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Abstract

This paper develops a new test, the trinomial test, for pairwise ordinal data

samples to improve the power of the sign test by modifying its treatment of zero

differences between observations, thereby increasing the use of sample information.

Simulations demonstrate the power superiority of the proposed trinomial test statis-

tic over the sign test in small samples in the presence of tie observations. We also

show that the proposed trinomial test has substantially higher power than the sign

test in large samples and also in the presence of tie observations, as the sign test

ignores information from observations resulting in ties.

Keywords: Sign test, trinomial test, non-parametric test, ties, test statistics,

hypothesis testing.
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1 Introduction

Estimating the parameters of distributions is one the most important issues in statis-

tics. Parametric tests make rather stringent assumptions regarding the nature of

the population from which the observations were drawn (Siegel [15]). On the other

hand, non-parametric methods are popular for practitioners as they do not require

strong assumptions for their validity, as are required by their parametric counter-

parts. Non-parametric approaches based on signs and ranks form a substantial body

of statistical techniques that provide alternatives to classical parametric methods.

For example, most non-parametric tests require the assumption of a population from

which subjects are obtained by random sampling, whereas for most non-parametric

methods, treatments being compared are assumed to have been randomly assigned

to subjects. A bibliography of non-parametric statistics by Savage [14] lists about

3,000 items. Among them, the sign test is one of the most widely used, and is

regarded as the oldest non-parametric test procedure. The sign test was used in

applications as early as 1710 in an article by Arbuthnott. The test derives its name

from the procedure of converting data into plus and minus signs.

Dixon and Mood [7] and Mackinnon [12] have published tables of critical values

for the sign test. On the other hand, Wilcoxon [17] indicates, for the first time, the

possibility of using ranking methods in order to obtain a rapid approximation of the

significance of the differences in experiments containing both paired and unpaired

data. His paper is a milestone in the literature on non-parametric statistics.

In addition, Dixon and Mood [8] and Walse [16] have published short notes

commenting on the power function of the sign test. Dixon and Mood use various

sample sizes and the significance level, α, near 0.05 and 0.01 to tabulate the values

of the power function. The sign test is found to have decreasing power for increasing

sample size, increasing levels of significance and increasing values of the alternative.

Walse [16] also comments that the sign test is approximately 95% efficient for small

sample sizes when a comparison is made with the most powerful test for the case of
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a normal population.

It is well known that the sign test possesses poor performance in the presence

of zero observations. Some attempts have been made to modify the sign test in

order to increase its power in the presence of zero observations. One such attempt

is to include the zero observations in a randomised treatment of zero observations,

whereby zero observations are randomly distributed into plus and minus signs. How-

ever, using different theorems, Putter [13] and Hemelrijk [10] have proved that the

non-randomised treatment of zero observations is always better than randomisation

for the sign test.

To circumvent the low power of the sign test in the presence of zero observa-

tions, in this paper we develop a new test statistic, the trinomial test, for pairwise

ordinal data samples by incorporating the zeros in the sign test to improve power

performance significantly. This new trinomial test is found to be more powerful

than the sign test with the improvement becoming more obvious when the number

of ties is large. The main result of the paper is to introduce a new test which will

effectively take account of the zero differences, so that the new modified sign test

will perform better. This new test is based on a trinomial relationship between the

positive, negative and zero differences (observations).

In order to demonstrate the power superiority of our proposed trinomial test

statistic over the sign test, we first conduct simulations to show that the proposed

trinomial test is superior to the sign test in small samples in the presence of tie ob-

servations. We then prove that the proposed trinomial test is substantially superior

in power to the sign test in the presence of tie observations in large samples. The

poor performance of the sign test is due to the fact that it ignores the information

from the observations resulting in ties.

2



2 Review of Methodologies

Arbuthnott [2] uses a sign test to study devine providence in the births of boys

and girls while Savage [14] lists the sign test in his book. To take care of “tie”

observations, Dixon and Mood [7] first recommend to include half number of ties

to positive observations as a nonrandomized unconditional exact (NUE) test (see,

Coakley and Heise [3]):

S = N+ + N0/2 (1)

as the test statistic. The null hypothesis, H0, that the probability of being positive

is equal to the probability of being negative is rejected whenever S exceeds the

critical value which can be calculated by B(N, 1/2) and is tabulated under different

values of significance level by Dixon and Mood [7]. They also point out the test is a

little more strict than the nominated significance level, especially for small sample

size. However, since this procedure reduces the power in testing H0 when ties are

present, ties are usually excluded in the sign test by many text books, see, for

example, Dixon and Massey [6], in which N+ is used as test statistic and critical

value is obtained from B(N −N0, 1/2).

Putter [13] proposes an asymptotic uniformly most powerful nonrandomized

(ANU) test (Coakley and Heise [3]):

S1/2 =
N+ −N−√
N+ + N−

(2)

and the null hypothesis H0 is rejected if S1/2 > zα where zα is the 100(1 − α)th

percentile of a standard normal distribution. The asymptotic normal makes it easy

to obtain the p-value for the statistic. To use this test, N must be sufficiently large.

Some textbooks suggest that N should be greater than 10 while some say N should

be greater than 25.

On the other hand, Coakley and Heise [3] propose an improved nonrandomized
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unconditional (INU) test:

S2/3 = N+ + (2N0/3) (3)

and the null hypothesis H0 is rejected if S2/3 > k(p0) where p0 = P (N0). The idea

is coming from the result of Irle and Klosener [11]. However, Wittkowski, Coakley,

and Heise [19] points out that the INU test is a biased test, and the weight 2/3

should be replaced by 1/2 which leads the INU test to the same as ANU test.

Through the normalization shown by Wittkowski, Coakley, and Heise [19], the

standard nonrandomized traditional sign test can be easily seen to be the exact

version of the ANU test. In addition, Wittkowski [18] examines the asymptotic

UMP sign tests for different hypotheses. He points out that the procedure of dealing

with ties could be more meaningful if we take deeper inspect on the causes of tied

observations, which might be rounding error or the nature of the phenomenon. If the

ties are due to the nature of the phenomenon, it will not give valuable information.

If the ties are due to rounding error, the inclusion of ties should be considered.

3 The Trinomial Test

Despite the fact that the sign test is so simple and easy to apply, it does not usually

compare favourably with other non-parametric test procedures. An obvious reason

is that the sign test uses relatively less information from the testing samples when

we have a significant number of zeros and tied observations. The greater is the

number of zeros or tied observations, the greater is the loss of information due to

a smaller size being examined. In order to reduce the loss of information, in this

paper we develop a new test, the trinomial test, by modifying the original sign test.

The trinomial test includes the information of zeros or tied observations effectively,

so that the power of the trinomial test can be improved significantly.

Consider a random sample of n pairs (X1, Y1), (X2, Y2), · · · , (Xn, Yn). Let Di =

Xi − Yi for i = 1, 2, · · · , n. The random variable, Di, can be partitioned into three
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different outcomes, D+, D0 and D−, where D+, D0, and D− are defined as the event

when Di is positive, zero and negative, respectively. Let nk denote the number of

trials resulting in outcome Dk and let pk = P (Dk) for k = +, 0,−. Then, we have:

P
(
N+ = n+, N0 = n0, N− = n−

)
=

n!
n+!n0!n−!

p
n+
+ pn0

0 p
n−
− , (4)

in which n++n0+n− = n and p++p0+p− = 1. It is intuitive that N+ and N− should

be negatively related. One could easily show that the covariance cov(N+, N−) =

−np+p− by considering

N+ =
n∑

r=1

I+(r) and N− =
n∑

r=1

I−(r) ,

in which I+(r) = 1 if trial r results in outcome D+ and 0 otherwise and, similarly,

I−(r) = 1 if trial r results in outcome D− and 0 otherwise.

Suppose that we want to test the hypotheses:

H0 : p+ = p− versus H1 : p+ > p− . (5)

The construction of the new test statistic involves observing, in a sample of n pairs

of observations, the value nd and a particular realization of the random variable

(N+ −N−). The expectation of this random variable is given by:

E(N+ −N−) = n(p+ − p−) .

Since cov(N+ −N−) = −np+p−, the variance of the random variable is

V (N+ −N−) = np+(1− p+) + np−(1− p−) + 2np+p− .

Therefore, under H0, we have:

E(N+ −N−) = 0 , V (N+ −N−) = 2np
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Table 1: Critical Values for the Proposed Trinomial Test

p0 0 .1 .2 .3 .4 .5 .6 .7 .8 .9
Cα 6 5 5 4 4 4 3 3 2 2
P (nd > Cα) .11 .034 .025 .044 .032 .021 .038 .021 .036 .008
P (nd ≥ Cα) .055 .064 .055 .093 .076 .057 .104 .071 .135 .059

where p+ = p− = (1− p0)/2 ≡ p.

The proposed test statistic is given by:

Nd = N+ −N− ,

where N+ and N− are the number of positive and negative differences observed in

a random sample of n pairs of observations, as defined in (4). H0 is rejected if

nd > Cα, where nd is the realization of Nd and Cα is the critical value for α level of

significance. Thereafter, one could easily show that the probability distribution of

Nd is given by

P (ND = nd) =
[
n−nd

2
]∑

k=0

n!
(nd + k)!k!(n− nd − 2k)!

(1− p0

2

)nd+2k
(p0)n−nd−2k .

Here, the critical values Cα can be easily calculated. As an illustration, we display

the critical values in Table 1 for the case where n = 10 and α = 0.05.

In practice, when the value of p0 is unknown, we use the unbiased estimate n0/n

to replace p0 to perform the trinomial test. When n = 10 and α = .05, the rejection

region of the trinomial test based on Table 1 (in the order (n+, n0, n−)) is:

(10, 0, 0), (9, 0, 1), (9, 1, 0), (8, 1, 1), (8, 2, 0), (7, 2, 1),

(7, 3, 0), (6, 3, 1), (6, 4, 0), (5, 5, 0), (4, 6, 0) .

When n = 10 and α = .05, the rejection region of the sign test obtained from the
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binomial table is:

(10, 0, 0), (9, 0, 1), (9, 1, 0), (8, 1, 1), (8, 2, 0), (7, 2, 1), (7, 3, 0), (6, 4, 0), (5, 5, 0) .

Comparing the two rejection regions, we find that the points (6, 3, 1) and (4, 6, 0)

are only in the rejection region of the trinomial test. Therefore, in the case of n = 10

and α = .05, the trinomial test is more powerful than the sign test (for any value

of p0).

One could easily show that the power function of the trinomial test is given by

πT (p+, p0;α, n) =
n∑

n0=0

n−n0∑

n+=Cα(n0/n)+1

P (n+, n0; p+, p0) , (6)

and the power function of the sign test is given by

πs(p+, p0;α, n) =
n∑

n0=0

n−n0∑

n+=C∗α(n−n0)+1

P (n+, n0; p+, p0) , (7)

where

p(n+, n0; p−+, p0) =


 n

n+n0(n− n+ − n0)


 p

n+
+ pn0

0 (1− p+ − p0)n−n+−n0 .

Note that the critical value of Cα(n0/n) of the trinomial test depends on n0/n,

the unbiased estimate of the unknown probability p0, whereas the critical value

C∗
α(n − n0) of the sign test depends on (n − n0), the number of non-zero signs.

The power functions of these two tests in the case where n = 10 and α = .05 are

displayed in Table 2.
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4 The Power Comparison

Associated with any statistical test procedure is the natural question of how to

assess its performance in detecting the correct alternative. This question would be

easily resolved if there existed a test that has power which was always at least as

great as that of any other tests for parameters with values in the alternative region,

given a fixed significance level α. We would resort to theories such as the Neyman

Pearson Lemma to generate uniformly most powerful tests. However, it is seldom

observed that a nonparametric distribution-free test procedure is uniformly more

powerful than its competitors. Therefore, one option is to obtain expressions for

the power functions of two competing test procedures for comparing the relative

properties of the two test statistics.

Another option is to compute the powers of the two test statistics. Such a

comparison would usually depend on: (i) the sample size n, (ii) the value of the

alternative, and (iii) the chosen significance level α. We use this method to compare

the power of the trinomial test with that of the sign test.

4.1 Power Comparison of Sign Test versus Trinomial

Test in Small Samples

The power function is extensively employed by statisticians to assess the perfor-

mance of a test procedure. When the sample size is large, one can use the binomial

approximation and the usual sign test, even in the presence of a considerable num-

ber of ties. In the case of small samples, for example, a sample of size n = 10 in

which we have, say, 4 ties, the usual sign test is not particularly useful. However,

the proposed trinomial test is found to be useful in such situations.

In this section we compare the power of the trinomial test against that of the sign

test based on 100,000 simulated samples of size 10. Here, the value of p0 is estimated

by the ratio (n0/n), and a significance level α = 0.05 is used. The simulation results
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are displayed in Table 2.

From Table 2, it is clear that the performance of the trinomial test is superior

to that of the sign test as the former takes into account the presence of ties while

the latter ignores the presence of ties. Thus, we recommend the trinomial test for

cases with a reasonable number of ties in small samples.

4.2 Power Comparison of Sign Test versus Trinomial

Test in Large Samples

The trinomial test regards the number of zero differences, if any exist, as a random

variable. The following trinomial distribution can be derived:

(N+, N0, N−) ∼ Trinomial (n, p+, p0, p−) .

Consider the following hypothesis:

H0 : p+ = p− versus H1 : p+ > p− .

Let p+ − p− = δ > 0. Observing a sample of n pairs, from Section 2, the test

statistic is given by

nd = n+ − n− .

where n+ and n− are the realizations of N+ and N− defined in (4).

When the sample size n is reasonably large, we can use the normal approximation

to the binomial distribution. Denoting δ = p+ − p−, we have p+ = (1 − p0 + δ)/2

and p− = (1 − p0 − δ)/2. For α level of significance, one could easily derive the

power of the trinomial test to be:
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Table 2: Power of Sign Test versus Trinomial Test

p+ Sign Test Trinomial Test (p0 = n0/n)
(p0 = 0.1)

0.450 0.019 0.022
0.500 0.039 0.044
0.550 0.076 0.084
0.600 0.135 0.146
0.650 0.222 0.238
0.700 0.352 0.372
0.750 0.517 0.540
0.800 0.708 0.730
0.850 0.896 0.912

(p0 = 0.2)
0.400 0.021 0.033
0.450 0.045 0.066
0.500 0.088 0.121
0.550 0.158 0.208
0.600 0.268 0.332
0.650 0.416 0.494
0.700 0.608 0.691
0.750 0.818 0.881

(p0 = 0.3)
0.350 0.020 0.036
0.400 0.044 0.075
0.450 0.090 0.142
0.500 0.170 0.250
0.550 0.291 0.400
0.600 0.468 0.595
0.650 0.694 0.807

(p0 = 0.5)
0.250 0.013 0.033
0.300 0.038 0.079
0.350 0.089 0.167
0.400 0.185 0.312
0.450 0.353 0.532
0.470 0.448 0.643
0.490 0.563 0.765
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power(trinomial) = P
[
(n+ − n−) > zα

√
2np

∣∣ H1

]

= 1− Φ





zα −
√

n√
1−p0

δ
√

(1−p0−δ2)
1−p0



 . (8)

As is usual practice in comparing the medians of two samples, we ignore the

information of zero differences when applying the sign test. To compare the perfor-

mance of our proposed test with that of the sign test, in this section we derive the

power of the sign test when zero differences are present in the observations.

Let n∗ = (n+, n0, n−), the distribution of n∗ is expressed as:

f(n∗) =


 n

n+n0n−


 p

n+
+ pn0

0 p
n−
−

which is the same as in the trinomial case.

The conditional distribution of n∗ given n0 can then be derived as:

f(n∗|n0) =
f(n∗)
f(n0)

=
n!

n+!n0!n−!p
n+
+ pn0

0 p
n−
−

n!
n0!(n−n0)!p

n0
0 (1− p0)n−n0

=
(n− n0)!
n+!n−!

( p+

1− p0

)n+
( p−

1− p0

)n−
.

Hence, we have

n+|n0 ∼ B
(
n− n0,

p+

1− p0

)
.
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Consider the sign test for the following hypotheses

H0 : p′+ = p′− =
1
2

or p′+ = p′−

H1 : p′+ − p′− = ∆ > 0 (9)

where

p′+ = P (n+|n0) =
( p+

1− p0

)

p′− = P (n−|n0) =
( p−

1− p0

)
.

Under H0, we have

E(n+|n0) = (n− n0)p′+ =
1
2
(n− n0)

and

V (n+|n0) = (n− n0)p′+(1− p′+) =
1
4
(n− n0) .

Assuming that the sample size is large, one can easily obtain the size α, of the

test to be:

P

[
n+ > zα

√
1
4
(n− n0) +

n− n0

2

∣∣∣ H0, n0

]
.

Under H1, we have

E(n+|n0) = (n− n0)p′+ = (n− n0)
(

1 + ∆
2

)

and

V (n+|n0) = (n− n0)
(

1−∆2

4

)
.

Thereafter, the power of the sign test can be obtained to be:

P

[
z ≥ zα

√
n− n0 − (n− n0)∆√
(n− n0)(1−∆2)

]
= 1− Φ

[
zα − (

√
n− n0)∆√

(1−∆2)

]
. (10)

12



We compare the power of the trinomial test with that of the sign test by varying

∆ = p′+ − p′−

=
p+

1− p0
− p−

1− p0

=
δ

1− p0
.

For the case when there is no zero observation (difference), we have p0 = 0 and

δ = ∆. Therefore, when p0 = 0, n0 = 0, following from (8) and (10), we have

Power of the trinomial test = 1− Φ

[
zα −

√
n∆√

(1−∆2)

]

= Power of the sign test .

For situations in which there are zero observations, we obtain the following theorem:

Theorem 1 If n is large, p0 > 0 and zα >
√

n− n0 ∆, the power of the trinomial

test is always greater than or equal to that of the sign test.

Proof: Comparing expressions (8) and (10), it can be seen that it is equivalent to

show that the variance of the trinomial test is greater than or equal to that of the

sign test. As

Variance (trinomial test) =
( 1

1− p0

)
[1− p0 − δ2] = 1− (1− p0)∆2 ,

and the variance of the sign test is given by (1−∆2), if p0 > 0, we have

[1− (1− p0)∆2] > (1−∆2) ,

so that the assertion of the theorem holds. ||

It is worth noting that the probability distribution of the test statistic is a

function of the nuisance parameter ∆. Although an unbiased estimator has been

suggested above, this induces another randomness to the probability (for more on
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this, see the classic papers by Davies [4, 5], and the extensions by Andrews and

Ploberger [1] and Hansen [9]).

5 Conclusion

It is well known that the power performance of the sign test is poor in the presence

of zero observations. Attempts have been made to modify the sign test to increase

its power in the presence of zero observations, for example, through randomised

treatment of the zero observations. However, this approach has not been able to

improve power.

In this paper, we used an alternate approach by developing a new test, the

trinomial test, for pairwise ordinal data samples to include the treatment of zero

differences between observations in the test statistic. The proposed test statistic

is superior to the sign test as it includes the information of zero differences, and

thereby increases uses of sample information, while the sign test does not.

Simulations demonstrated the power superiority of the proposed trinomial test

statistic over the sign test in small samples in the presence of zero observations. We

also showed that the proposed trinomial test was substantially superior to the sign

test in power in large samples in the presence of zero observations as the sign test

ignores information from the observations resulting in ties.
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