A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.

AUTHOR(S):
Khattab, Sadat Mohammad Rezq; Watanabe, Seiya; Saimura, Masayuki; Kodaki, Tsutomu

CITATION:
Khattab, Sadat Mohammad Rezq ...[et al]. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.. Biochemical and biophysical research communications 2011, 404(2): 634-637

ISSUE DATE:
2011-01-14

URL:
http://hdl.handle.net/2433/134797

RIGHT:
© 2010 Elsevier Inc.; This is not the published version. Please cite only the published version.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
A Novel Strictly NADPH-Dependent *Pichia stipitis* Xylose Reductase Constructed by Site-directed Mutagenesis

Sadat Mohammad Rezq Khattab\(^1,2\), Seiya Watanabe\(^1\), Masayuki Saimura\(^1\), Tsutomu Kodaki\(^1\)*

\(^1\) Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
\(^2\) Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt

Abstract

Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the key enzymes for xylose fermentation and have been widely used for construction of a recombinant xylose fermenting yeast. The effective recycling of cofactors between XR and XDH has been thought to be important to achieve effective xylose fermentation. Efforts to alter the coenzyme specificity of XR and XDH by site-directed mutagenesis have been widely made for improvement of efficiency of xylose fermentation. We previously succeeded by protein engineering to improve ethanol production by reversing XDH dependency from NAD\(^+\) to NADP\(^+\). In this study, we applied protein engineering to construct a novel strictly NADPH dependent XR from *Pichia stipitis* by site-directed mutagenesis, in order to recycle NADPH between XR and XDH effectively. One double mutant, E223A/S271A showing strict NADPH dependency with 106 % activity of wild-type was generated. A second double mutant, E223D/S271A, showed a 1.27-fold increased activity compared to the wild-type XR with NADPH and almost negligible activity with NADH.

Keywords: Coenzyme specificity, Xylose reductase, Site-directed mutagenesis
1. Introduction

Xylose is the second most abundant pentose sugar constituting the lignocellulosic renewable biomass after glucose, and its complete fermentation is economically valuable for producing biofuel from lignocellulosic biomass [6]. Recombinant S. cerevisiae can ferment xylose through a fungal pathway involving two heterologous oxidoreductase genes. In this pathway, Pichia stipitis xylose reductase (PsXR) (XR; EC 1.1.1.21) [18], which prefers NADPH, reduces xylose to xylitol followed by P. stipitis xylitol dehydrogenase (PsXDH), which exclusively requires NAD\(^+\) (XDH; EC 1.1.1.9) [17], oxidizes xylitol into xylulose. S. cerevisiae xylulokinase (XK) (EC 2.7.1.17) naturally phosphorylates xylulose to xylulose-5-phosphate, which is then metabolized by the glycolytic pathway via the pentose phosphate pathway [7]. XK overexpression improves the efficiency of xylose fermentation [4, 5, 15]. Although this fungal pathway is highly expressed in S. cerevisiae, the efficiency of ethanol production is somewhat obstructed by the unfavorable accumulation of xylitol due to the imbalance of coenzyme specificities between XR and XDH [6].

Xylose reductase is a member of the aldo-keto reductase (AKR) superfamily which is made up of 14 different families and approximately 120 members with a majority of dual cofactor type enzymes [8]. Candida tenuis XR (CtXR) is one of these enzymes. Its crystal structure has been determined at different levels of resolution and its binding sites with NAD(P)H were also determined [10, 12, 25]. Although only little
structural information of PsXR is available, it has about 76% homology with the CtXR. This high percentage of similarity should provide some clues for manipulation of PsXR [13].

Protein engineering has been widely used to alter the coenzyme specificity of XR and XDH. Since PsXDH accepts only NAD\(^+\), many researchers reversed the preference of XR to NADH in order to achieve NAD\(^+\)/NADH cofactor recycling [1, 13, 16, 20]. On the other hand, we have been working on converting cofactor usage of XDH to NADP\(^+\) from NAD\(^+\) [21]. We previously succeeded to improve the fermentation process and ethanol production by using these XDH mutants [23]. In this study, site-directed mutagenesis of PsXR was performed to construct a strictly NADPH-dependent XR, expecting decreasing or preventing xylitol accumulation and subsequently improving ethanol production.

2. Materials and Methods

2.1 Cloning of the \textit{P. stipitis} Xylose reductase gene and Site-directed mutagenesis

A plasmid, named pHis (WT) harboring the His-tagged wild-type (WT) PsXR gene was constructed as described previously [20]. All XR mutations were introduced by site-directed mutagenesis, using the single round PCR method with \textit{PfuTurbo} DNA polymerase (Stratagene) and the PCR Thermal Cycler PERSONAL (TaKaRa, Otsu, Japan). The codons used for mutations introduced in this study were as follows: E223A (GAA→GCA), E223D (GAA→GAC), and S271A (TCC→GCC). The PCR products were subjected to DpnI restriction enzyme treatment in order to digest the parent DNA strands to prevent transformation of the template plasmid. Only nicked circular mutagenic strands were transformed into \textit{Escherichia coli} DH5\(\alpha\). Electroporation method
was used to transform plasmids and the mutations were confirmed by DNA sequencing using Applied Biosystems 3031 genetic analyzer and ABI Prism® Big Dye® Terminator v3.1 Cycle Sequencing kit.

2.2 Overexpression and purification of (His)$_6$-tagged enzymes

P. stipitis xylose reductase wild-type and mutated genes were expressed in *E. coli* DH5α and purified as described previously [20]. Purified enzymes were confirmed on 10 % acrylamide SDS-PAGE. Protein concentrations were determined using the Bio RAD Quick Start Bradford 1x Dye Reagent (Bio-Rad Laboratories, CA, USA) by measuring the absorbance at 595 nm with γ-globin as a standard.

2.3 Enzyme assays and Kinetic parameters

Enzyme activities were measured spectrophotometrically as described previously [20] with modification in xylose concentration to 400 mM. The kinetic parameters were calculated by Line Weaver–Burk plots.

3. Result and Discussion

3.1 Speculation and prediction of NAD(P)H binding sites

Crystallographic analyses of many AKRs have revealed that they share a common ($α/β$)$_8$ barrel fold, with a highly conserved coenzyme binding pocket at the C-terminus. 90.9 % of the residues are located in the core area and 9.1 % are in the allowed regions [11]. The nicotinamide ring of NAD(P)H is resides in the core of the barrel. Residues Glu227 and Asn276 in CtxR, which equal to Glu223 and Asn272 in PsXR, primarily mediate the interactions with the adenosine ribose 2'- and 3'-hydroxy groups. As shown in Fig. 1,
Glu223 represents the essential part NADH binding where contacts by bidentate hydrogen bond with both of the hydroxy groups. Similar interactions have been seen in many other NADH-binding protein structures [2, 3]. However, The structurally equivalent residues Asp216 and Val264 in aldose reductase in human (AR) are unable to fulfill the equivalent roles, Asp216 is required for high affinity binding of NADPH by forming two salt linkages with Lys21 and Lys262 and fastening the loop over the co-substrate [24].

Glu227 and Lys274 in CtXR makes water-mediated interactions each other and with the 3'-hydroxy group in the case of NADP$^+$-bound structures. In the absence of a negatively charged phosphate, Glu227 side chain is able to rotate into a favourable conformation to accept a 2.64 Å hydrogen bond contact with the 2'-hydroxy group and a 2.65 Å hydrogen bond with the 3'-hydroxy group when NAD$^+$ is bound. The root mean square deviations of the Cα values between NAD$^+$- and NADP$^+$-bound models was calculated in CtXR. The largest conformational change is seen in residues 274–280, which corresponding to 270–276 in PsXR, and then residues 225–229, which corresponding to 221–225 in PsXR, a short helical region that appears at the end of β7.

The largest main-chain shift is seen in Ser275, which corresponding to Ser271 in PsXR, moves 2.0 Å in response to the miss contact of the phosphate group of NADPH [10]. Furthermore, Glu223 of PsXR was subjected to a mutation trial and the result revealed that alteration of this site might further inhibit NADH binding [13]. In addition, from the 3D structure model of PsXR, it was reported that Glu223 and Phe236 can form 3 and 2 hydrogen bonds with NAD$^+$, respectively [19].

Considering the property as described above, the mutations were designed based on sequence alignment of some strictly NADPH dependent analogous enzymes in the AKR family, such as AR, as shown in table1, where glutamic acid 223 was substituted by
aspartic acid. Both glutamic and aspartic acid are acidic side chain and fully ionized at neutral pH and able to engage in hydrogen bonds, which is a necessary component for a high affinity xylose binding site [9]. Alanine is a nonpolar side chain that does not bind or give off protons, or participate in hydrogen or ionic bonds. Alanine can be worked as oily or lipid-like that promotes hydrophobic interactions. Accordingly, we apply aspartic acid and alanine to mutation trials instead of PsXR glutamic acid 223.

3.2 Strictly NADPH dependency on Glu223 mutants

We applied Glu223 residue for mutation trails in order to delete NADH dependency. Although this residue is also shared in NADPH binding, some reports reveal that it contributes more to the affinity of NADH, where it plays a role in the binding site by binding two hydrogen bonds with 2' and 3' hydroxy groups of the adenosine ribose. In addition to changes in hydrogen-bonding of the adenosine, the ribose unmistakably adopts the 3'-\textit{endo} conformation rather than the 2'-\textit{endo} conformation seen in the NADP+-bound form [10]. The enzyme activities with NADH were calculated after introduction of Glu223 residue mutations (Fig. 2). No activity was detected for E223A with NADH while E223D showed only 17 % of the activity of WT. In addition, catalytic efficiency was decreased to 3.7 % of WT. Their activities with NADPH showed 52 % and 44 % of WT, respectively. The catalytic efficiencies of E223A and E223D were 26 % and 15 % of WT respectively. Although, these ratios were low compared with WT, E223D showed 2.54 and 3.9 fold improvement in NADPH/NADH ratio and k_{cat}/K_{m} respectively. E223A is a completely NADPH dependent mutant, probably due to the change of 3'-\textit{endo} ribose conformation and miss contact of bidentate hydrogen bonds which was conserved in NAD+ binding sites in most members of dual cofactor in AKR family.
3.3 Improvement of enzyme activities with double mutants

We previously reported that the mutation of Lys\(^{270}\) and Arg\(^{276}\) in PsXR improve NADH preference [20], while S271A increased the preference for NADPH [22]. The second rounds of mutations were done based on this data. Accordingly, combination of S271A with Glu\(^{223}\) mutants was expected to increase the activity of XR with NADPH. As shown in Fig. 1, S271A mutant showed improved NADPH preference, where the activities with NADPH and NADH were 125% and 85% compared to WT respectively. These data encouraged us to perform further investigations by combining S271A and Glu\(^{223}\) mutants. A combination of site-directed mutations of the residues Glu\(^{223}\) and S271A produced unique and unprecedented results. The double mutants E223A/S271A (AA) and E223D/S271A (DA) showed improvement in the activities with NADPH compared to single Glu\(^{223}\) mutants. As shown in Fig. 2, the activity of the double mutant AA with NADPH was 106% compared to WT. As shown in Table 2, the \(k_{\text{cat}}\) of WT and AA were 622 and 657 min\(^{-1}\), respectively; their \(K_m\) for xylose were 97.1 and 226 mM, respectively; and their catalytic efficiencies were 38.6 and 32.4 µM\(^{-1}\)/min\(^{-1}\), respectively.

On the other hand, the activity of DA showed 15% WT with NADH (Fig. 1) in addition to \(K_m\) was increased 12.8-fold and \(k_{\text{cat}}\) decreased 3-fold (Table 2). As shown in Fig. 2, the activity of DA with NADPH was increased 1.27-fold compared to WT; \(k_{\text{cat}}\) also increased 1.18-fold compared to WT, while catalytic efficiency was decreased to 93% of WT and \(K_m\) increased 1.26-fold compared to WT (see table 2). Thus we succeeded to construct a novel strictly NADPH-dependent PsXR by combining the mutation at Glu\(^{223}\) and Ser\(^{271}\) residues.
We previously succeeded in improving xylose fermentation and ethanol production by combining PsXR WT with the mutated PsXDH which accepts only NADP⁺ (i.e., quadruple ARSdR mutant) [23], and overexpression of XK [14, 15]. It may provide further clues for understanding of importance of coenzyme specificities of XR and XDH using the strictly NADPH-dependent PsXR of this study together with the strictly NADP⁺-dependent PsXDH [21]. It could possibly give more efficient xylose fermentation by an effective recycling of coenzymes of NADPH between XR and XDH.

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan. It was also supported by the Global Center of Excellence (GCOE) program for the “Energy Science in the Age of Global Warming,” a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

References

production from xylose by recombinant *Saccharomyces cerevisiae* expressing protein-engineered NADH-preferring xylose reductase from *Pichia stipitis*, Microbiology 153 (2007) 3044-3054.

[25] D.K. Wilson, K.L. Kavanagh, M. Klimacek, B. Nidetzky, The xylose reductase (AKR2B5) structure: homology and divergence from other aldo-keto reductases

515-521.
Table 1
The mutation designs of the PsXR enzyme

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Accession No. or mutant</th>
<th>Organism</th>
<th>Coenzyme preference</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PsXR</td>
<td>CAA42072</td>
<td>Pichia stipitis</td>
<td>NADPH</td>
<td>V E L K S N</td>
</tr>
<tr>
<td>AKR1 B7§</td>
<td>P21300</td>
<td>Mus musculus</td>
<td>NADPH*</td>
<td>P D R * * V</td>
</tr>
<tr>
<td>2, 5 DKGRA*</td>
<td>AAA83534</td>
<td>Corynebacterium sp.</td>
<td>NADPH*</td>
<td>Y D * * V</td>
</tr>
<tr>
<td>AR</td>
<td>P15121</td>
<td>Homo sapiens</td>
<td>NADPH*</td>
<td>P D R * * V</td>
</tr>
<tr>
<td>XR</td>
<td>O94735</td>
<td>Pichia guilliermondii</td>
<td>NADPH</td>
<td>* * * * N</td>
</tr>
<tr>
<td>XR</td>
<td>Q6Y0Z3</td>
<td>Candida parapsilosis</td>
<td>NADH</td>
<td>L * M * S</td>
</tr>
<tr>
<td>XR</td>
<td>O74237</td>
<td>Candida tenuis</td>
<td>NADPH</td>
<td>* * M * L</td>
</tr>
<tr>
<td>XR</td>
<td>P87039</td>
<td>Candida tropicalis</td>
<td>NADPH</td>
<td>L * * * N</td>
</tr>
</tbody>
</table>

PsXR E223A *P. stipitis* This work * A * * * *
PsXR E223D This work * D * * * *
Ps XR S271A This work * * * A *
Ps XR AA* This work * A * A *
Ps XR DA* This work * D * A *

Bold letters represent target mutation sites *The same amino acids as PsXR WT
* Double mutant E223A/S271A (AA) and E223D/S271A (DA)
* Strict NADPH dependent enzyme § Aldo-keto reductase family 1, memberB7
* 2,5-Diketo-D-gluconic acid reductase

A Self-archived copy in Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp
Table 2
Kinetic parameters of wild-type and xylose reductase mutants for NADPH- and NADH-dependent reactions

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Kinetic parameters</th>
<th></th>
<th>Kinetic parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NADPH</td>
<td>NADPH</td>
<td>NADH</td>
</tr>
<tr>
<td></td>
<td>K_m xylene a</td>
<td>K_m b</td>
<td>k_{cat} b</td>
<td>k_{cat}/K_m b</td>
</tr>
<tr>
<td></td>
<td>[mM]</td>
<td>[µM]</td>
<td>[Min$^{-1}$]</td>
<td>[µM$^{-1}$/min$^{-1}$]</td>
</tr>
<tr>
<td>XRWT</td>
<td>97.1 ± 4.8</td>
<td>16.2 ± 1.4</td>
<td>622 ± 22</td>
<td>38.6 ± 2.9</td>
</tr>
<tr>
<td>S271A</td>
<td>70.6 ± 8.7</td>
<td>30.1 ± 3.7</td>
<td>874 ± 50</td>
<td>29.0 ± 0.3</td>
</tr>
<tr>
<td>E223A</td>
<td>29.8 ± 4.7</td>
<td>35.2 ± 3.7</td>
<td>349 ± 29</td>
<td>9.94 ± 0.44</td>
</tr>
<tr>
<td>E223D</td>
<td>114 ± 13</td>
<td>55.4 ± 7.1</td>
<td>314 ± 42</td>
<td>5.65 ± 0.32</td>
</tr>
<tr>
<td>AAc</td>
<td>226 ± 22</td>
<td>17.5 ± 0.7</td>
<td>567 ± 73</td>
<td>32.4 ± 2.7</td>
</tr>
<tr>
<td>DAc</td>
<td>108 ± 8</td>
<td>20.4 ± 0.4</td>
<td>733 ± 14</td>
<td>36.0 ± 0.3</td>
</tr>
</tbody>
</table>

a Six different concentrations of xylose between 67 and 200 mM were used and NAD(P)H concentration was 150 µM.

b Six different concentrations of NAD(P)H between 50 and 300 µM were used and xylose concentration was 400 mM.

c Double mutants E223A/S271A (AA) and E223D/S271A (DA)

d ND: Not detected
Fig. 1. Schematic diagrams showing the predicted interactions of wild-type PsXR; Left-hand panel: adenosine 2’- and 3’- hydroxy groups in the complex with NAD$^+$ and Right-hand panel: adenosine 2’- and 3’- hydroxy groups in the complex with NADP$^+$ based on the coenzyme binding sites in CtXR [10].

Fig. 2. Enzyme activities of PsXR wild-type and mutated enzymes. Black and grey bars indicated activities with NADPH and NADH respectively; Values are average ± SD, n=3.