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ABSTRACT 

 

The grinding characteristics and the wear behavior of diamond wheel for grinding the optical 
connector ferrule were investigated by finite element analysis (FEA) and wear test. FEA of contact 
between diamond wheel and ferrule shows that the subsurface damage area of ferrule is 13 μm from 
the interface of abrasive particle and matrix. Fallout of abrasive particles is affected by the stress 
state at this interface. A 2-D finite element model was established to calculate the distribution of 
stress at the interface. As the result of FEA, fallout condition of abrasive was concerned with the 
ratio of critical protrusion; the ratio of particle size is about 0.6. FE model was established to 
investigate the effects of the diamond concentration of wheel. The FEA result shows that the lower 
concentration has the larger wear volume due to the small stress propagation. To investigate 
grinding performance, the pin-on-disc wear test was carried out for three types of diamond 
concentrations 75 %, 100 % and 125 %. Through the wear test, it was confirmed that the 75 % 
wheel concentration has the highest amount of wear volume. This result shows good agreement 
with that of FEA. And 100 % concentration, by considering the grinding ratio, shows the best 
optimized result for the grinding performance. 
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1. INTRODUCTION 



 

 

 

Grinding with bound abrasives has been extensively used in forming and finishing components of 
many materials [1-5]. The demand of parts associated with the advanced optical technology is 
increasing due to the growth and the expansion of the optical industry. Especially, super-precision 
optical parts associated with IT, NT and BT requires the high anti-deviation to accomplish the ultra 
precision machining. The wear characteristics of ceramic materials and cutting tools are important 
factor to control the precision of the products, and it is widely studied by many researchers: e.g. 
mechanisms of material removal in grinding ceramics [6,7], grinding of silicon nitride [8-10], 
energy concerns with grinding [11-14], and by relating the grinding forces and energy to various 
parameters associated with the undeformed chip geometry [15,16]. 

The understanding of the behavior of both the matrix and the diamond abrasives becomes important, 
due to the wide use of diamond tool [17-20]. The severe wear and/or fracture of the diamond wheel 
are a restriction to mass production; grinding process includes a sacrifice not only the workpiece but 
also the diamond wheel. The objective of this study is to investigate the wear characteristics of the 
ceramic ferrule grinding by the diamond wheel. 

The ultra-high technology is necessary to perform precision machining of hard machining material 
such as ceramics. 

In this study, the FE method was used to analyze the stress distribution and the abrasive at the 
contact area of the ferrule. The wear test was performed to verify the FEA results and to find the 
optimal condition of grinding from the comparison of each results. 

 

2. THEORETICAL BACKGROUND 

 

2.1 Cutting point spacing 

 

The successive cutting point spacing and the contact arc length are necessary for creating the FE 
model by considering the concentration. First of all, the contact arc length, lc, is formulated in 
kinematics of surface grinding, as shown in Eq. (1). 
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where, v is the workpiece velocity [rpm] V is the wheel velocity [rpm], ∆ is the cutting depth [µm], 
d is the workpiece diameter [mm] and D is the wheel diameter [mm]. 

Theoretical successive cutting point spacing, ath is calculated by Eq. (2). 
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where, dg is the equivalent diameter [mm] when the abrasive is assumed as sphere and Vg is the 
ratio of abrasive particles. 

 

2.2 Grinding force for single abrasive 

 

The Merchant's theory was used to evaluate the specific grinding energy of a single abrasive to 
create the FE model as a micro element of the grinding wheel. Fallout of an abrasive is mainly 
affected by tangential grinding force. The value of tangential grinding force was 2.31×10-4 N. This 
value was set up on the load condition of the FE model. 

 

2.3 Grinding force acting on the abrasive 

 

Shaw model [21] was used in this study. Applying the Shaw model to the FE model, the diamond 
shape particle was converted into the sphere which has a diameter of 20 μm and the frictional force 
was neglected. Tangential grinding force was considered as a direct relationship with the fallout of 
abrasives. 

 

2.4 Specific wear rate and grinding ratio 

 

Wear of the wheel is related to the amount of grinding. Inverse value of the specific wear rate is 
grinding ratio, G as shown in Eq. (3). 

     STG                        (3) 

where T is the wear volume of material and S is the wear volume of wheel. 

The parameter G was evaluated to use as a standard of the economical efficiency of the diamond 
wheel. 

 

3. CHARACTERISTICS OF MATERIALS 

 

3.1 Characteristics of the zirconia ferrule 

 

TZP (Tetragonal Zirconia Polycrystal) was used in this study as the test material. It has been using 
widely in broad industry because of the excellence in hardness, strength/weight ratio, thermal 
stability, and corrosion resistance. 

 



 

 

3.2 Characteristics of the diamond wheel 

 

Table 1 shows the material properties of a diamond and a resin, which is the specification of the 
diamond wheel. In case of machining the ferrule, the diamond wheel which is made by a phenolic 
resin is used; it has relatively high elasticity but low grinding resistance. Phenolic resin can bring a 
high revolution and a high grinding amount due to a proper removing flash and scale. Generally the 
phenolic resin is used but fiber reinforced phenolic resin is also used in special demand. Elastic 
modulus of the diamond wheel applied in FE simulation was 46 GPa which was determined by an 
elastic modulus of grade, N. 

 

Table 1 Material properties and specification of the diamond wheel 

Properties Diamond Resin 

Elastic Modulus (GPa) 1171 7 

Poisson’s ratio 0.1 0.3 

Concentration 100% 

Mesh # (abrasive size) #400 (40 μm) 

Grade N (46 GPa) 

Outer diameter 60 mm 

Inner diameter 20 mm 

Thickness 5 mm 

 

4. FINITE ELEMENT ANALYSIS 

 

4.1 Contact analysis between wheel and ferrule 

 

4.1.1 Finite element model 

 

The interacting surface, where the grinding area is minutely divided by 4-node rectangular plane of 
strain elements, is to generate the most accurate gradient for the stress which is large at this area. 
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Fig. 2 von Mises stress of ferrule and wheel versus the depth from contact surface 

 

4.2 Interface analysis between abrasive and resin 

 

4.2.1 Finite element model 

 

Normal force and frictional force were generated by the relative motion of the abrasive and 
workpiece. These forces will generate the stress at the contact interface between abrasive and resin. 
This state of stress is determined by the load and wear amount of the abrasive (Zhou, 1997). Semi-
infinite matrix model was created, which has 600 times larger size than real diamond abrasive. The 
stick-slip condition was selected as the boundary condition of the contact interface. 

 

4.2.2 Finite element model for the wear mechanisms 

 

Three types of assumptions for models were used as wear mechanisms in this analysis. Three 
models in this study: a symmetric wear, the symmetrical wear before the diamond particle detached; 
an asymmetric wear, wear occurs only in one side around the resin of the diamond particle and the 
other side remains; and a particle wear, wear amount of abrasive is relatively higher than that of 
resin.  

 

4.2.3 Result of finite element analysis 

 

Fig. 3 shows the stress distribution of all models. Fig. 3 (b) and (d) shows the moment just before 
the fallout of the abrasive. The stress concentration occurred at the corner of the particle. The stress 
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Fig. 4 von Mises stress versus node number in case of particle wear 

Table 2 Grinding ratio and wear volume of the ferrule and diamond wheel 

 

Length of ferrule 
before test 

Length of wheel 
after test 

Wear volume of 
ferrule 

Wear volume of 
wheel 

Grinding ratio, 
G 

1-1 10.47 7.81 52.18 0.62 80.03 

1-2 10.47 6.27 82.40 0.83 98.84 

1-3 10.48 7.95 49.63 0.50 99.49 

2-1 10.48 7.33 61.80 0.77 80.24 

2-2 10.46 6.38 80.04 0.73 109.54 

2-3 10.45 7.57 56.50 0.63 89.38 

3-1 10.46 6.93 69.25 0.76 91.15 

3-2 10.46 6.13 84.95 0.68 125.73 

3-3 10.46 7.78 52.58 0.58 94.21 

 

4.3 Analysis for the diamond concentration of wheel 

 

4.3.1 Finite element model 

 

The diamond concentration was used as a parameter for the evaluation. The grinding wheel consists 
of abrasive, resin and void. The role of void is to collect the chip; mainly affects on the discharge of 
the chip. Table 3 shows the successive cutting point spacing of the three different concentrations 
which was derived by the Eq. (2), and the ratio of the abrasive for the concentration. In each case, 
diamond concentration has the number of abrasive particles 75 % has 4; 100 % has 5; and 125 % 
has 6. Contact arc length, calculated by Eq. (1), was 374 μm and is applied to the model. There are 
two constraint conditions one is x direction at two side edges and the other is y direction at the 
bottom of the model. 
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5. WEAR TEST 

 

5.1 Result of wear test 

 

The pin-on-disc wear test was performed for diamond wheels which has different concentrations. 
The atmosphere was in-air temperature, unlubricated. The coefficient of friction was in the range of 
0.44 to 0.46, in all test condition. In other words, it can verify that the unstable wear behavior has 
not occurred during the test. Fig. 6 shows the wear volumes of the ferrule and the diamond wheel. 
The wear volume of diamond wheel was too small that the data is expressed decupled as shown in 
Fig. 6. The wear volume of the 75 % concentration was the largest in all other sets except for the 
first set (shown in Fig. 7). The higher the diamond concentration is, the smaller wear of wheel occur. 
In case of the 100 % concentration, the ferrule has the largest wear volume. It looks like that the 
self-sharpening occurred but the glazing or loading has hardly occurred. 

Fig. 7 shows the grinding ratio of each test set. In case of 100 %, it has the highest grinding ratio. In 
case of 75 %, on the other hand, it has the lowest grinding ratio. And in the case of 125 %, it was 
presumed to have the highest the grinding ratio due to the smallest wear volume but the wear 
volume of grinding wheel and also the removed amount of ferrule was small. When the small 
grinding depth and force was processed, the 125 % diamond concentration may well be fitted. 

 

 

Fig. 6 Bar chart of the wear volume of ferrule and wheel 
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Fig. 7 Variation of grinding ratio, G versus concentration ratio 

 

5.2 Microscopic observation of wear surface 

 

Fig. 8 shows a SEM photograph of the sectional view that diamond wheel of 75% concentration. A 
void, that many particles are shed in the resin, can be seen as V mark. A solid line indicates an 
interface of the surface and section of the diamond wheel. The traces of the particles fall out can be 
observed. In case of the wear test, the diamond (marked as D) wheel has the concentration of 125 %; 
the traces of the particles fall out have not been observed, and the grinding face has flat surface. If 
the grinding face became as the flat surface, the grinding resistance will be increased. And then, the 
wear occurred in the processing face of ferrule and wheel. Thus the quality of the ground face of 
ferrule becomes low. 
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