Magnetic fluctuations and superconductivity in LaFeAsO$_{1-x}$F$_x$ under pressure as seen via 75As NMR

Author(s)

Citation
Physical Review B (2010), 82(17)

URL
http://hdl.handle.net/2433/134551

Right
© 2010 The American Physical Society

Type
Journal Article
Magnetic fluctuations and superconductivity in LaFeAsO\(_{1-x}\)F\(_x\) under pressure as seen via \(^{75}\)As NMR

The relationship between antiferromagnetic (AF) fluctuation and superconductivity was investigated in the La1111 series, LaFeAsO\(_{1-x}\)F\(_x\) \((x=0, 0.05, 0.08, 0.10, \) and \(0.14)\) by examining nuclear relaxation rates \((1/T_1)\) at both ambient pressure and 3.0 GPa. The results show that the critical doping level at which low-frequency AF fluctuation vanishes is around the optimally doped regime \((x=0.10)\). Although the AF fluctuation is enhanced by applying pressure in the underdoped regime \((0.05 \leq x < 0.10)\), the increase in critical transition temperature \((T_c)\) is small, whereas \(T_c\) remarkably increases in the overdoped regime \((x=0.14)\), implying that the AF fluctuation is less important to the high-\(T_c\) mechanism than the density of states at the electron pocket. The \(x\) dependence of \(T_c\) at 3.0 GPa is similar to that of R1111 \((R=\text{Ce, Pr, Nd, etc.})\) with \(T_c \geq 40\) K at ambient pressure. The relationship between \(T_c\) and the pnictogen height or lattice constant indicates that pressure application is equivalent to full rare-earth substitution. This equivalence suggests that high \(T_c\) above 40 K is realized when the AF fluctuation is absent.

DOI: 10.1103/PhysRevB.82.172502
According to the band calculation, nesting originating from an imbalance between hole and electron pockets below the Fermi energy contributes to the density of states $D(e_F)$. The T-dependent $D(e_F)$ gives rise to an increase in $1/T_1T$, which is expressed using the Korringa relation: $1/T_1T \propto D(e_F)^2$. The spin part of the Knight shift is proportional to $D(e_F)$. The T-dependent $D(e_F)$ has been observed from measurements of the Knight shift. At 3.0 GPa, states $D(e_F)$. The T-dependent $D(e_F)$ gives rise to an increase in $1/T_1T$, which is expressed using the Korringa relation: $1/T_1T \propto D(e_F)^2$. The spin part of the Knight shift is proportional to $D(e_F)$. The T-dependent $D(e_F)$ has been observed from measurements of the Knight shift. At 3.0 GPa,
$1/T_c T$ increases very slightly with the increase in temperature above T_c, and it resembles the case of $x=0.08$ at ambient pressure, implying that the weak T dependence at 3.0 GPa is attributable to the AF fluctuation. Applying a 3.0 GPa pressure changes the electronic state from a state free of AF fluctuation to one with AF fluctuation. The optimally doped regime ($x \sim 0.10$) is located on the boundary where the AF fluctuation vanishes.

(4) Overdoped regime ($x=0.14$). In the overdoped regime, the AF fluctuation is absent at both ambient pressure and 3.0 GPa. Instead, Korringa-type behavior, $1/T_c T$=constant, is observed just above T_c. At temperatures below T_c, an upturn in $1/T_c T$ is seen only in this doping regime. A remarkable enhancement of T_c ($\Delta T_c \approx 20$ K) due to pressure application is attributable to an increase in $D(e_F)$. In the overdoped regime, other hole pockets, α_1 and α_2 surfaces around the $\Gamma(0,0)$ point, are also expected to become smaller than those in the underdoped regime. Therefore, the remarkable T_c enhancement is attributable to an increase in $D(e_F)$ of the electron pocket, β surface around the M point.

A plateau in $1/T_c T$ just above T_c originates from the electron pocket around the M point and is clearly observed in the overdoped regime compared to the optimally doped regime. This can be explained as follows: the gap between the Fermi energy and the states around the $\Gamma(\pi, \pi)$ point is larger for $x=0.14$ than for $x=0.10$, as seen from Figs. 1(g) and 1(b). Therefore, a deviation from the plateau in $1/T_c T$ occurs at much higher temperatures (~ 40 K) for $x=0.14$. Thus, the $1/T_c T$ components coming from T-dependent and T-independent $D(e_F)$ have different origins. This could explain why $1/T_c T$ exhibits a qualitatively different pressure response between low and high temperatures, as shown in Fig. 1(d): $1/T_c T$ at high temperature is suppressed by applying pressure, whereas the plateau in $1/T_c T$ is enhanced by applying pressure.

(5) Undoped regime ($x=0.0$). A spin-density-wave-type AF phase is realized for $x<0.05$. In the undoped samples, the structural and AF phase transitions occur at $T_c \approx 160$ K and $T_N \approx 140$ K, respectively, at ambient pressure. Pressure-induced superconductivity appears when high pressure is applied: T_c of 21 K is realized at 12 GPa. Although zero resistivity was confirmed at high pressure, a precursor to superconductivity is seen at 2 GPa as a remarkable decrease in resistivity. As Fig. 2 shows, application of pressure reduces AF fluctuation remarkably below T_c. The pressure dependence of the AF fluctuation is completely different from that observed for $x \geq 0.05$. The difference arises from the tetragonal-to-orthorhombic phase transition, which would worsen the nesting condition of the two-dimensional Fermi surface. However, the situation is favorable for the appearance of superconductivity, which develops when the AF fluctuation weakens. In this sense, the pressure-induced superconductivity has the same origin as that realized by F substitution.

The results shown in Figs. 1(a)–1(d) are summarized in the phase diagrams in Figs. 3(a) and 3(b). The values of T_c determined from the onset of the resistivity and $1/T_c T$ [arrows in Figs. 1(a)–1(d)] are plotted in Figs. 3(a) and 3(b). Pressure application enhances low-frequency AF fluctuation in the underdoped or optimally doped regime. The AF fluctuation accompanied by an increase in T_c has also been observed in FeSe. However, the increase in T_c is small in the La1111 series. As the phase diagram at 3.0 GPa shows, superconductivity with $T_c \geq 40$ K develops in the overdoped regime away from the strong AF fluctuation caused by pressure application. This fact calls into question the strong interplay between AF fluctuation and superconductivity. Thus, the question of whether the features observed in the overdoped regime are common to the other 1111 series arises.

The T_x phase diagram at 3.0 GPa is reminiscent of diagrams of the Ce, Pr and Sm 1111 series at ambient pressure in that T_x hardly drops to below 40 K even in the heavily doped regime and the highest T_x is realized away from the AF phase. Figure 4(a) shows a phase diagram normalized by the doping levels, x_{AF}, at which the AF phase vanishes. The values of x_{AF} are estimated as 0.04, 0.06, 0.075, and 0.04 for the La, Ce, Pr, and Sm 1111 series, respectively. The phase diagram includes some ambiguity in the determination of x_{AF}. However, Fig. 4(a) allows comparison of the SC phase boundary because differences due to x-estimation methods are excluded to some extent. As the figure shows, the x/x_{AF} dependence of T_x normalized by the optimal T_x is almost the same for the 1111 series with high T_c above 40 K. Only the La1111 series at ambient pressure deviates from the curve.

The similarity between the La1111 series at 3.0 GPa and the other 1111 series is well understood if the pnictogen height from the basal plane of iron determines T_c, as suggested by a theoretical investigation. According to x-ray diffraction measurements under pressure by Garbarino et al., pnictogen height increases with increasing pressure, and the lattice constant shrinks as well. The same changes occur in full rare-earth substitution: the pnictogen height increases in the order of La, Ce, Nd, and Sm, and the lattice constants also shrink in the same order, as shown in Fig. 4(b). Data for the optimally doped samples are shown as functions of T_c values in the figure. The La1111 series at 3.0 GPa ($T_c=40$ K) corresponds to the Ce1111 series at ambient pressure. The pnictogen height and lattice parameter estimated from Fig. 4(b) are 0.1565 and 3.97 Å, respectively. According to the x-ray diffraction measurements on the La1111 series, the former and latter are estimated to be 0.158 and 3.97 Å, respectively, at 3.16 GPa. The agreement is fairly good, therefore, pressure application and full rare-earth substitution are equivalent, and the phase diagram determined under pressure is common to the 1111 series with high T_c above 40 K.

In some respects, pressure application to the La1111 series is more useful than full rare-earth substitution because pressure is a cleaner and more continuous parameter on the phase diagram. It also allows investigation of the high-T_c mechanism in the other 1111 series. When the 1111 series with high T_c (≥ 40 K) at ambient pressure are viewed in terms of the present measurements under pressure, high T_c is realized away from the AF fluctuation which should be stronger than that of the La1111 series at the same doping level. Unfortunately, this expectation is not clearly confirmed by NMR measurements because magnetic fluctuation arising from rare-earth ions predominates, which prevents the extraction of AF fluctuation arising from the basal planes of iron.
In summary, the critical doping level of the La1111 series is estimated as $\chi \sim 0.10$ from $1/T_c/T$ at ambient pressure and 3.0 GPa. The phase diagram at 3.0 GPa indicates that superconductivity with $T_c \geq 40$ K develops in the overdoped regime away from the strong AF fluctuation. Pressure application is equivalent to full rare-earth substitution, suggesting that high T_c above 40 K in the 1111 series originates not from the AF fluctuation but from $D(\epsilon_F)$ at the electron pocket around the M point.

*naoki@fujiwara.h.kyoto-u.ac.jp

1Present address: Department of Applied Physics & Physico-Informatics, Faculty of Science & Technology, Keio University.

2Present address: Department of Mechanical Engineering and Intelligent Systems Faculty of Engineering, Tohoku Gakuin University.

5C. Hess et al., EPL 87, 17005 (2009).

8H. Chen et al., EPL 85, 17006 (2009).

