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Abstract. We generalize the division polynomials of elliptic curves to hyperelliptic Ja-
cobians over the complex numbers. We construct them by using the hyperelliptic sigma
function. Using the division polynomial, we describe a condition that a point on the Jaco-
bian is a torsion point. We prove several properties of the division polynomials such as a
determinantal expression and recurrence formulas. We also study relations among the sigma
function, the division polynomials, and the canonical local height functions.

1. Introduction

In the study of elliptic curves, the division polynomials are important for the study
of the structure of the torsion subgroup. Moreover the division polynomials have
various applications such as description of a multiplication map, computation of
the order of the Mordell-Weil group of an elliptic curve over a finite field, elliptic
divisibility sequences, and transformation formulas for canonical local heights.

Recently, several authors studied generalizations of the division polynomials.
They defined the division polynomials in the cases of hyperelliptic curves and
hyperelliptic Jacobians.

The former case is studied by D. G. Cantor [9] addishi [24—26]. Cantor
algebraically defined an analog of the division polynomial on a hyperelliptic curve
of any genus over any field. On the other ha@uhishi studied the hyperelliptic
sigma function, which is a generalization of the Weierstrass sigma function. Then
he defined an analog of the division polynomial on a hyperelliptic curve of any
genus overC by using the hyperelliptic sigma function and its derivatives. He
also proved a determinantal expression of it. Matsutani [26, Appendix] proved
that these two analogs of the division polynomial are essentially the same.

The latter case is studied by Kanayama [15,16] in the case of genus 2. He
defined the division polynomials on the Jacobian variety of a curve of genus 2,
and described the multiplication maps by using them and their derivatives. He also
described a condition that a point on the Jacobian is a torsion point by using the
division polynomial and its derivatives.
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In this paper, we generalize Kanayama’s division polynomials to the case of
general hyperelliptic Jacobians. The hyperelliptic sigma function is defined for any
genus, thus we can define the division polynomials in the same way as in the case
of elliptic curves.

To state our results, we make some definitions. Cdie a non-singular pro-
jective hyperelliptic curve of genusoverC defined by

y? = 2?9 £ Ay o A+ Ao

Let J = CY9/A be the Jacobian variety @f. Leto: C9 — C be the hyperelliptic
sigma function. We denote l#y the theta divisor off defined byo (u) = 0.
We define the division polynomidal,, (u) by

~

o(nu

for any integem.
Similarly to the case of genus 1, the hyperelligtidunctions are defined as
follows:

82
pij(u) = _auiauj log o (u),
3
k() = — ]
Q) Ou,;0u;0uy, og(u)

forl < i,5,k < g. Theng,, p;;, andgp;;; are periodic with respect td. For
P =umod A € J,we Write¢n(P) = d)n(u), pU(P) = pw(u) andpj,jk.(P) =
Qijr ().

In the case of elliptic curves, it is known that the division polynongialis
represented as a polynomial in the Weierstga$snction and its derivative. More
precisely, ifp(u) satisfy the differential equation

o' (u)* = 4p(u)® + 4\ p(u) + 4Ao,

theng,, is represented as a polynomialgrandp’ with coefficients inZ[Ag, A1].
For any genus, we can prove the following:

Theorem 1.1 (cf. Theorem 5.8)There exists a non-zero computable elem&rt
Z[Mo, - - -, A2g| such that, for any integet, ¢,, is represented as a polynomial in
pi; and ;i (1 <1, j, k < g) with coefficients ItZ[1/A, Ao, . . . , Aag)-

Theorem 1.1 is proved by a determinantal expressiaf),dicf. Theorem 5.7) and
the theory of Gbbner bases in a polynomial ring over a general Noetherian ring.
In particular, we can take\ = 2 for g = 2. See Example 5.9.

Kanayama [15] gave the multiplication formulas for thdunctions by using
the division polynomiably,,. We can give the same multiplication formulas as his
formulas for any genus (Proposition 4.10). Kanayama also gave a condition that a
point in the Jacobian is a torsion point. Using the vanishing structure of the sigma
function and its derivatives proved I@ynishi [26], we can prove a generalization
of Kanayama'’s result.
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Theorem 1.2 (cf. Theorem 4.7)Letn be a non-zero integer anl € J\ ©. Then
[n]P = Oifand only if (¢, )ym (P) = 0 forall m = 1,2, ..., g, where(¢,, )ym is
the derivative ofp,, defined at the end of Section 2.

In fact, in the case of genus 2, Theorem 1.2 is a refinement of Kanayama’s theorem.
See Remark 4.8.

In the case of elliptic curves, the division polynomial has a determinantal ex-
pression. Let be a positive integer. Then we have

5 A

B (—=1)n-1 " (w) ") ... " (u

On(u) = 112! (n — 1)1)2 : S :
D) 9 () .. 6 (w)

This formula is called the Kiepert formula. We can deduce this formula from the
Frobenius-Stickelberger formula, which is a kind of addition formula for the sigma
function. Onishi [24-26] generalized the Frobenius-Stickelberger formula to gen-
eral hyperelliptic Jacobians. By using his formula, we can prove the Kiepert-type
formula, which is a determinantal expression of the division polynomial. It is too
complicated to include here, see Theorem 5.5. Moreover, we give another deter-
minantal expression (Theorem 5.7), which is used in the proof of Theorem 1.1.

The division polynomials of an elliptic curve satisfy a recurrence formula as
follows: For integersn andn,

Gt (W) (1) = B (1) Grn1 (1) 1 (1) — <z>m<u>2<z>n+1<u>¢m<u>t |
1
This formula is important for the computation of the division polynomials and the
study of elliptic divisibility sequences.
Recently, Kanayama [16] proved a generalization of (1) which includes some
derivatives of the division polynomials. By using a classical theta relation, we have
the following generalization of (1), which is different from Kanayama'’s formula.

Theorem 1.3 (cf. Theorem 6.4)Letn > 29 be an integerm,, ms,...,m, be
integers and: € C9. We define the x n matrix A by

A= (¢mi+mj (W) Prm;—m, (u))1gi,j§n :

Then we haveet A = 0. In particular, if g = 1,2 (mod 4) andn is even, then
we havepf A = 0, wherepf A is the Pfaffian ofA.

In fact, we can deduce (1) from Theorem 1.3 whyen 1.

As an application of the division polynomials, we study relations among the
sigma function, the division polynomials, and the canonical local height func-
tions. We first prove an explicit formula for the canonical local height functions
for Archimedean places. Then we prove transformation formulas for the canoni-
cal local height functions for any places. More precisely, we prove the following
results.

We assume that' is defined over a number field. Then we may regard as
an algebraic variety defined ové&f. Moreover the theta divisa® is defined over
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K. By Theorem 1.1¢,, may be regarded as a rational function.bdefined over
K.

Letwv be a place o and K, be the completion of¢ atv. Then the canonical
local height function), is anR-valued function defined ofiJ \ ©)(K,) (see
Definition 7.2).

First letv be an Archimedean place. We may regafd ©)(K,) as a subset of
(J\©)(C) via an embeddingd<, — C. By using the hyperelliptic sigma function,
we have an explicit formula for the canonical local height functigras follows:

Theorem 1.4 (cf. Theorem 7.4)Let v be an Archimedean place. For aify €
(J\ O)(Ky),

Ao(P) = —log |lexp (—mvV=1L(u, u)) o(u)|,

whereu € C9 is a point withP = w mod A and L(z, w) is theR-bilinear form
onCY x CY defined in Section 2.

Wheng = 1, this formula is well-known (cf. [28, Chapter VI, Theorem 3.2]).
Wheng = 2, it was proved by Yoshitomi [32, Corollary 2.5].

Next we assume that is any place ofK. We can prove the transformation
formula, which relates a multiplication map, the canonical local height function
and the division polynomial.

Theorem 1.5 (cf. Theorem 7.5)Letwv be a place of<. Letn be a non-zero integer
andP € J(K,). If P,[n|P ¢ ©, then we have

Mo([n)P) = n*Au(P) = log |$u(P),,
where|-|, is an absolute value associated with

Note that Theorem 1.5 for Archimedean places is an immediate consequence of
Theorem 1.4. Theorem 1.5 is also known in the case of gér(aé [28, Chap-
ter VI, Exercise 4 (e)]).

This paper is organized as follows. In Section 2, we review the theory of hyper-
elliptic functions. In Section 3, we study division of hyperelliptic functions, which
is used in computation of the division polynomials. We use the theory ol &Gar
bases in a polynomial ring over a general Noetherian ring to prove lemmas in this
section. In Section 4, we define the division polynomials and prove some proper-
ties of them. In Section 5, we derive determinantal formulas, which express the
division polynomial as a quotient of determinants. We also prove a theorem on the
coefficients of the division polynomials. In Section 6, we first describe a classical
relation of theta functions with characteristics. Then we prove recurrence formu-
las for the division polynomials by this relation. In Section 7, we give a definition
and an explicit formula for the canonical local height function for an Archimedean
place. Then we prove some relations of the canonical local height function and the
addition or multiplication map.

Some examples require computation with computer algebra systems. The au-
thor used Macaulay 2 [13], Maxima [19], and Risa/Asir [23].
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Notation

We use the following notation throughout the paper. For a matrixve denote

by A the transpose afl. Unless otherwise stated, we regard a vector as a column
vector and we writer = t(ul, Uz, ..., uq) foru € C9. For aringR, we denote by

M, (R) the set ofn x n matrices ovelR. We denote byl,, the identity matrix of
sizen. For a2n x 2n skew-symmetric matrixd, we denote the Pfaffian o by

pf A, thatis,pf A = vdet A. We take the sign of the Pfaffian so that

0 _]-n n
(1 7y") = o

The choice only affects the addition formula (Theorem 2.15).

For aringR and elements,...,r,, € R, we denote byry,...,r,) the
ideal generated by, ..., 7, in R.

Forz € C, we definee(z) = exp(2mv/—1z). We denote by, by the Siegel
upper half space of degrgethat is,

$y = {7 € My(C) | 'r = 7, Im 7 is positive definit¢.

In an expression for the Taylor expansion, the symd®lz1, z2, ..., zm) >
n) stands for the terms of total degree at leastith respect to the variables
21, 22, ..., Zm. These terms may contain other variables.

2. The sigma function

In this section, we review the theory of the sigma function and fix the definitions.
For details, we refer the reader to [5,26]. Note that our choice of a defining equa-
tion of a curve and differential forms is the same as that in [26] but different from
that in [5]. Hence our formulas are also different from those in [5].

Let C be a non-singular projective curve ovédefined by

y2 = f(x) = 3,‘29+1 —|—)\2g$2g + o+ N+ )\0.

Then f(x) has no multiple roots, the genus@fis g, andC has the unique point
oo at infinity. We define,,41 = 1 for convention. To simplify notation, for a
subringR of C, we write R[\;] instead ofR[Ag, A1, . .., Agg).

The differential forms
_dx _xdx __xg_ldx
—Qy, Wo = 2y7 ey wg— 2y

form a basis of the holomorphicforms onC. Forj = 1,2,..., g, we define

w1

29—j
1 .
n=g, > (k41— ) Aeqry atde,
Y
which is a differential form of the second kind without poles exceptatlLet
ag,...,aq,B51,. .., 0, be asymplectic basis @, (C, Z). Then their intersections
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satisfya; - a; = B; - f; = 0 andey; - 8; = 6,5, whered;; is Kronecker's delta. We
define the period matrices ,w”,n',n" € My(C) by

(L) - (1)
) 01

Note that our definition differs from that in [26] by the signsidfandr’. When
g = 2, it coincides with the definition in [12,15].

Let L
w W
M = (7]/ 77//) .
Then we have the generalized Legendre relation (cf. [5, Lemma 2.0.1]):
e — (0 —1,
(2700 Y s = a1 (2. o

In particular,r = w'~'w” is a symmetric matrix, and we have

n =n't —2nv/—1 WL

By Riemann’s inequalityfm 7 is positive definite, hence € §,,.
We define the theta function with characteristics by

9 m (2,7) = EZ: e (é (n+a)r(n+a) +'(n+a)(z + b)) ’

wherez € C9, 7 € §, anda, b € RY.
Let A = w'Z9 +w"79. ThenA is a lattice ofCY. Let

P S S SV U SO A B L
27"‘)27 2727"'721 5/'

We define the hyperelliptic sigma function @4 by
o(u) = cexp (;tun/w/1u> I[)(w' " u, ),

wherec is the constant such thafu) satisfies the following proposition:

Proposition 2.1. The sigma functioa (u) has the Taylor expansion around= 0
with coefficients irQ[\;]. Furthermore, ifg = 21 — 1 or g = 21, then we have

Uy Uz ... up
Uz U3 ... U417 o
owy=\. . . @ (ur,ug, . ug) > T4 2).

Up Ul - Uzl
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Proof. The former part is proved more generally in [7, Corollary 1] or in [22,
Theorem 3]. The latter part is proved in [5, Proposition 2.2]1

We can also determine the constaeiplicitly, see [5, Definition 2.1]. We will
not use an explicit expression of the constalatter. Note that our definition of the
sigma function coincides with that in [26].

For anyu € CY, we denote by’ andu” the elements ifRY satisfying that
u=w'u'+w"u”. We define th&C-valuedR-bilinear formL(u, v) onC9 x C9 by

1
2w/ —1

- Yo Y g lt///
X(l)—e<<l(5 1 5)+2zz )
Note thaty(l) = £1.

Proposition 2.2 (Translational relation). For anyu € C9 and anyl € A, we
have

L(u,v) =

" //)

tU(T}/'UI + n

Forl € A, let

o(u+1) = x()e (L (u + %z, z)) o(w).

Proof. This proposition is proved by using formulas for theta functions and the
generalized Legendre relation. See [5, Theorem 1.0j.

Proposition 2.3.The sigma functioa () is an odd function iy = 1,2 (mod 4),
and an even function f = 0,3 (mod 4).

Proof. It follows from [20, Chapter Il, Proposition 3.14].0
Let
E(u,v) = L(u,v) — L(v,u).
Then E(u,v) is the imaginary part of the Riemann form associated with).
Moreover we have the following proposition.
Proposition 2.4.We have the following properties.

() E(u,v) isR-valued,R-bilinear and alternating.
(i) E(v—1u,v/—1v) = E(u,v).
(i) E(u,v)isZ-valued ond x A.

(

(iv) E u'v”

u
t
u,v) = u'v — uwv.

Proof. (i) and (iii) follow from (iv). (ii) follows from [17, Chapter VI, Theo-
rem 1.2]. We prove (iv).
E(u,v) = L(u,v) — L(v,u)

1
_ T (t(w’u’ +w//u//)(nlv/ —|—n”v”)
", ", "

— (W' + V") (U + 0" ))

1 (t/(t/// ty o t ot g toro

u(w'n” — W + W (W — wv’).
/T n" = n'w") (W' = n"w’)
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By the generalized Legendre relation (2), we have
tn/w// _ tw/n// _ tw//n/ _ tn//w/ _ 271_\/_71 1g-
Hence we havé (u, v) = /v — W/v”. O
We define the hyperelliptip-functions by
62
pij(u) = —
J (9u18u3
83
Obviously, p-functions do not depend on the order of their indices. For example,
i (u) = pji(u).
Proposition 2.5.For anyu € CY and anyl € A, we have

log o (u),

logo(u), ..., 4,4.k,...€{1,2,...,9}.

©ij(u+1) = pij(u), pijr(u+1) = pijr(u), ...,
that is, the hyperelliptig-functions are periodic with respect th.

Proof. Take the logarithmic derivatives of both sides of the translational relation
(Proposition 2.2). O

LetJ = CY9/A be the Jacobian variety 6f andx: C?9 — J be the natural projec-
tion. By Proposition 2.5, we may regagd;, ©;jx, ... as meromorphic functions
onJ. We writep;;(P) = p;;(u) for P = k(u).

We define the Abel-Jacobi mdp Pic’(C) — J by

m

m b/ om P; P;
z(Znig>n (Zn/ o doms [ wg> ,
i=1 > Vo0

=1 i=1

where}""" | n; = 0. By the Abel-Jacobi theorem, the méajs well-defined and a
group isomorphism.
The following theorem gives the inverse of the Abel-Jacobi map.

Theorem 2.6.Let (z1,v1), (x2,y2), ..., (z4,y4) € C and

Y9 @) 9. plziw)
u = (Z/ w1,~~~aZ/ W9>v
i=17/0° i=17/0°

thatis,x(u) = (37, (24, ;) — goo). Then we have

2y; = @ggg(u)zzg_l + ©gg,9-1(u ng_Q o+ Pgg2(W)Ti + Pgg1(u),
a] = pgg(u)xf_l + pg,g—l(u)$?_2 + o+ Pga(u)m; + pgr(u).
In particular, _
pgz(u) = (_1)971651—1'-&-1,
wheree; is thei-th elementary symmetric polynomialdn, z», . . . , z,.
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Proof. See [5, Theorem 3.2].0

For an integen with 1 < n < g, let

@[n]:{l<zn:PZ—nOO> ’P17...,Pn60}.
i=1

We definedl”) = {O}. Then, for0 < n < g, 61" is a closed subvariety of and
dim ©" = min{n, g}. Furthermoredls! = .J. We define the theta divis@® by
O =01,

Proposition 2.7.The divisor ofo (u) is k1 (O).

Proof. See [21, pp. 3.80-82]. Note that this proposition is a special case of Theo-
rem2.17 (ii). O

By Proposition 2.7p;,.,..;, has a pole of order along®. We can prove the
converse. To state it, we introduce the following notation. Réte a subring of.
We write

Rlpgi, 9g9i] = Rl9g15 992, - - 099> Pag1 Pag2: - - Pgag)s
Rlpi] = Rl{pi; |1 <i < j<g}],
Rlpij, pisn] = Rl{ps | 1<i<j< g} U{pye [1<i<j<k<g)]
For indeterminates(;; and X5, we similarly defineR[X,;, X,,:], R[X;;] and

R[X,;, Xi;x]. When we consider these rings, we ignore the order of the indices of
the indeterminates. For example, we ideniify, as X ;.

Theorem 2.8.Lety: J \ © — C29 be the morphism defined by

P(P) = (9g1(P), 9g2(P); - -, 999 (P); 9g91(P), 9gg2(P), - - s 9gg4(P))-

Then is an embedding, therefore the affine ring .6f\ © is isomorphic to
Clpgi, gg:- In particular, any meromorphic function ahwhich has a pole only
along © is represented as a polynomial {py1, ©g2, --.» Pggr Pggls Pgg2s - - -

$9g9-

Theorem 2.8 is proved by using Mumford’s construction of hyperelliptic Jaco-
bians [21]. Furthermore, we can determine the structure of theGipg;, o4
We introduce some polynomials to describe it, following [21, Chapter §l1,
Let

UR)=t7+Upt9 '+ + Uy,
V(t)= Vitd ™t 4+ V.

By the division algorithm, we have

fO) = V)2 =U®)WE) + Rit9 +--+ Ry_1t + Ry,
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whereW (t) is a polynomial int, andR;, Ro, . .., R, are polynomials ir;, Us,
oo, Ug, Vi, Vo, ..., V, with coefficients inZ[\;].

To adopt them to our coordinateg; andp,4;, we define the polynomials;,
Fy, ... ,Fg in Xgl; X927 Ce ,ng, ngl; XQQQ, Ce 7ngg by

Fi(Xgleg% . "ngngl’ng?v ce angg)
1 1 1

=4R; (_ng’ —Xg g1, —Xg1, §ngg7 §ng~,gflv ) 2X991> )

where we substitute-X,; and X,;/2 for U,_;;1 andV,_;,, respectively in
the right-hand side. We can easily verify tHat, F5, . .., Fy € Z[\;][Xgi, Xggi]-
Then we can determine the structure of the affine ring §f© as follows:

Theorem 2.9.The homomorphism

ClXgi, Xggil / (F1, Fas - .. Fy) = Clgi, 9ggi),
Xgi = 0gis
Xggi = ©ggi
is well-defined and an isomorphism. In particular, we have the differential equa-
tions
Fi(9g1, 092, - -+ 99 Pgg1: Pgg2: - - -+ Pgg9) = 0.

Theorems 2.8 and 2.9 are proved similarly to [21, Chapter Illa, Theorem 10.3]. In
fact, whenU; andV; are the coordinates of \ © as in [21, Chapter Illa§1], we

have
1
Ui=—=pgg-i+1, Vi = 509g.9-i+1

by Theorem 2.6.
Example 2.10Wheng = 1, we have
Fy = 4(X7) + A XT + M Xi1 + Xo) — Xt
Wheng = 2, we have

Fy = 4X5, + 4\ Xy 4+ (12X 10 + 4X3) X35 + (8X4 X 12 — X 39y + 4)00) Xoo
+4X7, + AN X 12 — 2X122 X000 + 4A1,
Fy = 4X 19 X35y + 40X 12 X35 + (8XF, + 4X3X12) Xoo
F AN XD + (—X2pe + 402) X120 — Xioo + 4.
By Theorem 2.9, we can represent any meromorphic functiosi aiith only
pole along® as a polynomial inpy; and p,,;. However, these expression may
be complicated and it may be difficult to derive them. Hence we often use all the

second and third derivativgs; 1, p12, . .., g9 aNdE111, P112, - - -, Pggq- IN fact,
these derivatives often appear in the formulas in the rest of this paper.



Division polynomials and canonical local heights 11

Example 2.11In the case of genus 2, Grant [12] obtained the defining equations
of J \ ©, where he used all the second and third derivativgs p12, ©22, P111,
112, P122, P220. We use his equations:
Fy = X195 X590 — X122 X092 — X112,
F4 - 2(-Xv22 + >\4)X112 - (X12 + )\3)X122 - X11X222 - X1117
Fs = (4X9p + 4Mg) X2, — 4X11 X190 + 4o — Xioo,
Fs = 4(X§’2 + X19X9o + >\4X222 + X11 + A3 X9 + )\2) - X2222,
Fr = 2X7%, 4 (4X2, + 404 X00 + 2X3) X120 + 201 — 2X11 Xo0 — X192 X009.
Note that our coordinateXs; ;;, are different from Grant's coordinates. We have the
isomorphism
C[Xyj, Xijr]/(Fs, Fu, . .., Fr) = Clpij, pijl,
Xij = ©ij,
Xijk = Qijk-
We can also obtain the defining equations like those in Example 2.11 in the

case of genus 3. See [5, Theorem 4.7].
H. F. Baker [3] proved the following relation betwegfy,; andgp;;.

Theorem 2.12 (Fundamental formula).Letey, e, e3, andey be indeterminates.
Let

flx,2) = Z 22 (Naiy1 (x + 2) + 2X05),

=0

wherelyg11 = 1. Then we have

II i—e)- D punlwereh ey e

1<i<j<4 1<i,5,k,1<g
=2 [(epa) —€p2)) (€1 = €y3))
pEA3

3)
i—1 _j—1
.<f (en(1), €n(2) — (€p(1) — €p(2))° Z @iﬂ‘(u)ep(f)ejp(?))

1<i,j<g

. (f(€4,€p(3)) — (64 — ep(g))2 Z pm(U)ezlef)(_gl)>‘| s

1<i,j<g
whereAj is the alternating group of degre

Proof. See [3, pp. 136-144]. Note that our definition of ghdunctions are dif-
ferent from that in [3] since the defining equation@fin [3] is taken asy? =
42291 ... while our defining equation is taken g = 229! + ... Therefore
our formula also differs from that in [3, p. 144]0
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Corollary 2.13. Let1 < 4,5, k,1 < g. Theng;,,;;; can be represented as a polyno-
mial in p11, P12, . . ., Pgg With coefficients IrZ[\;].

Proof. The right-hand side of (3) is alternating with respect{o...,es. Hence
itis divisible by ](e; — €;). Since the coefficients of the right-hand side of (3) as
a polynomial iney, ..., e4 belong toZ[\;][p;;], this corollary holds. O

Remark 2.14Explicit descriptions ofp;;; in the case of genus 3 are written in
[3, pp- 155-156] and [5, Section 4.2.2]. Note that our definitiop-#finctions is
slightly different from theirs.

To describe the addition formula, we introduce the following functions:

m; (U, v) = ©giv1(W)pg,j+1(V) = Pg.i+1(V)0gj+1(w)
+ 9ij+1(V) — pijr1(w) — @it1,;(V) + pir1(u),

where we assume that,,, = 0 unlessl < m,n < g. Letk = g if g is even,
k =g+ 1if gis odd. We define the skew-symmetkic< k-matrix A, (u, v) by

Mg (u,v) = (mi;(u,v))o<ij<k—1-

We denote the Pfaffian of the matt, (u, v) by F,(u, v):
Fy(u,v) = pf My(u,v) = y/det My(u,v),

where the sign of the square root is chosen sopﬁétfi *3" ) = (=1)"*1. Then
Fy(u,v) is a polynomial inp;; (u) andp;; (v) with integral coefficients. We have
the addition formula as follows:

Theorem 2.15 (Buchstaber-Enolskii-Leykin).We have

o(u+v)o(u—wv)

o(u)20(v)2 ng(u,v).
Proof. See [6, Theorem 3.3].0
Example 2.16Wheng = 1, we have
olu+v)o(u—v)
O'(U)2O'(’U)2 - pll(u) + pll(”)'

This is a well-known formula (cf. [31, Chapter XX, p. 451, Example 1]).
Wheng = 2, we have

U(uazrul;g(;gzﬁ 9 —p11(u) + p11(v) — P12(u)P22(v) + P22(u)P12(v).

This formula is classical (cf. [4, p. 100]).
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Finally, we review the result on the derivatives of the sigma function in [26].
For an integen with 1 < n < g, we denote by™ the set of positive integeris
suchthatt+ 1 <i<gandi=n+1 (mod 2), that s,

= {n+1,n+3,...,9} ifg=n+1 (mod 2),
|l {n+1,n+3,....,9—1} fg=n (mod?2).

We also defing = ! andb = 42. For any meromorphic functiof” on C9, we
define

Frw) = ]] aa F(u).

iegn
Similarly, we defineF; = F,: andF, = Fj». Note thatF,, = F sincej? = ().

Theorem 2.17 Onishi). Letn be an integer with < n < g.

(i) Leth” be a proper subset gf* and

om(u) = | ] 8‘1 o(u).

Thenoy, (u) = 0 for anyu € k=1 (0").
(i) Letu € k=1 (OM). Thenoy (u) = 0 if and only ifu € k= (OM~1).

Proof. (i) is [26, Lemma 6.2]. (ii) follows from [26, Proposition 6.5].0

3. Division of hyperelliptic functions

In this section, we prove some lemmas on division of hyperelliptic functions. This
section is technical, and the results in this section are only used to actually compute
the division polynomials and to prove results on the coefficients of the division
polynomials.
We use the theory of &bner bases in polynomial rings over Noetherian rings
to prove the lemmas in this section. We do not include the definition and properties
of Grobner bases in this paper. For details, we refer the readers to [1, Chapter 4].
For simplicity, we restrict ourselves the case where the coefficient ring is a
unique factorization domain (UFD). It is sufficient for our applications. We fix a
term order on each polynomial ring throughout this section.

Definition 3.1. Let R be a Noetherian UFD. Lef = {G4,...,G:} be a set of
non-zero polynomials iR[ X1, .. ., X,,]. Then we define

A(G) = A(Gy,...,Gy) =lem(le(G;) | 1<i<t)),

wherelc(G;) is the leading coefficient af;.
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Lemma 3.2.Let R be a Noetherian UFD and be a field which contain® as a
subring. Letl C R[X},...,X,] be a non-zero ideal. Le¥ be a Gidbner basis
for I. Then we have

IK[X1,...,Xa] N R[X1,. .., Xn]
= IR[1/A(G)][X1, ..., Xa] N RIX1, ..., Xn].

Proof. If K is the quotient field of?, then the lemma follows from [1, Proposi-
tion 4.4.4] and the paragraph after the proof of it. For the general cageplethe
quotient field ofR. ThenK is an extension field of". It is known that

IK[X1,... . X,]NF[Xy,..., X, = IF[X1,..., X,

which is clear by the theory of @bner bases, or see [28916.7, Lemma]. By
taking the intersections of both sides aRfiX, ..., X,,], we obtain the lemma.
0

Lemma 3.3.Let R be a Noetherian UFD and be a field which containg as a
subring. Letl be a non-zero ideal iR[ X1, ..., X,], Ix = IK[X4,...,X,],and

m: K[Xy,...,X,] = K[X1,...,X,]/Ix be the natural map. We assume that
Ix isaprimeideal. LetS € R[X;,...,X,] with7(S) # 0. LetG be a Gbbner
basis for/+(S) andA = A(G). Then, forany € R[1/A|[X;, ..., X,]and any
Q€ K[Xy,...,X,|withn(P) = 7(QS), there exist§)’ € R[1/A][X1,...,X,]
such thatr(Q’) = 7(Q).

Proof. By assumptionP — QS € Ix. Hence we have® € I + (S). Since
P e R[1/A][X4,...,X,], there exists a non-negative integesuch thatA™ P €
R[Xi,...,X,]. LetP’ = A™P. ThenP’ € (Ix + (S)) N R[X1,...,X,]. By
Lemma 3.2,

(I +(S)NR[X1,..., Xn] = I+ (SHR[L/AI[X1, ..., Xu] N R[X1, ..., X,].

Therefore there exist9” € R[1/A|[ X1, ..., X,] suchthatt’ — Q"S € Ik. Let
Q' =Q"/A™. ThenP - Q'S € Ik, thatis,r(P) = m(Q’'S). Sincel is a prime
ideal, we haver(Q') = 7n(Q). O

By using Lemma 3.3, we can prove a lemma on division of hyperelliptic func-
tions.

Lemma 3.4.Let R be a Noetherian UFD which is a subring @fand which con-
tainsZ[\;]. LetS € R[pgi, pgq:) be anon-zero function. L&t € R[X;, X,4:] be
a polynomial withS (g, pgq:) = S- LetG be a Gibbner basis fo(F, ..., F,, S)
in R[X g, Xy4i], whereFy, ..., F, are the polynomials in Theorem 2.9. L&t=
A(G). Then, for anyP € R[1/A|[pgi, pqq:] and anyQ € Clpg;, pgg:), If P =
st thenQ € R[I/A][pg“ pggi]'
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Proof. By Theorem 2.9, the homomorphism

o1 ClXygi, Xggil /[(F1, - - Fyg) = Clpgi, pggil;
Xgi = @giv
Xggi 7 ©ggi

is an isomorphism. Since the right-hand side is an integral don&in, . ., F,)
is a prime ideal. Therefore the lemma follows from Lemma 3.3.

In Lemma 3.4, we use the defining equationg 8f© in Theorem 2.9. We can
also use other defining equations.bf, 6. In the case of genus 2, we can use the
defining equations in Example 2.11. Then we have the following lemma.

Lemma 3.5.Letg = 2. Let R be a Noetherian UFD which is a subring &f
and which contain&[);]. LetS € R[p;;, pi;r| be a non-zero function. Lt €
R[X,;, Xi;i] be a polynomial With§(pij, pij) = S. Let G be a Gibbner ba-
sis for (F3, ..., Fr, §> in R[X;;, X;;x], whereFs, ..., F; are the polynomials in
Example 2.11. Let\ = A(G). Then, for anyP € R[1/A][p;;, pijx] and any

Q € Clpij, pijil, if P = QS, thenQ € R[1/A][pi;, pijk]-
The proof is similar to that of Lemma 3.4.

Remark 3.6The denominatord in Lemma 3.4 or 3.5 depends on the term order
and the choice of the ®bner basis>.

4. The division polynomials

In this section, we define the division polynomials and study their properties. Our
definition is a generalization of that in [15].

Definition 4.1. For an integern, we define théivision polynomialg,, by

o(nu)
o(u)n*’

Pn(u) =

4)
Remark 4.2Forg = 1, the usual definition of the division polynomialsjg (v) =
(—1)" Lo (nu) /o (u)™,

Proposition 4.3.For any integem,

) =¢n(u) ifg=1,2 (mod4),
¢-n(w) = {(bn(u) ifg=0,3 (mod 4).

Proof. The proposition immediately follows from Proposition 2.3

Proposition 4.4.For any integem, ¢,,(u) is periodic with respect tal. Therefore
it is a meromorphic function od.

Proof. The proposition follows from Proposition 2.2 by an easy calculatian.
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By Proposition 4.4, we can writ¢, (P) = ¢, (u) for P = x(u).
Corollary 4.5. For any integem, ¢,, € Clpgi, 9ggi-

Proof. The functiong,,(u) has a pole only alon@ by definition. Therefore the
corollary follows from Theorem 2.8.0

Remark 4.6We will prove a stronger result later. See Theorem 5.8. However, we
use Corollary 4.5 in the proof of it.

The following theorem describes a condition that a point in the Jacobian is an
n-torsion point by the division polynomial and its derivatives.

Theorem 4.7.Letn be a non-zero integer anit € J \ ©. Then[n]P = O if and
only if (¢, )ym (P) =0forall m =1,2,...,g.

Proof. In the proof, we write

Fi(u) = (H a‘Z) F(u)

ielr "

for a meromorphic functiod” and a subset C ™.

Letu € C9 be a pointwith«(u) = P. First, assume thét| P = O. Thennu €
k7L OM) for 0 < m < g. Let F(u) = 1/o(u)"". Theng, (u) = o(nu)F(u).
Hence, forl <m < g,

((bn)hm (u) = Z nmo'l(nu)Fhm\I(u)a (5)

I C h'rn

where we denote by | the number of elements ih By Theorem 2.175; (nu) =
0 for any subsef C ™. Therefore(¢,, )y (P) = 0.
Conversely, assume thép,, )y~ (P) = 0 for m = 1,2,...,¢. Itis sufficient
to prove thathu € k= 1(OI™) for 0 < m < g. We prove it by induction omn.
It is clear whenn = g. Assume thabu € x~1(0[™]). By Theorem 2.17 (i), for
any proper subsdt C ™, or(nu) = 0. Therefore, by (5) and the assumption that

(@n)gm (u) =0,

0" gym (nu) F(u) = 0.
SinceF'(u) # 0, we haveoyn (nu) = 0. By Theorem 2.17 (ii), we haveu €
k~Y(6m=1y, 0

Remark 4.8Wheng = 1, Theorem 4.7 is clear and well-known. Whegn=
2, Kanayama [15, Theorem 7] proved tHaiP = O if and only if ¢,,(P) =
(0 /O0us)(P) = (0*¢n/0u3)(P) = 0. Since(¢yn);z = ¢, and (¢n)yp =
O¢n/O0us, Theorem 4.7 is a refinement of Kanayama’s result.

As generalizations of Kanayama’s results [15, Proposition 1 and Lemma 1],
we have the following propositions.
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Proposition 4.9.Letm andn be integers. Then we have
¢m+n (u)(bmfn (U)

G (1) P (u)?
Gmn (U) = ¢77L(nu)¢n(u)m2- (7)

= Fg(mu,nu) (m,n #0), (6)

Proof. These formulas easily follow from Theorem 2.15 and the definition of the
division polynomials. O

Proposition 4.10.Letn be a non-zero integer. Then we have

ool — oo
n2¢2 ’

ij(nu) = ;i (u)
Qijr(nu) = E@ijk(u)

92 — (70 + 60 + oIV 61 6 + 2010 67 61

5 |

whereg,, = ¢, (1), 3% = 9y, /ous, $57 = 96\ Jou;, 957 = 0647 oy
Proof. Take the logarithmic derivatives of both sides of (41
Forn = 0,1, 2, the division polynomiab,, is described as follows:

Theorem 4.11.We have

do(u) =0, ¢1(u) =1,

O F,(v,u)
¢2 (’U,) - 81}151}3 e 87}2[71 v=u ’

whereg = 21 — 1 or g = 2l. In particular, ¢o(u), ¢1(u), p2(u) € ZNi][9ij, 9ijk]-
For the proof, we need an analog of dedpital’s rule.

Lemma 4.12.Let D C CY9 be adomain andr € D. Let F' andG be holomorphic
functions on D. Assume th&t/G can be extended as a holomorphic functién
onD. Let

. - , oG
d=min<n € Z>q ’ there existq, ..., 7, such that—————
- Uil “ e auin

(@) 0.

Then, if indices, . . . ,iq satisfy(0¢G /Ou;, ... 0u;,)(a) # 0, we have

i F(u)  (07F/0u;, ...0u;,)(0) N
G%:);)ZO Gu) — (99G/0u;, ... Qui,)(a) H(@).
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Proof. Let S = {1,2,...,d}. For simplicity, we write

Fiu) = (H 2 ) F(w)

jer ="

for any subsef C S.
SinceF(u) = G(u)H (u), we have

Fg(u) = Z Gr(u)Hg\1(u).
Ics

If I'is a proper subset ¢f, thenG(«) = 0 by the definition ofd. Hence we have
Fs(a) = Gs(a)H ().
This proves the lemma.O
Proof (Proof of Theorem 4.11}Ve havep,(u) = 0 and¢, (u) = 1 by definition.
By Theorem 2.15,
olut+v)  Fylv,u) ®)
o(u)20(v)2  o(v—u)

If we fix u, then the left-hand side of (8) is holomorphic with respect o a
neighborhood off = u. By Proposition 2.1,

do(v—u) _1
81)181}3 N 81}2[,1 v=u o
Therefore, by Lemma 4.12,
_o(2u) O F,(v,u)

P2(u) =

O'(U)4 o 811101)3 ‘e 81)2[_1

v=Uu

SinceF,(u, v) is a polynomial inp;; (u) andgp;; (v) with integral coefficients,
by Corollary 2.13, we haves(u) € Z[\][pi;, pijr]. O

Example 4.13For g = 1, we have

P2 (u) = p11(u).

Forg = 2, we have

P2(u) = p12(u)p122(u) — p22(w)p112(u) — p111(u).

Now we can compute the division polynomig), by Lemma 3.4, Proposi-
tions 4.9 and 4.10, and Theorem 4.11 as in [15, pp. 403—-404]. Although we can
use determinantal expressions (Theorems 5.5 and 5.7) or the recurrence formula
(Theorem 6.4), they are rather complicateddor 2.

Forg = 2 and1l < n < 5, the author computed,, and verified that,, €
ZNi)[pij, 9ijk] by using Maxima [19] and Risa/Asir [23]. Note that it is not nec-
essary to use Lemma 3.4 in the case of genus 2 (see [15]). This fact suggests the
following conjecture:
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Conijecture 4.14For any integen, ¢,,(u) € Z[\][©i;, ©ijk]-

This conjecture is true fog = 1 (cf. [27, Section 1.3]). In the case of genus 2,
Kanayama proved that, € Q[X;][pi;, pijx] for any integem in [16, Corollary 1
(Corrected)]. We will prove a weaker result than Conjecture 4.14 in Theorem 5.8.
Using Theorem 5.8, we will prove that, € Z[1/2, \;][pi;, pijx) for g = 2in
Example 5.9. This statement is stronger than Kanayama'’s result.

5. Determinantal expressions

In this section, we give determinantal expressions for the division polynafyial
As an application, we prove a result on the coefficients,pfis a polynomial in
the p-functions.

Letu € xk~1(OM). We define

wo(u) =1, wi(u) =), we(u)=x(w)? ..., wy(u)==z(u),

and
) =Y2y(w) if iis odd,
W) = {:C(u)ngi/Q if i is even,
for i > 1. Onishi proved the following formula.

Theorem 5.1 (Frobenius-Stickelberger-type formula)Let n be an integer and
u® e e gmH(O),

@) If 2 < n < g, then we have

G (0D 4w [ i 0, (0 — )
O’u(’u(l))" . Jﬁ(u("))”

= det ('UJj_l(u(i))>

(_1)n(n—1)(n+g+1)/2

1<ij<n’

(ii) If n > g, then we have

(u® 4 ) H1§i<j§n oy (u® — ul9))
oy(uM) oy (ulm)n

= det (wj,l(u(i)))

Remark 5.2Theorem 5.1 is proved in [26, Theorem 8.2]. Unfortunately, the sign
in [26, Theorem 8.2] is incorrect since the sign in [26, Proposition 5.1] is miscal-
culated. The sigri—1)9(¢—1(9—3)/2 in [26, Proposition 5.1] should be replaced
by (—1)9(9=2)(9=3)/2 then [26, Theorem 8.2] is modified as above.

(—1)(n=9-D(n+g”+29)/27

1<i,j<n

Using Theorem 5.10nishi also proved a similar formula for his division poly-
nomial ¢, (u) = a(nu)/aﬁ(u)"2 (cf. [26, Theorem 9.3]). This formula is called
the Kiepert-type formula. We prove a similar formula for our division polynomial

on(u) = o(nu)/o(u)™ .

We need some lemmas.



20 Yukihiro Uchida

Lemma 5.3.Fix an integerk with 1 < k < ¢. Letu andv be onx~*(0!). Then

. op(u—0) 1
lim = .
uSY Up — U k=1 (v)

Proof. See [26, Lemma 9.1]. O
Lemma 5.4.For any genug, the functiors, (u) is an odd function.

Proof. Let |b| be the number of elementslinThen|b| is (¢ —1)/2 if g is odd, and
(g—2)/2if gis even. Hencé| is an even number if = 1,2 (mod 4), and an odd
number ifg = 0,3 (mod 4). Therefore the lemma follows from Proposition 2.3.
O

Using these lemmas, we prove the following theorem.

Theorem 5.5 (Kiepert-type formula). Fix an integerk with 1 < k& < g. Let
n > 1be anintegerp™ ... u@ ¢ k=1 (OM), andu = u™ + - 4 ul9). We
define

1w (u) wy(uM) L wngo g (uD)

1w (ul®) way(u9) L w1 (ul)

wi) wh ), ()

No(, .. ul?) =g u,/l@(g)) wfz@(g)) w;g,li(u(g))

0 wgn_l)(u(l)) wén_l)(u(l)) T ()

0 w§"*1>(u<9>) wénfl)(u(g)) ... wgffll)(u(g))

and
1wy (uM) we(u®) .. wy—y (u®)
(2) (2) (2)
Dy [} 7))l
1wy (u9) we(u@) .. wy—y (ul®)
where the symbols”, ..., =1 denote

4 (dY a\T
duk’ duk ’ Y duk

respectively. Here we regand, (u) locally as a function of,. Then we have

(z(u®)- .x(uw)))(’“*“"(”*”/an(u(l), )

(112! (n— 1)N)9D(u® ... ule)n? ’

¢n(u) =E&n
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where

1 ifg=0 (mod4),
en =< (—1)1 ifg=1 (mod 4), 9)
(—=1)M»=D/2 if g =23 (mod 4).

Proof. We divide the proof into two steps. The first step is taking limits of both
sides of the Frobenius-Stickelberger-type formula (Theorem 5.1). This step is sim-
ilar to the proof ofOnishi’s Kiepert-type formula ([24, Theorem 3.3]). The second
step is eliminatingry ando, by combining the formula obtained in the first step
and the Frobenius-Stickelberger-type formula itself.

Step 1. Replacingn by ng in Theorem 5.1, we have

/2 g(u(l) e u(ng)) H1§i<j§ng Jb(u(i) _ u(j))
aﬁ(u(l))"g .. au(u("g))"g
1 wl(u(l)) wg(u(l)) o wngfl(u(l))

| wmf@)) w2<1f<2>> wnglfu(”) o)

(_1)g(n97971)(n+9+2)

1wy (u™)) wa(u™)) .. wp g (u9))
The right-hand side is equal to

1 wy (u) Wpg—1(u)

1 wy (ul9)) e Wpg—1(ul?))
0wy (u9HD)) —wy (u) ... wpg—1 (WD) — wy g (u®)

0 wy(u®9) —wi(u?) ... wpg—1(u?9) —wp,— 1 (u)
1 wy (u(29+1) . Wyg—1 (u?9HD)
1 wy (u(™9) .. wng,l(u(”g))

Forl <i < g, we puth = v\ — 4" By Taylor's theorem,

w; () —w; (@) = wi (@) + (@°(hV) > 2).
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Therefore, by dividing both sides of (10) by h(?) . .. h(9) | taking limitsu(99) —
u for 1 < i < g, and using Lemmas 5.3 and 5.4, we have

(_1)g(ng—g—1)(n+g+2)/2+g+g(9—1)/20(2u PG ) BT u(ng))

H oy (u® —u)4. H oy (u® —u())2. H o (u® —u))

1<i<j<g 1<i<g 2g+1<i<j<ng
2g+1<j<ng
g
/ ( (x(u(i))k—laﬁ(u(i))%g) .Uﬁ(u(2g+1))ng ... Uﬁ(u(ng))ng>
i=1
1 w (u(l)) ’lUQ(U(l)) e wngfl(u(l))
1 owi(w@)  wa(ul?) o wpg (ul9)
0 wi(u®)  whu®) ... w;gfl(u(l))
ol S T G
0 wi(u9) whud) ... w;gfl(u(g))
1wy (w90 wy (uPITD) L aw,y (u9HD)
1wy (u9) wg(u("g)) . wng_l(u(”g))

We repeat these operations. Aox i < g, we puth(® = u*9") — 49 The
right-hand side of (11) is equal to

1 wy (uM)

1 wy (u(9))
w)(ulV)

0 w (ul9)

0wy (u?9t) —wy (uD) — wl (uM)pM |

0 w1 (u(?’g)) — wy (u(g)) — w/l (u(l))h(g)
1 wy (u39H1))

1 wy (u("9))

By Taylor’s theorem,

wj(u(gﬂ)) _ wj(u(z)) _ w; (u(z))h(%) - 5w;!(u(ﬂ)(h(l))? + (dO(h(Z)) > 3).
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Therefore, by dividing both sides of (11) by(MA3) - ~~h(9))2, taking limits
w99 — 4 for 1 <4 < ¢, and using Lemmas 5.3 and 5.4, we have

(—1)9(ng=9= D) (ntg+2)/24(+2)(9+9(9=1)/2) 5 (34 4- BITD ... 4 4,(n9))

I @@= ] o@@-u@? [  e@d-u)

1<i<j<g 1<i<g 3g+1<i<j<ng
3g+1<j<ng

g

/ (H(;p(u(i))i’*(’f—l)gﬁ(u(i))3ng) .Uﬂ(u(3g+1))ng . ..Jﬁ(u(ng))ng>
i=1

1w (™) we(u®) ... wng_l(u(l))

1w (u9) wo(ul®)) ... wng,l(u(g))

0 wi@®)  whu®) L wh (u®)

_ 1 |0 w'l(u(g)) wé(u(g)) w;g_l(u(g))

@0 wf)  wf®) ... w0

0 W{(u®) W) ... wl, )

1wy (uB9HD)) wy (uBITD) g (uB9HD)

L w(u™)  wy(u™) L wpg g (u™9))

Repeating these operations, we have

[T, (2(u®) E=Dn(=1/24, (4,(0)%9)
1

= Ao (n = 1)!)9Nn(u(1)7 ... ,u(g))7 (12)

(=D°

where

a=%g(ng—g—l)(n+g+2>+(1+2+---+(n—1>) (g+;g<g—1)>

= S9(ng — g~ 1)(n-+g+2) + yn(n— Dglg + 1)

Step 2. Replacingn by g in Theorem 5.1, we have

(1) _ (@)
(_1)9(971)/20(@ Micicic Ub@ ) =DM, ... u9).  (13)
[Ti=; os(ul)

Combining (12) and (13), we have

(z(u®)-- .x(uw)))(’“*“"(”*”/an(u(l), )
(112! (n— 1)N)9D(u® ... ule)n? ’

¢n(u) =E&n
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where
En = (_l)ﬁv

B = %g(ng —g—1(n+g+2)+ in(n —1Dglg+1) - %nzg(g —1).

It is easy to verify that,, satisfies (9). O

In Theorem 5.5, we use derivatives with respect:{o By using derivatives
with respect tac, we obtain another formula.
Let u(u) be a function ons—* (O1). We denote byi(u), ji(u), ..., u" (u)
the functions
du d’*u d’u
%(u)v @( )v .”7d.1‘”(u>

respectively.

Lemma 5.6.Letm > 0 be any integer. Then we have

L (2y()"" ™ () € 2N [, (o)

Proof. We prove the lemma by induction on. Sincey(u) = f(x(u))/(zy(u)),
the lemma holds fom = 1.

We assume that the lemma holds 19r2, ..., m — 1. Then, for any integer
1 < k < m — 1, there existsy,(u) € Z[\][z(u),y(u)] such thaty* (v) =
k!ak(u)/(Zy(u))%*l. By differentiating the defining equatiog? = f(x), we
have

m—1

2y (u)y ™ (w) = F (2(u) = Y (7;) y ) (u)y R (u).

k=1

Itis easily seen that™ (z(u))/m! € Z[\;][z(u)]. By assumption, we have

<m)y<k> ()™ () =t L))

2m—2
k (2y(u))
Therefore the lemma holds for. O
For integers, j > 0, we define
wi’ (u)

Then we have the following formula.
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Theorem 5.7.Under the assumptions and notation of Theorem 5.5, we define

W()ﬁo(u(l)) Wo’l(u(l)) Wo’ng,l(u(l))

Wo,o(u(g)) WO,I(U(Q)) WO,ngfl(u(g))

Wl)o(u(1)> Wlﬁl(u(l)) Wl,ngfl(u(l))

(1) (9)y — . : N :

M) =1 gy (@) W (@) . Wy (u®)
anl,O(u(l)) anl,l(u(l)) e anl,ngfl(u(l))

anl,O(u(g)) anl,l(u(g)) e anl,ngfl(u(g))

and

Fn(u(l), o 7u(g)) =, (ng(u(l)) .. 'y(u(g)))"(”’l)/QMn(u(l), o 7u(g))'

Then we have
Fo(uM, ... ul9)

) = oD, @y (14)

Furthermore we have
Fo(u®, .. u®) € ZAJz®), ..., 2(w®), (D), yu@)]. (15)

Proof. The proof of (14) is similar to that of Theorem 5.5. We omit the details.
We prove (15). To simplify notation, we write

R =7\ ]z, ... 2u®),ywM),. .., yu)].

Let s be the largest integer not exceeding- 1)g/2, andr = ng — s. By (14),
we have

n(n—1)/2
(29 y(u))

¢n(u) =4 D(u(”,...,u(g))"2
1 z@®) 2" ) y(u®) (z°"ty) (uM)
0! 0! e 0! 0! e 0!
o ) @ HW D) yEh) (@ ty) D (u)
1! Tt 1! 1! e 1!
(;) z<"71;(u(1)) (17*71)(71;1>(u(1)) y(nfl;(u(l)) (zs—ly)<n.—1)(u(1))
(n—1)! ce (n—1)! (n—1)! t (n—1)!
1 z@l?) 2" u9)) y((?) (@ ty) ()
. : . )
(6! (i) @1y @) 5 (@ (@)
1! e 1! 1! e 1!
(.) x(ﬂfl;(u(g)) (fol)(".*l)(u(g)) y(nfl;(u(g)) (xS*ly)(n.*D(u(y))
(n—1)! ce (n—1)! (n—1)! t (n—1)!
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Let A be the matrix in the right-hand side. We denoteA);y:j?; the submatrix
of A consisting of the rows, , . . . , i, and the columng, .. ., j;. By the Laplace
expansion,

det A = Z (_1)i1+"'+7;7~+7“(7‘+1)/2‘A'il.:::r

1<i1 < <ip<ng

Tptl--rlng
r+1l..ng

A

wherei, 1, ...,i,, are the indices withi, 1 < --- < ing @and{iy,... ing} =
{1,...,ng}. Since each entry o} ;" is of the form(z') ™ (u(*¥)) /m!, we have
|A|{" """ € R. Therefore it is sufficient to prove that

(225(u) -y ®)

foranyi, ;1 < - - <ipg. ‘ .
Fix indicesi, 1 < --- < ing and letB = A} /"7. Forl < k < g, let
t, be the number of the rows containing the variati€'. We defineT;, = 0 and

T, =t1 +---+t, for 1 < k < g. By using the Laplace expansion repeatedly,
g
Tr—1+1...T;
det B= Y &, H|B‘j;k_l+1.‘.jl;k7
jlv"'vjs k=1

wherejy, ..., js run through all indices satisfying th@ji,...,j:} = {1,...,s}
andjp, 41 < --- < jg, foralll <k < g. Heree;, . ; = £1. Then, for any

1<k <g, BTk s of the form

ITy _1+1---0Ty
((zljy><mi><u<’€>>>
m;! 1<ig<te

where0 < m; <--- <my, <n-—1land0 <[; < ... <. Therefore it is
sufficient to prove the following claim:

Claim. Letv € k=1 (611). Lett < n be a positive integer. L&t < m; < --- <
my <n—1and0 <l; <--- < l;. Then we have

@ e (U ),y
First note that -

(aliy)mad T (gha)k) gy (mi—k)

)n(n—l)/2

ALy € R

mg! =k (m; — k)

Hence we have

Ljq) (M)
det (M)
ms: 1<i4,j<t

11 14
X x
(m1) ,(m1-1) = - =
y oy - 0! 0!
my1!  (mi—1)! " 0 (z'1)V (zlt)m
. 1! T 1!
= det : : : . .
(my) . (my—1) . " .
Yy Yy Y
Mt (me=)1 - O (wh)(mt) ($lt)<mt>
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We denote byM and N the first and the second matrix of the right-hand side
respectively. Thed/ is at x (m; + 1) matrix andN is an(m; + 1) x ¢t matrix.
By the Binet-Cauchy formula,

det(MN)= 37 M INR

J1---J¢
1<g1 << <my +1

It is easy to see thatV|]' ;' € Z[)\][z(v)]. Therefore the proof of Claim 5 is
reduced to proving the following:

Claim. Letv € x~'(OM1). Lett < n be a positive integer. Lét < m; < --- <
my<n—1land0 <k <--- <k <my. Then we have

<mi_k.7> v
(Qy(v))n(n—l)/z det (y(fn—k()')) S Z[)\l] [l‘(?}), y(v)],
i 3 /) 1<ij<t

where we assume that™ /m! = 0if m < 0.
For an integern # 0, lete(m) = 2m — 1 and lete(0) = 0. By Lemma 5.6,

(m)
2y ™) ¢ 23 w), y(w)]

m!

for any integemn. Sincee(m) is increasing with respect ta, if m < m/’, then

™ (o
@y ¢ gip (o), y(w)]

By assumptionn; < n —1—t+4andk; > j — 1. Hence we haven; — k; <
n—t+i—j. Therefore, forany < i,j <t,there exist$;;(v) € Z[\;][z(v), y(v)]
such that

y W) by()

(mi — k)t (2y(v))elnmttizi)

Then we have

(mi—kj)
det <ZJ('U')) = det < bu((v_)t.y_ )>
(mi = ki)' ) 1<ij<e 2y ()=t o <

t
T )
= Z Sgl’l H e((n) t+i—7(1))’

TES i:l

wheresS, is the symmetric group of degréeTherefore it is sufficient to prove that

;e n—t+i—7(1 ))gy

for anyr € S;. The proof is divided into two cases.
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Case 1. First we consider the case whete- 2t > 0. Thenn —t+1i— j > 1 for
all 1 <i,5 <t. Hence we have

t t
Zen—t—&—z—7‘ :Z (n—t+i—7(i))—1)=—2t>+ (2n — 1)t.
i=1

Sincen andt are integers, it is easily seen that® + (2n — 1)t < n(n — 1)/2.

Case 2.Next we consider the case whete— 2t < 0. Let! = n — 2¢. Then
e(n—t+i—j)=0ifandonlyif (¢,5) € {(t—1+1,1),(t—1+2,2),..., (¢, ]}
Note thate(0) = 0 = (2- 0 — 1) + 1. Hence we have

e(n—t+i—7(i)) <I+> (2n—t+i—7(i))—1) = =22+ (2n+ 1)t —

1 =1

M-

3

Sincen — 2t is an integer anadh — 2¢ < 0, we haven — 2t < —1, that is,t >
(n + 1)/2. Therefore it is easily seen thatt? + (2n + 1)t — n < n(n — 1)/2.
O

As an application of the determinantal expression, we can prove the following
theorem:

Theorem 5.8.There exists a non-zero elemehE Z[\;] such that, for any integer
n, ¢n € Z[1/A, ;] [p!]ia @qql]

Proof. Without loss of generality, we may assume thaf i, ..., Ay, are alge-
braically independent ovép. By Proposition 4.3, we may assume that- 0.

Let B(u) = D(u™,...,u9)2 SinceD(uV,...,ul9)) is the Vandermonde
determinantf (u) is a symmetric polynomial im(u(1), . . ., 2(u(9)) with integral
coefficients. Henc&(u) € Z[p,4;] by Theorem 2.6.

For a non-negative integet, let

Qm(u) = on(u)E(u)™.
Let M be the smallest integer such ti2dt/ > n?. By Theorem 5.7,
Qur(u) = Fo(u®, .. u @)D, ul0)2M =",

The right-hand side is symmetric with respectudd’, . .., «(9). By using Theo-
rem 2.6, we can eliminatg(u(!)), ..., y(u'9)) in the right-hand side. Then the
right-hand side becomes a symmetric polynomiatin®), ... 2(u(9)) with co-
efficients inZ[1/2, \;|[pg44:]. Therefore, by Theorem 2.6,

Qumr € Z[1/2, Ail[pgi, 9ggil-

Then there exists a non-negative integsuch that

2tQM € Z[/\i}[@gzﬁ @qql]
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Form > 0, letQ!, = 2'Q,,. Let A € Z[\;] be the element obtained by putting
S = Ein Lemma 3.4. We prove that

Qr € Z[1/A, N [©gis Pggil (16)
for m > 0 by induction onm.
Whenm = M, we have already proved (16). Assume that (16) holds/for
SinceQ’, = Q’,_,E, (16) holds form — 1 by Lemma 3.4.
Sinceg,, = Q}/2", replacingA by 2A if necessary, the theorem holds

In Theorem 5.8, we only us@gi, ©g2, - - -, Pgg: Pggls Pgg2s - - - » Pggg 10 EX-
press the division polynomias,,. If we use all the second and third derivatives,
namely,pi1, P12, - - -, Pggr P111, 0112, - - - » Pggg, then we may be able to take a
smaller element\. We illustrate this by the following example.

Example 5.9We consider the case of genus 2.
First we use the defining equatioh$, F»> in Example 2.10. By Theorem 2.6,
we have
E(u) = D(u), u?)? = (2(u®) = 2(uV))? = poa(u)? + 4p12(u).

Let S = X2, + 4X,, andG be a Gbbner basis for the idedl,, F», S) in the
rng Z[A;][X4i, X 4¢:). Then Theorem 5.8 holds fat = A(G).

By computing the Gibner basisF, we can computed. The author used
Macaulay 2 [13]. When we use degrevlex wikh s > Xooo > Xio > Xoo,
we haveA = 144 = 2. 32. Therefore we have

bn € Z[1/6, Ni][p12, 922, 9122, 9222) (17)

for anyn.
We can also use all the second and third derivatives to représem/e use
the defining equationBs, Fy, I, Fg, Fr in Example 2.11. We use degrevlex with

X111 > Xi12 > Xigg > Xooo > X171 > Xig > Xoo.

Let G be a Gbbner basis for the idedlFs, Fy, Fs, Fs, F7,S). Then we have
A = A(G) = 8 = 23. Replacing Lemma 3.4 by Lemma 3.5 in the proof of
Theorem 5.8, we have

On € Z[1/2, N][p11, P12, P22, 111, P112, P122, P9222]

for any n. Moreover, by the defining equatiods, Fy, Fs in Example 2.11, we
have the following relations:

P112 = 01260222 — 122622,
P111 = 2(p22 + Aa)p112 — (P12 + A3)P122 — P1190222,
4p11 = —4(p5y + P12022 + Aady + A3p22 + A2) + P30

Therefore we have

bn € Z[1/2, Ni][p12, 22, 9122, 9222]
for anyn, which is stronger than (17).
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6. Recurrence formulas

In this section, we give recurrence formulas for the division polynomials. First, we
review the following classical theta relation, which was independently proved by
Caspary [10] and Frobenius [11].

Theorem 6.1.Letn > 29 be an integera, b € (1/2)29, T € $, andwy, wy, ...,
Wy, 21, 22, - ., 2n, € CI. Then we have

det (19 {Z} (w; + 2, 7)Y [2} (w; — zj,7)> =0.
1<i,j<n
Proof. See [10], [11] or [2, p. 473, Ex. Vv].O
We obtain the following relation of the sigma functions as a corollary.
Corollary 6.2. Letn > 29 be an integer and"), u(? ... u(") € C9. We define
then x n matrix A by

A= (U(uu) D)o (u® — u<j>))

1<ij<n

Then we haveet A = 0. In particular, if g = 1,2 (mod 4) andn is even, then
we havepf A = 0.

Proof. The former part easily follows from Theorem 6.1 and the definition of the
hyperelliptic sigma function. The latter part follows from Proposition 2.3.

Remark 6.3Whenn = 29 + 2, the latter part of Corollary 6.2 was proved by
Weierstrass [30].

By Corollary 6.2, we have the following relation of the division polynomials.

Theorem 6.4.Letn > 29 be an integenny, mo, ..., m, be integers and € CY.
We define the x n matrix A by

A= (¢mi+mj (“)@m—mj (u))1gi,j§n :

Then we havelet A = 0. In particular, if g = 1,2 (mod 4) andn is even, then
we havepf A = 0.

Proof. By definition,

o(mu + mju)o(mu — mju)
)2(mf+m§) .

¢mi+mj (u) P, —my; (u) =

o(u

Hence we have

det A = det o(miu + mjg)OQ(miZL —mjt)
o (u)2mitms)

1
— (@) D) det (o (miu + mju)o(mu — mju))

=0

by Corollary 6.2. The proof of the latter part is similard
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We can derive recurrence formulas for the division polynomials from Theorem 6.4.
We show examples for = 1, 2.

Example 6.5Wheng = 1 andn = 4, we have

¢m1 +ma (u)¢m1 —ma (u)¢m3+m4 (u)¢m3*m4 (u)
= Gy +ms (W) Py —ms (W) Py +my (W) Py —my (1)
+ ¢m1 +my (u)(bnn —my (u)¢m2 +m3 (u)¢m2—m3 (u) =0

foranymgy,...,my € Z. Puttingm; = k, mg = [, ms = m andmy = 0, we
have

Orep1 (1) Dk —1 (1) Py (1) — Py (1) P (1) 1 (w)?
+ ¢l+m(u)¢lfm(u)¢k(u)2 =0.
This is a well-known relation of the division polynomials in the case of genus
(cf. [27, Lemma 2.23]).

Example 6.6Let ¢ = 2 andn = 6. Puttingm; = m + 1, my = m, mz = 3,
my = 2, ms = 1 andmg = 0, we have

Gom+1(d5 — Pads + ¢3)
— GmtaPmi20i o + OmtaPmi10m—10m—205 — Gmiadi,dm—203
+ B2 3Pm—1Om—3 — Prmt3Pmt 100105 + Omt302 Om—1 P12
— Ot 3Pmt20m Pm—305 + G s 2 OmPm—203 — Pmt20i, b5
+ Gmt30m 1 Om—303 — Omt20m1 Om—201d2 + O m_105 =0, (18)

where we omit the variable. Puttingm; = m + 1, my = m — 1, mg = 3,
my4 = 2, ms = 1 andmg = 0, we have

Gom P2 (5 — sl + ¢3)
— Pt aPmi1Om—20m—3 + Prmtabm®o 203 — Gmsadi_1Om—203
+ Pmt3Omt20m—10m—1 — Gm430mPm—1Om—203 + Gmisdy, 1 Pad2
— Grs2OmPm—193 + Omnr2bmi10mOm—305 — Sm+20m b 195
+ Gt 20 10m—a03 — G i1 Sm—3Pad2 + Gy SmSm—205 = 0. (19)

To compute the division polynomials by the recurrence formulas (18) and (19), we
need to prove thats — 443 + ¢3 # 0. We can verify it by direct computation or
by using the Taylor expansion of the hyperelliptic sigma function.

In the case of genus 1, the recurrence formulas are used to compute the division
polynomials. In the general case, the recurrence formulas are useful to compute
the values of the division polynomials. Furthermore, at least theoretically, we can
inductively compute the division polynomials by the recurrence formulas. How-
ever the computation requires division of hyperelliptic functions as described in
Section 3, which is not efficient.
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7. The canonical local height functions

In this section, we give explicit formulas for the canonical local height functions
(or Néron functions) on the Jacobiahfor Archimedean places. We also give a
relation of the canonical local height function and the division polynomial.

First we review the canonical local height functions. For details, see [18, Chap-
ter 11], [8], or [14,5B.9].

We assume that the hyperelliptic curgeis defined over a number field.
ThenJ and© are also defined ovek. Let ¢,, be the division polynomial off
defined as in Section 4. The#f), may be regarded as a rational function 6n
defined overk” by Theorem 5.8. By definition, we haye|*© = n?6 + div(¢,)
forn #£ 0.

Let Mk be the set of places di. For eachw € Mg, let|-|, be the absolute
value associated witlh whose restriction tdQ is one of the standard absolute
values orQ. We definev(z) = —log |z|,,. We denote the completion &f atv by
K,.

Definition 7.1. A function\, : (J\ ©)(K,) — R s called alocal height function
for v (associated witt®) if the following property holds: Let/ be any Zariski
open subset of such thatU N © # 0 and©|y = div(F) for some rational
function F on U. Then there exists a continuous functienU (K,) — R such
that

\o(P) = 0(F(P)) + o(P)

forall P € (U \ O)(K,).

Definition 7.2. Letv € M. Afunction\,: (J\O)(K,) — Ris called thecanon-
ical local height functioror v (associated witt®) if the following conditions are
satisfied.

(i) A, is a local height function for associated with.
(i) Let¢ be a rational function or/ satisfying[2]*© = 460 + div(¢). Then

Ao([2]1P) = 4, (P) + v(¢(P))
forall P € (J\ ©)(K,).

The canonical height functioi, is uniquely determined up to an additive con-
stant. Furthermore, if we fix the functian then), is uniquely determined.

The division polynomiab- satisfieg2]*© = 46 + div(¢2). From now on, we
fix ¢ = ¢5. Then), is uniquely determined.

To describe an explicit formula for the canonical local height function for an
Archimedean place, we make some definitions. .ée an Archimedean place.
Then there exists an embedding i, — C corresponding te such thatxz|, =
|7(x)| for all x € K, where the absolute value in the right-hand side is the usual
one. We identifyK, as a subfield of through the embedding

We define the functiot'(u) onC9 by

Su) =e (;L(u,u)) o(u).
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Proposition 7.3.The function| X (u)| on CY is periodic with respect tal.

Proof. Let! € A. By Proposition 2.2, we have

S+ 1) =

(3500)] 1501

By Proposition 2.4 (i) F(u,!) € R. Therefore we have

e (;E(u,l))‘ _1

This proves the proposition.0

Then we have the following explicit formula:

Theorem 7.4.LetP € (J\ ©)(K,). Letu € CY be a point with<(u) = P. Then
we have

5o (P) = v(Z(u).
Proof. We define the functiod’,: (J \ ©)(K,) — R by
X,(P) = v(Z(u)),

whereu € CY satisfiesk(u) = P. By Proposition 7.3\, is well-defined. It
is sufficient to prove that the conditions in Definition 7.2 are satisfied. Then the
theorem follows from the uniqueness of the canonical local height function.

First we prove thaf\’v is a local height function associated with Let U be a
Zariski open subset of such thal7yN© # () and®|y = div(F') for some rational
function F onU. LetG(u) = o(u)/F(k(u)). Sincediv(G) = 0, G and1/G are
holomorphic functions om~! (U). Thereforev(G(u)) is continuous o~ (U).

By the definition of\/, we have

N, (P) = v(F(P)) + v(G(u)) — 7 Im L(u, u),

whereP = r(u). Therefore\, is a local height function associated with
Next we prove that

N,([21P) = 4N, (P) + v(¢2(P))-

By definition,
N ([2]P) = v <e (—;L(2u7 2u)) J(2u)>
" < (;L(u,u)) U(u)) +o (Z%E)
= 4X,(P) + v(¢2(P)).

This concludes the proof of the theorentl
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From now on, we consider an arbitrary place. We have translation formulas for
the canonical local height functions as follows:

Theorem 7.5.Letv € Mk andP,Q € (J \ O)(K,).
() (Quasi-parallelogram low) I’ + @Q, P — Q ¢ ©, then we have
Ao(P+Q) + Au(P = Q) = 22, (P) +24u(Q) + v(Fy (P, Q).
(i) Letn be a non-zero integer. [h]P ¢ O, then we have
Ao([n]P) = 1n* Ao (P) + v(¢n(P))-

Note that Theorem 7.5 immediately follows from Theorem 7.4 wheis
Archimedean. In the following, we prove Theorem 7.5 for an arbitrary place.

Proof. First note that it is sufficient to prove the corollary Bt X, ), whereU is a

non-empty Zariski open subset f since the functions appearing in the proof are

v-adically continuous. Hence we will not specify the domains of the functions.
() Let 0,9, 7, m2: J x J — J be the homomorphisms defined by

O-(PvQ):P_FQv 5(P7Q):P_Q7 Trl(P)Q):Pa TFQ(P’Q):Q'

Then we have
divF, =00 +6"0 — 2170 — 27m56.

Therefore, by general theory (cf. [1811, Theorem 1.1]), there exists a constant
~, such that

Mo(P+Q) + Au(P = Q) = 22, (P) +2A,(Q) + v(Fy(P,Q)) + 7. (20)
Substituting[2] P and[2]@ for P and@ respectively, we have

M (21(P+ Q) + A (21(P - Q))
= 20,(121P) + 20, (12Q) + v(F, (AP, Q) + 7. (21)
On the other hand, by Proposition 4.9,

v(d2(P + Q)) + v(p2(P — Q))
= 20(92(P)) + 20(¢2(Q)) — 4v(F,(P, Q)) + v(Fo([2]P, [2]Q)).  (22)
Combining (20), (21), (22), and the definition bf, we havey, = 0.
(i) We prove it by induction om. If n = 1, 2, it is clear by definition.
Letn > 3. We assume that the corollary holds for- 1 andn — 2. Then, by
@),
Ao([n]P) = =My (In = 21P) + 2, ([n = 1]P) + 2A,(P) + v(Fy([n — 1]P, P))
= —(n— 2)2A,(P) — v(¢n-2(P)) + 2(n — 1)2A,(P)
+20(¢n_1(P)) + 2, (P) + v(F,([n — 1]P, P))
=12\ (P) + v(¢n(P)).

This completes the proof.O

)
(
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Remark 7.6Theorems 7.4 and 7.5 are already known in the case of genus 1 (cf.
[28, Chapter VI]). Note that our canonical local height function differs from that
in [28] by an additive constant.

In the case of genus 2, Theorem 7.4 was proved by Yoshitomi [32, Corol-
lary 2.5]. The author has proved formulas similar to Theorem 7.5. The details will
appear in a forthcoming publication.
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