level set function will be constant in the
constraint direction. As a result, in this scenario, obtained optimal configura-
tions will reflect the imposition of a uniform cross-section surface constraint.
Here, we show the effect that a uniform cross-section surface constraint has
upon the obtained optimal configuration for a three-dimensional case. The
isotropic linear elastic material has Young’s modulus = 210 GPa and Pois-
son’s ratio = 0.31. Figure 13 shows the fixed design domain and boundary
conditions.

[Fig. 13 about here.]

Parameter c is set to 0.5, the characteristic length L is set to 1m, and the
upper limit of the volume constraint Vmax is set to 30% of the volume of the
design domain. The initial configurations have the material domain filled with
material in the fixed design domain. The fixed design domain is discretized
using a structural mesh and eight-node hexahedral elements whose length is
1×10−2m. Case (a) has an isotropic regularization parameter τ = 4×10−5 as
a non-uniform cross-section surface case. Case (b) has anisotropic component
coefficients of the regularization parameter applied, where τ = 4 × 10−5 in
direction x1 and x2, and τ = 4 in direction x3, so that a uniform cross-
section constraint is imposed in direction x3. Figure 14 shows the optimal
configuration for the two cases.

[Fig. 14 about here.]

The obtained optimal configurations are smooth and clear, and we can con-
firm that our method can successfully impose a uniform cross-section surface
constraint.

4.3 Optimum design problem for a compliant mechanism

4.3.1 Two-dimensional compliant mechanism design problem

Next, our proposed method is applied to the problem of finding an optimum
design for a compliant mechanism. The isotropic linear elastic material has
Young’s modulus = 210 GPa and Poisson’s ratio = 0.31. Figure 15 shows the
fixed design domain and boundary conditions.
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[Fig. 15 about here.]

Parameter c is set to 0.5, characteristic length L is set to 100µm, regularization
parameter τ is set to 1 × 10−4 and the upper limit of the volume constraint
Vmax is set to 25% of the volume of the fixed design domain. The approximated
Heaviside function (63) is used. Parameter d is set to 1 × 10−3 and w is set
to 1. The initial configurations have the material domain filled with material
in the fixed design domain. The fixed design domain is discretized using a
structural mesh and four-node quadrilateral elements whose length is 0.5µm.
Figure 16 shows the optimal configuration and the deformed shape.

[Fig. 16 about here.]

As shown, the obtained optimal configuration is smooth and clear, and we
can confirm that the obtained optimal configuration deforms in the specified
direction.

4.3.2 Three-dimensional compliant mechanism design problem

We applied the proposed method to a three-dimensional compliant mecha-
nism design problem and consider the use of a uniform cross-section surface
constraint. The isotropic linear elastic material has Young’s modulus = 210
GPa and Poisson’s ratio = 0.31. Figure 17 shows the fixed design domain and
boundary conditions.

[Fig. 17 about here.]

Parameter c is set to 0.5, characteristic length L is set to 100µm and the
upper limit of the volume constraint Vmax is set to 20% of the volume of
the fixed design domain. The approximated Heaviside function (63) is used,
parameter d is set to 1 × 10−3 and w is set to 1. The initial configurations
have the material domain filled with material in the fixed design domain.
The fixed design domain is discretized using a structural mesh and eight-
node hexahedral elements whose length is 1µm. Case (a) has an isotropic
regularization parameter τ = 1 × 10−4 as a non-uniform cross-section surface
case. Case (b) has anisotropic component coefficients of the regularization
parameter applied, where τ = 1 × 10−4 in directions x1 and x3, and τ =
5× 10−1 in direction x2, so that a uniform cross-section constraint is imposed
in direction x2. Figure 18 shows the optimal configurations.

[Fig. 18 about here.]

As shown, the obtained optimal configurations are smooth and clear, and we
can confirm that our method can successfully impose a uniform cross-section
surface constraint.
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4.4 The lowest eigenfrequency maximization problem

4.4.1 Two-dimensional design problem

Finally, the proposed method is applied to the lowest eigenfrequency maxi-
mization problem. The isotropic linear elastic material has Young’s modulus
= 210 GPa, Poisson’s ratio = 0.31 and mass density = 7, 850kg/m3. Fig-
ure 19 shows the fixed design domain and boundary conditions for the two-
dimensional lowest eigenfrequency maximization problem.

[Fig. 19 about here.]

As shown, the right and left sides of the fixed design domain are fixed and a
concentrated mass M = 1kg is set at the center of the fixed design domain.
The fixed design domain is discretized using a structural mesh and four-node
quadrilateral elements whose length is 5 × 10−3m. Parameter c is set to 0.5,
characteristic length L is set to 1m, K(φ) is set to 1 and the upper limit of the
volume constraint Vmax is set to 50% of the volume of the fixed design domain.
The Approximated Heaviside function (62) is used, and parameter d is set to
1 × 10−2. We examine three cases where parameter τ is set to 1.0 × 10−4,
1.0× 10−5, and 1.0× 10−6, respectively. Figure 20 shows the obtained optimal
configurations．

[Fig. 20 about here.]

The obtained optimal configurations are smooth and clear, and we can confirm
that the use of the proposed method’s τ parameter allows the complexity of
the optimal structures to be adjusted at will for the lowest eigenfrequency
maximization problem as well.

4.4.2 Three-dimensional design problem

Figure 21 shows the fixed design domain and boundary conditions for a three-
dimensional lowest eigenfrequency maximization problem.

[Fig. 21 about here.]

The isotropic linear elastic material has Young’s modulus = 210 GPa, Pois-
son’s ratio = 0.31, mass density = 7, 850kg/m3 and a concentrated mass
M = 80kg is set at the center of the fixed design domain. The fixed de-
sign domain is discretized using a structural mesh and eight-node hexahedral
elements whose length is 1 × 10−3m. Parameter c is set to 0.5, characteris-
tic length L is set to 1m, K(φ) is set to 1 and the upper limit of the volume
constraint Vmax is set to 30% of the volume of the fixed design domain. The Ap-
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proximated Heaviside function (62) is used, and parameter d is set to 1×10−2.
Figure 22 shows the optimal configurations.

[Fig. 22 about here.]

As shown, the obtained optimal configurations are smooth and clear.

5 Conclusions

This paper proposed a new topology optimization method incorporating level
set boundary expressions based on the concept of the phase field method and
applied it to minimum mean compliance problems, optimum compliant mech-
anism design problems, and lowest eigenfrequency maximization problems. We
achieved the following:
(1) A topology optimization method was formulated, incorporating level set
boundary expressions, where the optimization problem is handled as a prob-
lem to minimize the energy functional including a fictitious interface energy.
Furthermore, a method for solving the optimization problem using a reaction-
diffusion equation was proposed.
(2) Based on the proposed topology optimization method, minimum mean
compliance problems, optimum design problem of compliant mechanisms, and
lowest eigenfrequency maximization problems were formulated, and an opti-
mization algorithm was then constructed. A scheme for updating the level set
function using a time evolutional equation was proposed.
(3) Several numerical examples were provided to confirm the usefulness of the
proposed topology optimization method for the various problems examined in
this paper. We confirmed that smooth and clear optimal configurations were
obtained using the proposed topology optimization method, which also allows
control of the geometrical complexity of the obtained optimal configurations.
The obtained optimal configurations show minimal dependency upon the fi-
nite element size or initial configurations. In addition, we showed that uniform
cross-section surface constraints can easily be imposed by using an anisotropic
variation of the regularization parameter τ .
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Fig. 4. Initial configurations, intermediate results and optimal configurations
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(a) 80×60 mesh (b) 160×120 mesh (c) 320×240 mesh

Fig. 5. Optimal configurations: (a) 80× 60 mesh; (b) 160× 120 mesh; (c) 320× 240
mesh
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Fig. 6. Optimal configurations: (a) τ = 5×10−4; (b) τ = 5×10−5; (c) τ = 3×10−5;
(d) τ = 2 × 10−5
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Fig. 9. Initial configurations and optimal configurations
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Fig. 10. Fixed design domain and boundary conditions for three dimensional design
problem
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(a) Case 1

(b) Case 2

Fig. 11. Optimal configurations: (a) τ = 2 × 10−4; (b) τ = 2 × 10−5
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Fig. 12. Fixed design domain, boundary conditions and optimal configuration for a
mechanical part model

47



Fixed design domain D

Γu

Γu
0.05m

0.15m

Symmetric boundary 

Non-design domain

2.0m

x1

x3
x2

Fig. 13. Fixed design domain and boundary conditions
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(a) Non-uniform cross-section surface (b) Uniform cross-section surface

Fig. 14. Optimal configurations: (a) Non-uniform cross-section surface; (b) Uniform
cross-section surface
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Fig. 15. Fixed design domain for a two-dimensional compliant mechanism
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(a)   Optimal configuration (b)   Deformed shape

Fig. 16. Configurations of the two-dimensional compliant mechanism (a) Optimal
configuration; (b) Deformed shape
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Fig. 17. Fixed design domain for a three-dimensional compliant mechanism
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(a) Non-uniform cross-section surface

(b) Uniform cross-section surface

Fig. 18. Configurations of the three-dimensional the compliant mechanisms: (a)
Non-uniform cross-section surface (b) Uniform cross-section surface
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Fig. 19. Fixed design domain for the two-dimensional the lowest eigenfrequency
maximization problem
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(a) Case 1 (b) Case 2 (c) Case 3(a) Case 1 (b) Case 2 (c) Case 3

Fig. 20. Optimal configurations for the two-dimensional lowest eigenfrequency max-
imization problem: (a) regularization parameter τ = 1.0 × 10−4; (b) regularization
parameter τ = 1.0 × 10−5; (c) regularization parameter τ = 1.0 × 10−6
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Fig. 21. Fixed design domain for the three-dimensional lowest eigenfrequency max-
imization problem
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Fig. 22. Optimal configurations of the three-dimensional lowest eigenfrequency max-
imization problem
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