
 
 
 
 
 
 
 

KIER DISCUSSION PAPER SERIES 

KYOTO INSTITUTE 
OF 

ECONOMIC RESEARCH 
 

 

KYOTO UNIVERSITY 

KYOTO, JAPAN 

Discussion Paper No.733 
 

“A DynamicModel of Conflict and Appropriation” 
 
 

 Wolfgang Eggert  Jun-ichi Itaya  Kazuo Mino 
 

 
 
 

October 2010 
 



A Dynamic Model of Conflict and Appropriation∗

Wolfgang Eggert† Jun-ichi Itaya‡ Kazuo Mino§

October 22, 2010

Abstract

This paper conducts the analysis of conflict and appropriation by extending the static

contest models such as Hirshleifer (1991, 1995) and Skaperdas (1992) to a continuous-

time, differential game setting. This paper shows that there is a unique Markov perfect

equilibrium (MPE) strategy, which may be linear or nonlinear depending on the struc-

tural parameters of the model, when strategies are defined over the entire state space.

We show that ‘partial cooperation’ can be seen as a long-run response to conflict. In

particular, we find that a decrease in the effectiveness of appropriation, the depreciation

rate of a common-pool stock which is subject to appropriation or the rate of time prefer-

ences or an increase in the ‘degree of noise’ improves the degree of ‘partial cooperation’

and thus the welfare of an anarchic society in the long run.
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1 Introduction

Conflict and appropriation are increasingly gaining attention among economists as a power-

ful force driving human interactions. In reality economic agents not only engage in purely

economic activities like production, consumption or exchange, but also sometimes allocate

resources to conflict as well as to appropriation activities in order to capture what others have

produced or to secure certain rents. There is a relatively small but growing literature in polit-

ical economics initiated by Hirshleifer (1991, 1995), Skaperdas (1992) and Grossman and Kim

(1995) which allows for the possibility of conflict and appropriation in economic interactions.

Their models share four common features. First, they postulate that conflict arises from the

choice of rational and self-interested agents. Second, a well-defined and enforced property

right over, at least, some goods do not exist. Third, the agents are assumed to be myopic

in a way that they maximize only the current payoff. Fourth, their models are static. This

paper conducts the analysis of conflict and appropriation by extending their static models to

a dynamic one.

Hirshleifer (1995) takes an initial step towards a dynamic approach by recognizing succes-

sive iterations of the one-shot game, and focuses on the convergent point of such iterations

(he calls such a fixed point “a steady state”). Nevertheless, as Maxwell and Reuveny (2005,

p.31) correctly point out, “However, this approach is not fully dynamic: it does not specify

equations of motion for any variables, time is not a variable in the model, and the condition

for dynamic stability is not derived based on standard dynamic analysis”.

In response to such long-term desires, there have been several papers which attempt to con-

struct a dynamic variation of the one-shot conflicting game analyzed by the above-mentioned

authors. Garfinkel (1990) examines a dynamic model in which agents make choices between

productive and fighting activities. She uses a repeated game setting where threats and pun-

ishments are available. Existence of cooperative, disarmament equilibria can be established

using Folk Theorem arguments. Skaperdas and Syropoulos (1996) discuss a two-period model

of conflict in which time-dependence is introduced by the assumption that second period re-

sources of each agent are increasing in first-period’s payoff. As a result, “the shadow of the
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future” may impede the possibilities for cooperation. In other words, competing agents engage

more in appropriation in order to capture a bigger share of today’s pie. The equilibrium solu-

tion concept we employ in this paper allows us to identify possible cooperative outcomes as a

result of decentralized decision-making by rational and forward-looking agents, without having

to rely on the Folk Theorem of repeated games or enforceable commitments.1 Moreover, since

the one-shot game is repeated every period due to the nature of the repeated game, it would be

unsatisfactory to describe true dynamic situations which are not “stationary”. More recently,

Maxwell and Reuveny (2005) construct a conflict model with two competing groups in which

each group’s population and a stock of common (natural) resources both change over time.

Since three non-linear differential equations characterizing the dynamic paths of these stock

variables do not allow for an analytical solution, they resort to numerical simulations. These

exercises reveal that mild appropriation activity depresses the use of natural resources for

production, thus possibly creating a Pareto improvement compared to cooperative situations

where there is no appropriation activity, and, moreover, tends to reduce the volatility of those

stocks through the transition. Although their model generates interesting insights, they still

assume that agents are myopic. The authors in the literature have called for a full dynamic

and multi-period model of the Skaperdas-Hirshleifer based literature which incorporates the

behavior of non-myopic agents who are taking into account the consequences of their future

actions.2 More recently, Hafer (2006) develops a large-population infinite-horizon dynamic

game in which players are randomly matched in each period to play the war of attrition. She

shows that although the distribution of types among the winners and losers changes with each

1According to the so-called Folk Theorem, if players are sufficiently patient in infinitely repeated games, any

outcome that is feasible and individual rational could be realized as an equilibrium outcome. Such multiplicity

of equilibria would lose the predictability of the equilibrium outcome. Although even in the literature on

differential games, cooperative behavior has been investigated based on non-Markovian trigger strategies (see,

e.g., Benhabib and Radner, 1992; Dockner et al., 2000, Chap.6), we do not adopt this approach here.
2More recently, there is another class of dynamic conflict models that include, e.g., Gradstein (2004) and

Gonzalez (2007), and Tornell and Lane (1999). There are several important differences between the models

in their papers and ours. First, in their models a flow of the output produced each period is subject to

predation, while in our model a stock variable is subject to predation. Secondly and more importantly, those

papers investigate the relationship between conflict and economic growth in the standard growth model based

explicitly on the investment and saving decisions of a large number of agents. Hence, their models are mostly

concerned with the macroeconomic consequences, such as growth effects of insecure property rights. Since

our model is a straightforward dynamic extension of Grossman, Hershleifer and Skaperdas which allows for

interaction among a small number of agents, it enables us to directly compare our results with those of their

static conflict models and thus to highlight the strategic role of appropriation among those few agents in the

intertemporal context.
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round of conflict, in a steady state there is no conflict. Although the motivation is the same

as ours, she has to use the model of the war of attrition between two players because she

has assumed that there is only one, indivisible parcel of land. This assumption significantly

distinguishes their model from the models of Skaperdas and Hirshleifer in which a prize is

divisible and the war of attrition never takes place.

We develop a forward-looking agent-based infinite horizon, general-equilibrium model to

study the dynamic evolution of self-enforcing property rights. There are various ways of

extending one-shot, static models of Skaperdas and Hirshleifer to a dynamic setting. Following

their models, we first assume that the initial resource endowment is fixed over time. This

assumption would be defended either by interpreting the initial resource endowment as a time

or labor supply, or by assuming the fixed population in order to keep the model tractable. The

relevant state variable in our dynamic model is a durable stock which accumulates through

time according to the production process using collective efforts of all parties involved. This

durable stock is exhaustible or rival in the sense that one agent’s use of the stock does diminish

its availability to other agents, and is also open to appropriation by rivals due to the lack

of well-defined or enforceable property rights. Hence each of the agents is tempted by the

immediate benefit attainable from capturing the stock. Natural (renewable) resources such as

fishes and forest, and land in primitive historical societies are examples of such durable stocks

or disputed wealth. In order to acquire land, people develop land through cooperative efforts,

while they can also seize it from others. The stock of knowledge is another example.

We model the incentives of agents to exert effort in an attempt to challenge the claims

of others. All agents who succumb to the temptation reduce their help in production of the

common-pool stock to increase their efforts to convert claims on the common stock into ef-

fective property rights. More specifically, agents derive a payoff (or utility) from owning the

stock of durable goods and, at every moment in time, choose how to allocate an endowment

between appropriation of the common-pool stock (creating property rights) and participat-

ing in the production process to accumulate the common-pool stock. The production and

appropriation decisions made independently and noncooperatively by each of the agents end

up determining the evolution of the open-accessible stock. We use a tractable version of a
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differential game formulation of this model of conflict between several agents who attempt

to appropriate a common-pool durable stock over an infinite horizon. The solution concept

employed is a Markov perfect equilibrium (MPE), restricting strategies to be functions of

the current payoff-relevant state variable. The key to determining which describe equilibrium

outcomes is subgame perfection over the entire state space [0,∞), and not for its subset.3

The results obtained in this paper are summarized as follows. First, there uniquely exists

either a linear, singular MPE or a nonlinear, non-singular MPE strategy. More precisely,

depending on the structural parameter values of the model, either of the strategies, which

can be extended by corner solutions to the entire state space, is qualified as MPE strategies.

This uniqueness property of MPE strategies stems from the requirement that the domain

of a state variable must be defined over the entire state space. This requirement plays an

essential role in refining equilibria as well as associated steady states without appealing strict

concave objectives unlike the static contest models. Second, both solutions commonly reveal

that initially poor countries will exhibit an increase in appropriation as the aggregate stock of

durable good gets larger until a steady state is reached. On the other hand, in economies with

an affluent endowment of natural resources the “marginal gain (or utility)” of appropriation

is higher and thus agents substitute appropriation for production for a while until the state

variable reaches a threshold level. From that threshold onwards, agents choose to engage

in production activity to some extent until a steady state is reached where the output of

production is only just sufficient to replace the stock of durable goods. This result relates to

the observation that rent-seeking activities in rich countries may result in deindustrialization

as suggested by the literature on the resource curse (e.g., Sachs and Warner, 1999).4

Fourth, in the long run (=steady state) property rights may be “partially” enforced in the

sense that appropriation and productive activities coexist, so that neither a totally peaceful

(disarmed) equilibrium nor a full-fighting equilibrium emerges as a long run stable outcome.

3Nevertheless, there is a literature that has not required strategies to have the standard game-theoretical

meaning. This has odd theoretical foundations–at best–either requiring endogenously defined domains (see

Tsutsui and Mino, 1990), or not requiring that strategies be defined for every possible subgames (see Itaya and

Shimomura, 2001; Rubio and Casino, 2002). In this paper strategies are defined in the standard game-theoretic

sense; that is, strategies should be defined over “the entire state space” which may possibly be joined with

corner strategies.
4There is the evidence that resource abundance in the definition used by Sachs and Warner (1999) is

associated with civil war (e.g., Collier and Hoeffler, 2004).
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Moreover, the less the productivity of conflict technology, the more patient the contenders, the

less the rate of depreciation, or the less sensitive to appropriative effort the conflict technology,

the less each contender is to undertake appropriation, and thus the greater are the degree of

partially cooperation as well as the welfare of an anarchic society.

The organization of the paper is as follows. In the next section we formulate the model

and state all assumptions. In Section 3 we characterize Markov Perfect Equilibrium strategies.

In Section 4 we conduct comparative static analysis with respect to several principle struc-

tural parameters, and then designs institutions or policies which make the non-cooperative

solution closer to a first-best (i.e., cooperative) solution. Section 5 concludes the paper. Some

mathematical proofs will be given in the appendices.

2 The Model

2.1 Analytical Framework

Consider an infinite horizon economy populated by n ≥ 2 agents (or contenders) who strate-
gically interact. Each of the contenders derives utility from the consumption or services of a

common-pool asset, such as land territories, natural resources, or the tangible or intangible

stock of durables. We want our model to capture the role of productive and aggressive activi-

ties with the understanding that aggressive investment causes an inward shift of the aggregate

production possibility frontier. Accordingly, we use a setup where appropriation and produc-

tion are two substitutable investment choices. Specifically, let contender i decide at each point

in time, t, how much resources to devote for appropriation ai(t) ≥ 0 and production li(t) ≥ 0.
The resource (e.g., time) constraint of i is:

ai(t) + li(t) = 1, (1)
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where the time-invariant endowment is normalized at 1, and is not subject to appropriation.5

The time arguments have been suppressed in this and all subsequent equations except when

it is strictly necessary.

The common-pool stock is subject to appropriation. The stock is generated by accu-

mulation of output. At each point in time, t, output is produced with a linear production

technology:6

Y
¡
l1(t), . . . , ln(t)

¢
=

nX
j=1

lj(t), (2)

which captures the idea that higher productive efforts by contenders cause an outward shift

of the production possibility frontier for the economy as a whole. The output of production

can be stored to augment the common-pool stock. However, storage entails costs such that

the stock Z evolves according to

Ż(t) = Y
¡
l1(t), . . . , ln(t)

¢− δZ(t), (3)

where δ ∈ (0, 1) is the rate at which output will depreciate if stored for future consumption, and
Ż denotes a change of Z(t) over time.

A main ingredient of the model is the conflict technology which, for any given values

of a1, . . . , an, determines each contender’s probability of winning sole possession in obtaining

the stock Z(t) in a given period. To model this probability for contender i, a natural assump-

tion is that the probability is increasing in i’s aggressive investment, i.e., the fraction of time

i devotes to aggression, but decreasing in the sum of aggressive investment of all contenders.

To represent the relative success of i in the contest, therefore, we will use the following conflict

5In the existing literature on conflict and appropriation the assumption that each agent has some essential

property rights is standard. Individual’s labor supply is such an example. Maxwell and Reuveny (2005) further

assume that the amount of labor supply is growing over time as a result of the growth of population. However,

to avoid unnecessary complications, we assume that the population of agents remains constant through time.
6The production function may be generalized to the CES production function. Nevertheless, such general-

ization does not essentially alter the result without complications.
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technology which is slightly more general than the Tullock (1980) contest success function:7

pi
¡
a1(t), . . . , an(t)

¢
=

[ai(t) + η]
r

[ai(t) + η]
r
+
Pn

j 6=i [a
j(t) + η]

r for ai ∈ [0, 1], (4)

where the parameter r captures the effectiveness of aggression and η > 0.8 The role of a

positive constant number η is to prevent pi (.) from being discontinuous at point (0, . . . , 0).

As will be seen, if the model is to allow the possibility that the equilibrium values of all ai’s

equal zero, then the function pi (.) is either discontinuous or undefined on point (0, . . . , 0) when

η = 0. This property holds true in the most static rent-seeking models based on the Tullock

(1980) success function (i.e., setting η = 0 in (4)). One may interpret η as either the prior

common winning probability of each contender before any aggressive activity is undertaken

(see Cochon, 2000), or the “degree of noise” which captures the extent of which pure luck as

opposed to appropriate efforts determines success in the contest (see Amegashie, 2006). It

should be also noted that the contest success function (4) may also be interpreted as a sharing

rule or ownership of assets or outputs generated by the “productive assets” among contenders

proportional to their choices of ai.

The second restriction placed on (4) is as follows:

∂2pi

∂ai2
= r (n− 1) n (r − 1)− 2r

n3 [ai(t) + η]
2
< 0 for

⎧⎪⎪⎨⎪⎪⎩
n = 2 ∧ r > 0,

n > 2 ∧ 0 < r < n/(n− 2),
(5)

which is obtained by differentiating (4) with respect to ai twice and then imposing symmetry.

Condition 0 < r < n/(n− 2) ensures the inequality in (5), implying that the r.h.s. of (10) is
concave in ai ∈ [0, 1] and thus the second-order condition for an optimal choice of ai holds.9

Nevertheless, we impose a slightly more stringent condition as follows:

7Although the contest success function (4) satisfies axioms A1-A5 in Skaperdas (1996), it is not homogeneous

of degree one in ai (i.e., Axiom A6 of Skaperdas).
8This specification has been also used by several authors in the rent-seeking literature including Neary

(1997), Dasgupta and Nti (1998), Amegashie (2006), and Rai and Sarin (2009). We are grateful to an anony-

mous referee for bring this contest success function to our attention.
9Tullock (1980) assumes that condition r < n/(n − 1) satisfies the second-order condition in his n-agent

contest game. Although Hirshleifer (1991, 1995) and Gonzalez (2007) assume that r < 1 in their two-agent

games, this assumption is implied by the above second-order condition for Tullock’s model.
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Assumption 1: 0 < r < 1/(n− 1).
Assumption 1 guarantees not only condition 0 < r < n/(n− 2), but also the existence of

Markov perfect Nash equilibrium strategies which will be defined later.

Consider the following symmetric, stationary differential game. At each moment in time,

t, each of the contenders chooses controls, ai(t) and li(t), from its feasible set to maximize

the discounted value of total expected payoffs, discounted at rate ρ ∈ R++, over the infinite
horizon [0,∞). If all opponents of contender i use Markovian strategies aj(t) = φj(Z(t)),

j 6= i, then i solves the following optimal control problem denoted by Γ(Z0, 0):

max
{ai(t)}

J i,φ
−i
(ai(.)) ≡ max

{ai(t)}

Z ∞

0

pi
¡
ai(t),φ−i(Z(t))

¢
βZ(t)e−ρtdt (6)

s.t. Ż(t) =

nX
j=1, j 6=i

£
1− φ−j(Z(t))

¤
+ [1− ai(t)]− δZ(t), (7)

Z (0) = Z0 > 0, (8)

ai (t) ∈ [0, 1] for ∀t ∈ [0,∞) , (9)

where pi
¡
ai,φ−i(Z)

¢ ≡ pi(φ1(Z), . . . ,φi−1(Z), ai,φi+1(Z), . . .φn(Z)) and Z0 is the initial stock.
The first and second arguments of Γ(Z0, 0) refer to the initial level of the common stock and the

time at which the game starts, respectively. The game is symmetric and stationary since the

instantaneous payoff functions and feasible sets are identical among agents, and the equation

of motion (7) is common to all contenders, and since these components of the model are all

not explicitly dependent on time.

The instantaneous expected payoff (or income) to contender i is given by pi (a1, . . . , an)βZ.

We may view βZ (t) as a linear utility function to capture amenities from the stocks of land,

natural resources such as forests, animals and so on. Alternatively, it can be viewed that the

flow of βZ (t) represents the income, return, or output generated by the “productive assets” Z,

where β represents a productivity parameter for harvest or production efficiency. For example,

land produces harvest: fishing grounds produce fishes: forests, which may be utilized for leisure

activities, yield clean air and timber production: financial assets yield monetary returns: the

stock of knowledge (intellectual property) produces new goods (patent revenues). Maxwell
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and Reuveny (2009) have interpreted the variable Z as the pool of potential voters which

produces political power or the number of supporters βZ.

2.2 Solution Concept

We solve the differential game Γ(Z0, 0) using the notion of a stationary MPE, which is ap-

pealing because, in ruling out all direct strategic interactions, it allows use of optimal control

tools. To state this concept of equilibrium in a mathematically rigorous way, we reproduce a

series of definitions given by Dockner et al. (2000) with notational modifications:

Definition 1 (Dockner et al., 2000, Definition 3.1). A control path ai : [0,∞) 7→ R+ is

feasible for the game Γ(Z0, 0) if the initial value problem defined by (7) − (9) has a unique,
absolutely continuous solution Z(.) such that the constraints Z(t) ∈ R+ and ai(t) ∈ [0, 1] hold
for all t and the integral in (6) is well defined.

As the game Γ(Z0, 0) is stationary, we can focus on equilibria supported by stationary

strategies. For analytical simplicity, we further restrict ourselves to stationary Markov strate-

gies throughout the paper.

Definition 2 (Dockner et al.,2000, p.97). A stationary Markov strategy is a mapping φi :

R+ 7→ [0, 1], so that the time path of the control is ai(t) = φi(Z(t)).

Hence, stationary Markov strategies are functions only of the current state. Then we can

define:

Definition 3 The n-tuple of functions (φ1,φ2, ...,φn) is a stationary Markov Nash equilibrium

if for each i ∈ {1, 2, .., n} an optimal control path ai(t) of the problem Γ(Z0, 0) exists and is

given by the stationary Markov strategy ai(t) = φi(Z(t)).

We use the further strengthening of Markov Nash equilibrium, that is, subgame perfectness,

to characterize an equilibrium path:

Definition 4 (Dockner et al., 2000, Definition 4.4). The n-tuple of functions (φ1,φ2, ...,φn)

is a Markov Nash equilibrium of the game Γ(Z0, t). The Markov Nash equilibrium is Markov
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perfect equilibrium (MPE) if for each (Z, t) ∈ R+ × [0,∞), the subgame Γ(Z, t) admits a

Markov Nash equilibrium (ψ1,ψ2, ...,ψn) such that ψi(Ẑ, s) = φi(Ẑ, s) for all i ∈ {1, 2, ..., n}
and all (Ẑ, s) ∈ R+ × [t,∞).

Since the subgame Γ(Z, t) is stationary, Γ(Z, 0) = Γ(Z, t) and thus all stationary Markov

Nash equilibria are MPE. We make the following assumption:

Assumption 2: The value function of contender i, V i (Z) = max{ai(t)} J i,φ
−i
(ai(.)): R+ →

R, is locally Lipschitz continuous.

When contender i’s value function is differentiable almost everywhere,10 it solves the

Hamilton-Jacobi-Bellman equation:

ρV i (Z) = max
ai∈[η,1]

"
pi
¡
ai,φ−i

¢
βZ + V iZ (Z)

(
nX

j=1, j 6=i

¡
1− φj

¢
+
¡
1− ai¢− δZ

)#
, (10)

where V iZ (Z) represents the derivative of V
i (Z) with respect to Z.

The first-order necessary condition for i’s choice of appropriation is given by

∂pi

∂ai
βZ − V iZ (Z)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
= 0 =⇒ ai ∈ [0, 1] ,

> 0 =⇒ ai = 1,

< 0 =⇒ ai = 0.

(11)

According to (11), each contender, when choosing ai, trades the marginal increase in expected

payoff from an increase in appropriation against the marginal loss in the discounted value of

the future stream of payoffs which results from a reduction of productive effort. If the payoff

gain from an increase in ai is larger than the payoff loss implied by the decrease in li for all

levels of ai ∈ [0, 1], then i will rationally devote all resources to appropriation. In contrast,
i chooses ai = 0 in cases where the discounted marginal gain from productive investment

exceeds the instantaneous marginal gain from aggressive behavior for all levels of ai ∈ [0, 1].
10It follows from Rademacher’s Theorem that the value function V i (Z) is differentiable almost everywhere.

Even if it is not differentiable at some point, we can apply generalized HJB function coupled with the generalized

gradient of V i (Z) (see Dockner et al. (2000), Chapter 3).

10



2.3 Candidate Markov Perfect Equilibrium Strategies

Since we have started our analysis assuming identical contenders and since the state equation

(7) is symmetric with respect to their controls, a natural focus is placed on symmetric equilib-

ria. The symmetry assumption allows us to drop the subscript i in the subsequent discussion,

and we will suppress this index unless strictly necessary for expositional clarity.

At an interior solution of φ (Z) we may apply the envelope theorem to characterize φ0 (Z).

Using the symmetry assumption, we obtain the following (see Appendix A of the paper for

derivation):

φ0 (Z) =
[φ (Z) + η]

½
n [φ (Z) + η]

r (n− 1)Z +
[1− φ (Z)]n

Z
− (ρ+ 2δ)

¾
(1 + η)n− δZ

. (12)

We will draw the representatives of Markov strategies in a control and state space in order

to characterize qualitative solutions to the nonlinear differential equation (12). To this end

we first identify the steady state locus where Ż = 0 in (3), called C1 in the following. Let

C2 denote the loci where φ
0 (Z) goes to plus/minus infinity, and by C3 the loci where φ

0 (Z)

equals zero in the (Z, a) space:

C1 := {(Z, a) : Ż = (1− φ (Z))n− δZ = 0},

C2 := {(Z, a) : φ0 (Z)→ ±∞}, (13)

C3 := {(Z, a) : φ0 (Z) = 0}.

The steady-state line C1 is a downward-sloping, straight line in the (Z, a) space. It intersects

the vertical axis at point (0, 1) and the horizontal axis at point (n/δ, 0). Turn to C2. Setting

the denominator in (12) equal to zero, we obtain a vertical line at point (ZE, 0) where ZE =

(1 + η)n/δ (which we call “the non-invertibility (NI) locus” following Rowat, 2007). The

locus C3 is obtained by setting the numerator in (12) equal to zero. Solving for a gives the

following locus:

a =
r (n− 1)

1− r (n− 1)
ρ+ 2δ

n
Z − r (n− 1) + η

1− r (n− 1) , (14)
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Figure 1: Markov strategies when r (n− 1) (ρ+ δ) ≤ [1− r (n− 1)] δ.

which, due to Assumption 1, shows that the straight line C3 has a positive slope and a

negative intercept on the vertical axis, as illustrated in Figs. 1 and 2. As a result, the point

of intersection between C2 and C3, labelled E, will be situated in the nonnegative quadrant

of the (Z, a) plane:

(ZE, aE) =

µ
(1 + η)n

δ
,
r (n− 1) (ρ+ δ)(1 + η)

[1− r (n− 1)] δ − η

¶
, (15)

which is called “a singular point”. Note, however, that point E may be located below or above

the resource constraint (1), since the value of aE may or may not be less than 1. Depending

on this value we can draw two diagrams such as Figs. 1 and 2. Moreover, it follows from (3)

that any strategy φ (Z) above C1 implies that Z declines in time, while any strategy φ (Z)

below C1 entails an increase of Z over time.

Collecting the arguments, we can illustrate an uncountable number of the curves corre-

sponding to the (interior) solutions satisfying the HJB equation (10) in Figs. 1 and 2. These

figures display representatives of those integral curves that are divided into five types of the

families of strategies. Arrows on the families of integral curves φj, j = 1, . . . , 4, and φL

illustrate the evolution of Z over time.
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Figure 2: Markov strategies when r (n− 1) (ρ+ δ) > [1− r (n− 1)] δ.

Furthermore, by direct integration of (12) and manipulating we can obtain a general solu-

tion to the differential equation (12)

φ (Z) + η =
r (n− 1) (ρ+ δ)Z [(1 + η)n− δZ]

ρ+δ
δ

n [1− r (n− 1)] [(1 + η)n− δZ]
ρ+δ
δ + r (n− 1) (ρ+ δ) c1

, (16)

where c1 represents an arbitrary constant of integration and may take a positive, zero or

negative value. When c1 = 0, (16) simplifies to
11

φL (Z) =
r (n− 1) (ρ+ δ)

[1− r (n− 1)]nZ − η. (17)

It is seen from Figs. 1 and 2 that the left branch of the linear strategy φL (Z) to the steady

state line C1 starts from point (0,−η), and then reaches point S on C1, while its right branch
11Mino (1983), and Long and Shimomura (1998) show that in the class of differential games the value function

is homogeneous of degree α in terms of a state variable and the policy functions satisfying the corresponding

HJB equation contains a linear function of a state variable whenever the instantaneous objective function is

homogeneous of degree α and the constraints are homogeneous of degree one in terms of state and control

variables. The emergence of the linear strategy as a solution for the present model is consistent with their

finding.

13



starts from any Z ∈ (ZS, ∞), then reaching point S also, where

(ZS, aS) =

µ
(1 + η)n [1− r (n− 1)]

r (n− 1) ρ+ δ
,
r (n− 1) [ρ+ (1 + η)δ]− ηδ

r (n− 1) ρ+ δ

¶
. (18)

Note, moreover, that the right branch of φL passes through the singular point E.

Inspection of (16) further reveals that the φ1 (resp., φ3) family of strategies represents the

solution curve of (16) when c1 > 0 and (1+η)n > δZ (resp., (1+η)n < δZ), while the φ4 (resp.,

φ2) family of strategies represents the solution curve of (16) when c1 < 0 and (1 + η)n > δZ

(resp., (1 + η)n < δZ). Moreover, all members of the left branch of the φ4 family start from

point (0, − η) as well, while no members of its right branch cross the non-invertibility locus

C2. All members of the left branch of the φ1 family also start from point (0, − η) and then

reaches points on the steady state line C1, while all members of its right branch start from

point (ZE, − η), and then reach the same point on C1. On the other hand, although the

members of the φ2 and φ3 families start from any initial value Z0 > ZE, all members of the φ2

family approach the horizontal axis, while all members of the φ3 family go to plus infinity as

Z approaches ZE, as illustrated in Figs. 1 and 2.

As implied by Definition 4, candidate strategies must be mapped from any element of the

entire state space of Z, that is, R+. In other words, strategies should cover the entire state

space, i.e., [0,∞). At first glance this requirement seems to eliminate all interior strategies φj,
j = 1, . . . , 4, and φL due to the presence of the control constraint [0, 1] as well as the NI

locus C2. Nevertheless, those strategies could potentially be continuously extended by the

cornered strategy φ = 1 along the resource constraint (1), and/or by the non-aggressive

strategy φ = 0, which has been suggested by Rowat (2007). Both potential extensions are

triggered by the cornered strategies when the equality in (11) does not apply. We use the hat

to indicate those potential extensions so that φ̂j = min
©
1, max

©
0,φj

ªª
where j = 1, .., 4,

and L.
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3 Refining Candidate Strategies

Unfortunately, not all the extended strategies are qualified as MPE strategies defined in Defi-

nition 4. Dockner et al. (2000) and Rowat (2007) have provided sufficiency conditions for the

existence of MPE. So we have to test whether those potentially extended strategies satisfy the

sufficiency conditions in Theorem 3 of Rowat (2007).

To do this, we first need the following lemma:

Lemma 1

(i) The value function along the cornered strategy φ = 0 is not bounded if φ = 0 possess

a constant of integration c2 > 0 in the value function V (Z) = [β(n+ ρZ)/ρ (ρ+ δ)n] +

c2 [n− δZ]
− ρ

δ ; and

(ii) it is impossible to extend either the interior strategy φ1 or φ2 by φ = 0 at every value of

Z that is strictly greater than nη/r(n− 1)(ρ+ δ), where this threshold value is located between

the two intersections of the horizontal axis with the linear strategy φL, and that with C3.

The proof is given in Appendix B. Although the strategy φ = 0 alone cannot form MPE

strategies, it might be possible to be joined with some of the interior strategies identified in

the previous subsection to cover the whole range of the domain of the state variable Z.

To check whether it is possible or not, we have to inspect Fig. 1 (i.e., r (n− 1) (ρ+ δ) ≤
[1− r (n− 1)] δ) and Fig. 2 (i.e., r (n− 1) (ρ+ δ) > [1− r (n− 1)] δ) separately. With the
help of these diagrams, we have the following lemma:

Lemma 2 Consider the differential game Γ(Z0, 0).

(i)If r (n− 1) (ρ+ δ) ≤ [1− r (n− 1)] δ, then none of the members of the φ̂1 and φ̂2 families

in Fig. 1 can form MPE strategies; and

(ii)if r (n− 1) (ρ+ δ) > [1− r (n− 1)] δ, then none of the members of the φ̂2 family in Fig. 2
can form MPE strategies.

Proof. It follows from Lemma 1 that by choosing a constant of integration c2 ∈
£−nρ

δ β/ρ(ρ+ δ), 0
¤

in Fig. 3 of Appendix B, φ = 0 can be connected with the φ1 or φ4 family of strategies at the

associated value of Z ∈ [0, Z∗] in Fig. 1. However, it is not possible to extend φ1 by φ = 0
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in Fig. 1. This is because although all members of the φ1 family have to be connected with

φ = 0 in the interval between the intersection of C1 with the horizontal axis and ZE, φ = 0 is

not qualified as an optimal solution at any point in that interval due to Lemma 1. Moreover,

it follows from Lemma 1 that it is also impossible to extend the φ2 family by φ = 0 in Figs. 1

and 2. Taken together, the families φ̂1 and φ̂2 both violate condition (i) of Theorem 3 of Rowat

(2007) in which the n-tuple of the solution paths is feasible for Γ(Z0, 0).

Nevertheless, it is seen from Fig. 2 that it might be possible to extend some of the φ1

family of strategies by another corner strategy φ(Z) = 1, labelled φ = 1. Although the

interior strategy φ4 cannot intersect the NI locus C2, it may be also possible to extend φ4

by φ = 1. To check these possibilities, we need the following lemma (its proof is given in

Appendix B):

Lemma 3

(i) The value function along the cornered strategy φ = 1 is not upper bounded if φ = 1 possess a

constant of integration c3 > 0 in the value function V (Z) = β
£
Z + Z−

ρ
δn (ρ+ δ) c3

¤
/n (ρ+ δ);

and

(ii) it is impossible to extend either the interior strategy φ1, φ3 or φ4 by φ = 1 at every value

of Z which is strictly less than ZC ≡ (1 + η)n/r(n− 1)(ρ+ 2ρ).

Moreover, it follows from Figs. 3 and 4 in Appendix B that φ = 1 eventually becomes a

solution for larger values of Z (more precisely, which are larger than the l.h.s. of (B.7)). This

seems to be quite intuitive because when the existing stock Z is abundant (i.e., larger than

this threshold value), contenders have a stronger incentive to capture the stock from others

through appropriation activity rather than to engage in production activity, thus devoting to

full-fighting φ = 1.

Lemma 4 None of the members of the φ̂3 and φ̂4 families can form MPE strategies.

Proof. Although in Fig. 1 all members of the φ4 family intersect the constraint a = 1 (i.e.,

φ = 1), none of them can intersect the NI locus C2. On the other hand, since it follows from

Lemma 3 that φ = 1 remains an optimal solution only when Z > ZC , it is seen from Fig. 1

that it is impossible to extend φ4 by φ = 1.
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In Fig. 2, all members of the φ4 family intersect the constraint a = 1 (i.e., φ = 1) at

the points whose values of Z are strictly less than ZL. Since ZC > ZL in Fig. 2, it is also

impossible to continuously extend φ4 by φ = 1.

Since any members of the φ3 family in Fig. 2 intersect neither C2 nor the constraint a = 1,

any extension of φ3 is not possible. In contrast, in Fig. 1 there exist some members of the

φ3 family which intersect the constraint a = 1 at the points whose values of Z are strictly

larger than ZC. In this case, they have to cross φ = 1 again at a value of Z which is less than

ZC. However, it follows from Lemma 3 that at this intersection φ = 1 is no longer an optimal

solution. To sum up, any members of the families φ3 and φ4 cannot be continuously extended

by φ = 1, thus violating condition (i) of Theorem 3 of Rowat (2007).

In spite of those eliminations, there still remain the linear strategy φL and some of the φ1

family of strategies as candidate MPE ones. These strategies may be extended by φ = 1. This

conjecture will be confirmed in our main proposition as follows:

Proposition 1 Consider the differential game Γ(Z0, 0).

(i) If r (n− 1) (ρ+ δ) ≤ [1− r (n− 1)] δ, then only the linear strategy extended by φ(Z) = 0

and φ(Z) = 1 forms a MPE strategy; and

(ii) if r (n− 1) (ρ+ δ) > [1− r (n− 1)] δ, then only the non-linear strategy of the φ1 family

extend by φ(Z) = 0 and φ(Z) = 1 at ZC ≡ (1 + η)n/r(n− 1)(ρ+ 2ρ) forms a MPE strategy.

There are several remarks in order. First, Proposition 1 implies not only that the linear

(singular) and nonlinear (non-singular) MPE strategies qualified above, labelled φ̂L and φ̂
∗
1,

are asymptotically stable in the sense that from any arbitrary initial value of Z they can reach

finite steady states in the long run. Proposition 1 also says that there always exists either

of the two extended strategies, depending on the parameter values of the model. It is then

best understood that the uniqueness of MPE strategies arises from the stringent requirement

that the domain of a state variable should be defined over the entire state space, i.e., [0, ∞).
Although the emergence of a unique steady state in our model is similar to the results of

Hirshleifer (1991, 1995) and Skaperdas (1992) using a static contest model but also from those

of Maxwell and Reuveny (2005) using a dynamic model with myopic agents in which the
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unique one-shot Nash equilibrium is repeated every period, the reasons for the uniqueness of

equilibrium are quite different between their models and ours; that is, the uniqueness property

of their model is due to strict concave objectives, while our uniqueness property arises from

the defining characteristic for the concept of subgame perfect equilibrium.

Secondly, although “partial cooperation” in the steady state is also found in the static

models of Hirshleifer and Skaperdas, different degrees of “partial cooperation” depend on

which strategy is qualified for MPE strategies in our differential game. If the nonlinear MPE

strategy is qualified, a more efficient steady state will be realized compared to the linear one.

This feature does not emerge in the corresponding static contest models, because there is no

distinction between linear and nonlinear strategies in their models. Notably, the more effective

the conflict technology, the less patient the contenders, the larger the number of contenders

or the greater the rate of depreciation, the less likely that the linear strategy is chosen as a

MPE one; instead, the more likely that a more efficient nonlinear strategy is qualified as a

MPE one.

Thirdly, another important aspect of Proposition 1 is that an optimal choice of appropri-

ation activity varies according to the size of the common stock Z (=the prize) that changes

over time, which stands in contrast with the results based on the above-mentioned static con-

test models where the size of the prize is constant through time. When Z = 0, there is no

incentive for each contender to engage in appropriation activity because they get nothing from

this activity, so that all contenders choose the non-aggressive strategy φ = 0. As a result, the

common stock of Z is accumulating over time. When the initial stock level is relatively low,

investment in aggressive behavior monotonically increases toward the steady state point S

over time. In other words, the contenders will become greedier, as the common-pool stock Z

gets larger over time, because the marginal gain of appropriation will be higher. These fea-

tures apparently have not been addressed by Hirshleifer and Skaperdas because due to the

static nature of their models there does not exist a state variable. The primary driving force

is that the best-reply strategies irrespective of linear or non-linear ones display strategic com-

plements in such a way that when a contender increases his or her appropriation effort, the

other contenders also increase their appropriation efforts.
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In the long run, every contender chooses to contribute to the production of the common-

pool stock Z to some extent. In other words, (implicit) “partial cooperation” can be seen as

a best response to the risk of appropriation. In affluent economies, on the other hand, where

the initial level of the common-pool stock is sufficiently large, investment in aggression reaches

the maximum possible level (i.e., φ = 1) in finite time. In other words, since there is initially

a large amount of the common-pool stock in affluent economies, a full-fighting strategy will

be rationally and inevitably chosen during the transition to the steady state until the stock

decreases to a certain level.

4 Comparative Static Analysis

4.1 Steady State Effects

In this section we discuss the effects of a change in the model parameters on the transition

path of the linear strategy φL as well as on the associated long-run equilibrium point S, since

the other nonlinear MPE strategy displays the same comparative statics properties. Consider

first the effects of a change in the productivity (or effectiveness) of conflict technology. In the

model, a change in the productivity is captured by a change in r. The shift of point S can be

calculated by differentiating (18) with respect to the parameter r, respectively:

daS

dr
= (1 + η) (n− 1) δ (ρ+ δ)∆−2 > 0,

dZS

dr
= −(1 + η)n (n− 1) (ρ+ δ)∆−2 < 0,

where ∆ ≡ r (n− 1) ρ + δ > 0. Although an increase in r does not affect C1, this increase

strengthens the intensity of appropriation associated with every level of the common-pool

stock Z during the transition path, thus making the linear strategy φL steeper. Since the

productivity of appropriation becomes more effective with higher r, all competing agents

engage in more aggressive behavior in the hope of capturing more resources. This finding is

quite intuitive, and is also consistent with the static conflict models of Hirshleifer (1991, 1995).

As an increase in the number of contenders augments the aggregate endowment in pro-
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portion to n, more resources will be available to production and appropriation activities,

which is captured by an outward shift of the aggregate resource constraint C1. On the other

hand, the larger number of contenders will enhance the intensity of contest among contenders,

thereby intensifying each contender’s aggressive behavior and thus making the linear strat-

egy φL steeper. Hence, these two effects together intensify individual appropriation, while the

long run effect on the common-pool stock Z is ambiguous since the increase in endowment

interacts with the intensified aggressive behavior of contenders:12

daS

dn
= (1 + η)r (ρ+ δ) δ∆−2 > 0,

dZS

dn
= (1 + η)

£
(1− r (2n− 1))(−rρ+ δ)− n2r2¤∆−2 R 0.

A higher depreciation rate causes a reduction in the level of the common-pool stock Z

available to contenders, thereby discouraging appropriation. This resource-extraction effect

causes a clockwise turn of C1 around point (0, 1) (i.e., the aggregate resource constraint C1

moves inward toward the origin). At the same time, a higher δ implies that the cost of

reproducing the common-pool stock increases more than the cost of aggressive behavior. Since

this strengthens an incentive for aggressive behavior, φL gets steeper. Although these two

effects on appropriation operate in opposite directions, the following result indicates that the

former effect will outweigh the latter effect in the long run:

daS

dδ
= − [(1 + η)r (n− 1) ρ [1− r (n− 1)] + ηδ]∆−2 < 0,

dZS

dδ
= −(1 + η)n [1− r (n− 1)]∆−2 < 0.

A decrease of the subjective rate of time preference makes φL steeper, but it has no effect

on C1. Hence we obtain the following long run effects:

daS

dρ
= (1 + η)r (n− 1) δ [1− r (n− 1)]∆−2 > 0,

dZS

dρ
= −(1 + η)r (n− 1)n [1− r (n− 1)]∆−2 < 0.

12This effect has been also found in Result 4B of Hirshleifer (1995).
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The economic explanation is that as contenders become more patient (i.e., smaller ρ), they

put more weight on future stocks of durable goods rather than the current one, and thus tend

to spend more resources on production activity rather than on aggressive investment. This

result has apparently not been addressed by Hirshleifer (1991, 1995) and Skaperdas (1992),

who have used the static conflict models. It stands in contrast to Skaperdas and Syropoulos’

(1996) result in which the higher is the valuation of the future (i.e., smaller ρ), the stronger

is the intensity of fighting. The reason for this difference is that in their two-period model

contender’s first-period expenditure on appropriation increases his or her second-period payoff.

Rather, our result is similar to Garfinkel’s (1990) Folk Theorem type result in repeated games

where a lower discount factor (i.e., a smaller ρ) makes it easier to sustain cooperative outcomes.

An interpretation of our result is that long-sighted contenders become less aggressive because

they are more concerned about the future, i.e., the future benefits resulting from cooperation.

Finally, increasing the degree of noise mitigates the intensity of long-run contests:

daS

dη
= −n [1− r (n− 1)]∆−1 < 0,

dZS

dη
= [1− r (n− 1)] δ∆−1 > 0,

which accords with intuition. That is, a larger extent of pure luck (i.e., η) discourages an

incentive of aggressive behavior, because its increases lowers the marginal increase in the

probability of wining with respect to i’s aggressive effort.

We may then summarize the discussion in the following proposition:

Proposition 2

(i) An increase in the effectiveness of aggression leads to a higher level of aggression and to a

lower level of the common-pool stock (i.e., daS/dr > 0 and dZS/dr < 0);

(ii) an increase in the number of contenders leads to a higher level of aggression, but the effect

on the common-pool stock is ambiguous (i.e., daS/dn > 0 and dZS/dn R 0);

(iii) an increase in the depreciation rate leads to lower levels of aggression and of the common-

pool stock (i.e., daS/dδ < 0 and dZS/dδ < 0);

(iv)a decrease in the subjective rate of time preference (i.e., contenders become more pa-
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tient) leads to a lower level of aggression and to a higher level of the common-pool stock

(i.e., daS/dρ > 0 and dZS/dδ < 0); and

(v)an increase in the degree of noise leads to a lower level of aggression and to a higher level

of the common-pool stock (i.e., daS/dη < 0 and dZS/dη > 0).

4.2 First-Best Solution

In this subsection, we will characterize the explicit cooperative (first-best) solution as a bench-

mark steady state in the following. Assume an outside enforcer or centralized agency has the

power to enforce every contender to execute its command. The cooperative strategy is one

for which a centralized agency chooses the infinite-horizon planning profile of strategy a ∈ Rn+
at the outset of the game so as to maximize

R∞
0
Ze−ρtdt subject to Ż = n −Pn

j=1 a
j − δZ

where aj (t) ∈ [0, 1] for all j. Clearly, this optimization gives rise to a totally peaceful solution,
that is, aj (t) = 0 for t ∈ [0,∞) and all j, which leads to the most efficient long-run outcome
(0, n/δ). The result is understood by noting that an enforced peaceful resolution completely

eliminates socially wasteful aggressive activity if a central agency is strong enough to directly

control the allocation between production and appropriation. Based on this observation, we

can see that making the steady state level of Z closer to the Pareto efficient one leads to the

higher total discounted value of expected payoffs.

These results should be interpreted against the insight from Section 2 that a socially ef-

ficient steady state is not self-enforcing for it does not usually constitute a subgame perfect

(Nash) equilibrium. Nevertheless, the results are suggestive in the sense that even weak gov-

ernments which cannot fully control private agents might attempt to deter the development

of the conflict technology, to increase the “noise degree” in the conflict technology, to reduce

the depreciation rate of common-pool assets or to induce people to have longer sight. Such

structural or institutional reforms could reduce the likelihood of aggression and thus avoid

socially waste of resources, leading to peaceful and more efficient outcomes in the long run.

The nuclear nonproliferation treaty which deters the development of nuclear weapons (i.e., ag-

gressive conflicting technology) would be socially desirable in a way that makes the long run
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outcome resulting from the non-cooperative equilibrium behavior closer to the peaceful and

efficient one.

Even in an anarchic situation where every contender follows the Markov perfect equilibrium

behavior described in Sections 2 and 3, a decrease in either the productivity of aggressiveness,

the depreciation rate, or the subjective rate of time preference moves the resulting long run

equilibrium closer to the first-best one.

Another example is patent law, which aims at enforcing property rights on investment

return and thus makes anarchic situations closer to the first-best one by restricting socially

wasteful activities. Patent law potentially prevents a rapid fall in the expected return from

new innovation, which would be a consequence of imitation by rivals. The increase in the

return on investment caused by secure property rights may be approximately captured by the

effect of a lower depreciation rate in our model.

5 Conclusions

The first message of this paper is that completely aggressive behavior is not necessarily a ratio-

nal strategy for a contender in anarchic situations. Rather, every contender will individually

and voluntarily choose “partial cooperation”, in which each contender devotes its individual

resource both to productive and appropriation activities at the same time, even though con-

tenders act fully rational and are guided by their self-interest. The primary driving force is

the durability of the common-pool stock in conjunction with the forward looking behavior of

contenders. These intrinsically dynamic ingredients induce every contender to behave partially

cooperatively, even without punishments and threats, unlike Garfinkel (1990). In other words,

either if the stock depreciates completely each period or if contenders have myopic foresight,

they are less motivated to follow a cooperative behavior in producing a commonly-accessible

good.

The second major finding is that even if nonlinear Markov strategies are available, there is a

unique MPE strategy. This result is in sharp contrast with the results of Dockner and van Long

(1993), and Rowat (2007) which provide multiplicity of equilibrium strategies and uncountable

23



many long run equilibria including the better outcomes supported by the nonlinear MPE

strategies. However, it remains an open question as to the extent to which this uniqueness

result of our model is model-specific or robust under different contest success, production

or/and objective functions.

The model presented in this paper should be developed further in several directions. In

particular, introducing asymmetry among agents would enable us to compare the results of the

present model with those static models which do incorporate asymmetric agents. The “paradox

of power” (Hirshleifer, 1991) — the relatively less well-endowed agents improve their position

compared with their better-endowed counterparts — may be generated in such an asymmetric

dynamic conflict model. Another interesting research agenda is to investigate non-Markovian

equilibria supported by history-dependent strategies such as trigger ones in the present conflict

model, which might support multiple and more efficient, peaceful equilibria (see Benhabib and

Radner, 1992).

Appendix A: Derivation of Equation (12)

In this appendix we show how to derive (12) in the text. Assuming an interior solution, we

solve (11) for each contender to get the optimal strategy ai = φi (Z). By substituting this

optimal strategy into (10), the HJB equation (10) associated with i is transformed into

ρV i (Z) = pi(φi (Z) ,φ−i (Z))βZ + V iZ (Z)

"
nX
j=1

¡
1− φj (Z)

¢− δZ

#
. (A.1)

By differentiating (A.1) with respect to Z and applying the envelope theorem to the resulting

expression, we obtain

ρV iZ (Z) =

nX
j=1

∂pi

∂φj
φj0 (Z)βZ + pi(.)β + V iZZ (Z)

"
nX
j=1

¡
1− φj (Z)

¢− δZ

#

+V iZ (Z)

"
−

nX
j=1

φj0 (Z)− δ

#
. (A.2)
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We also differentiate the interior first-order condition in (11) to get

V iZZ (Z) =

nX
j=1

∂2pi

∂φi∂φj
φj0 (Z)βZ +

∂pi

∂φi
β. (A.3)

Substituting (11) and (A.3) into V iZ (Z) and V
i
ZZ (Z) in (A.2), respectively, and using symme-

try, we obtain

0 = (n− 1)
∙
∂pi

∂φk
βZ − ∂pi

∂φi
βZ

¸
φ0 (Z) + p(.)β+∙

∂2pi

∂φi2
φi0 (Z) + (n− 1) ∂2pi

∂φk∂φi
φkZ(Z)

¸
βZ [n (1− φ(Z))− δZ]

+
∂pi

∂φi
β [n (1− φ(Z))− δZ]− (δ + ρ)

∂pi

∂φi
βZ, k 6= i. (A.4)

Since the assumption of symmetry allows us to make use of the following expressions:

pi =
1

n
,
∂pi

∂φi
=

r (n− 1)
n2[φ(Z) + η]

,
∂pi

∂φk
= − r

n2[φ(Z) + η]
,

∂2pi

∂φi2
= r (n− 1) n (r − 1)− 2r

n3[φ(Z) + η]2
,

∂2pi

∂φk∂φi
=

r2 (−n+ 2)
n3[φ(Z) + η]2

, (A.5)

we substitute those expressions into (A.4) to obtain

0 =
n− 1

[φ(Z) + η]n2
[−r − r (n− 1)]βZφ0(Z) + β

n
+

r (n− 1)
n3[φ(Z) + η]2

[r (−n+ 2) + n (r − 1)− 2r] βZ [n (1− φ(Z))− δZ]φ0(Z)

+
r (n− 1)

n2[φ(Z) + η]
β [n (1− a(Z))− δZ]− (δ + ρ)

r (n− 1)
n2[φ(Z) + η]

βZ. (A.6)

Further rearranging (A.6) gives rise to (12) in the text.
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Appendix B: Proofs of Lemma 1, 2 and Proposition 1

To prove the existence of MPE we apply sufficiency conditions stated in Theorem 3 of Rowat

(2007). Although it may be appropriate to distinguish between the value functions associated

the candidate MPE strategies and qualified MPE strategies, it is omitted for the sake of

notational simplicity.

Proof of Lemma 1. When all contenders play φ = 0, the HJB equation (10) becomes

ρV (Z) =
1

n
βZ + VZ (Z) [n− δZ] . (B.1)

Integrating (B.1) yields the equation given in (i) of Lemma 1, which we reproduce here for

readers’ convenience:

V (Z) =
β(n+ ρZ)

ρ (ρ+ δ)n
+ c2 [n− δZ]

−ρ
δ . (B.2)

Note that when c2 6= 0, lim
Z→n/δ

V (Z) = ±∞. This contradicts the bounded value function,
which will be shown below. Since it is clearly seen from (7) and the bounded control constraint

on ai(t) (i.e., the time-invariant interval [0, 1] for ∀t ∈ [0,∞)) that the cornered strategy φ = 0
brings about the convergence of Z(t) toward a finite and constant value of Z on the steady state

line C1, so does the instantaneous objective function in (6). With a positive discount factor

(i.e., ρ > 0), therefore, the value function in (6) is bounded (since the its lower boundedness

is trivially satisfied).

Following Rowat (2007), by choosing c2 appropriately, it may be possible to extend the

interior strategy φ1, φ2 or φ4 by φ = 0. To see this, setting φ = 0 for ∂pi/∂ai in (A.5) to

obtain (∂pi/∂ai)βZ ≡ r (n− 1)βZ/n2η, the auxiliary condition (∂pi/∂ai)βZ ≤ V 0i (Z) allows
the solution φ = 0 to hold for values of Z satisfying

c2 ≥ β(n− δZ)
ρ+δ
δ

ρ

r(n− 1)
n2η

∙
Z − nη

(ρ+ δ)r(n− 1)
¸
if (n− δZ)

ρ+δ
δ > 0, (B.3)

whereas the opposite inequality holds if (n − δZ)
ρ+δ
δ < 0. Consider a first case (i.e., (B.3)).

Let the r.h.s. of (B.3) denote Ψ(Z) with Ψ(0) = −βnρ
δ /ρ(ρ + δ) < 0. Differentiating Ψ(Z)
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Figure 3: Transitions between the corner and interior solutions

with respect to Z yields

dΨ(Z)

dZ
=

β(n− δZ)
ρ
δ

ρ

r(n− 1)(ρ+ 2δ)
n2η

½
−Z + n [η + r(n− 1)]

r(n− 1)(ρ+ 2δ)
¾
. (B.4)

Let Z∗ denote the value of Z at which the curly braces on the r.h.s. of (B.4) equals zero and

thus the function Ψ(Z) achieves its local maximum, where

Z∗ =
n [η + r(n− 1)]
r(n− 1)(ρ+ 2δ) .

Note also that Z∗ equals the value of Z at the intersection of C3 with the horizontal axis in

Figs. 1 and 2, and Z∗ < n/δ. Taken together, we can draw the graph of Ψ(Z) as a real line

in Fig.3.

Inspection of Fig.3 reveals the following facts. First, if c2 > 0 is chosen, the value function

in (B.2) becomes unbounded as Z → δ/n because (B.3) is eventually satisfied and so φ = 0

remains a solution at Z = δ/n.13 Secondly, when c2 < −n ρ
δβ/ρ(ρ + δ) is chosen, φ = 0 is

disqualified as an optimal solution for every value of Z ∈ [0,∞), so that either the interior
strategy φ1, φ2 or φ4 must be chosen; however, none of them can cross the NI locus C2. As

13In the second case (i.e., (n− δZ)
ρ+δ
δ < 0), the graph of Ψ(Z) is the same as that under (n− δZ)

ρ+δ
δ > 0

when Z < n/δ, while it is declining in Z when Z > n/δ (the latter part of Ψ(Z) is illustrated as a dotted line

in Fig.3). Inspection of Fig.3 reveals that when c2 > 0, the corner strategy φ = 0 still remains a solution in

the neighborhood of Z = n/δ, which leads to the unbounded value function.
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a result, only when we choose c2 ∈
£−n ρ

δ β/ρ(ρ+ δ), 0
¤
in Fig.3, φ = 0 can be switched to a

member of the family φ4 or φ1 at some value of Z ∈ [0, ηn/r (n− 1) (ρ+ δ)] associated with

their intersection.

Proof of Lemma 3. When all contenders play φ = 1, the HJB equation (10) becomes

ρV (Z) =
1

n
βZ + VZ (Z) (−δZ) . (B.5)

Integrating (B.5) yields the equation given in (i) of Lemma 3, which we reproduce here for

readers’ convenience:

V (Z) = β
Z + Z−

ρ
δn (ρ+ δ) c3

n (ρ+ δ)
. (B.6)

Note that when c3 6= 0, lim
Z→0

V (Z) = ∞, which contradicts the bounded value function. This
can readily be shown by the fact that the feasible path of Z(t) always converges from any

Z ∈ [0,∞) to a finite and constant value of Z on the steady state line C1, as in the proof of
Lemma 1.

As before, we have to choose c3 appropriately in order to extend either the interior strategy

φ2, φ3 or φ4 by φ = 0. To do this, setting φ = 1 for ∂pi/∂ai in (A.5) to obtain (∂pi/∂ai)βZ ≡
r (n− 1)βZ/n2(1+η), the auxiliary condition (∂pi/∂ai)βZ ≥ V iZ (Z) allows the solution φ = 1
to hold for values of Z satisfying

δ

ρn

∙
1

ρ+ δ
Z

ρ+δ
δ − r (n− 1)

n(1 + η)
Z

ρ+2δ
δ

¸
≤ c3. (B.7)

For expositional purposes, we denote by Φ(Z) the l.h.s. of (B.7). As the exponent of the first

term on the l.h.s. of (B.7) is smaller than that of the second, it dominates for smaller values

of Z, while for larger Z the second term dominates the first one. Hence, the graph of Φ(Z)

has the maximum at ZC = n(1 + η)/r(n− 1)(ρ+ 2δ) (which also corresponds to the value of
Z at the intersection of C3 with the resource constraint a = 1 in Figs. 1 and 2). Put together,

we can draw the inverted U-shape graph of Φ(Z) as illustrated in Figs.4 and 5. When c3 > c̄3

is chosen, it follows from (B.6) that V (Z)→ +∞ as Z → 0, since Φ(Z) = 1 satisfies (B.7) for

every value of Z ∈ [0,∞), thus eliminating this case.
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Figure 4: Transitions between the corner and interior solutions when ZL > ZC.

Proof of Proposition 1. First, we first consider Fig. 1. If any value of c3 is less than

cL3 in Fig.4, φ = 1 has to be connected with the interior strategy φ2 which always crosses the

horizontal axis at a value of Z lying on the right side of ZE. However, an extension by φ = 0

is not possible because φ = 0 is not an optimal solution at that intersection point due to (ii)

in Lemma 1. If c3 is chosen such that c3 ∈
¡
cL3 , c̄3

¤
in Fig.4, φ = 1 has to be connected with

φ3 in Fig. 1. However, this extension cannot cover the whole domain of Z because the family

φ3 of strategies never crosses the NI locus C2.

When c3 precisely equals c
L
3 , the cornered strategy φ = 1 is connected with the linear strat-

egy φL, which can intersect the NI locus C2. Moreover, since φL intersects with the horizontal

axis at a value of Z which is less than that at the intersection of C3 and the horizontal axis.

Because of Lemma 1, there exists c2 ∈
£−nρ/δβ/ρ(ρ+ δ), 0

¤
such that φ = 1 can be connected

with φL at the value of Z associated with the chosen c2. As a result, the extended strategy

φ̂L(Z) can continuously cover the whole range of the domain.

Next, consider Fig. 2. If c3 is chosen such that c3 < c̄3 in Fig.5, φ = 1 has to be connected

with an interior strategy at a value of Z > ZC . However, an extension by φ2 is not possible for

the same reason stated above. Only when c3 = c̄3 is chosen, there exists a unique member of

the family φ1, labeled φ∗1, that can be connected with φ = 1 at ZC where the interior strategy

φ∗1 is tangent to the constraint a = 1 as illustrated in Fig. 2. This is because φ = 1 still remains

an optimal solution at ZC due to (ii) in Lemma 3. However, other members of the family φ1
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Figure 5: Transitions between the corner and interior solutions when ZL < ZC.

cannot be extended by φ = 1. The reason is as follows. To connect φ = 1 with the members

of the family φ1 lying on the left side of φ
∗
1, we have to choose c3 less than c̄3 in Fig.5, which

leads φ = 1 to connect with either the family φ2 or the members of the family φ1 lying on the

right side of φ∗1 in Fig.2; however, either extension is not possible.

In addition, the strategy φ∗1 can be extended by φ = 0, since φ = 0 remains a solution at

the intersection of φ∗1 with the horizontal axis due to (ii) in Lemma 1. Taken together, the

unique strategy φ∗1 can be continuously extended by φ = 0 and φ = 1 to the whole space of

the domain of Z.

Therefore, the only two extensions, φ̂L and φ̂
∗
1, satisfy condition (i) of Theorem 3 of Rowat

(2007). Although we further need to confirm that both strategies satisfy conditions (ii)-(iv)

in Theorem 3 of Rowat, we will not repeat it here, since the rest of the proof proceeds by exactly

following his proof.
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