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Abstract

We analyze a decentralized trading process in a basic labor market where
heterogeneous firms and workers meet directly and randomly, and negotiate
salaries with each other over time. Firms and workers may not have a com-
plete picture of the entire market and can thus behave myopically in the pro-
cess. Our main result establishes that, starting from an arbitrary initial market
state, there exists a finite sequence of successive myopic (firm-worker) pair im-
provements, or bilateral trades, leading to a stable matching between firms and
workers with a scheme of competitive salary offers. An important implication
of this result is that a general random process where every possible bilateral
trade is chosen with a positive probability converges with probability one to a
competitive equilibrium of the market.

Keywords: Decentralized market, job matching, random path, competitive
salary, stability.
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1 Introduction

The idea that decentralized market processes where self-interested buyers and sellers
make independent decisions freely can settle a market on a competitive equilibrium
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outcome, can be traced back at least to Adam Smith (1776), who coined the famous
term, the Invisible Hand, to describe the self-regulating nature of an uncoordinated
market. The objective of this paper is to develop and analyze a decentralized market
process for a basic labor market with finitely many heterogeneous firms and workers.
This process intends to mimic and reflect the decentralized decision making process in
real competitive labor markets, where firms and workers meet directly and randomly,
and negotiate salaries with each other over time. Here agents may not have a com-
plete picture of the entire labor market and can thus behave myopically. Using this
framework, we investigate the market outcomes of such decentralized and random
processes.

The theoretical literature on market processes has predominantly focused on and
has also been remarkably successful in analyzing and designing centralized processes
for various markets.1 Nevertheless, many competitive markets, labor markets be-
ing a leading example, feature bilateral (job) offers and are typically decentralized
(see Roth and Vande Vate (1990), Samuelson and Nordhaus (2010)). Indeed, it is
widely observed in labor markets that a worker sequentially works for several em-
ployers because a latter employer offers a better salary than a previous employer
does; and conversely, a same firm hires different workers over time for the same po-
sition as workers who come later may either work more efficiently or demand lower
salaries. In addition, it is not uncommon to see that a worker eventually returns to
her previous employer but with a different contract. In a labor market where many
firms and workers are matched randomly and dynamically, and each agent makes
her own decisions independently, possibly by only looking at myopic gains, a natural
and important question is then “will such seemingly chaotic, random and dynamic
decentralized processes eventually lead the market to an equilibrium state in which
a system of competitive salaries exists and simultaneously meets the needs of both
firms and workers?”

This paper attempts to resolve the above question in the affirmative. Briefly
speaking, we consider a labor market with finite and heterogeneous workers and
firms. Each worker can be matched with a firm, generating a joint surplus, which can
be split freely between the two agents (interpreted as salaries). Given an allocation
which consists of a matching between the firms and workers and a scheme of salary
offers, a firm and a worker, currently not matched with each other, can block the
allocation, resulting in a salary offer which makes both better off and at least one of
them strictly so. Such a procedure is called a pair improvement of the allocation. A

1See for example, Gale and Shapley (1962) for marriage matching problems; Shapley and Scarf
(1974) for housing markets; Crawford and Knoer (1981), Kelso and Crawford (1982), and Crawford
(2008) for job matching problems; Demange, Gale and Sotomayor (1986), Gul and Stacchetti (2000),
Milgrom (2000), Ausubel (2006), Sun and Yang (2009) for auction markets; Roth (1984), Roth and
Sotomayor (1990) for the US medical residency match; and finally, Abdulkadiroğlu and Sönmez
(2003), Abdulkadiroğlu, Pathak and Roth (2005) for school choice problems. Stock markets and
auction markets are typically centralized. AEA annual meeting provides a place for junior economists
to meet their future potential academic employers. But this is not a centralized market.
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pair improvement can be intuitively regarded as a particular form of bilateral trade
arising from the previous allocation. Like a bilateral transaction, a pair improvement,
while beneficial for the pair involved, may hurt other agents, resulting in a decrease
in total welfare of the market. In this framework, we establish that, starting from
an arbitrary initial market state (an allocation), there exists a finite sequence of
successive myopic pair improvements leading to a stable matching between firms and
workers with a scheme of competitive salary offers. An important implication of this
result is that a general random process where every possible pair improvement is
chosen with a positive probability converges with probability one to a competitive
equilibrium of the labor market.

The general random process is permissive in that it allows for random, chaotic
and cyclical bilateral trading scenarios where firms’ and workers’ behavior might be
only myopically oriented, and partnerships between firms and workers can be formed
hastily and can also dissolve instantly whenever better opportunities arise. In our
opinion, such a random market process presents a satisfactory illustration of the trad-
ing behavior in a real uncoordinated market. In addition, myopic pair improvements
(bilateral trades) before reaching stability can be simply interpreted as haggling ac-
tivities where workers retain offers or sellers hold their goods without committing
themselves until equilibrium (stability) is reached. Alternatively, these pair improve-
ments can also be regarded as transactions that take place in real-time, where workers
move from job to job and firms terminate existing employment relationships and cre-
ate new job offers.

The current study is most closely related to the seminal work by Crawford and
Knoer (1981) and Roth and Vande Vate (1990). Crawford and Knoer (1981) ana-
lyzed a labor market with finitely many self-interested and heterogeneous firms and
workers. They proposed a centralized market process — a salary adjustment process
which always converges to a stable assignment of workers to firms with a scheme of
competitive salaries.2 Our model is similar to theirs but our goal and results differ
essentially from theirs in that our process is decentralized and the associated algo-
rithm finds an equilibrium in finitely many steps, whereas theirs is centralized and
approaches an equilibrium through a limiting argument.3

Our decentralized process is in spirit close to Roth and Vande Vate (1990), who

2Kelso and Crawford (1982) and Crawford (2008) generalized and extended both this model and
the centralized market process to more complex scenarios where each firm may hire several workers.
Demange, Gale and Sotomayor (1986) improved and refined the market process of Crawford and
Knoer (1981) so that their new process always leads to an equilibrium in finitely many steps.
More recently, several general auction (price adjustment) processes have been proposed by Gul and
Stacchetti (2000), Milgrom (2000), Ausubel (2006), Sun and Yang (2009) among others.

3Crawford and Knoer (1981) first proved that their process always converges to a core element in
finitely many steps. Then they showed by a limiting argument that their process approaches a strict
core element (i.e., an equilibrium). It is important to point out that the algorithm in Crawford
and Knoer (1981) can be used to generate a final allocation that is as close as one wishes to an
equilibrium in finite time (Demange, Gale and Sotomayor (1986)).

3



reexamined the Gale-Shapley marriage matching model. In this model, Gale and
Shapley (1962) proved the existence of a stable marriage matching via a centralized
process — the deferred acceptance procedure, while Roth and Vande Vate (1990)
proposed a decentralized process which converges to a stable matching.4 Our study
differs from Roth and Vande Vate (1990) in three crucial aspects: first, in the Gale-
Shapley model examined by Roth and Vande Vate, money is not explicitly involved
and side payment is not allowed; second, their solution of stability corresponds to
core, whereas our solution of stability with flexible salaries coincides with both strict
core and competitive equilibrium; third, in our model because salaries are flexible
and weak pair improvements have to be employed, it is crucial to design an elaborate
and novel approach to tackle cycles which typically arise in our decentralized setting.

Our analysis also bears some similarity with the literature on tâtonnement pro-
cesses, which studies equilibrium stability and how market-clearing prices and efficient
allocations are reached with the coordination of a fictitious market maker. Since the
first tâtonnement process formulated by Leon Walras in 1874, the study of such pro-
cesses has been a major issue of economic research. Some of the early contributions
on tâtonnement processes include Samuelson (1941), Arrow and Hurwicz (1958) and
Scarf (1960, 1973). Compared with tâtonnement processes, our analysis provides an
arguably more satisfactory market process toward equilibrium allocations and prices
in real economic systems in that our market process is random and decentralized,
and that agents could trade on markets sequentially and trade could take place all
the time, even at disequilibrium prices. In particular, our market processes do not
exclude chaotic and cyclical behavior commonly observed in real economic systems.

In earlier related literature, Koopmans and Beckmann (1957), Shapley and Shubik
(1972) examined the existence and structure issues of competitive equilibrium in
assignment markets without discussing any market process. Feldman (1974) and
Green (1974) studied similar problems and obtained convergent processes for certain
subclasses of NTU games. But their approaches do not apply to the labor market or
matching models where significant indivisibility is involved.

The rest of the article proceeds as follows. Section 2 presents the model. Section
3 provides preliminary results concerning weak stability. The main results towards
stability are established in Section 4. Concluding remarks are provided in Section 5.
Omitted proofs are relegated to an Appendix.

4Following Roth and Vande Vate (1990), several decentralized processes have been developed for
closely related markets; see Chung (2000), Diamantoudi, Miyagawa and Xue (2006) for roommate
matching problems; Klaus and Klijn (2007) for matching problems with couples; Kojima and Ünver
(2008) for many-to-many matching problems. In all these models, side payment is not allowed, and
various notions of stability (but not competitive equilibrium) are used.
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2 The Model

Consider a labor market with finitely many heterogeneous firms and workers. For-
mally, let F and W be two finite disjoint sets of agents, containing |F | firms and
|W | workers, respectively. We assume that each firm hires at most one worker and
each worker accepts at most one job.5 A matching µ in the labor market is simply a
one-to-one mapping from F ∪W to itself such that (i) µ(µ(x)) = x for all x ∈ W ∪F ,
and (ii) each agent is either self-matched (µ (x) = x), or is matched to a member of
the other side (for x ∈ W , µ(x) 6= x implies µ(x) ∈ F , and for x ∈ F , µ(x) 6= x
implies µ(x) ∈ W ), in which case µ(x) is said to be a partner of x.

Denote V (f, w) and s(f, w), respectively, as worker w’s productivity and salary
at firm f . When a worker w does not work for any firm, his utility is represented
by V (w,w), while if a firm f does not hire any worker, her productivity or utility is
denoted by V (f, f). 6 For any agent x ∈ F ∪W , value V (x, x) can be alternatively
interpreted as agent x’s outside options (or, for workers, unemployment benefits)
when x is self-matched. Notice that we allow for heterogeneous outside options for
the agents. Salaries, together with the parameters V (f, w), V (w,w) and V (f, f),
are paid in transferable monetary units. As a result, worker w’s total utility at firm f
is V (f, w)−s(f, w). We assume that values V (f, w), V (w,w) and V (f, f) are integers
for all f ∈ F and w ∈ W . These values are measured in monetary units and hence
are naturally assumed to be integers. We denote this labor market by (F, W, V ).

Given a matching µ, let I(µ) = {h ∈ F∪W | µ(h) = h} be the set of members who
are self-matched at µ. We call the quantity of

∑
f∈F\I(µ) V (f, µ(f)) +

∑
i∈I(µ) V (i, i)

the market value associated with the matching µ. Moreover, we say that a matching
µ is efficient if it holds, for an arbitrary matching ρ, that∑

f∈F\I(µ)

V (f, µ(f)) +
∑

i∈I(µ)

V (i, i) ≥
∑

f∈F\I(ρ)

V (f, ρ(f)) +
∑

i∈I(ρ)

V (i, i).

If µ is efficient, then we call quantity
∑

f∈F\I(µ) V (f, µ(f)) +
∑

i∈I(µ) V (i, i) the ef-
ficient market value, or the efficient value, of the labor market and denote it by
V (F ∪W ), which is the same for all efficient matchings.

An economic outcome, or simply an allocation, of the labor market consists of a
matching µ and a payoff vector u ∈ RF∪W such that u (x) = V (x, x) for any x ∈ I(µ);
and u (x)+u (µ(x)) = V (x, µ(x)) for any x /∈ I(µ). An allocation (µ, u) is individually
rational if u (x) ≥ V (x, x) for all x ∈ F ∪W . Notice that for each allocation (µ, u) in
a labor market (F, W, V ), the payoff vector u uniquely defines a salary vector s where
s (µ (w) , w) = u (w), for matched/employed worker w, and s (µ (w) , w) = V (w, w),
i.e., w’s unemployment benefit, for self-matched/unemployed worker w. With this

5This is the unit-demand assumption, which has been employed in Shapley and Shubik (1972),
Crawford and Knoer (1981), Demange, Gale and Sotomayor (2006) and others.

6When a worker or a firm stays idle, then the worker gets no salary from any firm and the firm
pays nothing to any worker.
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convention, it is thus sufficient for us to employ the utility vector u in lieu of the
description of the salary vector s for each allocation hereafter.

A natural notion of solution for our setting is that of stability. An allocation (µ, u)
is stable or a strict core allocation if u (f) + u (w) ≥ V (f, w) for all f ∈ F , w ∈ W ,
and u (x) ≥ V (x, x) for all x ∈ F ∪W . Namely, an allocation is stable if every worker
(firm) has the option of remaining idle and the allocation is not blocked, to be defined
shortly, by any pair of firm and worker. It is easy to show that if (µ, u) is a stable
allocation and ρ is an efficient matching, then (ρ, u) is stable and µ is also efficient.

We now introduce two notions of blocking pairs: weakly blocking pairs and
strongly blocking pairs. A pair (f, w) of firm f and worker w weakly blocks an
allocation (µ, u) if firm f and worker w are not matched under µ but both can weakly
improve their well-being by matching with each other and abandoning their partners
at µ. Namely, there are rf ∈ R and rw ∈ R such that rf + rw = V (f, w) and
rw ≥ u (w) and rf ≥ u (f) with at least one strict inequality. For our purpose, we
also say that (µ, u) is weakly blocked by a pair of (x, x) if x ∈ F ∪W is not matched
to herself at µ but prefers being single to being matched with µ(x), i.e., x 6= µ(x)
but rx = V (x, x) > u (x).

A pair (f, w) is said to strongly block an allocation (µ, u) if firm f and worker w
are not matched under µ but both can strictly improve their well-being by matching
with each other and abandoning their partners at µ. Namely, there are rf ∈ R and
rw ∈ R such that rf + rw = V (f, w) and rf > u (f) and rw > u (w). Similarly, we
also say (µ, u) is strongly blocked by a pair of (x, x) if x ∈ F ∪W is not matched to
herself at µ but prefers being single to being matched with µ(x), i.e., x 6= µ(x) but
rx = V (x, x) > u (x).

Given the definitions of blocking pairs, we can alternatively say that an allocation
(µ, u) is stable if there is no pair that weakly blocks (µ, u). Similarly, we call an allo-
cation (µ, u) weakly stable or a core allocation if there is no pair that strongly blocks
(µ, u). By definition, a weakly stable allocation is weaker than a stable allocation, in
that there might be efficiency losses in a weakly stable allocation compared with a
stable one.

Evidently, the above model of a labor market can also be regarded as a general
assignment market with finitely many buyers and sellers and integral valuations.
Here, each seller is in possession of an indivisible good, which is valued possibly
differently by the buyers. Given this specification, V (i, j) is then interpreted as the
net monetary surplus associated with the partnership of buyer i and seller j, while
s (i, j) is simply the price that buyer i is charged for seller j’s good.

It is well known in the literature (e.g., Shapley and Shubik (1972), and Crawford
and Knoer (1981)) that a job assignment market including the current labor market
has at least one competitive equilibrium, and that the set of stable allocations (i.e.,
strict core) coincides with that of competitive equilibria.7 An additional important
feature of the labor market is that as all values V (f, w), V (f, f) and V (w,w) are

7Let s ∈ RW be a salary vector of which sw is the salary allocated to worker w. For s ∈ RW ,
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integers, and the structure of the market is totally unimodular, the market must have
at least one stable outcome with an integral payoff vector u ∈ ZF∪W , which implicitly
defines an integral salary scheme s ∈ ZW . We can therefore restrict ourselves solely
to the domain of integer payoffs. Namely, it is sufficient to consider only weakly
(strongly) blocking pairs with integer payoffs. Henceforth, all values and salaries to
be discussed will be integral.

As a blocking pair may result in multiple allocations, arising from different spec-
ifications of wages or surplus division rules, we define an additional basic concept of
pair improvement so as to fully describe the process from a blocking pair. In gen-
eral, let (f, w) be a blocking pair of an allocation (µ, u). Introduce a new allocation
(µ′, u′) via the blocking pair (f, w) such that (1) µ′(x) = µ(x) and u′ (x) = u (x) for
any x ∈ (F ∪W ) \ {f, w, µ(f), µ(w)}, (2) under µ′, f and w are matched, while µ(f)
and µ(w) are self-matched, and (3) u′ (f) = rf and u′ (w) = rw such that rf + rw =
V (f, w), while u′ (µ (f)) = V (µ (f) , µ (f)) and u′ (µ (w)) = V (µ (w) , µ (w)). We
say that (µ′, u′) is a pair improvement of (µ, u) through the blocking pair (f, w). We
also distinguish weak pair improvements from strong pair improvements, depending
on whether the associated blocking pair (f, w) is weak or strong.8 As described pre-
viously, a pair improvement mimics a real transaction between a firm and a worker
and can thus be naturally interpreted as a specific form of bilateral trade. Hereafter,
we sometimes state a pair improvement as, more intuitively, a bilateral trade in our
discussion.

As stated before, our central objective is to analyze the market outcomes of a
decentralized and random process where firms and workers meet directly and ran-
domly, and negotiate salaries with each other over time. For this purpose, the first
issue we have to deal with is the existence of a finite sequence of successive bilat-
eral trades toward a stable allocation from any initial allocation. The following
examples demonstrate that an arbitrary sequence of successive weak or strong pair
improvements may induce trading cycles.

First consider the case of weak pair improvements. A very simple example of
this is a labor market (F, W, V ) where F = {t} , W = {x, y}, V (t, x) = V (t, y) =
2, and V (i, i) = 0 for all i ∈ F ∪ W . Consider an initial allocation (µ0, u0) =

define the demand set of firm f ∈ F by

Df (s) =
{w | V (f, w)− sw ≥ V (f, f) and V (f, w)− sw ≥ V (h, f)− sh,∀h ∈W}
∪{f | V (f, f) ≥ V (h, f)− sh,∀h ∈W}.

A pair (µ, s) is a competitive equilibrium if (1) µ(h) ∈ Dh(s) for all h ∈ F ; (2) sw ≥ V (w,w) for all
w ∈W , and µ(w) = w implies sw = V (w,w) for all w ∈W .

It is easy to show that (µ, s) is a competitive equilibrium if and only if (µ, u) is stable, where
u (w) = sw for all w ∈ W , u (f) = V (µ (f) , f) − sµ(f) for all f ∈ F with µ(f) 6= f , and u (f) =
V (f, f) for all f ∈ F with µ(f) = f .

8A pair improvement from a weakly or strongly blocking pair initiated by a single agent can be
defined in an analogous way.
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{(
t
1
, x

1

)
,

(
y
0
, y

0

)}
, where we list the agents’ (integral) payoffs below the matching.

Now (µ0, u0) is weakly blocked by the pair (t, y), which when satisfied yields (µ1, u1) ={(
t
1
, y

1

)
,
(
x
0
, x

0

)}
, while (µ1, u1) is further weakly blocked by (t, x), which leads to

exactly (µ0, u0), completing the cycle.
Our next example shows that cycles may also arise under strong pair improve-

ments. Notice in particular that this example also shows that the market value may
not be monotonic along a path of pair improvements.

Example 1 Consider a labor market (F, W, V ) with F = {a, b} , W = {x, y}, and
V (i, i) = 0, ∀i ∈ F ∪W , V (a, i) = 4 and V (b, i) = 5, ∀i ∈ W.

We start with an initial allocation (µ0, u0) with µ0 = {(a, x), (b, b)} , (y, y) and
u0 (a) = u0 (x) = 2 and u0 (i) = 0 otherwise.

Choose the first strongly blocking pair to be (b, x), resulting in(
µ1, u1

)
=

{(
a
0
, a

0

)
,
(
b
2
, x

3

)
,

(
y
0
, y

0

)}
.

Now b and y can form the next strongly blocking pair, leading to(
µ2, u2

)
=

{(
a
0
, a

0

)
,

(
b
4
, y

1

)
,
(
x
0
, x

0

)}
.

We then choose (a, y) as the next blocking pair, leading to(
µ3, u3

)
=

{(
a
1
, y

3

)
,
(
b
0
, b
0

)
,
(
x
0
, x

0

)}
.

Finally, (a, x) is the next blocking pair, which when satisfied, gives(
µ4, u4

)
=

{(
a
2
, x

2

)
,
(
b
0
, b
0

)
,

(
y
0
, y

0

)}
,

completing the cycle.

Both examples illustrate the complexity of finding a deterministic path of pair
improvements toward (weak) stability in that the choices of both surplus division rules
and blocking pairs are important. The examples also demonstrate that an arbitrary
decentralized market process does not guarantee convergence to (weak) stability.

3 A Preliminary Result on Weak Stability

To be instructive, we begin with a preliminary result on the existence of a finite
path of (strong) pair improvements toward weakly stable allocation, starting from
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an arbitrary allocation of the labor market. A direct consequence of this result is
that the random process where each possible strong pair improvement is chosen with
positive probability eventually converges to a weakly stable allocation of the market.9

To establish the existence of a finite path toward weakly stable allocation, the key
issue is to make sure that the trading process consisting of myopic bilateral trades will
not be stuck in some endless cycles. To this end, observe first that, as demonstrated in
Example 1, each pair improvement only results in payoff improvements for the players
involved in the blocking pair associated with the pair improvement. This indicates
that the market value may decrease after a pair improvement as the abandoned
partner’s payoff will most likely decrease. Consequently, constructing a finite path of
successive strong pair improvements that builds on the monotonicity of the market
value is difficult. We instead employ the finiteness of agents and construct a sequence
of sets of agents with increasing sizes. For weak stability, such a construction is
relatively easy, as both agents involved in a pair are strictly better off after a strong
pair improvement, enabling one to invoke certain payoff monotonicity in constructing
the sets. For the existence of a finite path of weak pair improvements toward stability,
however, the construction is much more involved and demanding so as to precisely
deal with trading cycles that arise in the process, as we shall see in the next section.

Specifically, the basic idea of achieving weak stability is to construct a sequence
of monotonically increasing sets of firms and workers such that the firms and workers
in any such set do not form strongly blocking pairs. Such process proceeds until no
strongly blocking pair can be found in the market, establishing weak stability. Roth
and Vande Vate (1990) used a similar idea for the marriage matching model where
money is absent. Our construction of the monotonically increasing sets, however, also
includes proper specifications of wages or surplus division rules for strongly blocking
pairs, resulting in different and, in some aspects, more involved arguments than theirs.

Theorem 1 Consider a labor market (F, W, V ) with an arbitrary initial allocation
(µ0, u0). There exists a finite number of consecutive strong pair improvements which
lead to a weakly stable allocation (µ∗, u∗).

To prove the theorem, we first present the Basic Algorithm, which carries an arbi-
trary individually rational allocation to a weakly stable allocation in the labor market
(F, W, V ).

Basic Algorithm

Step 1: If (µ0, u0) is weakly stable, stop with output (µ0, u0). Otherwise, there is
a strongly blocking pair (f 1, w1) with V (f 1, w1) ≥ u0 (f 1) + u0 (w1) + 2. Match f 1

with w1. Define K (1) to be {(f 1, w1)} and let the updated allocation be (µ1, u1). In
addition, let u1 (f 1) = u0 (f 1) + 1, u1 (w1) = V (f 1, w1)− u1 (f 1); µ0 (i), i ∈ {f 1, w1},
if any, obtains u1 (µ0 (i)) = V (µ0 (i) , µ0 (i)); and for all other x, let u1 (x) = u0 (x).10

9This is an immediate corollary of Proposition 1 in Section 4.
10The (initial) wage specification between f1 and w1 is inessential: any rule such that both f1 and

w1 are strictly better off than before will do.
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Define an index n and put n← 1.

Step 2: If (µn, un) is weakly stable, then stop. Otherwise, there is a blocking pair
(fn, wn) of (µn, un) such that (fn, wn) /∈ K (n) .11 Distinguish three cases:

Case 1. If wn ∈ K (n) (hence fn ∈ (F ∪W ) \K (n)), then fn is the initiator
of the next blocking pair, who chooses wn where wn ∈ arg maxw∈K(n)[V (fn, w)-
un (fn)-un (w)] (choose arbitrarily if there are several such wn’s). Update the alloca-
tion to be (µn+1, un+1) so that fn is matched with wn; un+1 (wn) = un (wn) + 1
and un+1 (fn) = V (fn, wn) − un+1 (wn); un+1 (x) = un (x) for unaffected x and
un+1 (y) = V (y, y) for self-matched y. Let K (n + 1) = K (n) ∪ {fn}. Analyze
two further sub-cases:

• If µn (wn) = wn or if µn (wn) 6= wn and ∀w ∈ K (n), (µn (wn) , w) is not a
weakly blocking pair of (µn+1, un+1), then return (µn+1, un+1) and K (n + 1).
Put n← n + 1.

• If µn (wn) 6= wn and there is a blocking pair (fn+1, wn+1) of (µn+1, un+1) where
(fn+1, wn+1) ∈ K (n + 1) and fn+1 = µn (wn). Let fn+1 initiate the next
blocking pair, choosing wn+1 where wn+1 ∈ arg maxw∈K(n+1)[V (fn+1, w) −
un+1 (fn+1) − un+1 (w)]. Match fn+1 with wn+1 and update the allocation
to be (µn+2, un+2) with un+2 (wn+1) = un+1 (wn+1) + 1 and un+2 (fn+1) =
V (fn+1, wn+1) − un+2 (wn+1). Similarly, un+2 (y) = V (y, y) for unmatched y
and un+2 (x) = un+1 (x) for all other x.

Repeat this process until we reach an allocation
(
µn+k, un+k

)
such that K (n + 1)

contains no strongly blocking pair of
(
µn+k, un+k

)
. Rename

(
µn+k, un+k

)
as (µn+1, un+1)

and put n← n + 1.

Case 2. wn ∈ (F ∪W ) \K (n) and fn ∈ K (n). This is analyzed similarly as in Case
1, with the roles of firms and workers being switched in initiating blocking pairs. This
finally yields some (µn+1, un+1) where K (n + 1) = K (n)∪{wn} contains no blocking
pair of (µn+1, un+1). Put n← n + 1.

Case 3. If every existing strongly blocking pair of (µn, un) is such that (fn, wn) ∈
(F ∪ W )\K (n), or no agent in (fn, wn) is in K (n), then construct K (n + 1) as
K (n + 1) = K (n) ∪ {(fn, wn)}. Let (µn+1, un+1) be the updated allocation so that
fn is matched with wn; un+1 (fn) = un (fn) + 1, un+1 (wn) = V (fn, wn)− un+1 (fn);
and un+1 (y) = V (y, y) for unmatched y and un+1 (x) = un (x) for all other x.12 Put
n← n + 1.

Step 3: If allocation (µn, un) contains no strongly blocking pair, then return (µn, un),

11Here, (fn, wn) /∈ K (n) implies that not both fn and wn are in K (n). With some abuse of
notation, we denote both a single agent and a pair of agents as elements of K (n) or F ∪W\K (n)
hereafter.

12The wage specification between fn and wn can again be specified arbitrarily here, so long as
consistent with the strongly blocking pair (fn, wn).
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which is weakly stable. Otherwise, go to Step 2.

(End)

Several remarks are in order for Theorem 1 and Basic Algorithm:
First, Theorem 1 extends the previous paths-to-stability results to a labor market

setting with payoffs, with additional and careful choices of surplus division rules
(wages). The Basic Algorithm shows that to design a path toward weak stability,
judicious choices of blocking pairs and wage specification are both important. As here
we have more degrees of freedom in selecting different wage choices, our algorithm
thus contains a somewhat more involved and elaborate design.

Second, in the process of constructing a sequence of strongly blocking pairs to
achieve an “internally (weakly) stable” set K (n) (with its members’ associated pay-
offs), we let the newly introduced agent be the initiator of the next blocking pair
and we specify the surplus division rule to be “the initiator getting the lion’s share
of the resulting surplus.” Such a specification excludes cases where a single blocking
pair breaks multiple existing pairs, ensuring the monotonicity of payoffs of the non-
initiators in K (n) along the sequence of strong pair improvements in the process.
This payoff monotonicity is crucial for the proof of Theorem 1.

We now present an example. The first part of Example 2 shows that if the surplus
division rule is specified differently, then two existing pairs of firms and workers in
K (n) can be broken simultaneously by a single blocking pair in the process, disrupting
monotonicity. The second part of the example illustrates the Basic Algorithm.

Example 2 Consider a market with F = {a, b} , W = {x, y}, V (i, i) = 0,∀i ∈ F ∪W ,
and

V (a, x) = 5, V (b, x) = 5,
V (a, y) = 6, V (b, y) = 7.

Suppose that currently we have µ = {(a, y) , (x, x) , (b, b)} with u (a) = 4, u (y) =
2, u (b) = u (x) = 0 and K = {(a, y) , (x, x)}. Now introduce firm b, who can form a
strongly blocking pair with either x or y. Suppose we choose (b, x) and let the initiator
firm b obtain an additional payoff of 1 after forming the blocking pair. The resulting
allocation is µ′ =K ′ = {(a, y) , (b, x)} with u (a) = 4, u (b) = 1, u (x) = 4, u (y) = 2.
The next blocking pair is then (b, y) , which inevitably breaks both (a, y) and (b, x) , and
results in a payoff of 0 for worker x, upsetting the monotonicity of workers’ payoffs in the
process.

We next employ the Basic Algorithm to produce a weakly stable allocation for this
labor market, starting with an initial allocation (µ0, u0) with µ0 = {(a, a), (b, b), (x, x),
(y, y)} and u0 (i) = 0 ∀i ∈ F ∪W.

Pick an arbitrary blocking pair, say, (a, x) , to form K (1), so that(
µ1, u1

)
=

{(
a
1
, x

4

)
,
(
b
0
, b
0

)
,

(
y
0
, y

0

)}
and K(1) = {(a, x)}.
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Introduce worker y, who initiates the next blocking pair (a, y), resulting in

(
µ2, u2

)
=

{(
a
2
, y

4

)
,
(
b
0
, b
0

)
,
(
x
0
, x

0

)}
and K (2) = {(a, y) , (x, x)} .

After two consecutive strong pair improvements from pairs (a, x) and (a, y), we obtain

(
µ4, u4

)
=

{(
a
4
, y

2

)
,
(
b
0
, b
0

)
,
(
x
0
, x

0

)}
,

and K (2) = {(a, y) , (x, x)}, which contains no strongly blocking pair of (µ4, u4).
Rename (µ4, u4) as (µ2, u2) and introduce firm b, who can form a strongly blocking

pair with either x or y. For future illustration, we analyze the two cases separately.

• The next strongly blocking pair is (b, x). By the algorithm, we have

(
µ3, u3

)
=

{(
a
4
, y

2

)
,
(
b
4
, x

1

)}
, and K (3) = {(a, y) , (b, x)} .

Allocation (µ3, u3) is only weakly stable with (b, y) being a weakly blocking pair.

• The next strongly blocking pair is (b, y), which, when satisfied, leads to

(
µ3, u3

)
=

{(
a
0
, a

0

) (
b
4
, y

3

)
,
(
x
0
, x

0

)}
,

and K (3) = {(a, a) , (b, y) , (x, x)}. Then let firm a initiate the next blocking pair
(a, x), resulting in

(
µ4, u4

)
=

{(
a
4
, x

1

)
,

(
b
4
, y

3

)}
, and K (3) = {(a, x) , (b, y)} .

Observe that allocation (µ4, u4) is weakly stable, as well as stable.

4 Main Results

In this section we address our central question of whether decentralized and random
processes can lead the market to a stable outcome. For this purpose, it is important
to show that starting from any initial allocation, there exists a finite sequence of
successive myopic bilateral trades toward a stable allocation. This result then implies
that the process of choosing each pair improvement with positive probability from
any unstable allocation converges to stability with probability one.

We have demonstrated in Section 3 that from any initial allocation there are
finite successive strong pair improvements leading to a weakly stable allocation in
the market. The result is not entirely satisfactory as the market value in a weakly
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stable allocation can be strictly less than the efficient value, rendering the market in a
state of inefficiency and disequilibrium. To attain market efficiency and equilibrium,
we now strengthen the previous result to show that given any initial allocation of a
labor market, there is a finite sequence of successive weak pair improvements that
results in a stable allocation, which is also a competitive equilibrium of the market.

Example 2 in the previous section illustrates that the Basic Algorithm may also
result in a stable allocation. This might lead to a conjecture that one can probably
modify the Basic Algorithm by employing weakly blocking pairs and imposing more
detailed surplus specifications in choosing weakly blocking pairs so as to achieve
stability. However, a first difficulty of this approach is that the occurrences of multiple
blocking pairs and the specification of a “correct” blocking pair are endogenous and
typically depend on the status quo configuration and the overall market structure.
Moreover, the design of a different set of surplus division rules and the possibility of
cycles pose additional challenges. Consequently, the approach of directly generalizing
the Basic Algorithm by specifying more detailed choices in blocking pairs is difficult,
if not impossible.

We therefore take a different route. The basic idea is to construct an “internally
stable” set like K (n) that expands strictly as n increases. The crucial step is to adjust
this set to be “internally stable” after the addition of new members. In contrast to
the case of weak stability where the Basic Algorithm prevents cycles from happening
by maintaining payoff monotonicity of one side of the market during the adjustment,
cycles typically arise along a path toward stability. The reason is that with weak pair
improvements, we do not have the luxury of always having additional payoffs to make
some members in one side of the market strictly better off during the adjustments.
We develop a novel and systematic approach to deal with cycles in a way that once the
agents arrive in a cycle, we construct a path of successive “bilateral trades ” leading
the process out of the cycle, with an additional feature that the agents will not enter
exactly the same cycle afterwards. In the sequel, to ease exposition, we proceed in two
steps: In the first, we consider a simple and “almost stable” market and present an
algorithm that generates a finite path of successive weak pair improvements towards
stability (Theorem 2). We then use this result to prove a complete paths-toward-
stability theorem for the general labor market (Theorem 3).

Consider the following restricted situation/market : For an individually rational
allocation (µ, u) where u is an integral payoff vector, there exists a worker w0 such
that w0 is self-matched at µ and such that (µ, u) restricted to F ∪(W \{w0}) is stable.
We now design an algorithm which finds a finite sequence of weak pair improvements
leading (µ, u) to a stable allocation. We start with several key definitions:

Given allocation (µ, u), define, for each w ∈ W ,

Fw (u) = {f ∈ F | V (f, w)− u(f) = max{V (f ′, w)− u(f ′) | f ′ ∈ F}} (1)

and let Lw be a list (linear ordering) of elements of Fw (u). We fix such lists Lw for
all w ∈ W whenever Fw (u) remains the same, and, starting from its first element,
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each list Lw is used cyclically in the sense that the first element of Lw becomes the
next firm when we reach the end of Lw.

An alternating path for an allocation (µ, u) from w0 is an alternating sequence of
unmatched and matched firm-worker pairs

(f1, w0), (f1, w1 = µ(w1)), (f2, w1), (f2, w2 = µ(f2)), · · · , (f l−1, wl−1 = µ(f l−1)), (f l, wl−1)

for an integer l ≥ 1 such that (i) all the participating agents f i’s and wi’s are distinct,
(ii) f i ∈ Fwi−1 (u) \ {µ(wi−1)} for all i = 1, · · · , l, and (iii) f i’s are not self-matched.
For l ≥ 2, we also call such a sequence with the last pair (f l, wl−1) being deleted an
alternating path. An unmatched pair

(
fk, wk−1

)
, k ≥ 0, in an alternating path can

be interpreted as that if worker wk−1 breaks up with her currently matched firm (if
any), she would then “point to” firm fk, indicating her preferences of the next firm
she would like to be matched with.

In dealing with weakly blocking pairs, cycles typically arise. The above definitions
serve as key tools in treating such cycles in a systematic way. Roughly speaking,
Fw (u) serves as a “depository” of firms from which worker w draws a firm to form a
weakly blocking pair. Lw serves as an “index”, indicating the order w should follow
in drawing firms from Fw (u). Finally, an alternating path is a device we use to spin
the process out of a cycle when the latter arises so that each adjustment is consistent
with weak pair improvements. The specific roles of these tools will be seen more
clearly in the Main Algorithm.

Now consider the following algorithm which returns a stable allocation from an
initial allocation (µ, u) in the restricted situation as described previously.

Main Algorithm

Step 0: If (µ, u) is stable, then return (µ, u) and stop. Otherwise, put µ0 ← µ and
u0 ← u. Given (µ0, u0), for each matched w under µ0, reset the list Lw cyclically
so that the very first firm in Lw is the one that is matched with w in µ0. For self-
matched w, that is, for w0, such adjustment is unnecessary and Lw0 can be the one
constructed initially. Let f 0 be the first element of list Lw0 , and put k ← 0.

Step 1: If fk is self-matched at µk, then match fk with wk. Let µk+1 be the updated
matching, and put uk+1(wk) = V (fk, wk) − uk(fk) and uk+1(x) = uk(x) for other
x ∈ F ∪W . Return (µk+1, uk+1) and stop.

Step 2: If fk is not self-matched at µk, then match fk with wk (hence µk(fk)
becomes self-matched). Let µk+1 be the updated matching, and put uk+1(wk) ←
V (fk, wk) − uk(fk), uk+1(µk(fk)) ← V (µk(fk), µk(fk)), and uk+1(x) ← uk(x) for
other x ∈ F ∪W . Also put wk+1 ← µk(fk).

If (µk+1, uk+1) is stable, then return (µk+1, uk+1) and stop. Otherwise, define fk+1 as
follows:
If list Lwk+1 is treated for the first time, then let fk+1 be the second element of
Lwk+1 ; otherwise let fk+1 be the firm next to the last matched firm in list Lwk+1 . Put
k ← k + 1.
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Step 3: If (µk, uk) = (µk′ , uk′) for some integer k′ with 0 ≤ k′ < k, we have got into
a cycle and go to Step 4; otherwise go to Step 1.

Step 4: Let FQ be the set of firms f whose matched workers µ(f) change at least
once during the cycle according to the updating of µ. Starting from the current al-
location (µk, uk), put F ∗ ← ∅ and let w∗ be the self-matched worker that appeared
when µk was updated. While F ∗ 6= FQ , execute the following (*):

(*) Let (µ, u) be the current allocation. Find an alternating path for allocation
(µ, uk) from w∗ to a firm f ∗ ∈ FQ \ F ∗ such that all the non-terminal firms
belong to F ∗.13

Carry out Augment.
Augment: Proceeding in the reversed order of the alternating path, for each
unmatched firm-worker pair (f, w) in the alternating path do the following (1)
and (2):

(1) Make f matched to w and let µ′ be the updated matching (by construction
of the alternating path, µ(f) becomes self-matched and unless w = w∗,
µ(w) also becomes self-matched).

(2) Put u(w)← V (f, w)−uk(f)−1, u(f)← uk(f)+1, u(µ(f))← V (µ(f), µ(f)),
and unless w = w∗, put u(µ(w))← V (µ(w), µ(w)).

Proceed until we complete (1) and (2) for the first unmatched pair that involves
w∗. Put w∗ ← µ(f ∗), µ← µ′, and F ∗ ← F ∗ ∪ {f ∗}.
Step 5: Denote the current allocation by (µ, u) again and let w0 be the self-matched
worker that appeared at the last updating of µ. Update lists Lw of Fw (u) for all
w ∈ W . Go to Step 0.

(End)

We briefly illustrate the essential idea of the Main Algorithm as follows:
Given the restricted market structure, all possible weakly blocking pairs have

to involve the current self-matched worker. In Step 1 and Step 2, we always let
the current self-matched worker initiate the next weakly blocking pair. Each self-
matched worker w chooses, according to the list Lw, a firm that generates the highest
net surplus, which is entirely awarded to the worker. Such an arrangement rules
out cases where several existing pairs are broken by a single weakly blocking pair,
disrupting certain monotonicity property as previously.

13Recall that uk is the payoff vector appearing in Step 3, so that we should
find an alternating path with respect to Fw

(
uk

)
. Also, given an alternating path(

f1, w0 = w∗) ,
(
f1, w1 = µ

(
f1

))
, ...,

(
f l−1, wl−1 = µ

(
f l−1

))
,
(
f l, wl−1

)
, we call f l the terminal

firm and f1, f2, ..., f l−1 non-terminal firms. Notice that if l = 1, then f1 is the terminal firm
and f1 ∈ FQ \ F ∗.
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Figure 1. An Alternating Path from w∗ to f l in the Execution of Augment.

Next, such a “greedy” behavior of the self-matched workers raises the possibility
of a cycle, where several workers “compete” for the same set of firms. We denote this
set of firms in the cycle as FQ. Intuitively, firms in FQ are over-demanded by the
competing workers in the cycle, which is collected in set WQ. Observe that by the
specification of lists {Lw}w∈WQ

in Step 0, at the end of the cycle, workers in WQ face

exactly the same configuration of {Lw}w∈WQ
as in µ0 — that is, every w , w ∈ WQ,

has gone through multiple integer rounds of Lw entirely, and each w ∈ WQ has been
matched with every firm in Lw at least once during the cycle.

The remaining part of the Main Algorithm serves to spin the process out of the
cycle in a consistent way. To this end, we increase the payoffs of the over-demanded
firms in FQ, the adjustment being the smallest increment of 1. This payoff ad-
justment is completed systematically using alternating paths, as shown in (*) of
Step 4. Specifically, starting from the self-matched worker w∗ appearing at the end
of the cycle, construct an alternating path “(f 1, w0 = w∗) , (f 1, w1 = µ (f 1)), ...,(
f l−1, wl−1 = µ

(
f l−1

))
,
(
f l, wl−1

)
” such that all firms except f l are in F ∗, a set con-

structed to temporarily collect firms in FQ that have already been treated with payoff
increases. Augment in Step 4 presents formal procedures to conduct payoff increases
of firms in FQ so that each adjustment is consistent with weak pair improvement.
Notice that set F ∗ is initially empty and hence the very first alternating path has
length 1. Alternating paths after the first execution of Augment may, however, have
lengths more than 1.14

Figure 1 shows an alternating path from w∗ to a firm f l ∈ FQ\F ∗. The dotted
arrows connect currently unmatched pairs of firms and workers, indicating the next
firm a worker would point to if the worker becomes self-matched, while the solid
lines connect currently matched pairs of firms and workers in the alternating path. In
executing Augment, we start with the last unmatched pair

(
f l, wl−1

)
, and match every

14Indeed, it is possible that all alternating paths in the execution of (*) may have length 1. We
show in Example 4 that for some asymmetric markets, alternating paths with length more than 1
might have to be employed.
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pair connected by dotted arrows sequentially until we reach the pair with (f 1, w∗).
After one round of Augment, an additional firm f l is treated with the payoff increase
and is then added to set F ∗. Moreover, worker µ

(
f l

)
becomes the unmatched worker

w∗, who initiates the next alternating path for the next round of Augment if the
updated F ∗ is not equal to FQ.

Intuitively, the complex nature of the Main Algorithm, especially in Augment,
is a direct consequence of the constraint that every involved adjustment has to be
consistent with weak pair improvements. We are now ready to prove the convergence
of the Main Algorithm.

Theorem 2 For any individually rational allocation (µ, u) that satisfies the restricted
situation, the Main Algorithm always finds a stable allocation after a finite number
of weak pair improvements.

Proof. If Step 4 is not executed throughout the algorithm, then it is easy to see the
validity of the algorithm. We next prove the validity of Step 4 when cycles arise.

Suppose that Step 4 is executed. Let FQ (resp., WQ) be the set of firms f (resp.,
workers w) whose matched partners change at least once during the cycle according
to the updating of µ. We first show that whenever F ∗ 6= FQ, there exists a desired
alternating path from w∗ to a firm f l ∈ FQ\F ∗ and that all other firms involved
in the alternating path are in F ∗. Suppose by way of contradiction that there does
not exist any such alternating path for (µ, uk) from w∗ to FQ \ F ∗. Let F̂ and Ŵ ,
respectively, be the set of all firms and that of all workers in FQ∪WQ reachable from
w∗ by alternating paths for (µ, uk).15 Notice that by our construction of the cycle
and the assumption of no legitimate alternating path from w∗ to FQ\F ∗, we have

F̂ ⊆ F ∗ ⊂ FQ and Ŵ ⊂ WQ. Namely, all agents reachable from w∗ by alternating
paths for (µ, uk) have to be in FQ ∪WQ.

Given such F̂ and Ŵ and the assumption of non-existence of desired alternating
paths, we have

|F̂ |+ 1 = |Ŵ |, |FQ \ F̂ | = |WQ \ Ŵ | > 0 (2)

and
/∃ matched (f, w) : w ∈ Ŵ , f ∈ (FQ \ F̂ ) ∩ Fw

(
uk

)
, (3)

where observe that Fw is defined with respect to uk. Condition (2) is derived from the
definition of F̂ and Ŵ , as well as the fact that we start from the restricted situation
with only one self-matched worker and every matching arising in the cycle has only
one self-matched worker. According to (3), no worker in Ŵ can be matched with
firms in (FQ \ F̂ ).16 Notice in particular that (2) and (3) jointly imply that matched

15Here, an agent (a firm or a worker) is reachable from w∗ if the agent is a member in a legitimate
alternating path originates from w∗. By definition, w∗ ∈ Ŵ .

16In addition, for unmatched pairs in the alternating paths, all workers in Ŵ can only “point” to
firms in F̂ as well. See Figure 2 for a graphical illustration.
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pairs in F̂ ∪ Ŵ are disjoint from those in
(
FQ \ F̂

)
∪

(
WQ \ Ŵ

)
in the sense that no

agent in F̂ ∪ Ŵ is matched with an agent in
(
FQ \ F̂

)
∪

(
WQ \ Ŵ

)
.

Now during the cycle, we have a matching that matches all f ∈ FQ to workers.
Equation (3) and the fact of all agents in FQ ∪WQ being involved in the single cycle

then jointly imply that there must exist a matched pair (f ′, w′) such that f ′ ∈ F̂
and w′ ∈ WQ \ Ŵ . (Notice that (i) because the cycle uses lists Lw (w ∈ WQ)
and each Lw has been exhausted entirely at least once during the cycle, we have
FQ = ∪w∈WQ

Fw

(
uk

)
, and (ii) worker w ∈ WQ \ Ŵ cannot point to a firm f ∈ F̂

either as this contradicts the fact that Ŵ is the set of all workers in WQ reachable
from w∗ by alternating paths for (µ, uk).) However, f ′ cannot be matched to w′

since FQ \ F̂ must be matched to WQ \ Ŵ due to (2) and (3).17 This contradiction
establishes the existence of a desired alternating path in the execution of (*).

We next show that every adjustment executed in Augment is consistent with weak
pair improvements. Let (f 1, w0= w∗), (f 1, w1=µ(f 1)), (f 2, w1), (f 2, w2=µ(f 2)), · · · ,
(f l−1, wl−1=µ(f l−1)), (f l, wl−1)) be an alternating path found in (*) in Step 4 for
some positive integer l. (Note that µ(f l) becomes the unique self-matched worker
after Augment, which is precisely the w∗ for the next round of Augment.)

If l = 1, then (f 1, w0 = w∗) is a weakly blocking pair. (Recall that since f 1 ∈
Fw0

(
uk

)
, these two agents were matched during the cycle.)

If l ≥ 2, we have u(f l) = uk(f l), u(wl−1) = uk(wl−1)−1 , and uk(f l)+uk(wl−1) =
V (f l, wl−1). Hence V (f l, wl−1) − u(f l) − u(wl−1) = 1. (Here, recall that by the
definition of cycle, for any f ∈ FQ the value of ui(f) remains to be the same for
i = k′, · · · , k, and that for each w ∈ WQ all the values of V (f, w)− ui(f) for f ∈ Fw

and i = k′, · · · , k are the same. Here parameters k′ and k are those appeared in Step
3.) Hence, (f l, wl−1) is a weakly blocking pair and this validates the operations in (2)
of Augment. We make f l matched to wl−1 and update u as (2) in (*) of Step 4. (In
effect, u(f l) is increased by one and u(wl−1) remains the same.) Then f l−1 becomes
self-matched. If l = 2, then (f 1, w0 = w∗) is a weakly blocking pair. (Recall again
that these two were matched during the cycle, so that they prefer being matched to
being self-matched.)

If l ≥ 3, we then have u(f l−1) = V (f l−1, f l−1) < uk(f l−1) + 1 = V (f l−1, wl−2) −
u(wl−2) , so that pair (f l−1, wl−2) becomes a weakly blocking pair. We then perform
(1) and (2) of Augment. We repeat this process until we make f 1 matched to w0= w∗,
which completes an execution of Augment.

When finishing the While loop in Step 4, the utility u(f) of each firm f in FQ is
increased by one.

When we go from Step 4 to Step 5, letting wk be the current self-matched
worker, there is no weakly blocking pair within (F ∪W ) \ {wk}. Recall that FQ =
∪w∈WQ

Fw

(
uk

)
, which implies that for any (f, w) such that f ∈ F \ FQ and w ∈ WQ,

17Alternatively, if f ′ ∈ F̂ is matched with w′ ∈ WQ \ Ŵ , we then cannot have that |FQ \ F̂ | =
|WQ \ Ŵ | > 0 and that firms in FQ \ F̂ are exactly matched with workers in WQ \ Ŵ .
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Figure 2. An Illustration on the Existence of Legitimate Alternating Paths.

we have V (f, w)− u(f) ≤ V (µ(w), w)− u(µ(w)), where (µ, u) is the final allocation
in Step 4 when Step 4 is completed.

Every time we execute Step 4, at least one value of u(f) (f ∈ F ) increases and u(f)
for each f ∈ F is non-decreasing throughout Main Algorithm (where we neglect the
temporary steps in which u(f) becomes V (f, f) during the execution of Augment).
Moreover, the set of possible integer values of u(f) (f ∈ F ) is finite. Since the number
of all the matchings for fixed Fw

(
uk

)
(w ∈ W ) is bounded by |W |!, after at most |W |!

updatings of matching µ, we either get into a cycle, where some u(f) is increased after
the execution of Step 4, or the algorithm terminates. We therefore conclude that the
algorithm terminates after a finite number of steps.

Our proof of the existence of a desired alternating path in (*) can be further
illustrated in Figure 2: If there does not exist a desired alternating path from w∗

when F ∗ 6= FQ, then the set of firms (resp., workers) reachable from alternating

paths starting with w∗ is a strict subset of FQ, F̂ ⊂ FQ (resp., a strict subset of

WQ, Ŵ ⊂ WQ). This implies that firms in FQ \ F̂ are exactly matched with workers

in WQ \ Ŵ , and these matched pairs are disjoint from the matched pairs in F̂ and

Ŵ\ {w∗} . However, the facts that (i) firms in FQ and workers in WQ are involved in

a single cycle; (ii) workers in Ŵ cannot be matched with (and cannot point to) firms
outside F̂ ; and (iii) workers in WQ \ Ŵ cannot point to firms in F̂ , necessarily imply

a link between F̂ ∪ Ŵ with the rest of the cycle has to come from a matched pair
(f ′, w′), f ′ ∈ F̂ , w′ ∈ WQ \ Ŵ , which contradicts the established result that firms in

FQ \ F̂ are exactly matched with WQ \ Ŵ .
We next present two examples to provide further illustration and to facilitate

better understanding of the Main Algorithm.

Example 3 Consider a labor market (F, W, V ), where

F = {a, b} , W = {x, y, z}
V (i, j) = 3, ∀ i ∈ F and j ∈ W and V (k, k) = 0,∀ k ∈ F ∪W .
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Consider an initial allocation (µ0, u0) that satisfies the restricted situation,(
µ0, u0

)
=

{(
a
2
, x

1

)
,

(
b
2
, y

1

)
,
(
z
0
, z

0

)}
.

We have Fi (u
0) = {a, b} ∀i ∈ W . Let Lx = ab, Ly = ba, and Lz = ab. Notice that

the first element of Lx, a (resp., Ly, b), is currently matched with x (resp., y) in µ0.
It can be verified that (µ6, u6) = (µ0, u0), a cycle, where FQ = {a, b} , WQ = {x, y, z}.
From z, a desired alternating path is (a, z), which is a weakly blocking pair. One round
of Augment gives (

µ6, u6
)

=

{(
a
3
, z

0

)
,

(
b
2
, y

1

)
,
(
x
0
, x

0

)}
,

and hence F ∗ = {a}. Choose the next alternating path to be (b, x), a weakly blocking
pair. An execution of Augment yields a stable allocation(

µ6, u6
)

=

{(
a
3
, z

0

)
,
(
b
3
, x

0

)
,

(
y
0
, y

0

)}
.

The setting in Example 3 is somewhat symmetric and we always have the option
of constructing every involved alternating path with length 1. We next present an
asymmetric example, which shows that without further restrictions on choices of
alternating paths and lists Lw, we may have to construct alternating paths with
length more than 1 during the execution of Augment.

Example 4 Consider market (F, W, V ), where

F = {a, b, c, d} , W = {x, y, z, t; m}
V (k, k) = 0,∀ k ∈ F ∪W , V (i, j) = 3, ∀ i ∈ F, j ∈ W\ {m}

V (a, m) = V (b, m) = 2, V (c, m) = V (d,m) = 0

Consider an initial allocation (µ0, u0) that satisfies the restricted situation,(
µ0, u0

)
=

{(
a
1
, m

1

)
,

(
b
1
, y

2

)
,
(
c
1
, z

2

)
,
(
d
1
, t
2

)
,
(
x
0
, x

0

)}
,

Notice that Fi (u
0) = {a, b, c, d} , i ∈ W\{m} and Fw (u0) = {a, b}. Lists {Lw}w∈W are

chosen as: Lx = cdba, Ly = bcda, Lz = cdba, Lt = dabc, Lm = ab. Proceeding as in
Step 2, one can verify that a cycle arises such that18(

µ0, u0
)

=
(
µ22, u22

)
=

{(
a
1
, m

1

)
,

(
b
1
, y

2

)
,
(
c
1
, z

2

)
,
(
d
1
, t
2

)
,
(
x
0
, x

0

)}
,

18The self-matched workers in the 23 allocations can be ordered from µ0 to µ22 as

x, z, t, m, y, x, z,m, t, z, m, t, y, x,m, z, t, y,m, x, y, m, x.

One can also see that in obtaining this cycle, we have gone through every list Lw entirely at least once.
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where w∗ = x, FQ = {a, b, c, d} and WQ = {x, y, z, m, t}. Rename (µ22, u22) as (µ, u) .
The first alternating path can be chosen as (b, x). One round of Augment leads to

(µ, u) =

{(
a
1
, m

1

)
,
(
b
2
, x

1

)
,
(
c
1
, z

2

)
,
(
d
1
, t
2

)
,

(
y
0
, y

0

)}
,

leaving a new w∗ = y and F ∗ = {b}.
Choose the second alternating path to be (a, y) . An execution of Augment yields

(µ, u) =

{(
a
2
, y

0

)
,
(
b
2
, x

1

)
,
(
c
1
, z

2

)
,
(
d
1
, t
2

)
,
(
m
0
, m

0

)}
,

with a new w∗ = m and F ∗ = {a, b}.
The third alternating path, which can take several other forms but has to have length

more than 1, is:
(a, m), (a, y) , (b, y), (b, x) , (c, x),

where pairs with underscores are currently unmatched. We then proceed from backward
and perform (1) and (2) in Augment, resulting in

(µ, u) =

{(
a
2
, m

0

)
,

(
b
2
, y

1

)
,
(
c
2
, x

1

)
,
(
d
1
, t
2

)
,
(
z
0
, z

0

)}
,

with w∗ = z and F ∗ = {a, b, c}. With (d, z) being the last alternating path, an execution
of Augment finally yields

(µ, u) =

{(
a
2
, m

0

)
,
(
b
2
, x

1

)
,
(
c
2
, z

1

)
,

(
d
2
, y

1

)
,
(
t
0
, t
0

)}
.

Consequently, at the start of Step 5, we have allocation (µ, u), which satisfies the restricted
situation, with a single self-matched worker w0 = t.

We now prove the existence of a deterministic sequence of finitely many weak pair
improvements toward stability for any initial allocation with full generality.

Theorem 3 Consider a labor market (F, W, V ) with an arbitrary initial allocation
(µ0, u0). Then from (µ0, u0) there exists a finite number of weak pair improvements
which leads to a stable allocation (µ∗, u∗).

With the help of the above result, we now develop a decentralized and random
process that always results in a stable outcome of the market with probability one. As
stated before, this process intends to mimic a natural decentralized decision making
process in labor markets where firms and workers meet directly and randomly, and
negotiate salaries over time.
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First, observe that starting from an arbitrary initial allocation (µ0, u0), the set of
all allocations, denoted as A (µ0, u0), that is reachable through a sequence of pair im-
provements of (µ0, u0), is a set with finite elements. To see this, first notice that given
a labor market with finite agents, the set of all possible matchings is finite. Secondly,
for any allocation (µ, u) ∈ A (µ0, u0), it holds that u (x) ≥ min{u0(x), V (x, x)} for
every x ∈ F ∪W .19 Together with the fact that u is integral, set A (µ0, u0), the family
of all possible allocations (µ, u) satisfying u ∈ ZF∪W and u(x) ≥ min{u0(x), V (x, x)}
for every x ∈ F ∪W , is hence a finite set.

We now describe the random market process. Suppose that the market opens
with an arbitrary allocation (µ0, u0). Consider a Markov process with finite states,
where the states are allocations that are reachable via successive pair improvements
of (µ0, u0), or allocations in A (µ0, u0). The initial state is allocation (µ0, u0). The
transition probabilities of states in A (µ0, u0) are defined in a way such that for every
unstable allocation (µ, u) ∈ A (µ0, u0), each pair improvement of (µ, u) is chosen with
positive probability. A transition probability may reflect, for example, how likely
the agents involved in the corresponding pair improvement would meet and would
split the surplus once they meet, as well as the current market structure. Denote the
random sequence of allocations generated by the above Markov process starting from
the initial allocation (µ0, u0) as P̂ (µ0, u0). Given Theorem 3 and our specification
of the Markov process, it is immediate to show that the random sequence P̂ (µ0, u0)
converges to a stable allocation in A (µ0, u0) with probability one.

The above random process is mathematically convenient to describe and interpret.
However, from an economic point of view, the random decentralized market process
is chaotic and it does not seem plausible that when an unstable allocation (µ, u)
is reached again in the middle of the random process, the transition probabilities
associated with (µ, u) stay the same as before. We now discuss a similar but more
general random process with discrete time, finite states, and possibly time-dependent
transition probabilities among states. The market again opens with an arbitrary
allocation (µ0, u0) at time t = 0. For transition probabilities, we assume that every
(non-stationary) transition probability between two states in A (µ0, u0) is no less than
a fixed number ε ∈ (0, 1) at any time. As there are only two classes of states (stable
and unstable), it follows that starting from any allocation (µ, u) in A (µ0, u0) at time
t, the random process either finds a stable allocation in A (µ0, u0) and remains stable
afterwards, or continues to move from one unstable allocation to another unstable
allocation in A (µ0, u0). Now observe that the random process always arrives at
an allocation in A (µ0, u0), which contains only finitely many allocations. Suppose
the random process does not converge to a stable allocation with probability one in
the limit. This necessarily implies that at some point, after reaching an unstable
allocation (µ, u) in A (µ0, u0), the random process jumps among a (finite) set of

19Observe that for agent x whose payoff u(x) falls below V (x, x) under (u, µ), her payoff either
increases or stays the same after each weak pair improvement. Moreover, agent x’s payoff remains
individually rational once it becomes so.
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unstable allocations (associated with (µ, u)) in A (µ0, u0) infinitely. As at any t in
the random process, each possible pair improvement is chosen with probability no
less than ε, it further implies that there is some (µ′, u′) in A (µ0, u0) such that no
finite path of pair improvements toward stability exists, no matter how one chooses
the associated pair improvements. This, however, contradicts Theorem 3. Therefore,
the probability of the random process converging to a stable allocation must be one
as t goes to infinity.

Let P̂ (µ0, u0; ε) be the random sequence of allocations generated from the ini-
tial allocation (µ0, u0) as described above. The previous discussion then implies the
following:

Proposition 1 For any initial allocation (µ0, u0), the random sequence P̂ (µ0, u0; ε)
converges with probability one to a stable allocation.

5 Concluding Remarks

This paper studies a decentralized labor market where heterogeneous firms and work-
ers meet and negotiate salaries with each other randomly and spontaneously over
time. Firms and workers act in an uncoordinated way: They can form a partnership
or dissolve their partnership instantly whenever better opportunities present them-
selves. The key finding of our study is that such a seemingly chaotic, and random
dynamic decentralized market process converges with probability one to a competi-
tive equilibrium of the market, provided that every possible bilateral trading arises
with positive probability. To establish this result, an essential step is to show that
starting from an arbitrary initial market state, there exists a finite sequence of suc-
cessive myopic bilateral tradings which leads to a stable matching between firms and
workers with a scheme of competitive salary offers.

As a natural starting point, we have assumed in our model that each firm hires
at most one worker.20 Of course, such an assumption will not be satisfied in general
labor markets where some firm may employ multiple workers. An important and
natural direction for further research is hence to study a similar random decentralized
market process in labor markets where firms may hire any number of workers. It is
well known from Kelso and Crawford (1982) that a competitive equilibrium exists in
a labor market where each firm may hire several workers, as long as every firm views
all workers as substitutes. As mentioned earlier, they also proposed a centralized
adjustment process for this general market. Moreover, Gul and Stacchetti (2000),
Milgrom (2000), Ausubel (2006), Sun and Yang (2009) have developed centralized
processes for general competitive auction markets. It will be, however, significantly
more challenging to examine such general markets from a decentralized perspective.
Another interesting question is when agents face a decentralized and random market

20This is a standard assumption used in the literature on job matching and assignment markets.
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process as the one we developed, do they have incentives to manipulate the process
so as to make individual gains in a relatively small labor market? We anticipate
developing results in these directions in future work.

Appendix

Proof of Theorem 1. It is sufficient to focus on an individually rational allocation
(µ0, u0).21 We now show that the Basic Algorithm returns a weakly stable allocation
(µ∗, u∗) after finitely many successive strong pair improvements. As the crux of
the Basic Algorithm lies in the inductive construction of K (n), we now show that
each update of K (n + 1) with the addition of new members to K (n) requires finite
successive strong pair improvements so as to reach an allocation (µn+1, un+1) such
that no strongly blocking pair of (µn+1, un+1) is entirely contained in K (n + 1):

First, K (1) = {(f 1, w1)} where (f 1, w1) is a strongly blocking pair of (µ0, u0)
with a consistent specification of u1 (f 1) and u1 (w1). By construction, K (1) does
not contain a blocking pair of (µ1, u1).

Next, in our inductive construction of K (n + 1) from K (n) and (µn, un), the
general rule is that whenever there is a blocking pair (fn, wn) such that either fn or
wn is in K (n), then we treat such blocking pairs first.22 Together with the surplus
division rule specified in the Basic Algorithm, such a treatment guarantees that after
the introduction of new members into K (n), all firms (or all workers) in K (n) are
always at least weakly better off along the sequence of adjustments toward the con-
struction of K (n + 1) and (µn+1, un+1) (and some strictly better off). We show this
separately for the three cases:

Case 1. If fn /∈ K (n), then fn initiates the next blocking pair with wn ∈ K (n).
As fn chooses her best worker wn to form the blocking pair and she obtains the largest
possible payoff that is consistent with the strongly blocking pair, fn cannot form the
next strongly blocking pair (if any) with workers in K (n). Now if wn is self-matched
in K (n), K (n + 1) does not entirely contain a blocking pair of (µn+1, un+1). If wn

is matched in K (n), only µn (wn) can initiate the next blocking pair with workers
in K (n) as other firms in K (n) are not affected and the payoff vector of workers in
K (n) is weakly increased. This validates the operation of letting µn (wn) to be the
next initiator. Finally, as all agents’ payoffs are integral and finite, and no worker
in K (n) is worse off and at least one worker’s payoff strictly increases after each
strongly pair improvement, we reach an “internally stable” K (n + 1) after finitely
many steps.

21Otherwise we can start the sequence of strong pair improvements with a string of strong blocking
pairs initiated only by individual i such that u0 (i) < V (i, i) , resulting in some

(
µ̂0, û0

)
where

û0 (k) ≥ V (k, k) ,∀k ∈ F ∪W . Then rename
(
µ̂0, û0

)
to be

(
µ0, u0

)
.

22See the specific statement of Case 3 in the Basic Algorithm.
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Case 2. wn /∈ K (n) and fn ∈ K (n). The proof for this case is done similarly as
in Case 1.

Case 3. Every existing strongly blocking pair is such that (fn, wn) ∈ (F ∪
W )\K (n). By the fact that K (n + 1) = K (n) ∪ {(fn, wn)} and payoffs of fn and
wn have both strictly increased, no strongly blocking pair of (µn+1, un+1) is hence
contained in K (n + 1).

Finally, observe that the set K (n) constructed above strictly increases (inclusion-
wise) after each execution of Step 2. The execution of Step 2 and Step 3 hence
must terminate in finitely many steps until a weakly stable allocation is obtained, as
|F | , |W | < +∞ and K (n) can grow no larger than F ∪W .

Proof of Theorem 3. It is again without loss of generality to consider an in-
dividually rational initial allocation. We prove the result by induction on an index
q ≥ 1.

For q = 1, we rename (µ0, u0) as (µ1, u1). If there is a matched pair (x, y) at µ1,
then define A(1) = {x, y}; otherwise we choose any self-matched agent x and define
A(1) = {x}.

Suppose for an integer q ≥ 1 that we have

1. an individually rational allocation (µq, uq) such that uq(x) = V (x, x) for self-
matched x ∈ F ∪W , and

2. a non-empty set A(q) ⊆ F ∪W such that there are no weakly blocking pairs
within A(q) and such that µq does not match any agents in A(q) with agents
in (F ∪W ) \ A(q).

Notice that this is true for q = 1. If (µq, uq) is stable, then we are done. Otherwise
there exists a weakly blocking pair, and we consider the following three cases.

Case 1: there exists a weakly blocking pair (f ′, w′) with f ′ ∈ A(q) ∩ F ,

Case 2: there exists a weakly blocking pair (f ′, w′) with w′ ∈ A(q) ∩W , and

Case 3: there exists a weakly blocking pair (f ′, w′) with f ′, w′ /∈ A(q) and neither
Case 1 nor Case 2 applies.

Here observe that at most one of such f ′ and w′ can belong to A(q).

In Case 1, let
A(q + 1) = A(q) ∪ {w′}. (4)

We next let w′ break up with its partner (if any), or namely, let

µq(µq(w′))← µq(w′) if w′ is not self-matched,

µq(w′)← w′, otherwise.
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Denote w′ by w1
q+1 and the new µq by µq+1

1 . Update uq so that uq(x) = V (x, x) for

all self-matched x ∈ F ∪W . Denote by uq+1
1 the updated uq.

Now we have the following fact:

There exists no weakly blocking pair within A(q + 1) \ {w1
q+1}. (5)

Next notice that by the choice of w1
q+1(= w′), there exists a weakly blocking pair

within A(q + 1), and that (5) holds due to property (2) of A(q). Apply the Main
Algorithm to A(q+1) to obtain an allocation such that there exists no weakly blocking
pair within A(q + 1). We then proceed the induction step from q to q + 1.

Case 2 is similar to Case 1.

In Case 3, we define µq+1 by making f ′ matched to w′ and also define uq+1 similarly as
in Case 1, together with some payoffs of f ′ and w′ that are consistent with a weakly
blocking pair. Next, define A(q + 1) = A(q) ∪ {f ′, w′}. It is then clear that there is
no blocking pair within A(q + 1).

We eventually obtain a stable allocation by repeating this whole process for at
most |F ∪W | times, since we have a strictly increasing (inclusion-wise) sequence A(q),
where q = 1, 2, ....
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